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Abstract. Over northeastern Canada, the amount of water stored in a snowpack, estimated by its snow water equivalent (SWE) 

amount, is a key variable for hydrological applications. The limited number of weather stations driving snowpack models over 

large and remote northern areas generates great uncertainty in SWE evolution. A data assimilation (DA) scheme was developed 

to improve SWE estimates by updating meteorological forcing data and snowpack states with passive microwave (PMW) 15 

satellite observations and without using any surface-based data. In this DA experiment, a particle filter with a Sampled 

Importance Resampled algorithm (SIR) was applied and an inflation technique of the observation error matrix was developed 

to avoid ensemble degeneracy. Advanced Microwave Scanning Radiometer – 2 (AMSR-2) brightness temperature (TB) 

observations were assimilated into a chain of models composed of the Crocus multi-layer snowpack model and radiative 

transfer models. The microwave snow emission model (Dense Media Radiative Transfer – Multi-Layers (DMRT-ML)), the 20 

vegetation transmissivity model (ω-τopt), and atmospheric and soil radiative transfer models were calibrated to simulate the 

contributions from the snowpack, the vegetation and the soil, respectively, at the top of the atmosphere. DA experiments were 

performed for 12 stations where daily continuous SWE measurements were acquired over 4 winters (2012-2016). Best SWE 

estimates are obtained with the assimilation of the TBs at 11, 19 and 37 GHz in vertical polarizations. The overall SWE bias is 

reduced by 68% compared to the original SWE simulations, from 23.7 kg m-2 without assimilation to 7.5 kg m-2 with the 25 

assimilation of the three frequencies. The overall SWE relative percentage of error (RPE) is 14.1% (19% without assimilation) 

for sites with a fraction of forest cover below 75%, which is in the range of accuracy needed for hydrological applications. 

This research opens the way for global applications to improve SWE estimates over large and remote areas, even when 

vegetation contributions are up to 50% of the PMW signal.  
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1 Introduction 

In Québec, Eastern Canada, snowmelt runoff has become a major economic issue and plays a considerable role in flood events 

(Perry, 2000). Good forecasting of this water supply is essential in optimizing hydroelectric dam management. The amount of 

water stored in a snowpack is estimated by the snow water equivalent (SWE). Accurately predicting the evolution of the SWE 

is challenging over large and remote areas due to the high spatial and temporal variability of the snowpack and to the lack of 5 

in situ data, which are time-consuming and expensive to measure. Current operational hydrological forecasting models used 

by Hydro-Québec, one of the larger energy producers in North America, rely on the interpolation of surface snow survey 

measurements (Tapsoba et al., 2005, Brown et al., 2018). It has been shown that the highest uncertainties in hydrological 

forecasting related to snow result from a lack of accurate estimates of the amount of snow accumulated over a large area during 

the winter season (Turcotte et al., 2010). To better determine the spatial distribution of the SWE, many approaches use 10 

snowpack models to simulate the evolution of the snow cover in response to meteorological conditions (Brun et al., 1989; 

Jordan, 1991; Lehning et al., 2002). However, using these models is challenging due to the incomplete meteorological forcing 

data for remote areas where weather stations are scarce (Raleigh et al., 2015) and the snow physics simplifications used in the 

models (Foster et al., 2005).  

The assimilation of satellite observations is a promising approach for reducing  uncertainties related to the lack of in situ data 15 

(Pietroniro and Leconte, 2005; Durand et al., 2009; Touré et al., 2011; De Lannoy et al., 2012; DeChant and Moradkhani, 

2011; Andreadis and Lettenmaier, 2012; Kwon et al., 2017). In particular, passive microwave (PMW) satellite observations, 

which measure brightness temperatures (‘TB’), are sensitive to the volume of snow and provide information at a good temporal 

and spatial coverage (Hallikainen, 1984; Chang et al., 1996; Tedesco et al., 2004). It has been shown that the assimilation of 

PMW satellite data into snow models adds valuable information to compensate for initialization errors and improve SWE 20 

simulated by snow model (Sun et al., 2004). These approaches appear to be very promising to evaluate and predict water 

resources but are still under development for further use in operational hydrological applications (Xu et al., 2014). Larue et al. 

(2017) showed that the GlobSnow-2 SWE product (Takala et al., 2011), which assimilates both TB satellite data and local snow 

depth observations, was not accurate enough for hydrological modeling, mainly because of its dependence on in situ data in 

remote areas.  25 

The main difficulty in the assimilation of PMW satellite observations in boreal forest areas is quantifying all the contributions 

that affect the measured signal. PMW satellite observations have a low spatial resolution (~ 10 x 10 km2) and satellite sensors 

measure many contributions in addition to the PMW emission from the volume of the snowpack (vegetation canopy, ice crust, 

frozen/unfrozen soil, lakes, moisture in the snow, topography, etc.) (Kelly et al., 2003; Koenig & Forster, 2004). In boreal 

areas, the PMW emission from the forest canopy within a pixel can contribute up to half of the PMW signal measured by 30 

satellite sensors (Roy et al., 2012, 2016). This contribution does not only depend on the fraction of forest cover, but also on 

the biomass (liquid water content), the vegetation volume and the canopy structure (stem, leaf, trunk) (Franklin, 1987). To 

adjust snowpack model simulations, several studies suggest using radiative transfer models, coupled to a snowpack model, to 
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take into account the different contributions to the PMW signal at the top of the atmosphere and to directly assimilate PMW 

satellite observations (Brucker et al., 2011; Durand et al., 2011; Langlois et al., 2012; Roy et al., 2016). However, the 

assimilation of PMW must be used with care, and a good understanding of the interactions between the properties and 

microwave emission of the snowpack is crucial to avoid degrading the SWE estimates. For instance, the assimilation of passive 

microwave in wet snow conditions can introduce large uncertainties since the presence of liquid water in the snowpack 5 

increases TBs, whereas increases in snow grain size decrease the brightness temperature independent of any change in SWE 

(Klehmet et al., 2013). The assimilation of PMW thus can help to adjust the modeled snowpack states during the winter, but 

it cannot be used at the beginning and at the end of the season (snowmelt periods).  

This paper aims at developing and validating the assimilation of PMW satellite observations for SWE improvements over 

Québec by adjusting meteorological forcing data and simulated snowpack states without using any surface-based observations. 10 

AMSR-2 satellite sensors provide the TB observations at 11, 19 and 37 GHz. The data assimilation scheme (DA) is a Sequential 

Importance Resampling Particle filter (referred to as PF-SIR) (Van Leeuwen (2009, 2014). The PMW emission from the 

snowpack is computed by using the Crocus snowpack model (Brun et al., 1989) coupled to a microwave snow emission model, 

the Dense Media Radiative Transfer - Multi Layers model (DMRT-ML) (Picard et al., 2013). This scheme is further referred 

as the Crocus/DMRT-ML chain and was previously calibrated over Québec (Larue et al., 2018). As a first step, the previous 15 

study of Larue et al. (2018) tested the feasibility of the DA scheme in a controlled environment by using synthetic TBsnow 

observations, obtained by running the Crocus/DMRT-ML chain with perturbed meteorological forcings. The results showed 

SWE RMSE reduced by 82% with the multi-variate assimilation of TBs at 37, 19 GHz and 11 GHz in vertical polarizations, 

compared to SWE RMSE without assimilation. In the present study, the same DA setup as described in Larue et al. (2018) 

was implemented except that real satellite observations were used. For the assimilation of satellite data, the challenge is to 20 

accurately simulate the TB measured at the top of the atmosphere (TB TOA) by including contributions other than snow (i.e. soil, 

vegetation and atmosphere). The vegetation transmissivity model (ω-τopt), the Wegmüller and Mätzler (1999) soil emission 

model and the Liebe (1989) atmospheric emission model were added and calibrated to simulate the PMW emission of satellite 

observations (Roy et al., 2015).  

The specific objectives of this paper were thus to: 1) calibrate the soil and the vegetation radiative transfer models coupled 25 

with the Crocus/DMRT-ML chain to simulate TB TOA over several years (2012 to 2016); and 2) evaluate the performance of 

the assimilation of PMW data in Crocus using SWE measurements obtained over twelve reference nivometric stations from 

2012 to 2016 (43 winters).  This paper opens the way to a functional spatialized method for improving SWE estimates over 

large and remote areas without using surface-based data. 
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2 General framework 

2.1 Study area and evaluation database 

Figure 1 shows the region of interest located in the province of Québec, Eastern Canada (46-56°N). This area includes the La 

Grande (LG) watershed, in north-central Québec (below 56°N) and the Outaouais and Saint-Maurice watersheds in 

southwestern and south-central Québec, respectively (46-48°N), which are equipped with SWE and snow depth sensors for 5 

hydrological purposes. Québec is characterized by different eco-climatic conditions, a high percentage of forested area (dense 

boreal forests and mixed coniferous and deciduous), and a flat topography. 

 

 

Figure 1. SWE measurement stations with the ‘GMON’ SWE sensors (yellow squares, see Table 1 for details) in the province of 10 
Québec. The red circles are the snow depth sensors (‘SR50’) used by Hydro-Québec for hydrological purposes, overlaid on a relief 

map (from blue-low to brown-higher altitudes) and watershed contours (black lines).  

 

To evaluate SWE simulations, SWE measurements were acquired from 2012 to 2016 by twelve nivometric stations (see 

numbered stations on Fig. 1), located through a north-south gradient in Québec. This SWE database (coordinates, sensors, 15 

operating period, etc.) was fully described in Larue et al. (2018). Table 1 describes the main station characteristics, including 

the mean maximum SWE values over operating periods. Daily SWE measurements were derived from gamma ray SWE 
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sensors (Campbell Scientific CS725, ‘GMON’) with an average error of +5% (Choquette et al., 2008). Two stations (Nos. 5 

and 12) were located in the subarctic eco-climatic zone (53-54°N, James Bay area), eight in the coniferous boreal zone (46-

48°N) and two (Nos. 4 and 11) in a mixed forest area in southern Québec (45.3°N). Sensors were calibrated by Hydro-Québec 

from numerous field measurement campaigns during the first year following their installation.   

A total of 43 winters were studied (Table 1). These winters were all very different. Winter 2012-2013 had the lowest snow 5 

accumulation in ten years (165 cm) whereas winter 2013-2014 was very snowy (379 cm) compared to the average snow 

accumulation (217 cm). Winter 2014-2015 was unusually cold (3° below average temperatures), and winter 2015-2016 was 

the warmest in 60 years (statistics can be found at http://www.mddep.gouv.qc.ca). 

