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Abstract Remotely sensed snow cover observations provide an opportunity to improve operational 

snowmelt and streamflow forecasting in remote regions. This is particularly true in Alaska, where remote 

basins and a spatially and temporally sparse gaging network plague efforts to understand and forecast the 

hydrology of subarctic boreal basins and where climate change is leading to rapid shifts in basin function. 

In this study, the operational framework employed by the United States (US) National Weather Service, 5 

including the Alaska Pacific River Forecast Center, is adapted to integrate Moderate Resolution Imaging 

Spectroradiometer (MODIS) remotely sensed observations of fractional snow cover area (fSCA) to 

determine if these data improve streamflow forecasts in Interior Alaska river basins. Two versions of 

MODIS fSCA are tested against a base case extent of snow cover derived by aerial depletion curves: the 

MODIS 10A1 (MOD10A1), and the MODIS Snow Cover Area and Grain size (MODSCAG) product over 10 

the period 2000-2010. Observed runoff is compared to simulated runoff to calibrate both iterations of the 

model. MODIS-forced simulations have improved snow depletion timing compared with snow telemetry 

sites in the basins, with discernable increases in skill for the streamflow simulations. The MODSCAG 

fSCA version provides moderate increases in skill but is similar to the MOD10A1 results. The basins with 

the largest improvement in streamflow simulations have the sparsest streamflow observations. Considering 15 

the numerous low-quality gages (discontinuous, short, or unreliable) and ungaged systems throughout the 

high latitude regions of the globe, this result is valuable and indicates the utility of the MODIS fSCA data 

in these regions. Additionally, while improvements in predicted discharge values are subtle, the snow 

model better represents the physical conditions of the snowpack and therefore provides more robust 

simulations, which are consistent with the US National Weather Service’s move toward a physically-based 20 

National Water Model. Physically-based models may also be more capable of adapting to changing 

climates than statistical models corrected to past regimes. This work provides direction for both the Alaska 

Pacific River Forecast Center and other forecast centers across the US to implement remote sensing 

observations within their operational framework, to refine the representation of snow, and to improve 

streamflow forecasting skill in basins with few or poor-quality observations.  25 

1 Introduction 

Arctic climate change is rapidly transforming the North with a myriad of impacts on the hydrologic realm, 

which has important implications for the largest biome on earth, the boreal forest. For the northernmost 

United States (US) state, Alaska, climate change has affected the hydrology, ecology, and society in 

significant ways (Euskirchen et al., 2009, Hinzman et al., 2005, Hinzman et al., 2013, Wrona et al., 2016). 30 

Alaska has warmed more than two times the rate of the rest of the US since the 1950s (Karl et al., 2009). 

Interior boreal Alaska has warmed the most of all regions in the state, increasing by 4 ºC in winter and 

1.9ºC annually from 1949-2011 (Stewart et al., 2013). Snowpack extents in Alaska have decreased over 
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time by 18% (1966-2012) due to an earlier snow melt, while snowpack duration has also decreased 

(SWIPA, 2012). Changes in temperature and snow are also affecting frozen ground and leading to 

permafrost thaw—the temperature of the permafrost near Fairbanks Alaska has risen by 2-4ºC from 1930-

2003 (Slater and Lawrence, 2013; Koven et al., 2013).  Rivers in Alaska have been observed to be 

changing as a result of an intensified or stronger hydrologic cycle that could lead to an increase in peak 5 

flows in the North American high latitudes (Cohen et al., 2012; Huntington, 2006; Rawlins et al., 2010). 

Riverine breakup dates have been noted to be occurring earlier (Cooley and Pavelsky, 2016; Lesack et al., 

2014; Muhammed et al., 2016). Extreme events are also changing; annual maximum streamflow trends 

indicate that Alaskan riverine systems are experiencing streamflow declines, while minimum flow trends 

are largely increasing (Bennett et al., 2015). All of these shifts are leading to increased streamflow 10 

variability (Stuefer et al., 2017), which has strong impacts on the infrastructure and economy of Alaska, 

and the Arctic as a whole (Instanes et al., 2016), leading to a substantial task in terms of observing, 

understanding, mitigating, and adapting to these effects. The Far North (Arctic and Subarctic) is also 

rapidly developing its hydroelectric water resources, unlike the contiguous US, and needs accurate decision 

support for managing this infrastructure (Cherry et al., 2017; Sturm et al., 2017). 15 

A challenge for scientists attempting to accurately represent the impacts of climate change on the Alaskan 

hydrosphere is the vast territory, complex landscape, and sparse observational network. Alaskan hydrologic 

systems suffer from large uncertainties in various data inputs, and thus require care when attempting to 

simulate hydrologic water balance components with skill. For example, precipitation measurements are of 

very poor quality in winter (Cherry et al., 2005; 2007; Groisman et al., 2014) and river stage and discharge 20 

measurements by automated gages do not read accurately when ice is present in the river. Reducing these 

uncertainties is important, as they will reduce the value of model output (Magnusson et al., 2015; Slater et 

al., 2013; Clark et al., 2017) and the results cannot provide actionable guidance on water resource 

management (Stocker et al., 2013). In addition, the variability in landscape (i.e. forest cover, topography, 

discontinuous permafrost) and climate across Alaska require robust modeling techniques to account for 25 

potential climate-driven shifts. This adaptable approach is increasingly important as the National Oceanic 

and Atmospheric Administration (NOAA)’s National Weather Service (NWS) develops the National Water 

Model (NWM) framework, a multi-scale water prediction model in operations over the contiguous US 

(NOAA, 2017). Temperature index models, based on the most reliable climate forcing, are often presumed 

to perform better than other models for regions with highly variable landscapes and a sparse network 30 

(Hock, 2003; Stahl et al., 2006). Alternatively, a skillfully calibrated conceptual model may provide a 

better representation of hydrologic responses because the underlying model is reliant upon 

parameterizations rather than observations that lack spatial and temporal consistency (Franz et al., 2008; 

Reed et al., 2004). 
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To deal with the inoperability of stream gages during breakup and in situ snow observations, one technique 

is to use remotely sensed snow cover areal extent (fSCA) to supplement point observations such as 

temperature, precipitation, and streamflow commonly used both as model inputs and for model calibration 

and validation (Parajka and Blöschl, 2008). There are two main ways that these data have been used to 

date: either to directly insert a time series of fSCA data into the model (McGuire et al., 2006; Rodell et al., 5 

2004), or to use complex assimilation procedures to filter the snow series and merge it with observational 

data (Andreadis and Lettenmaier, 2006; Sun et al., 2004; Zaitchik and Rodell, 2009). There is a concern 

that direct insertion methods are ineffective at improving streamflow models and do not perform better than 

uninformed models because melt can occur before snow cover drops below 100% (Clark et al., 2006). In 

addition, the melt season duration is often short, transitioning rapidly from snow-covered to snow-free, 10 

although this is largely basin-dependent (Clark et al., 2006). Assimilation approaches have yet to be 

integrated into operational models, in part because of the limited research showing the impacts of 

assimilation on the hydrologic forecast. Other studies have found calibrating models based solely on fSCA 

values may not improve skill in estimating discharge, and the improvements for in-catchment distributed 

fSCA estimates do not always result in improved discharge simulation (Franz and Karsten, 2013; 15 

Duethmann et al., 2014). However, Liu et al., (2013), Thirel et al., (2013), and Déry et al. (2005) found 

marked improvements in land surface model output for basins in Alaska when MODIS data were applied.   

One approach to improve streamflow forecasts under climate change is to utilize newly developed 

frameworks to ingest remotely sensed data on snow cover area into streamflow models. These newer tools 

have been adopted by the NWS’s River Forecast Centers (RFCs) and offer an opportunity for more 20 

advanced streamflow forecasting techniques, including ensemble prediction using variable input and/or 

forcing data. The Community Hydrologic Prediction System (CHPS), brought online in 2012 by the Alaska 

Pacific River Forecast Center (APRFC), is a test case for this approach. The modeling framework, 

developed on the Delft-FEWS software platform, can run many different types of models, but in its current 

state implements the conceptual Sacramento Soil Moisture Accounting System (SAC-SMA) rainfall-runoff 25 

model (Burnash et al., 1973), with snowpack input from the SNOW17 snow model (Anderson, 2006). 

