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Abstract. Soil moisture measurements are needed in a laug@er of applications such as hydro-climate appgresc
watershed water balance management and irrigatbedsiling. Nowadays, different kinds of methododsgiexist for
measuring soil moisture. Direct methods based amignretric sampling or Time Domain Reflectometry @)Dtechniques
measure soil moisture in a small volume of sofeat particular locations. This typically gives agpalescription of the soil
moisture spatial distribution in relatively larggrizulture fields. Remote sensing of soil moistprevides a large coverage
and can overcome this problem but suffers fromropineblems stemming from its low spatial resolutibmthis context, the
DISaggregation based on Physical And Theoreticales€Hange algorithm (DISPATCH) has been proposethe
literature to downscale soil moisture satelliteadfibm 40 km to 1 km of resolution by combining tbe resolution Soil
Moisture Ocean Salinity (SMOS) satellite soil moist data with the high resolution (Normalized Diffiece Vegetation
Index (NDVI) and Land Surface Temperature (LST) adats obtained from a Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor. In this work, PAS CH estimations are compared with soil moistugassrs and
gravimetric measurements to validate the DISPATdgbrithm in an agricultural field during two diffent hydrologic
scenarios; wet conditions driven by rainfall eveants local sprinkler irrigation. Results show ttieg DISPATCH algorithm
provides appropriate soil moisture estimates dugdegeral rainfall events but not when sprinkleigation generates
occasional heterogeneity. In order to explain tliiferences, we have examined the spatial vaiiglsitales of NDVI and
LST data, which are the input variables involvedha downscaling process. Sample variograms shatilie spatial scales
associated with the NDVI and LST properties arelémge to represent the variations of the averageisture at the site

and this could be a reason why the DISPATCH alborits not working properly in this field site.

1. Introduction
Soil moisture measurements taken over differentiadpand temporal scales are increasingly required wide range of
environmental applications, which include crop gi@recasting (Holzman et al., 2014), irrigatioaning (Vellidis et al.,

2016), early warnings for floods and draughts (Klei and Rientjes, 2016), and weather forecastirigp(Det al., 2016).
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This is mostly due to the fact that soil moistuentcols the water and energy exchange between keyoamental
compartments (atmosphere and earth) and hydrolqmiceesses, such as precipitation, evaporatidittration, and run-off
(Ochsner, 2013; Robock et al., 2000).

There are several applications in which soil meestmeasurements have been shown to provide relénBmtmation
(Robock et al., 2000). For example, in environmeeafplications, soil moisture is typically used fdefining the water
stress occurring in natural and human systems Kretal., 2000) or for quantifying nitrate leachiagd drainage quality
(Clothier and Green, 1994). Here, we highlight teatl moisture measurements from the root zonedgiemportant
information for field irrigation scheduling, deteimng to a great extent the duration and frequesfciyrigation needed for
plant growth as a function of water availabilitydBquist et al., 2006; Jones, 2004; Campbell, 1982)

Soil moisture is highly variable in space and timginly as a result of the spatial variability ivilproperties (Hawley,
1983), topography (Burt and Butcher, 1985), landsuf~u, 1994), vegetation (Le Roux et al., 1995) atmospheric
conditions (Koster and Suarez, 2001). As a resoil, moisture data exhibits a strong scale effbat can substantially
affect the reliability of predictions depending tme method of measurement used. For this reasas,important to
understand how to measure soil moisture for iridgascheduling in a commercial field site.

Nowadays, available techniques for measuring admesing soil moisture can provide data on a smallasge scale.
Gravimetric measurements (Gardner, 1986) estinwiten®isture by the difference between the nataral the dry weight
of a given soil sample. They are used as a trugevaf soil moisture for sensor calibration (Stard &altineanu, 2002) or
soil moisture validation studies (Bosch et al., 00osh et al., 2006). The main disadvantage &f itiethod is that these
measurements are time-consuming; users have to the field to collect soil samples and place therthe oven for a long
time. Soil moisture sensors such as Time DomaiteBR®imetry sensors (Clarke Topp and Reynolds, 19@8aap et al.,
2003; Topp et al., 1980) or capacitance sensorgd&B® et al., 2007; Dean et al., 1987) are capdableeasuring soil
moisture continuously using a data logger, themaigbling the final user to save time. Soil moistegasors are especially
useful for studying processes at a small scaleshffer from the fact that field data is typicallgarce and provides an

incomplete picture of a large area (Western etl898). Nevertheless, the use of soil moisture@sris a common practice



10

15

20

25

for guiding irrigation scheduling in cropping fiekystems (Fares and Polyakov, 2006; Thompson,&xQf)7; Vellidis et al.,
2008).