 

Table 1. Characteristics of the nivometric SWE stations: Site number, Latitude (Lat.), Longitude (Long.) and Elevation (El., a.s.l. in 10 
meters) of stations, Dist. GEM-station is the distance between the station and the center of the associated GEM grid cell (with GEM: 

Global Environmental Multiscale weather prediction model, Section 2.2), time period of observations, average of the maximum 

observed data over the studied period, and data provider (HQ: Hydro-Québec, U. Sherb: Université de Sherbrooke, U. Laval: 

Université Laval). 

Sites # Lat. Long. El. 
Dist. GEM-station 

(km) 
Time period Mean maximum SWE value (kg m-2) Data provider 

1 48.3 -74.1 100 3.4 2012-2016 272 HQ 

2 48.9 -74.2 100 4.9 2012-2016 277 HQ 

3 47.9 -72.9 100 4.7 2012-2016 252 HQ 

4 46.6 -72.8 136 4.2 2012-2016 253 HQ 

5 53.7 -78.2 103 4.2 2012-2016 213 HQ 

6 46.7 -76.0 229 2.3 2012-2016 161 HQ 

7 47.0 -74.3 469 3.3 2012-2016 235 HQ 

8 46.9 -76.4 330 1.8 2012-2016 212 HQ 

9 46.9 -73.7 372 1.9 2012-2016 180 HQ 

10 47.7 -73.6 398 3.5 2012-2016 202 HQ 

11 47.3 -71.2 669 2.6 2015-2016 396 U. Laval 

12 53.4 -75.0 389 4.0 2014-2016 211 U. Sherb 

Mean    3.4 2012-2016 237  

2.2 General setup  15 

Figure 2 shows the general methodology developed to simulate and to assimilate AMSR-2 satellite observations into the 

snowpack model.  

To simulate the signal measured by satellite sensors at the top of the atmosphere (TB TOA), a chain of models was implemented 

and calibrated over Eastern Canada. The three hourly-continuous atmospheric forcing database provided by the Global 

Environmental Multiscale weather prediction model (referred to as ‘GEM’; Coté et al., 1998) was used to drive the multi-layer 20 

Crocus snowpack model (described in Sect. 3.2.1). Each GEM grid cell has a spatial resolution of 10 x 10 km2, which is on 
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the same order as the observation scale. The Crocus model updates the snowpack every 15 minutes by interpolating 

meteorological inputs, but in this study we used daily Crocus outputs (SWE, snow depth, density, etc.) computed at 14:00 

local time (19:00 UTC), in agreement with the AMSR-2 pass (Sect. 3.1.1). The DMRT-ML radiative transfer model (Sect. 

3.2.1), driven with Crocus outputs, was used to simulate the PMW emission from the modeled snowpack (referred to as 

‘TBsnow’) at 11, 19 and 37 GHz, at vertical and horizontal polarizations (‘V-pol’ and ‘H-pol’, respectively). The contribution 5 

of the atmosphere was estimated by using an atmospheric model (Liebe, 1989) driven with the total precipitable water 

integrated over 28 atmospheric layers and provided by GEM (Sect. 3.3). The surface emissivity for a rough soil was deduced 

by calibrating the Wegmüller and Mätzler (1999) soil model and vegetation contributions were quantified with the (ω-τopt) 

radiative transfer model (Sect. 3.3). To take into account canopy emissivity variability, the inversions of the (ω, τopt) parameters 

were linked to the 4-day leaf area index (LAI) product from MODIS data (1 x 1 km2), averaged for each AMSR-2 grid cell 10 

(10 x 10 km2) (Sect. 3.3). These inversions of soil and vegetation parameters were performed over the summer period to avoid 

bias due to the presence of the snowpack.  

The brightness temperatures (TBs) measured by AMSR-2 satellite sensors were assimilated in a DA scheme (see Sect. 3.4). 

Raleigh et al. (2015) have shown that meteorological forcing data are the major sources of errors in snow model simulations. 

Hence, we assume here that the uncertainties of GEM meteorological forcing data are the only sources of errors in the TB 15 

modeling. It is very difficult to quantify modeling errors due to physical simplifications inside the model due to the spatial 

scale of the observations. Further studies are needed to estimate these errors over the study area and to take it into account in 

the DA experiment. The observation error was assumed to be known and the modeling errors were estimated by perturbing 

selected meteorological forcing variables. An ensemble of 150 TB simulations was obtained and the distribution of these ‘prior 

estimates’ represent the modeling error in response to GEM uncertainties. A Particle filter with an SIR algorithm was used to 20 

update the simulated TB TOA over the winter by adjusting meteorological forcing data and snowpack states (posterior estimates) 

when an observation was available (Fig. 2).  

Several configurations of the DA scheme were tested over three evaluation sites representing different environmental 

conditions. The best configuration was evaluated over the validation reference sites from 2012 to 2016 (for 43 winters, Sect. 

3.4).  25 

Comparing data simulated at the station against model cells involves uncertainty due to spatial variations of the snowpack and 

land cover. This is a well-known problem for model validation studies and we assume here that the high number of sites (12 

SWE stations, or 43 snowpack simulations) provides a useful assessment of simulations. It is also known that the spatial 

localization of measurements can lead to some biases (Molotch and Bales, 2005). To diversify its measurements, Hydro-

Québec has installed two SWE sensors in the forest, and not in a clearing as is the usual practice for ease of maintenance.  30 
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Figure 2. Methodological scheme describing the DA scheme in the chain of models for SWE retrievals by updating perturbed 

atmospheric forcing data and snowpack states (‘Ft’ and ‘xt’, respectively, see Sect. 3.4). 

3 Materials and methods 

3.1 Data 5 

3.1.1 AMSR-2 observations 

AMSR-2 satellite sensors (Imaoka et al., 2010) provide PMW satellite observations on the 11 (10.7), 19 and 37 GHz channels 

at V-pol and H-pol. Images produced by AMSR-2 are freely available on the Japan Aerospace Exploration Agency (JAXA) 

website. This study used the Level 3 Version 2 product, which provides daily TBs normalized on a North Hemisphere polar 

stereographic projection with a spatial resolution of 10 x 10 km2 (see http://gcom-w1.jaxa.jp for the specifications of the 10 

projection), from 1 August 2012 to 1 July 2016. TBs from AMSR-2 are computed twice a day: around 13:30 local time, or 

17:30 UTC (ascending pass), and around 01:30 local time, or 5:30 UTC (descending pass). Only the ascending pass was used 

in this study since the snowpack was computed once a day at 14:00 (local time). The use of the ascending pass allowed avoiding 

the nighttime refreeze process. To reduce observation errors due to the daytime melting process, the approach was evaluated 

during the dry snow period, from December to mid-March. This aspect is further discussed in Sect. 5.1. 15 

3.1.2 LAI MODIS data 

The 4-day LAI product provided by MODIS TERRA data (MOD15A3; Myneni et al., 2002) was used to characterize the 

vegetation contributions to the total emissivity (Fig. 2). The product has a spatial resolution of 1 x 1 km2 and was resampled 

on the AMSR-2 grid of 10 x 10 km2 by averaging all LAI data within each AMSR-2 grid cell (referred to as ‘LAIAMSR-2’). For 

http://gcom-w1.jaxa.jp/
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each site, Table 2 describes the summer and winter average values (‘LAIsummer’ and ‘LAIwinter’) calculated using LAIAMSR-2 

from 1 July to 31 August and from 1 January to 1 March over the 2012 to 2016 time period, respectively (Roy et al., 2014). 

 

Table 2. LAIsummer is the mean of the LAI provided by MODIS for the summer period (1 July to 31 August) and averaged over the 

AMSR-2 grid cell (10 x 10 km2), LAIwinter is the mean LAI for the winter period (1 January to 1 March). fcover is the fraction of forest 5 
cover within the AMSR-2 grid cell extracted from the land cover map Circa 2000 (see Sect. 3.1.3). The percentages of coniferous, 

deciduous and water areas are the percentages distributed within the fcover. Sites are ranked in the increasing order of fcover. The 

three highlighted sites (gray cells) are the sites selected to test the configuration of the DA scheme in Sect. 3.4.3. 

Site # LAIsummer LAIwinter fcover (%) Coniferous (%) Deciduous (%) Water (%) 

#12 1.07 0.04 24.2 77.6 14.4 4.9 

#5 1.07 0.08 31.5 66.5 25.9 7.0 

#4 2.63 0.06 47.6 8.5 70.3 1.4 

#7 3.13 0.28 59.3 49.9 45.8 4.0 

#10 2.47 0.17 61.8 67.3 30.1 2.4 

#1 2.96 0.28 63.7 41.6 55.8 2.2 

#3 3.69 0.25 65.5 44.6 52.1 3.3 

#2 1.99 0.12 66.6 79.4 16.6 3.5 

#8 4.11 0.22 72.1 15.5 80.2 4.3 

#11 2.43 0.19 74.5 52.5 46.6 0.5 

#6 2.82 0.11 81.5 18.1 75.3 6.5 

#9 3.65 0.43 84.0 60.9 36.1 2.9 

 

3.1.3 Land cover map of Canada  10 

The land cover map of Canada Circa 2000 (available at http://www.geobase.ca/geobase/en/data/landcover/index.html) 

(referred to as ‘LCC’) was used to extract the fraction of forest cover (‘fcover’) within each AMSR-2 grid cell. This product 

provides the percentage of coniferous, herbaceous, deciduous and water areas with a spatial resolution of 1 x 1 km2 and was 

resampled to generate average values within each 10 x 10 km2 AMSR-2 grid cell. Table 2 shows the fractions of forest cover 

provided by the LCC and resampled over AMSR-2 grid cells for each site. As expected, Sites 5 and 12, which are located in 15 

the subarctic area (Fig. 1), have a low fcover (below 32%). The other sites in boreal areas have an fcover of up to 60%. Sites 6 and 

9 are in particularly densely forested areas, with a high fcover (up to 80%). The measured TB signal can be significantly affected 

by the forest and the signature of the underlying snow is attenuated during the winter period in such densely forested areas.  

The sensitivity of the DA scheme to the fcover was analyzed for sites with a fcover above and below 75% (Sect. 4.2.1).  

http://www.geobase.ca/geobase/en/data/landcover/index.html
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Moreover, the presence of lakes can affect the PMW signal. Lake ice (when snow cover is absent) increases the PMW signal 

at high frequencies, and at low frequencies, the contribution of water bodies acts as a reflector and the emissivity remains low 

(De Sève et al., 1999). With snow cover on lakes, the different snow states on the lakes compared to snow cover under forest 

also modified the emitted signal (see Derksen et al., 2012, 2014). Nevertheless, we made the hypothesis that these impacts 

were negligible over our studied sites, which have lake water fractions under 7% within their AMSR-2 grid cells (Table 2) 5 

(masks are generally applied for water fractions of up to 20%, Takala et al., 2011). 