The objective of this paper is to adapt the CHPS operational forecasting modeling framework to ingest 

Moderate Resolution Imaging Spectroradiometer (MODIS) remotely sensed fSCA data for improved 

streamflow modeling of the interior boreal forest region of Alaska within sparsely and poorly-observed 

river basins that are experiencing shifts associated with a changing climate. We replace the standard areal 30 

depletion curve used in SNOW17 with pre-processed MODIS fSCA grids for snow depletion. Two 

different versions of MODIS are applied: the MOD10A1 fractional fSCA product, which is the standard 

MODIS global snow cover product (Hall et al., 2002), and the MOD-Snow Covered Area and Grain size 

(MODSCAG) fractional fSCA product, which is a regional product (Painter et al., 2009). The SNOW17 

manual calibration using all model parameters is evaluated, including a tolerance parameter controlling 35 
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snow cover updates (snow cover tolerance, SCTOL), to simulate a mixed method between direct insertion 

and more complex data assimilation. Pre-processing, model frameworks, and use of existing 

parameterizations are thus offered as a means of incorporating remotely sensed information into operational 

models that can be utilized out-of-the box by the NWS RFCs. The paper also examines issues around the 

use of MODIS fSCA in high latitude boreal forest basins, the interpolation of missing data, and the 5 

improvement of streamflow estimates by calibrating model parameters used in streamflow forecasting 

systems across the US. 

(Woo et al., 2008; Prowse et al., 2016) 

2 Methods 

2.1 Study area 10 

This study was carried out in five adjoining headwater sub-basins of the Tanana River, which is a sub-basin 

of the Yukon River basin (Figure 1). The sub-basins include the Chatanika, Upper Chena, Little Chena, 

Salcha, and Goodpaster basins. The Chatanika River basin (64°50′37″ N, 147°43′23″ W; Figure 1) is 

approximately 950 km2 in size and is oriented predominantly east to west. Only the area upstream of the 

Caribou-Poker Creek confluence is considered in this study. The Chatanika was gaged from 1987 to 2007 15 

but the records are highly discontinuous. The Upper Chena River basin is approximately 2440 km2 and has 

gage records from 1967 to present. This portion of the basin contains high elevation peaks and rocky 

outcrops where snow can persist late into the melt season. The Little Chena is 1030 km2 and contains the 

highest proportion of lowlands relative to the other basins; it has been gaged since 1966 to present. The 

Salcha River basin is a large, 5740 km2 basin with its gage at the Salchaket Bridge and has the longest 20 

historical record of all rivers in this region (1948 to present). The Goodpaster basin is located east of the 

Salcha and is 1770 km2 in size. It has the highest proportion of its basin above 600 m elevation and has 

been gaged since 1997 to present. Upper basins are split into sub-basin units with north and south facing 

aspects, with the exception of the Little Chena. There are minor urban and agriculture developments 

throughout the region, including the town of Fairbanks, which is located downstream of the Little Chena 25 

gage on the main stem of the Chena River. These minor developments have little or no bearing on the 

hydrologic response of the headwater systems of Chena basins we examine here. More information on the 

basins is provided in Table 1. 

2.2 Data 

The MODIS satellite product (Terra MOD10A1, version 5) provides daily, 500 m resolution fractional 30 

snow cover area (fSCA) data. It was downloaded from the National Snow and Ice Data Center (Hall and 

Riggs, 2007; Hall et al., 2006; Riggs et al. 2006) for 2000-2010, and we used the MODIS Re-projection 
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Tool (MRT, USGS, 2011) to pre-process imagery into an Alaska Equal Area Conic projected GeoTIFF of 

fractional fSCA for each sub-basin, which assisted us to correct, in part, the viewing geometry and other 

issues related to projections of the original MODIS data, and the influence these projections have on the 

MODIS data for Alaska. (Dwyer and Schmidt, 2006; Tan et al., 2006). MODSCAG data products were 

obtained from the NASA Jet Propulsion Laboratory’s Snow Data System Portal (http://snow.jpl.nasa.gov/) 5 

for the area of interest and pre-processed into projected GeoTIFFs to match the spatial properties of the 

MOD10A1 data. We interpolated cloud- and error-free pixels using a nearest neighbor approach; only 

fSCA data from 0-100% for 1 October to 30 June are ingested into CHPS. Further information on the 

MODIS data products applied in this study are provided in the supplemental materials (Supplemental, 

section 1.1). 10 

Both MOD10A1 and MODSCAG fractional products require correction to adjust the values of fSCA 

estimates (Raleigh et al., 2013; Rittger et al., 2013), which do not account for the snow that is blocked from 

the sensor view. For the MOD10A1 fSCA product, this calculation is based on the viewable gap fraction, 

or the amount of snow covered ground between trees that the sensor can see (Liu et al., 2004). This 

technique, while widely applied, assumes that the viewable gap fraction remains constant through the 15 

snowmelt season, which is incorrect as the viewable gap fraction can vary based on a complex number of 

factors, including forest canopy density, age and class, zenith angle of the sensor, solar zenith angles, 

topography, and snow loading (Kane et al., 2008; Liu et al., 2008; Molotch and Margulis, 2008; Raleigh et 

al., 2013; Rittger et al., 2013). To account for some of these issues, rather than applying a forest cover 

product to correct the product itself, the MOD10A1 data are used (Durand et al., 2008). All 2000-2013 1 20 

March to 15 March MOD10A1 pixels across Interior Alaska are differenced from 100, and then a 

composite average of all days (n=207) is calculated. While in southeast Alaska some melt may have 

occurred during this time, the Interior Alaska fSCA should still be at 100% snow convered across most of 

the region. To account for bare ground regions such as open, wind-blown rocky faces, values less than 20% 

fSCA are removed from the correction. The standard division by viewable gap fraction, where Fveg is the 25 

tree cover percentage, SCAfadj (henceforth referred to simply as fSCA) is the fSCA adjusted for canopy 

cover, and SCAf is the unadjusted SCA data (Equation 1). 

 

SCAfadj=
SCAf
1-Fveg

 (Equation 1) 

	30 

This formulation is applied as a static adjustment to each SCA pixel in all days and years. For MODSCAG, 

the daily vegetation fractional product provided with the data product is utilized, resulting in a dynamic 

adjustment for each SCA pixel in all days and years. In both cases, the results are constrained to 100% 
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fSCA when exceeded. We did not include any cloud-corrections or additional interpolation methods 

(Dozier et al., 2008; Morriss et al., 2016). 

Mean areal values of temperature and precipitation at 6-hr increments are obtained for each sub-basin from 

the APRFC for the time period 1969 to 2012; only the 1999-2010 data are utilized in this study. River 

discharge at each gage is based on the US Geological Survey (USGS) gaging record database. The 5 

exception to this is the Chatanika River basin, where observed discharge is generated based on once-a-day 

stage readings from a Cooperative Network observer. These daily stage readings are converted to mean 

daily discharge using the APRFC’s rating curve for the river. Aspect and elevation were calculated using 

the 30 m US Geological Survey’s National Elevation Dataset (NED), updated for the region in 2012 (Gesch 

et al., 2002). Seven snow telemetry (SNOTEL) sites are utilized to compare simulated snow water 10 

equivalent (SWE) with observed data (Table 2, NRCS 2013). SNOTEL SWE is downloaded from the 

National Resource Conservation Service (NRCS) snow pillow data repository 

(http://www.wcc.nrcs.usda.gov/ftpref/data/snow/snotel/cards/alaska/). 

Potential evapotranspiration (PET) estimates are provided by the APRFC based on an assessment of 

historical potential evapotranspiration from pan evaporation data and Thornthwaite estimates (Anderson, 15 

2006). These data are used to develop a general linear relationship between PET and elevation to estimate 

average monthly PET values for a generic low elevation site. The APRFC uses the low elevation PET 

values to derive monthly estimates for the mean elevation of each sub-basin as a coefficient, C (Equation 

2). 

C	=	0.9- [(elevation-304.8)∙0.000353] (Equation 2) 20 

 

where elevation represents elevation (m). For example, if the catchment mean elevation is 716 m, the 

coefficient is 0.75. Finally, a monthly PET adjustment factor is applied to account for vegetation changes 

during the year. The result is an evapotranspiration demand estimate that is used in the SAC-SMA model, 

described in the next section. 25 

2.3 Models 

The SNOW17 and the SAC-SMA models are run by the APRFC in an operational framework referred to as 

CHPS. CHPS is built upon the Delft Flood Early Warning System (FEWS), developed by Deltares. The 

CHPS system is briefly described in the Supplemental, section 1.2. 