Remote Sensing, can estimate soil moisture contislyaver large areas (Jackson et al., 1996).ilndhse, soil moisture
estimations refer to the Near Surface Soil MoistiiN8SM), which represents the first 5 cm of the $op profile. In recent
years, Remote Sensing techniques have been impemgediversified their estimation, making them ateiesting tool for
monitoring NSSM and other variables such as themdtized Difference Vegetation Index (NDVI) and thend Surface
Temperature (LST). Different satellites exist tha¢ capable of estimating NSSM, one of them isSb# Moisture and
Ocean Salinity (SMOS) satellite launched in Novenf@09 (Kerr et al., 2001). It has global coveragd a revisit period
of 3 days at the equator, giving two soil moistastimations, the first one taken during the ascendiverpass at 6:00 am
and the second one during the descending overpa€s0@ pm local solar time. SMOS satellite is a spas 2D
interferometer operating at L-band (1.4 GHz) (Ketral., 2010). The spatial resolution ranges fr&@ma55 km, depending
on the incident angle. Its goal is to retrieve NS@ith a target accuracy of a 0.04 m3/m3 (Kerr et2012). Since SMOS
NSSM have been validated on a regular basis shebdginning of its mission (Bitar et al., 2012 \iagt et al., 2008), it is
considered suitable for hydro-climate applicatifiisvens et al., 2015; Wanders et al., 2014).

The relatively large variability of soil moistur@mpared to the low resolution of SMOS-NSSM datadéis the direct
application of this method to irrigation scheduliktpwever, the need for estimating NSSM with a gtgmn higher than 35
— 55 km using Remote Sensing has increased fardiif reasons: 1) This data can be downloaded/damih different web
sites; 2) A field installation of soil moisture sems is not necessary; and 3) No specific mainten# needed. For these
reasons, in the last few years, different algorghmave been developed to downscale Remote Serwingasture data to
tens or hundreds of meters.

Chauhan et al., (2003) developed a Polynomiahfjttmethod which estimates soil moisture at 25 ksoltgion. This
method links soil moisture data with surface terapee, vegetation index and albedo. It does notireqin situ
measurements but cannot be used under cloud ceveomglitions. The change in the detection methpdrted by Narayan
et al. (2006) downscales soil moisture at 100 rolegi®n. This is an optimal resolution for agriautl applications, but the

method is highly dependent on the accuracy ohpai data. The same problem is attributed to theel#e algorithm for
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the Soil Moisture Active Passive (SMAP) satellif@aé and Mohanty, 2006), which downscales soil moéstat 9 km
resolution. These algorithms have to be validatsithguin situ measurements. For this purpose, masties use soil
moisture sensors installed at the top soil profike, the first 5 cm of soil (Albergel et al., 20XCosh et al., 2004; Jackson et
al., 2010), while others use gravimetric soil maist measurements (Merlin et al., 2012) or the caoatlwin of both
methodologies (Robock et al., 2000).

Other satellites, such as Sentinel-1, can esti®8M at 1 km resolution (Hornacek et al., 2012; tMa¢t al., 2015;
Paloscia et al., 2013). Sentinel-1 provides twal&iof products, the first one is Single Look Com8LC) and the second
one is Ground Range Detected (GRD). The last onebeaused for solving a wide range of problemstedldo Earth
surface monitoring, such as soil moisture, bus ihet a direct measurement and therefore datartesdiis needed. In this
case, GRD product is converted into radar baclercattefficient and then into dB units to estimaié soisture. Usually,
these conversations are cumbersome because tmesefkineasurements have surface roughness andatiegeinfluence
that affect the signal (Garkusha et al., 2017; Véagi al., 2010).