3.2 Simulation of the PMW emission from the snowpack 

3.2.1 Coupling of Crocus and DMRT-ML 

The chain of models developed to simulate TBsnow is identical to that of Larue et al. (2018), so only a brief description of the 

approach is detailed here (see Fig. 2).  10 

The Crocus snowpack evolution model (Brun et al., 1989, 1992; Vionnet et al., 2012) is coupled with the ISBA land surface 

model within the SURFEX interface (Surface Externalisée, in French) (Decharme et al., 2011; Masson., 2013). 

SURFEX/ISBA/Crocus (hereafter referred to as “Crocus”) computes the evolution of the physical properties of the snowpack 

and the underlying ground (soil). In particular, the snow layers are modeled with a set of variables representing the 

morphological properties of snow grains (shape and size), including the specific surface area (SSA), which is one of the most 15 

sensitive variables for snowpack emission simulations. The snow microstructure evolves in time according to semi empirical 

laws (Vionnet et al., 2012). Crocus is the only model able to simulate the SSA as a prognostic variable (rather than as a 

diagnostic variable) by using the formulations of Carmagnola et al. (2014). The number of snow layers is dynamic and evolves 

with physical properties updated at each time step. The maximum number of simulated snow layers was fixed at 15 in this 

study as a compromise between accuracy and computing time (not shown). Configuration and initialization of the Crocus 20 

snowpack model are the same as described in Larue et al. (2018).  

TB snow was computed by driving the radiative transfer model DMRT-ML with Crocus outputs. The DMRT-ML model is well-

detailed in the literature (Tsang et al., 1992; Tsang and Kong, 2001; Picard et al., 2013, Royer et al., 2017), so only the 

calibration is described here. Snow grain size, and more generally snow microstructure, are factors that most affect the accuracy 

of simulated PMW emission from a snowpack as they determine the strength of scattering mechanisms in the snowpack at the 25 

high frequencies used (Roy et al., 2013; Leppänen et al., 2015; Sandells et al., 2017, Larue et al., 2018). In DMRT-ML, snow 

grains are represented as spheres of ice with variable interactions between them. The potential formation of clusters of grains, 

which increases the effective snow grain size, is not taken into account, generating uncertainties (Picard et al., 2013). Several 

studies have shown that DMRT-ML needed an effective scaling factor to represent the stickiness between snow grains and to 

correct the snow microstructure representation (Brucker et al., 2011; Roy et al., 2013; Royer et al., 2017).  Larue et al. (2018) 30 

have shown that a mean snow stickiness parameter (τsnow) of 0.17 was optimal to simulate TBsnow over boreal snow in Québec 

(RMSE of 27 K) when DMRT-ML is driven by Crocus snow profiles. This constant τsnow value was thus used in the 
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implemented chain of models (Section 3.4.3, Experiment A and B). Nevertheless, this effective parameter could change with 

snow type (Royer et al., 2017; Larue et al., 2018). Hence, the quality of the DA scheme with the use of the τsnow parameter as 

a free variable was studied (Section 3.4.3, Experiment C). 

3.2.2 Ice lens detection algorithm 

Since ice lenses (‘IL’) within a snowpack significantly reduce TB mainly at H-pol (Montpetit et al., 2013; Roy et al., 2016), 5 

ice layers must be detected and added in the simulated Crocus snow profiles to improve TBsnow simulations. TB in H-pol are 

much more attenuated by the presence of an IL than TB in V-pol, since the coefficient of reflectivity is stronger in H-pol 

(Montpetit et al., 2013). Therefore, by following the daily evolution of the PMW emission from the snowpack with AMSR-2 

observations, the formation of an IL can be detected by using a threshold on the polarization ratio PR defined by Cavalieri et 

al. (1984) for a given frequency (ν), 10 

𝑃𝑅(𝜈) =  
𝑇𝐵(𝜈,𝑉−𝑝𝑜𝑙)−𝑇𝐵(𝜈,𝐻−𝑝𝑜𝑙) 

𝑇𝐵(𝜈,𝑉−𝑝𝑜𝑙)+𝑇𝐵(𝜈,𝐻−𝑝𝑜𝑙)
          (1). 

In this study, an IL was added on the top of the simulated snowpack if the AMSR-2 PR(11) was above 0.06 (Roy, 2014). This 

IL was represented as a 1-cm layer with a density of 900 kg m-3 and with snow grain radius set to zero (Roy et al., 2016). The 

difficulty is to know how to evolve this IL in the snowpack. The Crocus snowpack model has not yet been adapted to integrate 

the formation of ILs and evolve them in a coherent way (Quéno et al., 2016). Nevertheless, it was shown in Larue et al. (2018) 15 

(from field measurements) that an IL of 1 cm located at 4 cm from the surface of the simulated snowpack minimized the bias 

of DMRT-ML simulations due to the presence of an IL (regardless of its real location in the snow profile). Hence, the IL first 

added at the surface of the snowpack was moved to 4 cm from the surface as soon as a snowfall was detected with GEM 

precipitation data or, if not, after five days to take into account the snowpack transformations (percolations, sublimations, etc.). 

The maximum number of detected IL was fixed at two. When a second IL was detected (IL2), IL2 was added at the surface 20 

while the first detected IL (IL1) was left at 4 cm. After the next snowfall (or after five days otherwise), IL1 was moved to 8 

cm from the surface and IL2 to 4 cm. For instance, during winter 2014-2015, one IL was detected at sites 1 and 12 (22 

December 2014 and 15 December 2014). At Site 9, two ILs were detected: one on 10 December 2014 and another on 1 January 

2015.  

This is a simplified way to take into account the presence of ILs, and further studies are needed to dynamically evolve these 25 

ILs in the snowpack and to model the impact on the neighboring layers. This work is particularly complex, and no solution 

has yet been found (D'Ambroise et al., 2017), in particular because measurements are difficult to take. 

3.3 Simulation of the PMW emission at the top of the atmosphere 

The PMW brightness temperature (TB, TOA) emitted at the scale of the AMSR-2 product can be written for each grid cell as, 

𝑇𝐵,   𝑇𝑂𝐴 = 𝑓season. 𝑇𝐵 𝑓𝑜𝑟𝑒𝑠𝑡 + (1 − 𝑓season)𝑇𝐵 𝑜𝑝𝑒𝑛 + 𝑇𝐵 𝑎𝑡𝑚↑       (2) 30 
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where TBatm↑ is the ascending atmospheric contribution, estimated using the Liebe (1989) model implemented in the Helsinki 

University of Technology (HUT) snow emission model (Pulliainen et al., 1999). The model considers radiative transfer through 

the atmospheric layers and provides TBatm↑ values at the satellite sensor level (Liebe, 1989) according to the precipitable water 

integrated for all atmospheric layers provided by GEM. fseason is the seasonal (winter or summer) fraction of forest cover in the 

AMSR-2 grid cell, TB forest is the PMW emission with vegetation contributions and TB open is the PMW emission without 5 

vegetation contributions.  

The fcover values provided by the LCC map were constants whereas these fractions of forest evolve with the season. To take 

into account the temporal evolution of the forest cover for the winter and summer periods (defined as the time period with and 

without snow, respectively) and to estimate the fseason used in Eq. (2), fcover was linked respectively to LAIwinter and to LAIsummer 

by comparing the fcover map to the two resampled maps (both resampled on the AMSR-2 projection) throughout Québec (not 10 

shown). The seasonal fraction of fcover were related to seasonal LAIs with the Eq. (3) and (4) for summer and winter respectively, 

 𝑓𝑠𝑢𝑚𝑚𝑒𝑟 = 0.9 ∗ (1 − exp(−2.7 ∗ 𝐿𝐴𝐼𝑠𝑢𝑚𝑚𝑒𝑟))3.2         (3) 

 𝑓𝑤𝑖𝑛𝑡𝑒𝑟 = 0.9 ∗ (1 − exp(−16.0 ∗ 𝐿𝐴𝐼𝑤𝑖𝑛𝑡𝑒𝑟))0.3                                 (4) 

The linear correlation between the fsummer values estimated from the LCC and the fsummer values fitted to LAI data with the Eq. 

(3) had a coefficient correlation R equal to 0.94 and a p-value below 0.01. For the LCC fwinter values and the fwinter values fitted 15 

to the LAI data (see Eq. 4), the coefficient correlation R was equal to 0.95 and the p-value was below 0.01.  

3.3.1 Vegetation contributions 

The PMW emission from the vegetation varies with the forest characteristics, such as the biomass, the structure of the 

vegetation or the liquid water content of the canopy. In this study, the vegetation contribution was modeled with the simplified 

radiative transfer model (ω-τopt) (Mo et al., 1982), where the parameters should be estimated by fitting the simulated TBs with 20 

observations (Grant et al., 2008; Roy et al., 2012). The ω is the single scattering factor of the albedo. Given the incidence angle 

θ = 55° of AMSR-2 satellite sensors, the optical thickness of the vegetation τopt was a function of the forest transmissivity (γ) 

such that γ = exp(- τopt
 /cosθ). The forest transmissivity varies with the frequency (ν) used and is further called γν. At the satellite 

sensor, the expression of TB TOA in boreal areas was described by Eq. (2), which can be detailed with Eq. (5) and (6) (see Roy 

et al., 2012), 25 

𝑇𝐵 𝑓𝑜𝑟𝑒𝑠𝑡 = [𝛾𝜈. 𝑒 𝑠𝑢𝑟𝑓. 𝑇𝑠𝑢𝑟𝑓 + (1 − 𝜔). (1 − 𝛾𝜈). 𝑇 𝑣𝑒𝑔 + 𝛾𝜈. (1 − 𝑒 𝑠𝑢𝑟𝑓). (1 − 𝜔). (1 − 𝛾𝜈). 𝑇𝑣𝑒𝑔 + (1 −

                                                                                                            𝑒 𝑠𝑢𝑟𝑓). 𝛾𝜈
2

. 𝑇𝐵 𝑎𝑡𝑚↓ + (1 − 𝛾𝜈). 𝜔. 𝑇𝐵 𝑎𝑡𝑚↓] . 𝛾𝑎𝑡𝑚          (5) 

𝑇𝐵 𝑜𝑝𝑒𝑛 = [𝑒 𝑠𝑢𝑟𝑓. 𝑇𝑠𝑢𝑟𝑓 + (1 − 𝑒 𝑠𝑢𝑟𝑓). 𝑇𝐵 𝑎𝑡𝑚↓]. 𝛾𝑎𝑡𝑚                       (6) 

where Tsurf is the surface temperature, esurf is the surface emissivity under the canopy (with or without snow) for a given 

frequency, Tveg is the temperature of the vegetation (taken as equal to the air temperature at 2 meters, provided by GEM). 30 

TBatm↓ is the descending atmospheric contributions and γatm is the transmittance of the atmosphere. These atmospheric 

contributions were modeled using the Liebe (1989) model, as were the TBatm↑ values. Thus, for snow free conditions, only 
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forest (ω, γν) and soil (esurf) parameters were unknown and needed to be adjusted for each site by fitting the model output to 

the observations.  