2.3.1 SNOW17 30 

The SNOW17 snow model is a single layer snow model that calculates snow accumulation and ablation 

using empirical formulae to estimate heat and liquid water storage, liquid water throughflow and snowmelt 

(Anderson, 1976). The model is designed for river forecasting and has been used operationally by the NWS 
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RFCs since the mid-1970s. The only input requirements for SNOW17 are temperature and precipitation 

(winds are accounted for but not input as observations), at the model time step (6 hr). There are 12 

parameters in the SNOW17 model, including the areal snow depletion curve; sensitive or ‘major’ 

parameters control the model outputs while less sensitive or ‘minor’ parameters have little impact on the 

model output (Table 3; He et al., 2011). 5 

SNOW17 determines the division between rain and snow using the rain-snow elevation (RSNWELEV) 

module. RNSWELEV uses a defined lapse rate (6ºC 1000 m-1) to represent the saturated adiabatic lapse 

rate, which is commonly applied to determine the air temperature threshold that results in rain turning to 

snow (PXTEMP; Table 3; Anderson, 2002; Clark et al., 2011). This temperature threshold is related to an 

elevation and is passed to SNOW17, the percent area above and below that elevation is determined from a 10 

defined area elevation curve. Multiplying these percentages by the precipitation thus defines the proportion 

of precipitation falling as snow or rain in the basin. Non-rain snowmelt (mm) is determined from air 

temperature minus the baseline temperature at which melt occurs (MBASE; set to 0ºC), weighted by a 

seasonably variable melt factor that is calculated using an oscillating sine curve that varies between the 

minimum (MFMIN) and maximum (MFMAX) melt factors for 21 December and 21 Jun (mm ºC-1 6 hr-1). 15 

These values are adjusted for latitudes above 54ºN to account for low radiation input, a paucity of days 

when temperatures rise above freezing, and rapid changes in melt rates during spring and fall (Anderson, 

2006). A fixed lapse rate is applied to mean air temperature within the lumped basins for the elevation at 

which the air temperature time series is collected (TAELEV), in the case when TAELEV differs from basin 

mean elevation. This fixed lapse rate can be configured in the SNOW17 model using parameters that define 20 

the lapse rate at time of maximum/minimum temperature. 

A simplified energy balance method is used to calculate melt from rain-on-snow using the following 

assumptions; the Stefan-Boltzmann constant is used to estimate incoming longwave radiation, negligible 

shortwave radiation, 90% relative humidity, and wind speed is accounted for by adjusting for the average 

value of the wind during rain-on-snow events using the parameter UADJ (mm hPa-1 6 hr-1). Heat content 25 

within the snowpack is calculated based on a gradient between air temperature and the near-surface 

snowpack temperature index to determine the heat flow direction when melt is not occurring. Depending on 

the near-surface snowpack temperature index, more or less weight is assigned to temperatures from 

previous time intervals to represent deeper or shallower snowpack temperatures.  

The snow heat deficit is either negative or positive; the rate of heat loss or gain is based on the amount of 30 

energy exchange that occurs when melt is not taking place at the snow surface (negative melt factor; NMF; 

mm ºC-1 6 hr-1), which is weighted by MFMAX to account for seasonal variations in pack heat translation. 

Heat can also be translated from the ground to the snow using a parameter that controls the daily melt 

volume at the interface between snow and soil, and is assumed to occur continuously through the snow 

season (DAYGM). When the snowpack is at peak water-holding capacity (PLWHC) and is isothermal at 35 
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0ºC, the snow is ripe and any excess water entering the snow will flow through it as outflow. Water 

movement through a ripe pack is attenuated or lagged based on empirical formula derived from lysimeter 

studies (Anderson, 2006). 

2.3.2 fSCA in SNOW17 

SNOW17 uses an areal depletion curve (ADC) to represent the snow cover area; the ADC is used to 5 

calculate the area of the basin over which surface melt, changes in heat storage, ground melt, and rainfall 

on bare ground occurs (Anderson, 2002; Fig. 7.4.3). The ADC not only represents areal extent of snow 

cover, but also accounts for slope, aspect, and differences in vegetative cover (i.e. open versus closed sites, 

Anderson, 2002; Fig. 7.4.3). In the baseline model simulation, the areal extent of snow cover was 

calculated from a lookup table (Anderson, 2002; Fig. 8) that defines the ADC and relates it to the ratio of 10 

SWE to either a) the maximum value of SWE that occurred during snow accumulation or b) a parameter 

(SI) that represents the areal SWE at which 100% snow cover exists (referred to as the areal index). The 

ADC in the baseline model simulation is applied as follows: when snow accumulates, the snow cover is set 

to 100%, and it stays at this value until it falls below SI or the maximum SWE value, whichever is smaller. 

If new snow totaling greater than 0.2 mm hr-1 falls onto bare ground, 100% snow cover is assumed until 15 

25% of the new snow has melted. For Alaska, several different ADC configurations are used depending on 

whether slopes are south versus north facing, or in upper versus lower elevation basins. The basins in this 

study used the same ADC for upper south, upper north, and lower sub-basin units since they have similar 

orientations within a similar geographic region. Only the Little Chena uses a different ADC for its upper 

basin, as no north/south aspect split is used in this basin. For all other model simulations, the ADC was 20 

replaced by areal extent of snow cover derived from the two MODIS fSCA datasets (Figure 2). Other 

parameter settings used to alter the impact of the MODIS fSCA data in SNOW17 are described in the 

Supplemental, section 1.3. 

2.3.3 SAC-SMA 

The SAC-SMA model is a conceptual rainfall-runoff model that simulates streamflow from observed input 25 

precipitation and PET (Burnash et al., 1973). SAC-SMA has been widely applied by the NWS to estimate 

streamflow runoff in basins across the US. The model moves water into either an upper or lower storage 

zone that conceptually represent soil interception or deep groundwater storage. Interception water in the 

upper zone flows to the lower zones via downward percolation, or can run off directly or via interflow 

when the upper zone layers become saturated and the precipitation rate exceeds downward percolation. 30 

Lower zone water can be held in tension storage and contribute to baseflow runoff slowly over time, or can 

run off more quickly over shorter durations. Drainage from the upper and lower zones follows gravity 

drainage and is governed in part by both water delivery from the upper zone and soil moisture in the lower 
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zone. Tension water is driven by potential evapotranspiration and diffusion, with a fraction of the lower 

zone unavailable for potential evapotranspiration as it is considered below the rooting zone.  

A unit hydrograph model is used to adjust runoff timing for each lumped basin in the SAC-SMA model. 

Each sub-basin has its own unit hydrograph to translate the runoff through the channel system to the gage 

location. Simple routines sum the unit hydrograph outputs to calculate simulated streamflow at the basin 5 

outlet. While downstream basins incorporate routing models to move water from upstream to downstream 

basins, this study focuses on headwater basins so no routing models are needed. 

2.4 Calibration 

Several calibration procedures were undertaken for this project; the baseline calibration, and the two 

MODIS data set calibrations. The baseline calibration effort updated the SAC-SMA/SNOW17 model 10 

parameters to the 2000-2010 years used in this study, as they had previously been adjusted by APRFC to 

1970-2003 historical data. The two MODIS manual calibrations used the updated baseline to adjust 

parameters and generate statistics. Calibration entailed using both visualizations of streamflow hydrographs 

from 2006-2010 and monthly statistics from the entire period of record for ultimate parameter selection.  

To calibrate the MODIS model output, a simple approach is taken to minimize the terms required for 15 

calibration. This ensures that it was a) easy to replicate the model adjustments to the MODIS fSCA data 

and b) solely focused on the snow parameterization, as adjustments to the SAC-SMA parameters resulted 

in only minor improvements to model calibration statistics during the spring ice breakup period. Also, 

priority was placed on adjusting the empirical parameters towards a physically-based realization using 

basin and sub-basin unit properties, including the topographic aspects and the observed melt trajectory 20 

impacted by the MODIS fSCA data. To complete this simple, physically realistic calibration approach only 

the parameters MFMAX and TAELEV were adjusted. Further details of the calibration efforts are 

described in the Supplemental, section 1.4. 

2.5 Validation 

For validation purposes, statistics from 2000-2005 are provided for all basins except the Chatanika. The 25 

Chatanika basin was calibrated from 2000-2004 and validated from 2005-2010 to make use of the better 

data quality and availability during the first five years of the study. Statistics used to evaluate model 

success are based on five main objective functions, and monthly average daily model output. The first two 

of these criteria are standard in NWS RFC calibration approaches and are provided in the CHPS statistical 

output. These statistics were used for evaluation during the calibration; total volume bias as a percent 30 

(PBIAS, %) and the correlation coefficient (R, unitless). Three additional objectives were added for further 

validation of the results, Nash Sutcliffe efficiency (NSE, unitless, reference), the mean absolute error 

(MAE, m3s-1), and the root mean squared error (RMSE, m3s-1). Statistics were run only for April, May, and 
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June to focus on the changes to the snowmelt season; March is not included because generally, river ice 

melts and breaks up in Interior Alaska in March, thus any differences in statistics would be indicative of 

changing winter conditions rather than changes in spring snowmelt timing or volume. 