The DISPATCH method (DISaggagregation based oniPdlyAnd Theorical CHange) (Merlin et al., 2012; Nie et al.,
2008) is an algorithm that downscales SMOS NSSM €tam 40 km (low resolution) to 1 km resolutiongf resolution).
This algorithm uses Terra and Aqua satellite datastimate NDVI and LST twice a day using the MadierResolution
Imaging Spectroradiometer (MODIS) sensor. Thesenasibns have 1 km resolution and can be condueted if there is
no cloud coverage. This downscaling process previde final user with the possibility of estimatiN$SM using Remote
Sensing techniques at high resolution. DISPATCH:eead to reveal spatial heterogeneities as rivargelirrigation areas
and floods (Escorihuela and Quintana-Segui, 201&pb&teau et al., 2015, 2017; Molero et al., 2018) & has also been
validated (Malbéteau et al., 2015; Merlin et ab12; Molero et al., 2016) in fairly large and horeagous irrigation areas,
but not in complex settings with spatially changmglrologic conditions such as those representilogal irrigation field.

In this work, we evaluate the worth of Remote Semsn agricultural irrigation scheduling by compayiin situ soil
moisture data obtained from gravimetric and soilistuse sensors, with soil moisture data determibgddownscaling

Remote Sensing information with the DISPATCH altjori.
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1.1. Study Area

The study area shown in Figure 1 is located invilege of Foradada (1.015 lat., 41.866 lon.),hie Segarra — Garrigues
(SG) system (Lleida, Catalonia). The SG systemmisrgortant hydraulic project currently being cadriout in the province
of Lleida, Catalonia, which involves converting mad the current dry land fields into irrigated léls. Its construction
enables 1000 new hectares with a long agriculteadition to be irrigated in most of the dry laffah achieve this, an 85 km
long channel was constructed to supply water fdgdtion. At present, approximately 16000 irrigatcare potential
beneficiaries of these installations. However, nfashers have not yet installed this irrigationteys, which means that the
SG systems can still be regarded as dry land.

The Urgell area is located in the west of the S&esy. This area has totally different soil moistooaditions, especially
during the summer season when the majority of $i@e currently irrigated. This gives rise to tveacly distinguishable
wet and dry soil moisture conditions. Figure 1 shaWwe Foradada field, which represents 25 ha afranwercial field
irrigated by a solid set sprinkle irrigation systelistributed with 18 different irrigation sectorBhe soil texture is 65.6%
Clay, 17.6% Silt and 16.8 Sand. Every year twoedéht crops are grown, the first one during thetaviand spring seasons,
when wet conditions are maintained by precipitatemmd the second one during the summer and autaasoss, when wet
conditions are maintained by sprinkler irrigatidine Foradada field is thus one of the few irrigdteltis located within the
SG system. Consequently, this field has soil magstionditions similar to those in the surroundingaaduring the winter
and spring season, but completely different cood#iduring the summer and autumn seasons. Thissnthisesite unique

for assessing Remote Sensing in a distinct isolatiggtion field.

2. Materialsand M ethods

2.1. In situ Soil M oisture M easurements

A total of 9 intensive and strategic field campaigmere conducted in the study area during 2016: B2)YDOY85,
DOY102, DOY187, DOY194, DOY200, DOY215, DOY221 abdY224. During each field campaign, disturbed soil
samples were collected from the top soil profiles(6m depth) for measuring gravimetric soil moistdata. A total of 101

measurement points, depicted in Figure 1., wermeéfaround the field. They are divided into twéetient kinds of points:
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1) Cross section points; 75 points defined to regme the spatial variability of soil moisture irffdient cross sections. In
these cross sections, points are separated by&)d 85 m; 2) Support points; 26 points complenmgiormation measured
from cross sections, thereby adding and suppoitiftgmation about field spatial variability. Eacbilssample is analyzed
using the gravimetric method for measuring graviloesoil moisture content, which is transformedvim@umetric solil
moisture content using bulk density measurementte(ler, 1982). Daily averages and their standagdiadions of
gravimetric measurements were computed to repréisersil moisture associated with the entire fiitd.