3.3.2 Soil contributions 

To deduce the surface emissivity for rough soil (esurf,p for a given polarization p), the Wegmüller and Mätzler (1999) soil model 

was used to calculate the surface reflectivity of rough soil under the canopy (rsurf,p for a given polarization p), with or without 5 

snow by using Eq. (7) and (8), 

𝑟𝑠𝑢𝑟𝑓,𝐻 = 1 − 𝑒𝑠𝑢𝑟𝑓,𝐻 = Г𝐹𝑟𝑒𝑠𝑛𝑒𝑙,𝐻. exp (−𝜎𝑠
√𝛼.𝑐𝑜𝑠𝜃)        (7) 

𝑟𝑠𝑢𝑟𝑓,𝑉 = 1 − 𝑒𝑠𝑢𝑟𝑓,𝑉 = 𝑟𝑠𝑢𝑟𝑓,𝐻. cosθ𝛽ν         (8) 

rsurf,p mainly depends on the surface roughness and Fresnel coefficients (ГFresnel, H). In Eq. (7), the simplified parameter σs=kσ 

was used, where k is the wave number and σ the standard deviation of the surface height (in meters). 𝛼 is a constant parameter 10 

fixed to -0.1 (Wegmüller and Mätzler (1999). For frozen soil, parameters derived from Montpetit et al. (2018) were used (see 

Sect. 4.1). For thawed soil, ГFresnel,H was estimated from the dielectric constant calculated with the Dobson (1985) equations 

according to the soil moisture and soil temperature. These variables were computed with the Crocus model, coupled to the 

ISBA land surface model, and extracted daily (at 2 pm, as the other variables). The soil reflectivity in vertical polarization also 

depends on a parameter βν (Montpetit et al., 2018), which describes the polarization of the signal and is frequency-dependent. 15 

Note that we will often use ‘ν’ subscript to denote quantities that are dependent on frequency, hereafter.  

Hence, the soil parameter esurf  was linked to the set of values (σs, βν) and mainly evolved with soil moisture and soil temperature.  

3.3.3 Inversions of vegetation and soil parameters 

The inversion of forest (ω, γν) and soil (σs, βν) parameters was carried out in summer to avoid the bias due to the presence of a 

snowpack. Forest parameters (ω, γν) depend on the forest characteristics, such as the biomass and the structure of the canopy 20 

at each site. They also depend on LAI, which allows the season forest emission cycle to be accounted for. Using the vegetation 

water content equation defined by Pampaloni and Paloscia (1986), the parameter γν was related to the 4-day LAI for a given 

frequency ν with the relation (9),  

𝛾𝜈 = 𝑒−𝑏.𝑘𝑎.(exp(−
𝐿𝐴𝐼

3
)−1)/𝑐𝑜𝑠𝜃

               (9) 

where a and b are two constants to calibrate. To reduce the number of unknown variables, Eq. (9) was simplified to use only 25 

one constant ην such as ην  = 𝑒−𝑏.𝑘𝑎
.  

The vegetation and soil parameters were inverted by minimizing the difference between TB TOA simulations and TB TOA 

measured with AMSR-2 sensors at 11, 19 and 37 GHz in vertical polarizations. We used the same approach developed by Roy 

et al. (2014) since it was well adapted for PMW emission in boreal areas: the two frequency-dependent parameters (ην, βν) and 

two frequency-invariant parameters (ω, σs) were inverted with a two-stage calibration by permuting all possible combinations 30 

of the two frequency invariant parameters. Specifically, ω values varied from 0.02 to 0.16 in steps of 0.01, and σs varied from 
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0.01 to 1.1 in steps of 0.05. This yields a total of 300 possible combinations of the frequency invariant parameters. Then, for 

each possible combination of the frequency-invariant parameters, a calibration of the frequency-dependent parameters, ην and 

βν, was performed for each frequency. A total of 900 frequency-dependent calibrations were thus computed. Finally, for each 

possible combination of the frequency-invariant parameters, the total post-calibration TB RMSE across all three frequencies 

was computed. The combination of frequency-invariant parameters resulting in the lowest TB RMSE was chosen. 5 

TB TOA were simulated from 2012 to 2016. The inversion was not very sensitive to σs. (not shown) and Figure 3 shows the 

optimal overall TB TOA RMSE between simulated and measured TB TOA for the 12 sites and for the summer period according to 

ω values. Over the summer period, a ω value at 0.07 and a σs value at 0.2 cm gave best results for TB TOA simulations, with a 

minimum overall RMSE equal to 9.0 K. These parameters were previously optimized over the same study area by Montpetit 

et al. (2018). A value of ω=0.07 was coherent with the literature for dense boreal forest areas (Pellarin et al., 2006; Meissner 10 

and Wentz, 2010; Roy et al., 2012). For this optimal (ω, σs) set of values, the mean optimal values of the ην and βν factors were 

estimated, by considering the soil contribution constant if the soil was frozen.  

 

 

Figure 3. Overall TB RMSE (at 11, 19 and 37 GHz, for the 12 sites and for the summer period) between the simulated and measured 15 
TB TOA as a function of the values of ω.  A σs value at 0.2 cm gives the best results but TB RMSE is not very sensitive to this variable. 

The parameters βν and ην were optimized for each (ω, σs) couple according to the frequency used.  

3.4 Data assimilation setup  

The DA setup is the same as the one developed in Larue et al. (2018) except that we added an inflation technique of the 

covariance matrix of observation errors (R matrix) to avoid ensemble degeneracy, i.e. when an ensemble collapses to a unique 20 

particle. 

3.4.1 DA framework 

The DA scheme is a particle filter with a Sequential Importance Resampling algorithm (‘PF-SIR’) that is well-documented in 

Van Leeuwen (2009, 2014) and Gordon et al. (1993) and relatively easy to implement with a snowpack model (Dechant and 
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Moradkhani, 2011; De Lannoy et al., 2012; Charrois et al., 2016; Larue et al., 2018). The PF-SIR represents the probability 

density function (pdf) of the model state with an ensemble of states (called particles), which is updated when an observation 

is available. An ensemble approach was preferred because of the non-linearity of the system. Moreover, the particle filter 

approach can cope with the variable number of state variables resulting from the changing number of snow layers in Crocus. 

The created ensemble represents uncertainty in SWE and in TB simulations due to the uncertainties of meteorological inputs 5 

(Fig. 2).  

Assuming that the meteorological forcing data were the only source of uncertainties, the ensemble of TBs was created by 

running the chain of models described in Fig. 2 with an ensemble of perturbed inputs. The assimilation was performed daily  

(at 1 pm) and the ensemble was composed of 150 members, which was found to be an adequate size (Larue et al., 2018). The 

daily ensemble of meteorological forcing data was created by perturbing selected GEM data (air temperature, wind speed, 10 

precipitation and short and long wave radiations) with Gaussian noises according to their respective uncertainties (estimated 

in Larue et al., 2018). Meteorological forcing perturbations were propagated in time following a first-order autoregressive 

process to simulate their realistic temporal variations (Charrois et al., 2016). Precipitation, wind speed and short-wave radiation 

(‘SWdown’) were perturbed by a multiplicative factor centered at 1. Perturbation boundaries were fixed at -0.9 and 0.9. The air 

temperature was perturbed by an additive factor, with boundaries fixed at -3 K and +3 K. Perturbed long wave radiation 15 

(‘LWdown’) was estimated with perturbed Tair from a linear regression estimated in Larue et al. (2018). In order to maintain 

physical consistency in the simulations, SWdown was limited to 200 W.m-2 when there was precipitation (presence of clouds) 

(Charrois et al., 2016).  

The observation error standard deviation associated with AMSR-2 observations was assumed to be 2 K (Durand & Margulis, 

2006, 2007). Note that in reality it was probably larger since it represents all mismatches between observations and simulations 20 

obtained if the model was run with ‘correct’ inputs. This observation error cannot be easily estimated (low spatial resolution, 

representativeness, etc.), but it is only a sort of initial value here, since we used a covariance inflation to adjust it. 

DA experiments were applied between 1 November and 1 May. To avoid wet snow conditions, which increase the emissivity 

of the snowpack whereas the SWE does not change, the DA was not performed when a liquid water content was observed in 

the modeled snowpack. This variable was computed by Crocus, driven with original meteorological forcing data. SWE values 25 

were evaluated over both the dry snow period (from 1 December to 15 March) and the whole winter (when a snowpack was 

detected).  

3.4.2 DA and inflation technique 

The snowpack prior state 𝑥𝑡 at time t is computed with the updated past state of snowpack simulations at time t-1 (posterior 

state 𝑥𝑡−1) and the prior perturbed meteorological forcing data 𝐹𝑡 from time t-1 to t (see Fig. 2). The predicted observation is 30 

computed with 

𝑦𝑡
𝑖 = ℎ(𝑥𝑡

𝑖)            (10) 
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where yt
i is TB TOA predicted from particle i (i=0..N, with N the ensemble size). The observation operator h is the τsnow-calibrated 

DMRT-ML model and the calibrated radiative transfer models estimating soil, atmosphere and vegetation contributions. In the 

analysis step, the new posterior distribution is updated by weighting each particle xt
i
 according to the distance between yt

i and 

the AMSR-2 TB observation (with the weight wet
i). With the SIR algorithm, the pdf is resampled by duplicating particles with 

high weights (i.e. close to observations) and dropping with negligible weights (far from observations). With the Arakawa’s 5 

procedure used here for ensemble resampling (Arakawa, 1996; same as Charrois et al, 2016), a particle is definitely selected 

if its weight is higher or equal to the inverse of the ensemble size (wet
i > 1/N, with N=150).  

Ensemble resampling considerably reduces the risk of degeneracy but does not eliminate it. Degeneracy starts when only a 

few particles have significant weights. These particles are selected many times, leading to a loss of diversity of the posterior 

ensemble. After several assimilation steps, the ensemble quickly reduces to a single particle. Ensemble degeneracy can be 10 

detected when the number of selected particles (those with high weights) is below an effective limit number Nkeep, here fixed 

at 25 as a compromise between the quality of the DA scheme and the size of the ensemble (not shown). In this study, we 

developed a new technique to avoid a degeneracy problem, which consists in the online adjustment of the R matrix (i.e. 

observation standard deviation squared times the identity matrix) such that the weight of the 25-th selected particle (wekeep) is 

at least equal to 1/N. The rationale here is that, because the weights are nonlinear functions of the observation error covariance 15 

matrix, a larger matrix tends to flatten the distribution of weights and favours the selection of more particles. This adjustment 

is performed with an inflation of the initial matrix, and the detailed algorithm is provided in Appendix A.  