3  Results 

3.1 Baseline Model Results 5 

The APRFC SAC-SMA/SNOW17 baseline model estimates of streamflow in the Alaskan interior river 

basins for the 11-year period of record indicate that these basins are captured with skill (Table 4). The 

Chatanika basin is problematic given the limited quality and quantity of the observed streamflow data, as 

noted in the statistics below for each objective function. For all of the five basins analyzed, the daily 

average bias for the period of record is ±3% or less. Daily correlation coefficients (R, unitless) are equal to 10 

or greater than 0.84 and higher for the four basins with quality observed data, while the Chatanika basin is 

0.70. NSE (unitless) daily values are also above 0.60 for all basins except the Chatanika, which is 0.18 due 

to the noise in the observed data values. Daily mean absolute error statistics are below 10 m3s-1for all basins 

except the Salcha, which is 15.89 m3s-1 owing to its long discharge record. RMSE ranges from 3.5 m3s-1 

(Chatanika) to 33 m3s-1 (Salcha). Across all basins, fSCA is variable by elevation zones and years (Figure 15 

3). Upper elevation areas tend to have 100% fSCA, while mid-to-lower areas often begin the year with 75% 

fSCA or less. The very lowest elevation zone appears to have a slightly higher fSCA values than two 

adjacent higher elevation zones (Figure 3). Some years have a markedly late melt out, with high variability 

across all elevation bins. Lower elevation zones tend to melt out in early April, while the upper regions of 

the basins hold snowpack weeks or months into the subarctic spring (Figure 3). 20 

3.2 SAC-SMA Model MODIS Calibrations 

Calibrated SNOW17 parameters for the APRFC and MOD10A1 simulations resulted in increased MFMAX 

for north facing aspect in two sub-basin units and increased TAELEV for the north slopes (Table 5) 

compared to the baseline APRFC SAC-SMA/SNOW17 simulation. In some sub-basin units, TAELEV was 

set to be equal for the north and south slopes. MFMAX for the Chatanika’s lowland sub-basin increased 25 

and TAELEV at the north sub-basin was increased, while TAELEV was decreased for the south sub-basin 

unit. MFMAX in the Upper Chena north was unchanged and TAELEV was equalized for both south and 

north sub-basin units. The Little Chena sub-basin parameters were altered by setting MFMAX equal to its 

maximum recommended value for forested regions (1.4; Anderson, 2002; Table 7-4-1) for the upper and 

lower sub-basins, and by increasing TAELEV 100 m greater than the elevation for both sub-basins. 30 

TAELEV for Salcha and Goodpaster were differenced by 100 m for the north and south sub-basin units, 

and the northern sub-basin MFMAX for Goodpaster was increased slightly. Goodpaster’s lower basin 
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MFMAX was reduced by a small amount. Although these changes may appear minor, MFMAX is highly 

sensitive during the melt season and therefore these changes have a substantial effect on the MODIS fSCA 

forced snowmelt trajectory at these sites (Anderson, 2006). 

In the MODSCAG simulations, values for MFMAX were increased slightly for the north sub-basin units 

for all basins. TAELEV values were adjusted slightly in Upper Chena, Salcha, and Little Chena bains 5 

(Table 6), but were not altered from the baseline run in Chatanika. In the Goodpaster basin, the TAELEV 

value for the south sub-basin unit was decreased. NMF was altered slightly for both MODIS simulations to 

account for different snow densities and thermal conductivities of snow on south and lowland sites versus 

north aspects. Snow density (gm cm3) is generally low in Interior Alaska river basins; based on analysis of 

field data from the Caribou Poker Creek basin, snow density on the sites is approximately 0.20 gm cm3 and 10 

is slightly higher on the southern sites compared to the north site. The northern facing slopes were therefore 

given the NMF value of 0.15 mm °C-1 6 hr-1, which Anderson (2002) indicates is a ‘reasonable’ value of 

NMF. The south and lowland sites, which have generally warmer temperatures and more dense snow, were 

assigned the NMF value of 0.2. For these simulations, SCTOL is set to 0 for all basins to ensure that the 

MODIS data are utilized 100% of the time. 15 

3.3 fSCA and SWE 

Compared to the APRFC simulations, the MODIS simulations have less snow cover on the north facing 

slopes and more on the south facing slopes (Figure 4; the average Upper Chena River basin unit results for 

2001 plotted against the SNOTEL stations are shown as an example). Differences between the two 

simulations become discernable in late January as a result of the different calibrations of the SNOW17 20 

model in the basins (Figure 4), with larger differences at the north sub-basin units compared to the south 

sub-basin unit. As soon as the MOD10A1 fSCA begins to alter the weighting factors for outflow from the 

snow, differences between the SWE generated by APRFC and MODIS simulations are observed. The 

greatest differences between the model simulations occur during the melt season. All model simulations 

peak in early April and start a downward melt trajectory, reflecting melt patterns at the upper elevation 25 

SNOTEL sites: Mt. Ryan, Munson, and Upper Chena. The APRFC and MOD10A1 run melt out later than 

the MODSCAG fSCA north unit and the MODSCAG estimates are closer to the APRFC simulations in 

volume, although all simulations terminate on the same approximate day for the northern sub-basins. 

The SNOTEL sites are mostly located at upper elevations (Mt. Ryan 850 m; Munson 940 m) compared to 

the SNOW17’s ~800 m elevation parameter and thus illustrate conditions exhibited at high elevation 30 

northern sites in the basin. Mt. Ryan, in particular, does not build a snowpack early in the season, perhaps 

owing to its open, mountainous, and presumably windy environment. The SNOW17 model is run over a 

lumped area so there is mix of site conditions that act to smooth and reduce the volume of SWE; hence the 

comparison between SNOTEL SWE and SNOW17 modeled SWE are inherently qualitative as opposed to 
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quantitative (Molotch and Bales, 2005). The lower elevation SNOTEL sites, Teuchet and Little Chena, 

show earlier melt out than is seen in either the model output or the MODIS datasets. There is stronger 

coherence in the response of the northern sites as opposed to the southern sites. In the south sub-basin units, 

the MODIS simulations melt out later, with MODSCAG again having the latest melt, similar in timing to 

the high elevation stations. 5 

The areal extent of snow cover varies across the basins in both simulations. The preprocessed gridded 

MOD10A1 fSCA illustrated for 15 May, 2001 is shown in Figure 5a and the MODSCAG fSCA is shown in 

Figure 5b for the basins. The high elevation snowpack (blue) is present within the upper basin regions but 

the pack is largely gone in the valleys and lower basin reaches. This translates into the lumped average 

fSCA estimates shown in Figures 5c and 5d, which illustrate how CHPS ingests and converts the gridded 10 

MODIS fSCA for the sub-basin units. North and south sub-basin units are differentiated in the upper sub-

basin units (see Table 1) but not at other locations because both aspects have begun to melt by this date (as 

opposed to early in the melt period when the south slopes would have comparatively less fSCA than the 

north slopes). MODSCAG has less cloud cover interaction in this scene (Figure 5b) and this results in 

slightly higher values of fSCA (Figure 5d). 15 

SWE estimates for MOD10A1 (Figure 6a), MODSCAG (Figure 6b), and the difference between the 

MODIS (both versions) and APRFC run (Figure 6c and 6d) is shown for 15 May, 2001. Sub-basin units 

can be clearly differentiated in these plots, which illustrate the range of SWE values from 0-25 mm in the 

lowland regions to 125 mm in the upper headwaters. The MODSCAG data have an average fSCA value of 

0.51 (51%) and SWE is 45 mm, whereas the MOD10A1 has an average of 0.45 (45%) fSCA and an 20 

average of 54 mm SWE, very small differences overall although sub-basin to sub-basin the variation 

between the products is notable. The difference plots highlight the fact that MODIS tends to have lower 

SWE values compared to the APRFC SNOW17 model simulations on the north facing slopes and higher 

values on the south facing slopes. The APRFC tends to be have lower SWE estimates for the lowland 

regions, although this is more true for MOD10A1 than MODSCAG (Figure 5c, d). 25 

3.4 Streamflow Estimates 

Calibration and validation results are provided for April-May-June (Table 4) for the MODIS and APRFC 

simulations. For MODIS data, many statistics are similar or nearly identical to the APRFC run with slight 

declines in model performance and some gains (Chatanika; Little Chena), particularly for the analysis 

focused on the whole period of record (Table 4). NSE statistics are particularly poor for all simulations in 30 

the Chatanika basin, where the lack of continuous and high-quality observations hamper calibration efforts. 