Soil moisture was also measured using capacitivé E€nsors (METER Group, Pullman, WA, USA), preegigicalibrated
in the laboratory (Star and Paltineanu, 2002). igsife 1 shows, a total of 5 control points werddhed across one of the
three gravimetric cross sections. Each controltp@presents a different irrigation sector of tieddf Soil moisture sensors
were installed at 5 cm depth, taking into accotstéxplore volume of these sensors. Their reseiligia0.03 cm3-cm-3.
They were connected to an EM50G data logger (MET&BuUp, Pullman, WA, USA) that register soil moigtievery 5

minutes.

2.2. DISPATCH Soil Moisture M easurements

In this section we briefly describe the DISPATCHyaithm. Further details can be found in Merlinatt (2013) and
references therein. The DISPATCH algorithm aimddanscale NSSM data obtained from SMOS at 40 kwluésn to 1
km resolution. The method assumes that NSSM iseatifunction of the Soil Evaporative Efficiencye(S), which can be
estimated at high resolution (1 km) from the acdtjois of two products obtained from MODIS, i.e., TSnd NDVI
datasets. This MODIS-derived SEE is further consideas a proxy for the NSSM variability within tB&MOS pixel. The
estimation of SEE is assumed to be approximatehstemt during the day given clear sky conditionse THownscaling
relationship is given by Eq. (1)

Our = Osmos + Our (SEEsmos) X (SEEgr — SEEgmos), (1)
wherebfgyos is the low resolution SMOS soil moisture d&8E,r is the MODIS-derived SEE at a high resolution (1) k
SEEgmos is the average FEEyg within the SMOS pixel at a low resolution (40 knand6yr (SEEgmos) is the partial

derivative of soil moisture with respect to thel saaporative efficiency at high resolution evatdhtit theSEEg),os value.
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This partial derivative is typically estimated bging the linear soil evaporative efficiency modélBudyko (1956) and
Manabe (1969), which is written by Eq. (2)

Bur = SEEqg X 0, (2)
wheredyr represents the soil moisture of the top soilig9e5 cm) at high resolution, arg is an empirical parameter that
depends on soil properties and atmospheric conditibhe soil evaporation efficiency at high resoluSEEyy is estimated

as a linear function of the soil temperature ahhiggsolution T gr), EQ. (3)

SEEHR — Ts,max_Ts,HR (3)

Tsmax—Tsmin’
The soil temperature at high resolution is estiohdg partitioning the MODIS surface temperatureadatST) into the soil
and the vegetation component according to the z@gemethod of Moran et al. (1994). This also reggiian estimation of
the fractional vegetation cover, which is calcutateom the NDVI dataTy ,;, andT; ¢ are the soil temperature end-
members (Merlin et al., 2012).
In this work, the DISPATCH algorithm has been exeduluring period DOY36 and DOY298 to estimate NS&M. km
resolution in the Foradada field site. DISPATCHvides a daily NSSM pixel map (regular grid). Thedaada field site is
entirely included in one pixel. In this pixel, 5%%of the total area corresponds to irrigated aféa. remaining portion of

the pixel corresponds to dry land (shown in Figeire

2.3. Image Spatial Resolution and Spatial Variability

The information contained in a satellite imageharacterized here by two properties: the spatsdltgion and the spatial
variability of the image attributes. The spatiaakition of a satellite image is the ground argmasented by each pixel, i.e.,
the raster cell size. It is essentially the repntstéere support volume chosen to describe the tranis of the attributes of
interest at the ground. This is typically deterndifmased on the type of satellite sensor. Instéedspatial variability refers
to the variations of the attributes presented @ithage at the ground surface, e.g., patterns afadpontinuity, size of
objects in the scene, and so on. In random fieddhand geostatistics, the spatial variabilitynainly characterized by the

covariance function or by its equivalent, the saaringram, which is defined by (Journel and Huijlised 978) Eq. (4),