Ensemble degeneracy is often caused by extreme precipitation events resulting in very high TB values difficult to represent 

with the model. The online adjustment technique mitigates the consequences of this model deficiency on the snow simulations 

over the rest of the season. The other side of the coin is that a “good” observation can be ruled out if the model is not able to 20 

reproduce it, thereby reducing the accuracy of the snowpack estimation. 

3.4.3 Experimental setup 

To study the sensitivity and the quality of TB assimilation for SWE improvements, three experiments were performed.  

 Experiment A: 

To test the feasibility of the DA scheme for several environmental conditions, and to find the best DA configuration to apply, 25 

TB assimilation for three representative sites was performed in a preliminary experiment for winter 2014-2015. Following a 

north-south gradient, we selected site 12 (fcover = 24.2%, northern coniferous area), site 1 (fcover= 63.7%, coniferous area) and 

site 9 (fcover = 84.0%, mixed forest area), each representing a different environmental condition. Over these three sites, we 

estimated the quality of the DA scheme according to the assimilated frequencies: a) assimilation of the TB difference between 

19 and 37 GHz (referred to as ΔTB19-37); b) assimilation of the ΔTB19-37 and the TB difference between 11 and 19 GHz, in V-30 

pol (referred to as ‘ΔTB,11-19’); c) assimilation of the three TBs at 11, 19 and 37 GHz in V-pol (TB 11, TB 19, TB 37). Table 3 

summarizes the experiment set-up information (acronyms of the experiments, sites, time period). We used V-pol TB because 

H-pol TB is more sensitive to the stratigraphy of the snowpack and to the presence of ILs (Mätzler, 1987). While the DA of 
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TBs at 11, 19 and 37 GHz in V-pol should give best results since this combination of frequencies imposes more constraints, the 

risk of encountering a degeneracy problem is higher. The combination of both ΔTB,19-37 and ΔTB,11-19 is commonly used in the 

literature for SWE retrievals (Chang et al., 1987; Tedesco et al., 2004; Tedesco & Nervekar, 2010). The assimilation of the 

ΔTB,19-37 only was also studied to analyze the sensitivity of TB assimilation for deep snowpack when TB,37 saturates for a SWE 

up to about 150 mm (Mätzler et al., 1994) and to evaluate the supply of information from 11 GHz in the assimilation of both 5 

ΔTB,19-37 and ΔTB,11-19 for SWE improvements.   

To quantify the performance of the DA scheme, the daily RMSEs of ensembles of simulated SWE obtained with and without 

the DA scheme were compared by using Eq. (11), 

𝑅𝑀𝑆𝐸𝑡 =  √(
1

𝑁
∑ (𝑋𝑠𝑖𝑚 𝑖,𝑡 − 𝑋𝑂𝑏𝑠 𝑡)

2𝑁
𝑖=1 )           (11) 

where N is the ensemble size, Xsim i,t is the simulated variable from the member i at time t, and XObs t is the diagnostic variable 10 

at time t obtained from AMSR-2 observations.  

 Experiment B: 

The best configuration of the DA scheme (DA of the three TBs at 11, 19 and 37 GHz in V-pol, called the “DA_b_TB_11, 19, 

37” experiment in Table 3) was applied over the 43 winters. To estimate the accuracy for hydrological applications, the median 

of the resampled SWE ensemble obtained with the DA_b_TB_11, 19, 37 experiment (called ‘SWEDA’ further) was compared 15 

to SWE measurements. The median was used instead of the mean to reduce the potential impact of extreme perturbations. The 

evaluation of this experiment was performed by comparing SWEDA RMSE and the relative percentage of error (‘RPE’) values 

to the original SWE simulations (SWECrocus), obtained by driving Crocus with original meteorological forcing data. The relative 

percentage of error (‘RPE’) is defined as, 

𝑅𝑃𝐸 = 100.
|𝐵𝑖𝑎𝑠|

𝑀𝐸𝐴𝑁𝑜𝑏𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
            (12). 20 

The mean biases of SWE estimates obtained without and with assimilation were also compared. Performance was estimated 

for SWE higher than 48 kg m-2 (about 20 cm of snow depth), derived from measurements, to attenuate problems of shallow 

snow cover variability or heterogeneity in the AMSR-2 gridcells. To analyse the impact of the vegetation, results were 

separated according to the fraction of fcover: moderate fcover (fcover<75%, 10 sites) and high fcover (fcover > 75%, 2 sites) (see Table 

2 for fcover site information).  25 

The accuracy needed for hydrological applications is a SWE RPE lower than 15% (Vachon, 2009; Larue et al., 2017), which 

is the same performance objective as the CoreH2O project (10% for SWE > 30 cm and 3 cm for SWE < 30 cm, Rott et al., 

2010) and the GlobSnow2 product (Luojus et al., 2014).  This error threshold corresponds to a RMSE of about 45 kg m-2 for 

a measured average Québec snowpack about 300 kg m-2 of SWE. The ability to accurately estimate the annual SWE maximum 

(SWEmax) was also studied since it is one of the most important variables for hydrological applications. It allows the amount 30 

of water stored in the snowpack before the spring snow melt to be described. To avoid extreme values, the SWEmax is estimated 

as the average of the SWE for a time period of +- 2 days around the detected SWEmax. 

 Experiment C: 
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The quality of the DA scheme could strongly depend upon the choice of state variables. In the A and B experiments, we chose 

to pre-calibrate forest and soil parameters and to use a constant snow stickiness parameter (τsnow) fixed at 0.17 (Larue et al., 

2018). Nevertheless, these calibrations are empirical and should be adjusted for each site. It depends on several parameters 

that are difficult to measure at a 10 x 10 km2 spatial scale (snow grains, canopy, biomass, etc.).  The forest parameter ω strongly 

affects the PMW emission from the vegetation, which can represent more than 60% of the signal measured by satellite sensors 5 

(see discussion in Sect. 5.2).  Kwon et al. (2017) have shown that the contribution of TB Veg to TB TOA was better represented 

by considering ω free in the DA scheme, and improvements in the resulting SD were evident for the forest land-cover type 

(about 5% with DMRT-ML). In Experiment C, the DA scheme was thus tested using ω and τsnow as free variables in the 

assimilation process (called the “DA_c_TB_11,19,37” experiment). The DA_c_TB_11,19,37 experiment is identical to the 

DA_b_TB_11,19,37 experiment (over the 43 winters), only the state variables were changed. The ω parameter was perturbed 10 

with Gaussian noise, centered on 0.07 (as calibrated) with a standard deviation of 0.02 and bounded by 0.05 and 0.12 

(reasonable range of TB TOA RMSE values, Fig. 3). The snow stickiness parameter was perturbed by Gaussian noise, centered 

on 0.17, with a standard deviation of 0.15 and bounded by 0.1 and 0.46. These limits correspond to the range of τsnow values 

extracted from Larue et al. (2018) over the same study area. The ensemble size was kept to 150 members.  

 15 

Table 3. Experiment set-up information.  Exp. is the experiment identifier (see text). TBs are in V-pol. 

Exp

. 
State variables Sites Time period 

Assimilated 

frequencies 
Acronyms 

A 

Tair, Wind, 

Precipitation, 

SWdown, LWdown 

1, 9, 12, one 

winter 

1 November 2014 to 

1 May 2015 

ΔTB,19-37 DA1_DTB19-37 

ΔTB,19-37 and ΔTB,11-19 DA2_DTB19-37,DTB11-19 

TB 11, TB 19, TB 37 DA3_TB_11,19,37 

B 

Tair, Wind, 

Precipitation, 

SWdown, LWdown 

12 sites, 43 

winter 

simulations 

From 1 November to 

1 May, winters 2012 

to 2016 

TB 11, TB 19, TB 37  DA_b_TB_11,19,37 

C 

Tair, Wind, 

Precipitation, 

SWdown, 

LWdown, ω, τsnow 

12 sites, 43 

winter 

simulations 

From 1 November to 

1 May, winters 2012 

to 2016 

TB 11, TB 19, TB 37  DA_c_TB_11,19,37 

4 Results  

 4.1 Results of model inversions 

The mean optimal values of the ην and βν factors were estimated for the optimal (ω, σs) set of values (0.07 and 0.2, respectively, 

see Table 4). The (σs, βν) soil parameters are given in Table 4 and are used to estimate the TB TOA RMSE obtained with the 20 

calibrated chain of models. Without parameter inversions, the annual mean RMSE of the original TB simulations varies from 
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12.9-47.1 K for the three frequencies (not shown). With parameter inversions over the summer period, the three frequencies 

have a similar TB RMSEsummer (8.6-10.1 K, Table 4), while over the year (using parameters inverted over the summer period) 

the annual TB TOA RMSE significantly increases at 37 GHz due to the presence of the snowpack (26.0 K). The inversions make 

it possible to reduce the annual TB,37 RMSE by 21.1 K. Figures 4a, 4b and 4c show the multi-year TB TOA variations for Sites 

12, 1 and 9, respectively, from 2012 to 2016 and at 37 GHz. At this frequency, the simulated TB TOA is strongly underestimated 5 

when a snowpack is observed. This is likely due to an overestimation of the SWE or snow grain sizes since TB, 37 are attenuated 

in the snowpack as snow grains act as diffusers while the TB, 19 and TB, 11 are relatively unaffected by snow grains (RMSEsummer 

similar to RMSEwinter at 11 and 19 GHz, Table 2). Simulated SWE were overestimated by 16% and 20.2% compared to SWE 

measurements for Sites 1 and 9, respectively, for winter 2014-2015. The objective of TB assimilation is to reduce these 

overestimations. Note that the SWE simulated at Site 12 is underestimated by 19%. The underestimation of TB, 37 can also be 10 

caused by an underestimation of the vegetation contributions. This aspect is further discussed in Sect. 5.2. 

By integrating ILs within the snowpack when the PR11 is above 0.06, the annual TB TOA RMSE at 37 GHz is reduced and goes 

from 28.9 K to 26.0 K.  

In winter, the overall TB TOA RMSE (all frequencies) is equal to 17.4 K from 2012 to 2016 (not shown), similar to the overall 

RMSE estimated for the τsnow-calibrated DMRT-ML driven by in situ measurements in an open area and equal to 19.9 K 15 

compared to surface-based radiometric measurements in Québec (Larue et al., 2018). 

 

Table 4. Effective parameters calibrated for the 12 studied sites to quantify soil contributions esurf (calibrated surface roughness ‘cal. 