The MOD10A1 data improve streamflow simulations in the Chatanika and Goodpaster systems during the 

calibration period, while they performs similarly or slightly worse during the validation and period of 

record in most of the basins except the Chatanika. The MODSCAG run exhibits better performance 
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compared to the APRFC run during the calibration periods in the Chatanika, Salcha, and Goodpaster 

basins, while the validation period statistics showed improvement for the Chatanika, Little Chena, and 

Upper Chena basins. Overall, improvements in skill are observed for the MODIS simulations in the 

Chatanika and Goodpaster basins, the validation period for Upper Chena and the calibration period for 

Goodpaster (Table 4). 5 

The calibration, validation, and whole period of record result illustrate that the poorly performing basins, 

MODSCAG (and MODSCAG with SCTOL=0.25) tends to do slightly better versus APRFC in the 

calibration/validation time where improvements are also made for MOD10A1, while both MODIS versions 

perform nearly identically over the 11-year period (Figure 3). This can also be observed from the analysis 

presented in Figure 8 for all five basins. Figure 8 illustrates that the MODSCAG results tend to follow more 10 

closely (and are hence more constrained) with the APRFC results, while the MOD10A1 product has more 

scatter. However, the differences from observed are similar between the two products. 

Average (2000-2011) streamflow for each basin in Figure 9 illustrates the variations between simulated 

specific discharge (m2 s-1 km-1) plotted against observed specific discharge at the streamflow gages; results 

for each year and basin are provided in the Supplemental. Streamflow is shown as specific discharge 15 

(weighted by area) for ease of comparison. Only March to June results are shown in Figure 9; in March the 

basins have not begun to melt and the hydrograph depicts baseflow contributions in the systems. The active 

period begins in late March to early April and the differences between the two estimates of streamflow 

persist until June, after which point streamflow responses to rainfall input are essentially the same. 

Statistics for the April-May-June calibration, validation, and the period of record in Table 4 illustrate that 20 

the Upper Chena River basin shows improvement compared to the APRFC run during the early melt 

period, while the later period is over predicted by the MODSCAG. For Chatanika, the simulated MODIS 

simulations are of greater magnitude (Figure 9) and have earlier timing compared to the APRFC simulated 

flows. In the Little Chena river basin, MODIS simulated discharge overall fits better than the APRFC, 

which over simulates streamflow on average, and both products perform similarly well. Streamflow 25 

simulations for the Upper Chena, Salcha, and Goodpaster systems match observed more closely by the 

MODSCAG simulations, on average. This also is clear from the averages across basins and years; the 

MODSCAG simulations match observed streamflow, while the MOD10A1 product underestimates runoff 

during the mid-May to early June period (Figure 9, last panel). The year-to-year variability illustrates 

similar results to the long-term averages for each basin (Supplemental). 30 

3.5 Other Integration Methods 

Two methods were applied to integrate the MODIS data into CHPS. One method involved interpolating 

between missing data values, changing the number of interpolated days from 1 to 11 to investigate how 

changing the value impacted model results. Generally, the number of days of interpolation had little impact, 
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but the longer interpolation period results produced slightly higher correlations and improved streamflow 

estimation. We also investigated the response to altering model parameter SCTOL, which can be used by 

forecasters to combine the strength of the ADC and the MODIS data and is similar to partial rule-based 

direct insertion approach, however the parameter can be altered without any additional changes to the 

CHPS model framework. Table 7 illustrates the results of setting the SCTOL parameter to 0.25, 0.50, and 5 

0.75 for the MODSCAG run only, while holding the rest of the parameters constant. No recalibration is 

performed. NSE and R statistics increase during the calibration period, MAE and RMSE remain similar on 

average but the range of responses across the basins decreases for SCTOL=0.50. Interestingly, Chatanika, 

which has the largest improvement based on the differences between APRFC and MODIS simulations does 

not benefit from model integration, owing to the low skill within the APRFC model version (Table 7). 10 

However, for the remaining basins strong improvements are apparent for higher values of SCTOL during 

the calibration period (Upper Chena, Little Chena, and Salcha), validation, and period of record (Upper 

Chena, Little Chena). Diminishing returns occur at a threshold between 0.25 and 0.50 SCTOL for most 

basins; however, Goodpaster improves at 0.50 but not 0.75. This suggests that the SCTOL parameter 

should be uniquely applied dependent upon the basin. 15 

4 Discussion 

Results illustrate that streamflow in Interior Alaska can be simulated with skill using conceptual, semi-

lumped hydrologic models, even without the use of gridded observations of MODIS fSCA. However, if the 

initial streamflow observations are of poor-quality (i.e. Chatanika River basin), applying gridded 

observations of MODIS fSCA in the models will generate streamflow estimates as good as or better than 20 

estimates based on SNOW17’s areal depletion curve. However, as the climate shifts, conceptual, semi-

lumped models may not be representative of process changes that will likely occur as the Arctic warms 

(Clark et al., 2017). As fully process-based models are challenging to run in Arctic environments, where 

high quality data are temporally and spatially sparse, using conceptual models parameterized with as many 

observations as possible represents a bridge between the fully processed based models and conceptual 25 

approaches to hydrologic modeling. 

However, we found there to be major challenges in obtaining improvements in simulated streamflow 

discharge values when introducing additional observed data sets and their associated uncertainties into 

models. This result was also found in work performed in the American River basin where the California 

Nevada RFC lumped model provided the most accurate representation of snow cover area (Franz and 30 

Karsten, 2013). As indicated by Franz and Karsten (2013), although the gridded representation of fSCA is 

improved in their distributed version of SNOW17, the streamflow simulations and associated statistics did 

not reflect this improvement. In addition, they found that discharge values had lower skill when estimates 
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of snow cover are included in the calibration even though it is hypothesized that the process representation 

is improved, which is a finding of a number of other research studies focusing on this topic (Parajka and 

Blöschl, 2008; Udnæs et al., 2007). These findings are also true for Alaskan interior boreal basins, 

highlighting the importance of performing this work in remote and under monitored systems that are 

changing quickly due to climate shifts and increased occurrences of extreme events (Bennett and Walsh, 5 

2015; Bennett et al., 2015). 

The goal of this work was, in part, to undertake a simple application of inserting preprocessed MODIS 

fSCA into the CHPS operational framework to simulate streamflow across basins in Interior Alaska. The 

preprocessing of MODIS data for insertion into the model, which included the MOD10A1 and MODSCAG 

data products, along with the CHPS areal averaging eliminated some of the issues related to cloud cover 10 

and missing data, as noted in results provided in Liu et al. (2013), who assimilated Air Force Weather 

Agency–National Aeronautics and Space Administration Snow Algorithm or (ANSA) fSCA data for 

similar stations in the region. For example, the findings in Liu et al. (2013) for the best case indicate NSE 

improvement for Salcha, Little Chena, and Chena at Fairbanks of 0.30, 0.31, and 0.06. Our study reports 

comparable NSE improvement values for some stations (Chatanika and Goodpaster) for the months 15 

impacted by the adjustments, although the Salcha and Little Chena system differences are closer to those 

values reported for the raw MODIS data in Liu et al.’s (2013) study. The averaging approach and use of 

newly developed tools (ANSA, MODSCAG) applied in both studies appear to produce slightly superior 

results from that of MOD10A1. Further analysis is required to determine if cloud correction processes, such 

as those applied in the ANSA study, would act to reduce the impact of pixel shifting that is likely a major 20 

problem in Alaska (Arsenault et al., 2014) and improve streamflow estimates further. Both studies indicate 

improved representation of internal snowpack and improvements in streamflow estimates for some basins 

for these new iterations of the MODIS data. 