y(h) =2 E{[Z(x+ h) — Z()]?), @)
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whereZ(x) is the random variable at tkeposition, andi{-} is the expectation operator. Essentially, the gariugram is a
function that measures the variability between gaif variables separated by a distahce/ery often, the correlation
between two variables separated by a certain distatisappears whejh| becomes too large. At this instamth)
approaches a constant value. The distance beyoieh wth) can be considered to be a constant value is kremwvthe
range, which represents the transition of the tdgito the state of negligible correlation. Thie tange can ultimately be
seen as the size of independent objects in thednmlaghe pixel size is smaller than 10 times th@imum range (in the
absence of the nugget effect), then neighbour pixéll be alike, containing essentially the sameeleof information
(Journel and Huijbregts, 1978). This will be aicat point in the discussion of the results later W/e finally note that the
spatial resolution and the spatial variability am® related concepts. Several authors contentahational choice of the
spatial resolution for remote sensing should bedas the relationship between spatial resolutimh gpatial dependence.
However, since this is not the usual procedure, gbatial resolution can be inappropriate in somsesaor provide

unnecessary data (Atkinson and Curran, 1997; Waddand Strahler, 1987).

3. Results

3.1. General Observations

One of the main advantages of our experiment is rdr@ote sensing soil moisture data is evaluatethguwo different
hydrologic periods of the same year in a givenadftire field site. The first period representspcgyowth with soil wet
conditions caused by natural rainfall events (withiorigation). This period transpired during thénter and spring season,
i.e., from February to June. The following perioztars during the dry season with artificially ceshisoil wet conditions
caused by sprinkler irrigation operating upon cdeand during the summer and autumn season, framtduOctober. In
contrast to the rainfall events, sprinkler irrigaticreates a local artificial rainfall event usisgveral rotating sprinkler
heads. The comparisons of these two hydrologimgsrallow us to evaluate the sole effect of lopainkler irrigation on
remote sensing estimates.

Figures 3 compares gravimetric and soil moistunesee measurements with the DISPATCH soil moistusgneates

obtained from remote sensing data during the fiestod of time (without irrigation). We note thdwet comparison here is
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not between punctual gravimetric measurements (sufport volume of few centimetres) and sateltiferimation (1 km in
resolution). We compare the average of these pahateasurements over the entire field site (veril distributed with
more than 100 measurement points) with satellfirmation. The average of the soil moisture is espntative of the entire
irrigated area associated with the Foradada figéd €onsequently, these two variables have sinsilgoport scale and are
therefore comparable. Error bars in the gravimetrgasurements represent the standard deviatiolh theameasurements
obtained in one day. In addition, the green regiothis figure displays the daily minimum and mawimm values of soil
moisture data obtained from 5 EC-5 sensors. We thattethe average of gravimetric soil moisture days always within
this region. Therefore, this information can bedusecomplement soil moisture data in days whergnagimetric sampling
is available. The error bars associated with DISBKATdata refer to the standard deviation obtaingtl o daily SMOS
estimations and four MODIS data (two at 6:00am amd more at 6:00 pm). To better appreciate tendsndhe same
information is also presented as a normalized ivelagoil moisture, i.€.(0 — 0min)/ (Omax — Omin), Whereb,,;, are the
minimum and maximum values of all soil moisture sweaments. Results show that DISPATCH estimatespcaperly
detect the relative increase in soil moisture emtid® caused by general rainfall events. Note fetairce that all methods
produce a similar relative increase in soil mostsignal after the occurrence of a strong rairgfedint. In absolute terms, we
see that DISPATCH can slightly underestimate the tvalue of soil moisture but this could be attrnlito small
differences between the support volume of the ftiel and the spatial resolution of the satelfitage.