σs’ and calibrated polarization ratio ‘cal. βν’) and vegetation contributions (controlled by the calibrated (ω, ην) parameters ‘cal. ω’ 

and ‘cal. ην’ according to the daily LAI) measured at the top of the atmosphere. The parameterization of frozen ground was estimated 20 
by Montpetit et al. (2018). εeff is the effective dielectric constant estimated with the permittivity of frozen and unfrozen soils derived 

from the Dobson's equations (1985). Annual and seasonal TB TOA RMSE estimated for the summer and the winter period 

(RMSEsummer and RMSEwinter) are calculated from 2012 to 2016 with the calibrated parameters. 

Frequency 

(GHz) 

 

Frozen soil 
Unfrozen 

soil 
Cal. 

ω 

Cal. 

ην 

Mean 

RMSEsummer 

(K) 

Mean 

annual 

RMSE 

(K) 
εeff 

σs 

(cm) 
βν 

Cal. 

σs 

(cm) 

Cal. 

βν 

11 
3.18-

0.006134i 

0.19 

1.08 

0.2 

0.69 

0.07 

0.01 8.6 8.4 

19 
3.42-

0.00508i 
0.72 0.60 0.05 8.7 9.1 

37 
4.47-

0.32643i 
0.42 0.67 0.23 10.1 26.0 

 

 25 
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Figure 4. Multi-year variations of simulated TB TOA (red dotted lines) and measured TB TOA (black full lines) from 2012 to 2016 at 37 

GHz in vertical polarization: (a) Site 12 (fcover of 24%); (b) Site 1 (fcover of 64%); (c) Site 9 (fcover of 84%) (see Table 2). 

 4.2 Results of AMSR-2 data assimilation (DA)  

4.2.1 Experiment A 5 

Figure 5 shows variations of the daily RMSE of SWE ensemble (see Eq. 11) obtained without and with DA (prior and posterior 

estimates) according to the combination of frequencies used as observation (DA1_DTB19-37, DA2_DTB19-37, DTB11-19 

and DA3_TB_11,19,37 experiments, see Table 3). Table 5 summarizes these averaged RMSEs for the studied period (dry 

snow period and whole winter) for tested sites.  

Over the three sites and for the dry snow period, the DA reduced the overall SWE ensemble RMSE by 43.9%, 45.8% and 10 

59.7% with the DA1_DTB19-37, DA2_DTB19-37,DTB11-19 and DA3_TB_11,19,37 experiments, respectively, compared 

to the SWE ensemble RMSE obtained with prior estimates (Table 5). The assimilation of the three frequencies 

(DA3_TB_11,19,37) helps to improve SWE simulations, giving the lowest RMSE compared to other scenarios. The same 

trend is observed over the whole winter and the assimilation of the three frequencies reduces the overall SWE ensemble RMSE 

by 47.0% (SWE ensemble RMSE of 22.1 kg m-2) compared to the SWE ensemble RMSE of prior estimates (SWE ensemble 15 

RMSE of 41.7 kg m-2).  

In our previous work (Larue et al., 2018), we have shown a reduction of 82% of the SWE RMSE by assimilating both the 

ΔTB,19-37 and ΔTB,11-19 and using synthetic observation data over a dry snow period. The differences between results using 
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synthetic and real data in DA experiments are likely due to two aspects. Firstly, the snow model does not resolve the intra-

pixel surface variability. We assumed homogeneous snow cover within the pixel in open areas, thus with no interactions 

between snow and vegetation. Even if we compare simulations with surface-based measurements in open areas, this could 

introduce large uncertainties (Roy et al., 2016). Secondly, the land cover variability and heterogeneity within each pixel also 

induce uncertainties in the mean TB simulation over a pixel (TB weighted by the fraction of forest cover, see Eq. 2). 5 

 

 

 

Figure 5. Variations of the SWE ensemble RMSE (Eq. 11) obtained with and without DA for the dry snow period (from 1 December 

to 15 Marsh). Experiments are performed for (a) Site 12; (b) Site 1; (c) Site 9, over the winter 2014-2015. The red line is the SWE 10 
ensemble RMSE obtained without DA (open loop runs), the blue line is the RMSE obtained with the DA1_TB19-37 experiment, the 

green dashed line the RMSE with the DA2_TB19-37,TB11-19 experiment, and the black dotted line the RMSE with the 

DA3_TB_11,19,37 experiment.  
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Table 5. Averaged SWE ensemble RMSE (see Eq. 11) obtained with and without DA, according to the experiment (see Sect. 3.4.3, 

Table 3 for acronyms) for each tested site. RMSEdry-snow is the SWE ensemble RMSE obtained from 1 December to 15 Marsh. 

RMSEannual is estimated over the whole winter (when snowpack is detected). # correspond to the site (see Table 1). 

Experiments 
SWE ensemble RMSE (kg m-2) 

#1 #12 #9 Overall 

RMSEdry snow (kg m-2) 

Without assimilation (prior estimates) 50.7 28.6 47.8 42.4 

DA1_DTB19-37 21.1 18.1 32.4 23.8 

DA2_DTB19-37,DTB11-19 14.0 26.9 28.2 23.0 

DA3_TB_11,19,37 10.5 19.7 21.0 17.1 

RMSEannual (kg m-2) 

Without assimilation (prior estimates) 47.2 28.9 48.9 41.7 

DA1_DTB19-37 21.6 22.1 40.1 27.9 

DA2_DTB19-37,DTB11-19 16.7 28.1 38.5 27.8 

DA3_TB_11,19,37 15.1 21.9 29.1 22.1 

 

Figure 6 illustrates the comparison between SWE measurements, the original SWE Crocus simulations (SWECrocus) and the 5 

median of the SWE ensemble obtained with the DA3_TB_11,19,37 experiment. The yellow envelope corresponds to the SWE 

ensemble obtained without DA (prior estimates) and shows a large ensemble spread in response to meteorological forcing 

uncertainties. The gray envelope is the resampled SWE ensemble (posterior estimates). SWE simulations are very sensitive to 

the uncertainties of meteorological forcing data at the beginning of the winter season. If an event (melting or precipitation) is 

missed, a constant bias on SWE estimates is kept throughout the winter. For sites 1 and 9, the DA scheme allows the correction 10 

of these uncertainties at the beginning of the season: The SWE ensemble RMSE of posterior estimates are reduced by about 

30 kg m-2 at the beginning of the season, compared to the RMSE of prior estimates (Fig. 5). For these two sites, the SWE 

ensemble RMSE obtained with the DA1_DTB19-37 experiment increases as the snowpack becomes deeper, especially from 

mid-January when the snowpack becomes deeper than 100 kg m-2 (Fig. 6). The PMW signal from the snowpack at 37 GHz 

saturates for such deep snowpack (Mätzler et al., 1982; Mätzler, 1994; De Sève et al., 1997; 2007) and the assimilation of 15 

ΔTBv,19-37 only does not give enough information to significantly improve SWE retrievals. For Site 9, posterior estimates are 

deteriorated at the end of the season compared to prior estimates with the DA1_DTB19-37 experiment. By adding ΔTBv,11-19 

(DA2_DTB19-37,DTB11-19), this effect is reduced but stays sensitive to the depth of the snowpack (Fig. 5).  

Note that the gray envelope does not always include the observations (Fig. 6a and 6c). This could be due to an under-estimation 

of the R matrix. In the developed approach, the inflation technique of the R matrix is limited by a threshold on the α factor 20 

fixed at 5 since the simulations are limited by the simplifications of physical parameters in the models and we may introduce 

a bias if we force them to follow the observation by perturbing meteorological forcings only. Further work is needed to quantify 

the model errors in order to consider it in the DA scheme and to improve the representativeness of the simulations. To represent 

the uncertainties about the physical processes simulated with the Crocus snow model, a new system based on snow 
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model ensembles could be an alternative. Such an approach was recently developed by implementing different configurations 

estimating the physical parameters of the Crocus snow model (ESCROC, Lafaysse et al., 2017). 

 

 

Figure 6. Evolution of SWE measurements (black points) and SWE simulations. The SWECrocus is the red line and the SWE obtained 5 
with the DA3_TB_11,19,37 experiment is the gray dotted line. The yellow envelope is the spread of the SWE ensemble obtained with 

open loop runs (prior estimates). The gray envelope is the spread of the SWE ensemble obtained with the assimilation of the three 

frequencies (posterior estimates). Both spreads are delimited by the 5th and the 95th percentiles. Experiments are computed for (a) 

Site 12, (b) Site 1, (c) Site 9, over the winter 2014-2015. 

 10 

4.2.2 Experiment B 

The median of the resampled ensemble of SWE obtained with the DA of the three frequencies (SWEDA) is used to estimate the 

global performance of the DA scheme for SWE improvements. Table 6 details the statistical performance of simulated SWEDA 

compared to measurements and to the original SWE Crocus simulations (SWECrocus) over the 43 winters. Figure 7 compares 

the SWEDA, SWECrocus and SWE measurements (SWEobs) from 2012 to 2016 for four sites with different fcover taken as an 15 

example: Site 5 (fcover = 31.5%), 10 (fcover = 61.8%), 1 (fcover = 63.7%) and 9 (fcover = 84.0%). In this section, we first analyze 

the overall SWE improvements obtained with TB assimilation compared to original SWE simulations and the impact of the 

vegetation on the quality of the DA scheme is discussed.  

 Overall SWE improvements compared to original Crocus simulations 
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The overall SWECrocus RMSE, bias and RPE are of 45.0 kg m-2, 23.7 kg m-2 and 22.1%, respectively (Table 6). In comparison, 

the overall SWEDA RMSE, bias and RPE are improved and equal to 41.2 kg m-2, 7.5 kg m-2 and 18.4%, respectively. The 

overall bias is reduced by 16.2 kg m-2 (68% of SWECrocus bias) with the DA scheme. The DA of the three frequencies thus helps 

to improve SWE estimates over Québec. Correlation between SWEDA simulations and SWE measurements gives a similar R 

coefficient to the one obtained with SWECrocus simulations (R = 0.79 and R = 0.78, respectively), but the offset is significantly 5 

reduced with SWEDA compared to SWECrocus (offset = 10 kg m-2 and 29 kg m-2, respectively). We analysed the number of cases 

with significant improvements for the total of 43 simulations studied by considering a 5% threshold on the bias and RMSE 

differences before and after assimilation. The SWEDA bias is significantly reduced for 26 winters (60% of cases) compared to 

original SWE simulations. However, the RMSE is significantly improved for only 35% of simulations, and in 35% of cases, 

RMSEs are similar.  10 

 Evaluation of SWEmax  

The mean observed SWEmax is equal to 235.6 kg m-2 from 2012 to 2016, and the mean simulated SWEmax is equal to 278.3 kg 

m-2 and 266.8 kg m-2 without and with the assimilation, respectively. Compared to original SWE simulations, the DA scheme 

improves 63% of SWEmax simulations with an overall improvement of 12.2 kg m-2, corresponding to 8% of SWE measurements 

(Table 6). Such an uncertainty extended over the whole territory could have a strong impact, considering that 1 mm of SWE 15 

in the LG watershed could represent $1M in hydroelectric power production (Brown and Tapsoba, 2007). 