Differences in the streamflow improvements provided by Liu et al. (2013) for the Salcha and Little Chena 

highlight some important variations between the two studies that should be considered. The first is that, as 25 

noted by the authors, the model simulated streamflow estimates are biased and thus the improvements 

reported in the paper are still poor representations of the streamflow (Liu et al., 2013). The question then 

remains that if a model result without updated observations is already skillful, how much better can the 

model be by added information (which carries its own uncertainty with it)? Perhaps the differences between 

the distributed model in Liu et al. (2013) versus the lumped models used in this study are adding a buffer to 30 

the data improvements in the case of this study, and limiting the amount of difference or improvement that 

MODIS fSCA insertion can provide. Snow cover data appear to be improved at Interior Alaska locations 

within the model when compared to five different SNOTEL stations (Figure 5), particularly for the melt 

timing. However, the discharge values improved moderately given either MODIS input over the different 

periods analyzed, and in particular smaller changes are noted over the entire period of record (Table 4, 35 
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Figure 8, 9). For the Chatanika basin, with limited observed data and poorer streamflow simulations 

however, the improvements are shown in the Liu study (Liu et al. 2013). These results suggest that skill can 

be added by introducing new observations when the models are performing poorly due to inadequate or 

low-quality records. Considering that there are numerous incomplete and low-quality gages throughout the 

high latitude regions of the globe, this result is valuable and indicates the utility of the MODIS fSCA data 5 

in this regard. 

Calibrations performed on the SACSMA model were limited in nature and targeted specifically at two 

parameters exhibiting the most influence on improving discharge estimates during the melt season: 

MFMAX and TAELEV. These parameters control the air temperature and impact snow cover depletion by 

either increasing or retaining melt. Previously, the APRFC parameters were set to lower MFMAX values. 10 

The TAELEV parameter was not equal to the true elevation (ELEV) and set to different values for north 

and south aspects. For north-facing upper elevations, TAELEV was less than ELEV so temperatures were 

lapsed upward to simulate the slower melt rates and cooler conditions. For south-facing aspects, TAELEV 

was set to greater than ELEV, so temperatures were lapsed downward to simulate increased melt from solar 

influence. Our updated parameterization using the MODIS data required an upward adjustment of these 15 

values because the areal depletion curve is no longer controlling the melt rate. Thus, fSCA present on 

northern, upper elevation slopes in the late spring must have higher melt rates applied to melt the snow with 

the correct timing. The primary reason that the areal depletion curves in SNOW17 differs from one that 

would be derived from actual measurements of fSCA is that melt rates decline as fSCA declines because 

the remaining snow is usually found in locations where snow melts at a slower rate, such as under canopies 20 

or on north facing slopes (Anderson, 2006). 

Adjustments to MFMAX across the north sub-basin units suggest that the modified areal depletion curves 

within SNOW17 underestimate snow covered area. At many of the sites, particularly when using the 

MODSCAG product, MFMAX for the northern sites had to be increased. This suggests that the APRFC 

run uses a lower value that attempts to account for cooler temperatures on the northern slopes by retaining 25 

the snow on these slopes for longer, thus slowing runoff (Franz and Karsten, 2013). By more accurately 

representing conditions in the north sub-basin units, the MODIS simulations required an increase in the 

snowmelt factor to allow for initiation of the melt on these slopes. MFMAX represents the dependency 

between the melt factor to account for a constant fSCA curve used in the model, and the ability of the 

‘standard’ fSCA curves used in the APRFC SNOW17 to replicate the conditions of the melt properties 30 

within the basins (Shamir and Georgakakos, 2007). As noted in Shamir and Georgakakos (2007), there is 

considerable inter-annual variability in snow cover depletion and this variability is not represented when 

the standard APRFC model is applied. Therefore, by improving the internal physical processes in the 

model, the snowmelt timing should improve. However, this might not translate into improved discharge 

estimates because precipitation and temperature inputs could still be incorrect, and errors in forcing data 35 
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that generate incorrect water equivalents for snow carry larger uncertainty bounds than that which can be 

addressed by changing the weighting factors and timing of snowmelt by adjusting fSCA, as undertaken in 

this study. 

For the MOD10A1 calibration, fewer parameters were adjusted compared to the MODSCAG simulations. 

The end result is that the MODSCAG data have improved streamflow simulations compared to the 5 

MOD10A1 result. The model parameters require greater adjustment for MODSCAG simulations as a result 

of the variability between the two data sets compared to the APRFC baseline simulations. The MODSCAG 

data have a different melt trajectory for northern slopes and hold snow for longer on the south facing slopes 

of the Upper Chena River basin, while the MOD10A1 acts similarly to the APRFC melt trajectory for SWE 

data (Figure 4). This region is known to have variable melt timing based on south-facing slopes therefore 10 

the north and south slopes should be differentiated to reflect the physical processes occurring on the 

warmer south facing slopes compared to the cold, and often permafrost-dominated north facing slopes 

(Jones and Rinehart, 2010). Although MODSCAG improvement is noted for the Chatanika and Goodpaster 

basins in the streamflow statistics, the results for both MODIS versions are overall very similar in this 

region (Figure 8). This may be due to the different canopy adjustments applied to the data sets, or because 15 

of the lack of a spectral end member for the boreal forest in MODSCAG (Painter et al. 2009). Regardless, it 

is not clear that one of these data sets is markedly improving streamflow estimates and it is possible that 

both approaches could be considerably useful as additional observations of fSCA estimates for the region.  

Two other means by which the CHPS framework can be altered to improve streamflow estimates are 

explored in this work. The interpolation over MODIS missing days can be altered easily in CHPS, however 20 

this had only a small effect on the streamflow results. The SCTOL, which allows for interaction between 

the model and the observed MODIS fSCA data, had an effect on streamflow and therefore may be a useful 

technique for the RFCs to apply during recalibration efforts to observed snow cover data. An advantage 

was noted between the MODSCAG with an SCTOL setting greater than to 0.25. However, the basins with 

the strongest improvement (Chatanika) over the APRFC simulation did not improve using an SCTOL 25 

greater than zero, which was because the baseline model performed so poorly given the weakness of the 

underlying observed discharge data. Therefore, the RFCs may wish to selectively apply this parameter 

when basins have reliable observed information and the MODIS data can be utilized partially in 

conjunction with the model ADC and partially on the MODIS fSCA observations. 

5 Conclusions 30 

Although complex tools and distributed models are available from the research community and in the 

CHPS to integrate observed snow cover area data, the RFCs across the US are not, as of writing this paper, 

using these features in their operational river forecasting to estimate floods and droughts. This study 
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focuses on developing tools that can, with a minor amount of testing, be brought into the RFC’s CHPS 

modeling framework and used to improve physical estimates of fSCA across basins of interest. The method 

integrates information such as MODIS remotely sensed snow cover into the model framework using a 

simple calibration approach for the SNOW17 model, and also provides some input regarding expected 

improvements and other possible parameters that may be introduced to enrich forecasting and simulation of 5 

streamflow. Our recommendation is to incorporate MODIS data as an interim step. However, in the long 

run the RFCs should begin to use more complex models and data assimilation tools as the move towards 

the National Water Model proceeds. 

In this work, we answer several outstanding questions regarding the application of MODIS data in the RFC 

models. Basins with poor-quality streamflow observations benefited from the use of the MODIS fSCA but 10 

improvements are also made to the internal snow timing estimates, observed in both the validation against 

SNOTEL data and also through the calibration that corrected the model parameters to better reflect the 

physical differences altering processes occurring on north and south facing slopes. Overall, minor 

differences were observed between MOD10A1 and MODSCAG data, however the MODSCAG data 

provided improvement over MOD10A1 when considering average changes to streamflow simulations were 15 

observed in all basins. We observed limited impact of changing the interpolation length between missing 

days, although adjustments based on altering the interaction between the model and the observed MODIS 

fSCA data did alter streamflow and therefore are useful during recalibration efforts. 

The utility of the MODIS data in CHPS goes beyond improvements to the streamflow; these tools can be 

used for a number of internal checks for SWE and fSCA that are currently under way, such as the ingestion 20 

of data for ensemble forecasts (NWS, 2012). This study opens the door for insertion of parameters via 

assimilation alongside developments such as physically-based model usage. 

The observations of rapid change in the Arctic highlight important alterations to hydrological regimes in 

the subarctic Interior boreal forest of Alaska. These observed, rapid changes, and future anticipated 

alterations introduce a pressing need in Alaska to further understand the anticipated changes through 25 

modeling of major climate drivers of streamflow. The sparse observational network in Alaska, along with 

the magnitude and rate of change necessitates the use of robust modeling tools to examine these changes 

and their impacts on hydrology. However, due to the limited high-quality observations, and our lack of 

understanding of Arctic hydrologic processes, process-based modeling approaches are limited in this 

environment. Therefore, we must apply available conceptual models with calibrations informed by 30 

observations, including remote sensing tools of SWE and fSCA to examine these effects. In this way, we 

will be able to define and quantify increasing impacts associated with these changes that lead to multi-scale 

risk to hydro-ecological systems, not only to the local and state resources, but also regionally and globally. 
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Table 1. Sub-basin characteristics, including name, sub-basin ID, sub-basin unit, area, elevation mean (range), average monthly 2 

temperature, T, for January (July), average seasonal total precipitation for winter (November-February) (spring (March-June)), annual 3 

average daily discharge Q, slope basin units (lower, N=north and S=south+), land cover (based on majority cover values*). T, P, and Q 4 

calculated from the 2000-2010 water years. 5 

Name 
Sub-basin 

ID 
Sub-basin 

Unit 
Area 
(km2) 

Elevation 
(m a.s.l.) 