A similar analysis is shown in Figure 4, which camgs gravimetric and sensor soil moisture measuresmeith
DISPATCH soil moisture estimations during the setperiod (soil wet conditions maintained by spratkirrigation). In
contrast to our previous results, one can seetliegaDISPATCH dataset is essentially not sensitovegrinkler irrigation
even though they respond properly to sporadic smatifall events. Likewise, the relative increase soil moisture
measurements also shows that sprinkler irrigatioesdnot affect the DISPATCH estimation. Thus, etleough the
DISPATCH estimations seems to properly respondgoificant rainfall events during the first periddjgation operating at
the Foradada field scale remains undetected duhegsecond period. The DISPATCH dataset disregargstion and
merely indicates that soil dry conditions existaalarger picture. We conclude then that the DISPATdataset provides

representative estimates of soil moisture at aduiésa lower than expected.
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3.2. Analysisand Discussion

We seek to answer the important question of whyD(f&PATCH soil moisture estimates obtained by daaiing satellite
information from 40 km to 1 km of resolution aret rs@nsitive to sprinkler irrigation in this casenheTfollowing possible
sources of discrepancies can be identified: (9rerassociated with the approximations used iDili## ATCH downscaling
formulation; (ii) differences in the scale of obs®ions; and (iii) low quality of information assated with DISPATCH
input variables. We concentrate the analysis grafid (iii). First, we note that the DISPATCH ragain of 1 km is similar
to the characteristic scale of the irrigated atehe Foradad field site and therefore a bettefopmance was expected. The
extent of the irrigated area in the DISPATCH pisie of interest is 51.5 % (see Figure 2). Giveat 8oil moisture is a
linear property, we content that this cannot expldie almost zero relative increase in soil moestabtained during
irrigation. Then, we examine the semivariogramshef different input variables involved in the dowaléing process, i.e.,
the NDVI and the LST properties provided by the MGBensor. The NDVI and LST semivariograms werpeaesvely
estimated from the MOD13A2 and MOD11A1 product dathich can be freely downloaded from the GooglghEBngine
website (https://earthengine.google.com). We seteet daily representative image of April, June Angjust. The April
image describes a general rainfall event in thergeghe June image shows when local irrigationtsta the Foradada field,
and finally the August image represents when tlog ¢s well developed and frequent irrigation is dexk Experimental
semivariograms have been fitted with a theoretimoaldel (spherical and exponential models for the Ll NDVI,

respectively), which can be formally expressed @s5Eand 6,

Yist(h) = ¢4 Sph (ﬂ) +Ci2 [1 — cos (M “)] )

a11 ai12

Ynovi(h) = ¢z Exp (E) + ¢z Exp (%) + Cz3 [1 — Cos (ﬂ ﬂ)], (6)

az3
wherec;; are constant coefficients that represent the itton of the different standard semivariogram eisdanch;; are
the corresponding ranges of the different strustuidhe LST and NDVI experimental and theoreticathisariograms are
shown in Figure 5. The parameters adopted in théamm function model are summarized in Tables 12nthe analysis
determines a nested structure with a positive tigeanbination between isotropic stationary semognam models and the

hole effect model. Hole effect structures mostrofiedicate a form of periodicity (Pyrcz and Deuts2B03). In our case,

10
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this periodicity reflects the presence of area$ wifferent watering and crop growth conditions,,iin contrast to the SG
area, the Urgell area is based on irrigation.

The spatial variability of NDVI and LST vary withime according to changes in hydrologic conditiolms.April, the
semivariogram of NDVI displays more variability alebs spatial continuity due to the differencegtiowth rate and crop
type conditions existing at the regional scale myithe wet season (controlled by rainfall ever®).the other hand, the
spatial dependence of LST is more significant ingéat. Importantly, results show that the scale afiability (range)
associated with MODIS data during the dry seasdmnnva controlled amount of water by irrigation pked, ranges
between 35 and 36 km for the NDVI and between 22 Zihkm for the LST. Recalling the discussion pded in section
2.3., this means that the size of independent tbjacthe NDVI and LST images is about 30 kms dmat tnsignificant
spatial variations of NDVI and LST values are expdcbelow 1/10 of this size. This suggests thatNB®/I and LST
products provided by MODIS cannot detect differenisetween neighbour pixels of size 1 km.