 SWE accuracy for sites according to the fcover 

The overall RPE obtained with the DA scheme is below 15% (RPE=14.1%) for sites with an fcover below 75% (Table 6), which 

is the accuracy required for hydrological applications (Larue et al., 2017). Hence, the accuracy of SWEDA estimates, obtained 

without the use of any surface-based data, are very encouraging for hydrological needs in remote areas. In comparison, the 20 

GlobSnow-2 SWE product (Takala et al., 2011), which assimilates both TBs and in situ snow depth measurements, has a SWE 

RPE  equal to 35.9 % over the same area in Québec (Larue et al., 2017), twice the uncertainty of SWEDA. Figures 7a and 7b 

(Sites 5 and 1) show that for a single site original SWECrocus simulation works well for some years but can be underestimated 

or overestimated over other years. The DA scheme allows a more stable solution when the overall fcover is under 75% (not the 

case for Site 9, for example).  25 

Nevertheless, even if the overall RMSE is improved, the DA scheme does not help to improve SWE estimates for sites with 

an fcover above 75% (RMSE of 66 kg m-2) compared to original SWE simulations (RMSE of 62.0 kg m-2). The presence of 

vegetation is a major source of uncertainty in TB TOA simulations. The emission of the trees is superimposed on the signal 

emitted by the underlying snowpack and increases the TB measured at the satellite level (Chang et al., 1996, Brown et al., 

2003). At same time, the canopy also attenuates the surface emission toward the satellite. These contributions are complex to 30 

quantify since it depends not only on the tree fraction within the pixel but also on the tree species and states which 

emit/attenuate a different PMW signal depending on their biomass (liquid water content), volume and structure (stem, leaf, 
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trunk) (Franklin, 1987). Also, the presence of trees modifies snow accumulation on the ground, depending on interception, 

shade and sublimation effects (Dutra et al., 2011; Wang et al., 2009), which increases the spatial variability of the snowpack 

within the same pixel. These interactions between the vegetation and the snowpack are not taken into account with Crocus and 

it might induce uncertainties due to model errors. Note that SWE sensors are mostly installed in clearings, which reduces this 

impact in comparisons against surface-based measurements. 5 

Kwon et al. (2016) used a similar snow radiance assimilation system to correct SD by updating the Community Land Model, 

version 4 (CLM4), snow/soil states and radiative transfer model (RTM) with the assimilation of the 19 and 37 GHz of AMSR-

E. Over North America, it produced significant improvements of SD for tundra type, but also produced degradations for taiga 

snow class and forest land cover (7.1% and 7.3% degradations, respectively). In the present study, the use of a multi-layer 

snowpack model makes it possible to well represent PMW emission from the snowpack with DMRT-ML, and to improve 10 

overall snowpack simulations with TB assimilation in boreal areas when the fcover is below 75%. Kwon et al. (2017) obtained 

better results for areas with a high fcover in comparison to their previous study (Kwon et al., 2016) over North America by using 

the vegetation parameter ω as a free variable in the DA scheme, instead of pre-calibrating it as we chose to do. This aspect is 

further studied with the experiment C.  

 15 

Table 6. Averaged SWE RMSE, bias and RPE (Eq. 12) over the 43 winters for original SWE simulation (SWECrocus) and assimilated 

SWEDA (Experiment B). Statistical performances were estimated for SWEobs > 48 kg m-2 (snow depth higher than ~20 

cm).  𝐒𝐖𝐄𝐨𝐛𝐬̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 𝐒𝐖𝐄𝐬𝐢𝐦̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  are the averaged observed and simulated SWE, respectively. 

 SWEobs
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

SWECrocus SWEDA with the DA_b_TB_11,19,37 

RMSE 

(kg.m-2) 

Bias 

(kg.m-2) 

RPE 

(%) 
SWEsim
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

RMSE 

(kg.m-2) 

Bias 

(kg.m-2) 

RPE 

(%) 
SWEsim
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

fcover < 75% 162.2 42.5 17.3 19.0 179.4 37.1 -1.2 14.1 161.0 

fcover > 75% 139.0 62.0 47.8 33.9 186.8 68.0 40.2 38.0 179.2 

Mean 157.3 45.0 23.7 22.1  41.2 7.5 18.4 164.8 
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Figure 7. Evolution of SWE measurements (black points), original SWE simulations (red full line), and the median of the SWE 

ensemble obtained with the DA_b_TB_11,19,37 experiment (SWEDA) (blue dotted line). The gray envelope is the spread of the 

SWEDA ensemble (posterior estimates). Experiments are computed for (a) Site 5 (fcover = 31.5%), (b) Site 1 (fcover = 63.7%), (c) Site 9 5 
(fcover = 84%), d) Site 10 (fcover = 61.8%), from 2012 to 2016. 

4.2.3 Experiment C 

Table 7 shows the statistical SWE performances obtained with the DA_c_TB_11,19,37 experiment (see Table 3 for 

definitions), where ω and τsnow are taken as free variables in the DA scheme (‘SWEDA, ω, τs’) over the 43 winters.  

Table 7. Same as Table 6 but using the forest parameter ω and the snow stickiness parameter (τsnow) as free variables in the DA 10 
scheme (Experiment C) to improve SWE retrievals (SWEDA, ω, τs). 

 SWEobs
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

SWEDA, ω, τs with the DA of the three frequencies 

RMSE (kg m-2) Bias (kg m-2) RPE (%) SWEsim
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

fcover<75% 162.2 45.6 -14.8 21.6 147.4 

fcover>75% 139.0 45.1 -7.1 17.5 131.9 

Mean 157.3 45.5 -13.2 20.7 144.1 
 

The overall SWEDA, ω, τs RMSE, bias and RPE are equal to 45.5 kg m-2, -13.2 kg m-2 and 20.7%, respectively, very close to the 

statistical performances of the original SWECrocus simulations. The use of ω and τsnow as free variables does not help to improve 

SWECrocus simulations for sites with an fcover below 75%, but the bias is significantly reduced for sites with an fcover above 75% 15 
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(-7.1 kg m-2 and a RPE of 17.5%). In addition, the simulated SWEmax is improved for 86% of the 43 simulations (37 cases), 

with a reduction of the SWEmax bias of 26.6 kg m-2 (17% of SWE measurements) compared to the original SWECrocus 

simulation.  

The use of pre-calibrated parameters is justified because the parameters ω and τsnow were not measurable and could not be 

directly validated. Furthermore, if parameters are added as state variables in the DA scheme, a larger ensemble size in the DA 5 

scheme would be needed to improve the representativeness of TB uncertainties and to ensure the solution’s stability (or at least 

to prevent a degeneracy problem). The ensemble size was kept to 150 here but this DA_c_TB_11,19,37 experiment should 

produce improved results with a larger ensemble size. However, this would require a significant computational effort. This 

study is a preliminary step of a PMW DA implementation for operational hydrological applications, so there was a need to 

limit computing time. These results suggest that the developed approach using pre-calibrated ω and τsnow parameters helps to 10 

improve the retrievals for sites with an fcover below 75%, and the use of ω and τsnow parameters as free variables in the DA 

scheme should be investigated in further work for sites with more than 75% forest cover. 

5 Discussion 

In this section, we discuss a) the sensitivity of wet snow conditions for TB assimilation, and b) the percentage of surface, 

vegetation and atmospheric contributions in the PMW signal measured by satellite sensors.  15 

 5.1 Wet snow conditions 

In wet snow conditions, water droplets act as emission sources (especially at frequencies above 30 GHz), and the snowpack 

becomes close to a black body (Brucker et al., 2011; Picard et al., 2013; Klehmet et al., 2013). The PMW observations are 

thus complex to use for SWE retrievals, especially at the end of the season before the spring snow melt when the SWE is 

maximal. Figure 8 illustrates the SWEDA obtained with the DA of the three frequencies applied over the whole winter and 20 

when the snow is dry only (with a Liquid Water Content ‘LWC’ equal 0 kg m-2), for Site 3 (winter 2013/2014). SWE estimates 

are strongly deteriorated when TB assimilation is performed in wet snow conditions. For this example, the SWEDA RMSE is 

equal to 31.1 kg m-2 with a DA performed over the dry snow period only and significantly increases to 70.2 kg m-2 by 

assimilating TBs over the whole winter (dry and wet snow conditions).  

Here we used the LWC simulated by Crocus to detect wet and dry snow. This variable is subject to model errors and is linked 25 

to the original atmospheric forcing data and to their uncertainties. Further studies are needed to automatically detect wet snow 

events by using direct satellite observations. Previous studies have shown the potential to use the gradient ratio (GR=TB,37–

TB,19/TB,37+TB,19) to detect Rain-on-snow events in arctic areas (Langlois et al., 2016; Dolant et al., 2017) and this approach 

should be investigated for boreal forest areas in further work.  The use of active microwave observations is also a promising 

approach with a good spatial resolution (Roy et al., 2010). 30 
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Figure 8. Evolutions of measured SWE (black points) for Site 3 from 2013 to 2014, original SWE Crocus simulation (red full line), 

and SWEDA obtained with a DA of the three frequencies applied for the entire winter (green dotted line) and when LWC=0 only 

(blue full line). The simulated total Liquid Water Content (LWC) in the snowpack (dotted gray lines) is also shown. 