T 
(ºC) 

P 
(mm) 

Q 

(m3s-1) 

Units N/S+ 
(%) 

Land cover (%) 

Chatanika at 
the Steese CRSA2 Lower 395 475 

(228 – 625) 
-22.5 
(12.6) 

69 
(102) 11 

42 9 D, 83 C, 4S 

  Upper 558 780 
(548 – 1513) 

-18.5 
(11.9) 

84 
(112) 25/33 0 D 76 C, 15 S / 

2 D, 47 C, 39 S 

Little Chena CHLA2 Lower 802 380 
(141 – 617) 

-24.4 
(13.7) 

70 
(101) 6 

78 16 D, 78 C, 5 S 

  Upper 225 721 
(584 – 1230) 

-21.0 
(11.5) 

83 
(123) 22 5 D, 72 C, 20 S 

Upper Chena UCHA2 Lower 973 466 
(223 – 626) 

-22.5 
(12.7) 

52 
(106) 20 

40 9 D, 84 C, 5 S 

  Upper 1462 806 
(553 – 1584) 

-18.2 
(11.6) 

72 
(120) 29/31 2 D, 74 C, 17 S/ 

10 D, 54 C, 33 S 

Salcha SALA2 Lower 1838 421 
(194 – 624) 

-23.9 
(13.8) 

51 
(113) 44 

32 18 D, 69 C, 10 S 

  Upper 3900 924 
(581 – 1768) 

-19.3 
(10.6) 

77 
(139) 33/35 2 D, 63 C, 20 S / 

7 D, 50 C, 31 S 

Goodpaster GBDA2 Lower 737 734 
(411 – 967) 

-20.6 
(11.8) 

55 
(129) 14 

42 2 D, 84 C, 12 S 

  Upper 1036 1166 
(873 – 1961) 

-19.3 
(10.1) 

69 
(153) 29/29 5 C, 33 D 45 S / 

2 D, 24 C, 56 S 
+Only upper units are divided into N and S units. 6 
*D=deciduous, C=coniferous, S=shrubs7 
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Table 2. SNOTEL stations, map identification, length of record, and observed average snow water equivalent (SWE) used for 8 

validation of modeled SWE results. Average annual SWE is calculated for the entire period of record. 9 

SNOTEL Station Name Station 
code 

Map ID Record 
Length 

Average April 
SWE (mm) 

Fairbanks F.O. 47P03 
(1174) 

1 1983-2010 90.2 

Little Chena Ridge 46Q02 
(947) 

2 1981-2010 121.5 

Munson Ridge 46P01 
(950) 

3 1980-2010 197.3 

Mt. Ryan 46Q01 
(948) 

4 1981-2010 142.7 

Monument Creek 45Q02 
(949) 

5 1980-2010 115.3 

Teuchet Creek 45P03 
(951) 

6 1981-2010 98.5 

Upper Chena 44Q07 
(952) 

7 1987-2010 166.5 

  10 
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Table 3. SNOW17 model parameters. Sensitivity indicates whether a parameter has a major or minor influence on model output. 11 

Minimum (Min) and maximum (Max) parameter values used in the model simulations. When min and max values are the same the 12 

parameter did not vary. 13 

 14 

 15 

Parameter Sensitivity Description Min Max 

SCF Major 
Snow correction factor that adjusts precipitation for gage 
deficiencies and processes not explicitly represented in the model 
(dimensionless) 0.65 0.95 

MFMAX Major Maximum melt factor during non-rain periods occurring on June 
21 (mm ºC-1 6 hr-1) 0.90 1.40 

MFMIN Major Minimum melt factor during non-rain periods occurring on 
December 21 (mm ºC-1 6 hr-1) 0.20 0.20 

UADJ Major Average wind function during rain-on-snow periods (mm mb-1) 0.03 0.03 

SI Major Mean areal snow water equivalent below which there is less than 
100% snow cover and the areal depletion curve is applied (mm) 500 500 

NMF Minor 
Determines the amount of energy exchange that occurs when 
melt is not taking place at the snow surface. Maximum negative 
melt factor (mm ºC-1 6 hr-1). 0.15 0.30 

DAYGM Minor Constant melt rate at the snow/soil interface (mm/day) 0.00 0.00 
MBASE Minor Base air temperature for non-rain melt computations (ºC) 0.00 0.00 

PXTEMP Minor Air temperature threshold at which precipitation is defined as rain 
or snow (ºC) 1.70 1.70 

PLWHC Minor Maximum liquid water holding capacity of the snowpack (decimal 
fraction) 0.05 0.05 

TIPM Minor Antecedent temperature index (dimensionless) 0.10 0.10 

PXADJ Minor Adjustment factor for precipitation, must be between 0.0 and 1.0 
(dimensionless) 0.97 1.21 

TAELEV Minor Elevation at which the air temperature time series is collected (m) 380 1267 
ELEV Minor Average sub-basin elevation (m) 380 1167 

SCTOL Minor 
Tolerance used when updating water equivalent or areal extent of 
snow cover with observed data. Range is 0.0 to 1.0. Updates when 
|Simulated-Observed| > Tolerance*Observed (dimensionless) 0.00 0.05 
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Table 4. April-May-June monthly calibration (Cal), validation (Val) and the period of record 16 

(Per., 1999-2010) statistics (MAE=mean absolute error (m3s-1), NSE=Nash Sutcliffe efficiency 17 

(unitless), PBIAS=flow bias (%), R=correlation coefficient (unitless), and RMSE=root mean 18 

squared error (m3s-1) for APRFC, MOD10A1, and MODSCAG modeled discharge for all basins. 19 

Statistically significant (p-value < 0.05) R values are shown in italics. Note that the calibration 20 

and validation years are not the same for all catchments. 21 

  APRFC MOD10A1 MODSCAG 
 Stat Cal Val Per Cal Val Per Cal Val Per 

CRSA2 MAE 3.96 4.73 3.07 3.39 4.66 2.96 3.37 4.22 2.87 
  NSE 0.10 -0.87 -0.04 0.28 -0.82 0.03 0.29 -0.53 0.11 
  PBias -17.28 -25.48 -13.08 -16.37 -26.83 -13.07 -16.13 -25.71 -13.27 
  R 0.61 0.19 0.58 0.69 0.21 0.61 0.69 0.33 0.64 
  RMSE 5.17 7.24 4.31 4.62 7.15 4.17 4.60 6.54 4.00 
           

CHLA2 MAE 1.85 2.88 1.57 2.00 2.84 1.59 2.09 2.47 1.52 
  NSE 0.74 0.58 0.81 0.73 0.60 0.81 0.66 0.64 0.82 
  PBias 4.29 4.84 -2.32 -4.14 -0.65 -5.06 0.56 3.12 -2.84 
  R 0.88 0.87 0.93 0.86 0.84 0.92 0.82 0.85 0.92 
  RMSE 2.44 3.46 2.20 2.49 3.38 2.20 2.82 3.21 2.18 
           

UCHA2 MAE 9.12 8.22 5.34 9.15 8.01 5.40 8.75 8.82 5.37 
  NSE 0.71 0.62 0.81 0.63 0.65 0.80 0.69 0.64 0.81 
  PBias 16.76 0.39 0.21 10.46 -4.59 -1.05 14.42 -0.48 -0.10 
  R 0.87 0.85 0.91 0.81 0.84 0.91 0.85 0.85 0.91 
  RMSE 10.64 12.43 8.43 11.93 11.97 8.68 11.05 12.15 8.44 
           

SALA2 MAE 17.66 21.93 12.31 19.2 24.81 12.94 17.25 23.4 12.45 
  NSE 0.69 0.63 0.80 0.63 0.53 0.78 0.71 0.60 0.80 
  PBias 17.21 -14.98 0.35 9.85 -19.07 -1.28 15.18 -15.77 -0.27 
  R 0.89 0.83 0.90 0.82 0.78 0.88 0.89 0.81 0.90 
  RMSE 21.10 30.24 19.27 23.32 34.20 20.53 20.56 31.57 19.47 
           