To further corroborate this point, Figure 6 compattee temporal evolution of LST and NDVI obtainedni two adjoin
MODIS pixels: the Foradada pixel and its North-Wiestghbour pixel. Note that the neighbour pixelresponds to a not
irrigated area. Data was downloaded using MOD13A@ IOD11A1 products with Google Earth Engine welysftom
DOY036 to DOY298. In general, irrigation in an agiiure field site should produce a decrease in MalUes and an
increase in NDVI. However, Figure 6 shows the salyreamics and similar values in both pixels evenmwinggation is
applied. Results show that the LST and NDVI infotiora cannot detect neither the sprinkler irrigatiwor the crop growth

as a consequence of irrigation in this case.

4. Conclusions

We analyze the value of Remote Sensing and the TSP downscaling algorithm for predicting soil mhige variations
in an irrigated field site of size close to imagsalution. The DISPATCH algorithm based on the N LST data
obtained from the MODIS satellite is used for dogalmg the SMOS information and transforming the@®soil moisture
estimations from a resolution of 40 km to 1 km. 3de=stimates are then compared with average graidnaad soil

moisture sensors measures taken all over the diedd Results have shown that in this case the doaled soil moisture

11
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estimations are capable of predicting the variationsoil moisture caused by general rainfall esdnit fail to reproduce the
temporal fluctuations of the average water contentsed by local irrigation. To provide insight irttis problem, we
examine the spatial variability of the differenpir variables involved, i.e., the NDVI, the LST.dR#és indicated that the
size of individual objects in the NDVI and LST inemgis too large to be able to represent adequtitelyariations of the
average water content at the site. This effectoissignificant during rainfall events because thigidal spatial scale of
rainfall events is much larger than the size ofithigated field site.

From a different perspective, these results alggest that irrigation scheduling based on satehifiermation coupled with
the DISPATCH downscaling algorithm can be apprdpria regions of the world with extensive irrigatisurface coverage,
larger than approximately 10 km (e.g., Punjab Badttowever, caution should be paid to the direqgtliaption of this
method as its performance will strongly depend lom $patiotemporal variation of the irrigation withthe area. These

variations can generate occasional heterogeneitlrig to the failure of the soil moisture predintimethod.
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Figure 1. Location of the Foradada field site within the Segarra-Garriga irrigation system and distribution of soil moisture
measurement points. Gravimetric measurement points are arranged with cross section points in green and support points in
yellow. Thelocation of EC-5 sensorsarerepresented in red.
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Figure 2. The DISPATCH grid representing the Foradada field, outlined in dark blue; irrigated fields, in light blue; and dry land
inlight red.
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Figure 3. Comparison of average gravimetric soil moisture measurements (red) with the DISPATCH soil moisture estimations
(yellow) and the daily maximum and minimum soil moisture sensors measurements (green) during the first hydrologic period (soil

wet conditions caused by rainfall events only).
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Figure 4. Comparison of average gravimetric soil moisture measurements (red) with the DISPATCH soil moisture estimations
(yellow) and the daily maximum and minimum soil moisture sensors measur ements (green) during the second hydrologic period
(soil wet conditions caused by irrigation). Thetop figure showsthe intensity of precipitation and irrigation.
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Figure 5. LST and NDVI experimental and theoretical semivariograms associated with April (blue), June (green), and August
(red).
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Figure 6. Temporal evolution of LST and NDVI obtained at the Foradada pixel and its neighbour North-West pixel situated 2 kms
away.
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Tables

LST

Variogram Hole effect
Month Model Sill (c14) Range (a11) Sill (c12) Range (ap;)
April Spheric 8.4 46000 - -
June Spheric 7.5 22000 15 25000
August Spheric 14 32000 2 29000
Table 1. Randon function model parameters of LSTismigrams.
NDVI

Variogram Hole effect

Month  Model Sill (cy1) Range (ay;)  Sill (cy)) Range (ay,) Sill (c,3) Range (as)
April Exponential 0.013 8000 0.02 55000 - -
June Exponential 0.013 35000 - - 0.22 28000
August  Exponential 0.015 36000 - - 0.21 28000

Table 2. Random function model parameters of NDVtisariograms.
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