5.2 Land cover contributions within the simulated TB TOA 5 

To properly assimilate PMW satellite observations, all contributions that affect the observed signal need to be well identified 

and quantified. The estimation of TB TOA (see Eq. 5 and 6) can be written as the sum of the PMW contributions of the open 

surface (TB surf), vegetation (TB veg) and atmosphere (TB atm) according to the fraction of forest (fcover, estimated with the LAI as 

in Eq. 2 and 3) and open area (1 - fcover) with the Eq. (13), (14) and (15) as, 

𝑇𝐵 𝑣𝑒𝑔 = 𝑓𝑐𝑜𝑣𝑒𝑟 . [(1 − 𝜔). (1 − 𝛾𝜈). 𝑇 𝑣𝑒𝑔 + 𝛾𝜈. (1 − 𝑒 𝑠𝑢𝑟𝑓). (1 − 𝜔). (1 − 𝛾𝜈). 𝑇𝑣𝑒𝑔]. 𝛾𝑎𝑡𝑚                 (13) 10 

𝑇𝐵 𝑠𝑢𝑟𝑓 = 𝑓𝑐𝑜𝑣𝑒𝑟 . [𝛾𝜈. 𝑒 𝑠𝑢𝑟𝑓. 𝑇𝑠𝑢𝑟𝑓]. 𝛾𝑎𝑡𝑚 + (1 − 𝑓𝑐𝑜𝑣𝑒𝑟). [𝑒 𝑠𝑢𝑟𝑓. 𝑇𝑠𝑢𝑟𝑓]. 𝛾𝑎𝑡𝑚           (14) 

𝑇𝐵 𝑎𝑡𝑚 = 𝑓𝑐𝑜𝑣𝑒𝑟 . ([(1 − 𝑒 𝑠𝑢𝑟𝑓). 𝛾𝜈
2

. 𝑇𝐵 𝑎𝑡𝑚↓ + (1 − 𝛾𝜈). 𝜔. 𝑇𝐵 𝑎𝑡𝑚↓] . 𝛾𝑎𝑡𝑚 + 𝑇𝐵 𝑎𝑡𝑚↑) + (1 − 𝑓𝑐𝑜𝑣𝑒𝑟). ((1 −

                                                                                                                                                  𝑒 𝑠𝑢𝑟𝑓). 𝑇𝐵 𝑎𝑡𝑚↓. 𝛾𝑎𝑡𝑚 + 𝑇𝐵 𝑎𝑡𝑚↑)  (15) 

Figure 9 illustrates the percentage of each contribution before DA at 11, 19 and 37 GHz in V-pol from 2012 to 2016, for the 

summer and for the winter periods (defined when a snowpack is detected) for Site 12 (fcover of 24.2%), Site 1 (fcover of 63.7%) 15 

and Site 9 (fcover of 84.0%). The percentages of each contribution are similar at 11 and 19 GHz. The contributions from the 

atmosphere are weak. As expected for all frequencies, the surface contributions increase for the winter period with the presence 

of the snowpack, while the vegetation contributions decrease as the LAI decreases, especially at 37 GHz. For Site 12, the 

surface contributions represent more than 80% of the PMW signal in winter when the vegetation contributions represent less 

than 10% of the PMW signal (same magnitude as atmosphere contributions). For Site 1, the surface and the vegetation 20 

contributions are similar in winter (40-55%) whereas the vegetation contributions were more than 60% of the PMW signal in 

summer. For Site 9, the vegetation contributions remain the main contribution to the PMW signal in comparison to the surface 

contributions, even in winter (50-70% of the PMW signal for 37-10 GHz). In this dense boreal forest area, the measured 
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snowpack emission represents less than 30% of the measured signal and SWE improvements using only TB observations is 

challenging. This high vegetation contribution (emission and attenuation) explains why the developed DA scheme does not 

succeed to significantly improve SWE estimates for these sites with a fcover exceeding 75%. 

 

Figure 9. Percentage of surface (black), vegetation (dark gray) and atmosphere (light gray) contributions to the simulated PMW 5 
signal at the top of the atmosphere (before DA) at the three frequencies 11 (top), 19 (middle) and 37 (bottom) GHz. ID12, ID1 and 

ID9 are site 12 (fcover of 24.2%), 1 (fcover of 63.7%) and 9 (fcover of 84.0%), respectively (see Table 2). Summer and winter periods are 

defined when snowpack is observed or not. 

6 Summary and conclusion 

An ensemble data assimilation (DA) scheme was implemented in a calibrated chain of models (Crocus/DMRT-ML, soil, 10 

vegetation and atmosphere radiative transfer models) to improve SWE estimates by updating forcing data and snowpack states 

with the AMSR-2 satellite observations. The developed approach does not use any surface-based data and was tested over a 

boreal forest area in Québec (Eastern Canada). The proposed DA scheme is a particle filter with a resampled SIR algorithm, 

using an inflation technique of the R matrix to avoid degeneracy problems. The multi-layer snowpack model Crocus, coupled 

to the surface land model ISBA, was used to simulate the evolution of the snowpack. The DMRT-ML, the (ω-τopt) model, an 15 

atmospheric model and the Wegmüller and Mätzler (1999) radiative transfer model were pre-calibrated to simulate the PMW 

contributions from the snowpack, the vegetation and the soil, respectively, at the top of the atmosphere.  The DA scheme was 

performed over 43 winters (12 sites from 2012 to 2016, Table 1), only in the presence of dry snow. Ice lenses were detected 

and integrated in the snowpack by using a thresholding approach on the polarization ratio at 11 GHz. The study shows: 



29 

 

1- TB TOA can be well simulated with the developed chain of models. By calibrating soil and forest parameters (ω=0.07 

and σs=0.2 cm), the annual TB TOA RMSE (all frequencies) is equal to 14.5 K from 2012 to 2016. This RMSE is similar 

to the overall RMSE estimated with the τsnow-calibrated DMRT-ML model driven by in situ measurements in an open 

area (19.9 K compared to surface-based radiometric measurements in Québec; Larue et al., 2018). 

2- The assimilation of TBs at 11, 19 and 37 GHz (V-pol) improves the SWE estimates compared to the assimilation of 5 

ΔTB 19-37 only (sensitive to snowpack depth) or to the assimilation of both ΔTB 19-37 and ΔTB 11-19. For 3 sites (with 

different fcover), the SWE ensemble RMSE of posterior estimates is reduced by 47% over the whole winter compared 

to the SWE ensemble RMSE of prior estimates (open loop runs).  

3- By using pre-calibrated ω and τsnow parameters in the DA scheme, the overall bias (for 43 winters) of the original 

SWECrocus simulations is significantly reduced by assimilating TBs at 11, 19 and 37 GHz (from 23.7 kg m-2 to 7.5 kg 10 

m-2). The bias on SWEmax is reduced by 12.2 kg m-2 (8% of SWE measurements). The overall RPE goes from 22.1% 

to 18.4%, which is close to the range of accuracy needed for hydrological applications (SWE RPE < 15%). This 

accuracy is achieved with the TB assimilation for sites with a fcover below 75%, but the DA deteriorates SWE 

simulations for sites with a fcover above 75%. However, by using  ω and τsnow as free variables, the DA significantly 

improves SWE simulations for sites with a fcover above 75% (RPE=17.5%). 15 

 

Even with the difficulties associated with quantifying all the different factors that contribute to the PMW signal measured by 

satellite sensors in remote boreal areas (canopy, ice crust, frozen ground / unfrozen, presence of lakes, moisture in the snow, 

topography, etc.) (Kelly et al., 2003, Koenig & Forster, 2004), and even when vegetation contributions are 50% of the PMW 

signal, the implementation of a DA scheme in a well-calibrated chain of models reduces SWE uncertainties without using any 20 

surface-based data. This assimilation scheme can be easily implemented in an operational system using real satellite-borne 

observations, despite the relatively significant computing time required. This research opens the way for global applications 

to obtain more accurate SWE estimates over large and remote areas where few meteorological weather stations are present. 

 

Data availability. The daily SWE data provided by Hydro-Québec are used for hydrological purposes and are not available to 25 

the public due to legal constraints on the data’s availability. The SWE data, SD data and field campaign measurements provided 

by the University of Sherbrooke will soon be available on the GRIMP snow group website http://www.grimp.ca/data/. 

Meteorological GEM data are freely available on the Government of Canada’s website 

https://weather.gc.ca/grib/grib2_reg_10km_e.html. Other data used are listed in the references. 
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Appendix A: Online adjustment of the observation error covariance matrix R 

Online adjustment of covariance matrices in data assimilation is quite a common approach with the Ensemble Kalman filter 5 

(Dee, 1995; Miyoshi, 2001, Brankart et al., 2010, 2011) but not with the particle filter. However, in many implementations of 

the particle filter, the measurement pdf is considered Gaussian, so that the particle weights are computed using the observation 

error covariance matrix R. This matrix can therefore also be subject to adjustment in the context of the particle filter. Online 

adjustment can be and is often performed by tuning a simple inflation of the initial covariance matrix. This is the approach 

chosen here. 10 

Noting δi = y−h(xi) the innovation for particle i, the weight of this particle is  

𝑤𝑒𝑖̃ =  
𝑤𝑒𝑖

∑ 𝑤𝑒𝑗𝑗
            (A1) 

where  

𝑤𝑒𝑖 = exp (−
1

2
𝛿𝑖

𝑇𝑅−1𝛿𝑖)            (A2) 

An inflation of matrix R by a factor 1/α (larger than 1) can be interpreted as an exponent α (smaller than 1) to wei. Because the 15 

weights ˜ wi are nonlinear functions of R, inflating R tends to flatten their distribution. Online adjustment consists in finding a 

value for α that flattens the distribution of weights to the point where Nkeep particles are selected with certainty, Nkeep being a 

number to be prescribed. The number Nkeep being fixed, if the resampling step is performed using Arakawa’s procedure 

(Arakawa, 1996), the weight of the Nkeep-th particle to be selected, 𝑤�̃�𝑘𝑒𝑒𝑝, must become equal to 𝑤�̃�𝑟𝑒𝑓= 1/Nkeep. Consequently, 

𝑤�̃�𝑘𝑒𝑒𝑝 =  
(𝑤𝑒𝑘𝑒𝑒𝑝)

𝛼

∑ (𝑤𝑒𝑗)
𝛼

𝑗

= 𝑤�̃�𝑟𝑒𝑓          (A3) 20 

or, written differently after taking the logarithm: 

𝛼 = (log (𝑤�̃�𝑟𝑒𝑓) + 𝑙𝑜𝑔(∑ (𝑤𝑒𝑗)
𝛼

𝑖 )) /𝑙𝑜𝑔(𝑤𝑒𝑘𝑒𝑒𝑝)        (A4) 

This equation for α is not solvable analytically. Instead, we find α after the convergence of the series: 

𝛼𝑛 = (log(𝑤�̃�𝑟𝑒𝑓) + 𝑙𝑜𝑔(∑ 𝑤𝑒𝑗
𝛼𝑛−1

𝑖 )) /log (𝑤𝑒𝑘𝑒𝑒𝑝)       (A5) 

The result of this adjustment is illustrated in Figure A1. The blue dots show the first 20 weights of a sorted distribution for an 25 

ensemble of 50 particles strongly prone to degeneracy: only 4 particles have a weight larger than 1/50 = 0.02. The minimum 

number of particles to be selected is fixed to Nkeep = 10. After the adjustment procedure, the identified inflation factor for matrix 

R is 3.6 (α = 0.277) and the weight 𝑤𝑒𝑘𝑒𝑒𝑝 of the 10th particle is exactly equal to 0.02.  

Obviously, this procedure is used only if the number of selected particles is below the Nkeep threshold with the initial weights. 
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Figure A1. Weight distribution of the first 20 weights of a sorted distribution for an ensemble of 50 particles: distribution before the 

adjustment (blue dotted points), showing a degeneracy problem, and distribution after the adjustment procedure (red dotted points), 

where weight distribution is ‘flattened’ and significant weights are distributed around Nkeep particles (10 particles for this example).  
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