GBDA2 MAE 7.00 3.91 3.62 6.57 5.28 3.93 6.45 4.21 3.63 
  NSE 0.45 0.90 0.84 0.55 0.83 0.82 0.47 0.86 0.83 
  PBias 28.10 -11.17 1.46 14.41 -17.60 -1.56 25.89 -12.19 0.83 
  R 0.88 0.96 0.92 0.89 0.95 0.91 0.91 0.95 0.92 
  RMSE 10.05 5.05 5.66 9.09 6.72 6.04 9.81 5.96 5.78 

22 
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Table 5. SNOW17 parameters for the MOD10A1 calibration. North (N), south (S), upper (U), and lower (L) sub-basins are described. 23 

For each sub-basin, the first column indicates the parameter value in the APRFC calibration and the second column indicates the 24 

parameter value used in the MODIS calibration. Bold values indicate where the MODIS value differs from the APRFC value. 25 

26 
Parameter Sensitivity N  S  L  N  S  L  U  L  

  CRSA2 UCHA2 CHLA2 
MFMAX Major 1.00 1.00 1.40 1.40 1.00 1.40 0.90 0.90 1.40 1.40 1.00 1.00 0.90 1.40 1.30 1.40 

NMF Minor 0.30 0.15 0.30 0.20 0.30 0.20 0.30 0.15 0.30 0.20 0.30 0.20 0.20 0.20 0.20 0.20 
TAELEV Minor 665 865 1088 988 474 474 708 908 1002 908 465 465 720 820 380 480 
SCTOL Minor 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 

                  
  SALA2 GBDA2  

MFMAX Major 0.90 0.90 1.40 1.40 1.00 1.00 0.90 1.00 1.40 1.40 1.00 0.90 
NMF Minor 0.30 0.15 0.30 0.20 0.30 0.20 0.30 0.15 0.30 0.20 0.30 0.20 

TAELEV Minor 823 1023 1123 1123 420 420 863 1167 1267 1267 734 734 
SCTOL Minor 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 
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Table 6. SNOW17 parameters for the MODSCAG calibration. North (N), south (S) and lower (L) sub-basins are described. For each 27 

sub-basin, the first column indicates the parameter value in the APRFC calibration and the second column indicates the parameter 28 

value used in the MODIS calibration. Bolded values indicate where the MODIS value differs from the APRFC value. 29 

 30 

  31 

Parameters Sensitivity N  S  L  N  S  L  U  L  

  CRSA2 UCHA2 CHLA2 

MFMAX Major 1.00 1.20 1.40 1.40 1.00 1.20 0.90 1.00 1.40 1.40 1.00 0.90 0.90 0.90 1.30 1.20 
NMF Minor 0.30 0.15 0.30 0.20 0.30 0.20 0.30 0.15 0.30 0.20 0.30 0.20 0.30 0.20 0.30 0.20 

TAELEV Minor 665 665 1088 1088 474 474 708 702 1002 902 465 465 720 720 380 580 
SCTOL Minor 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 

                  
  SALA2 GBDA2  

MFMAX Major 0.90 1.00 1.40 1.40 1.00 11 0.90 1.00 1.40 1.40 1.00 0.90 
NMF Minor 0.30 0.15 0.30 0.20 0.30 0.20 0.30 0.15 0.30 0.20 0.30 0.20 

TAELEV Minor 823 923 1123 1023 420 420 863 863 1267 1163 734 734 
SCTOL Minor 0.05 0.00 0.05 0.00 0.05 0.00 0.05 0.00 0.05  0.00 0.05 0.00 
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Table 7. Comparison between RMSE (%) and NSE (in brackets) for April-May-June using 32 

SCTOL values of 0.25, 0.50 and 0.75. Absolute differences are calculated from the MODSCAG 33 

base run. 34 

SCTOL  CRSA2 UCHA2 CHLA2 SALA2 GBDA2 
0.25 Cal. -2 

(-0.03) 
18 

(0.13) 
12  

(0.08) 
19 

(0.16) 
-2  

(-0.03) 
0.50  -10 

(-0.29) 
-9 

(-0.05) 
-1  

(-0.01) 
8  

(0.07) 
12 

(0.03) 
0.75  -4 

(-0.08) 
4 

(0.02) 
2  

(0.01) 
6  

(0.03) 
5 

(0.01) 

0.25 Val. -11 
(-0.17) 

19 
(0.14) 

15  
(0.1) 

18 
(0.15) 

-6  
(-0.06) 

0.50  -15 
(-0.45) 

-14  
(-0.08) 

-2  
(-0.02) 

6  
(0.06) 

12 
(0.03) 

0.75  -8 
(-0.15) 

3  
(0.01) 

2  
(0.01) 

6  
(0.03) 

4  
(0.01) 

0.25 Per. -10 
(-0.15) 

21  
(0.15) 

12  
(0.08) 

19  
(0.16) 

-7  
(-0.08) 

0.50  -11 
(-0.34) 

-20  
(-0.12) 

-12  
(-0.09) 

7  
(0.06) 

17 
(0.04) 

0.75  -7 
(-0.13) 

1  
(0.01) 

-1  
(0) 

6  
(0.03) 

4  
(0.01) 

 35 
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Figures 1 

  2 



2 
 

 3 

 4 

Figure 1. Map of the five study basins with upper and lower divisions shown. Alaska 5 

SNOTEL sites are shown with numbered black triangles: 1) Fairbanks International 6 

Airport; 2) Little Chena Ridge; 3) Munson Ridge; 4) Mt. Ryan; 5) Monument Creek; 6) 7 

Teuchet Creek; 7) Upper Chena (Table 2). 8 
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10 

Figure 2. Snow cover area (SCA, %) for the Upper Chena river basin north slope from 11 

SNOW17 and from MODIS in March to May, 2010. Large decreases in the MODIS SCE 12 

are observed compared to the SNOW17 SCE. 13 
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 16 

Figure 3 Snow cover area (%) based on MOD10A1 SCA average across all watersheds 17 

divided into elevation zones. The years 2000 to 2010 are shown, with the mean of all years 18 

in the final panel. Elevation zones are 1=100-200 m, 1-6, progressing in 200 m increments 19 

from 200-1200 m, 7=1200-2000 m. Grey areas indicate dates when there is no SCA 20 

information (i.e., cloud cover, missing sensor data). 21 

SCA (%) 
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 22 

Figure 4. Simulated SWE (mm) versus SNOTEL SWE (grey line) for APRFC (solid black 23 

line), MOD10A1 (blue dashed line), and MODSCAG (orange dotted line) for October, 2000 24 

to September, 2001. The Upper Chena River basin north slope is shown in the left panels, 25 

and the south slope is shown in the right panels.26 
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 27 

Figure 5. Study area snow cover area in the CHPS model framework for: a) MOD10A1 28 

and b) MODSCAG, where white is either missing or cloud covered; and elevation-averaged 29 

(lumped by elevation) snow cover extent based on: c) MOD10A1 and d) MODSCAG. 30 

Values range from 10% to 100% snow cover. All panels show results for 15 May, 2001. 31 

 32 
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 33 

Figure 6. Study area basin SWE (mm) estimates in CHPS model framework for: a) 34 

MOD10A1 and b) MODSCAG, and the percentage difference between both SWE estimates 35 

and the APRFC run (for positive values, MODIS is higher, for negative values, APRFC is 36 

higher; Figures c) and d)). All panels show results for 15 May, 2001. 37 
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38 

Figure 7. Monthly RMSE (m3s-1) plotted against 1-R for calibration (open circles), 39 

validation (open triangles) and period of record (open squares). Values are given for each 40 

of the five basins. Black=APRFC, blue=MOD10A1, orange=MODSCAG, and 41 

yellow=MODSCAG with SCTOL=0.25. Results cluster by basin, as indicated by the oval 42 

groupings on the plot. 43 
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 45 

Figure 8. Percent difference between observed streamflow and that modelled using APRFC 46 

plotted against modelled MOD10A1 (blue), and MODSCAG (orange) for March-June from 47 

2000-2010. The APRFC percent difference (y-axis) is plotted against the MOD10A1 and 48 

MODSCAG percent differences (x-axis). The 1:1 line is illustrated on the plots for 49 

reference.  50 
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Figure 9. Upper Chena River basin streamflow: observed (grey line), simulated with 53 

APRFC (black dotted line), simulated with MOD10A1 (blue dashed line), and simulated 54 

with MODSCAG (orange dashed line) for all years (2000-2010, 15th of month shown on 55 

xaxis). Streamflow is shown as specific discharge, with discharge divided by area of the 56 

basins (km). The mean of all stations is shown in the final panel. 57 


