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Abstract. Soil moisture measurements are needed in a laug@er of applications such as hydro-climate appgresc
watershed water balance management and irrigatbedslling. Nowadays, different kinds of methododsgiexist for
measuring soil moisture. Direct methods based amignretric sampling or Time Domain Reflectometry @)Dtechniques
measure soil moisture in a small volume of soifeat particular locations. This typically gives agoalescription of the
spatial distributiorof soil moisture in relatively large agriculture fisldRemote sensing of soil moisture provides a large
coverage and can overcome this problem but sufifers other problems stemming from its low spatedalution. In this
context, the DISaggregation based on Physical Amebfetical scale CHange algorithm (DISPATCH) hesrbproposed in
the literature to downscale soil moisture satellisgéa from 40 km to 1 km resolution by combining tbw resolution Soil
Moisture Ocean Salinity (SMOS) satellite soil moist data with the high resolution Normalized Diffiece Vegetation
Index (NDVI) and Land Surface Temperature (LST) adats obtained from a Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor. In this work, PAS CH estimations are compared with soil moistugassrs and
gravimetric measurements to validate the DISPATdgbrithm in an agricultural field during two diffent hydrologic
scenarios; wet conditions driven by rainfall eveats wet conditions driven Hgcal sprinkler irrigation. Results show that
the DISPATCH algorithm provides appropriate soilishare estimates during general rainfall eventsrmitwhen sprinkler
irrigation generates occasional heterogeneity.rtfeoto explain these differences, we have examihedpatial variability
scales of NDVI and LST data, which are the inputalzes involved in the downscaling process. Samplgograms show
that the spatial scales associated with the NDMl l28T properties are too large to represent thatians of the average

soil moisture at the site and this could be a neagoy the DISPATCH algorithm does not work propenithis field site.

1. Introduction
Soil moisture measurements taken over differentipand temporal scales are increasingly required wide range of
environmental applications, which include crop gi@recasting (Holzman et al., 2014), irrigatioaning (Vellidis et al.,

2016), early warnings for floods and droughts (kbe and Rientjes, 2016), and weather forecastirigp(Det al., 2016).
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This is mostly due to the fact that soil moistuentcols the water and energy exchanges betweenekglyonmental
compartments (atmosphere and earth) and hydrolqmiceesses, such as precipitation, evaporatidittration, and run-off
(Ochsner, 2013; Robock et al., 2000).

There are several applications in which soil meestmeasurements have been shown to provide relénBtmation
(Robock et al., 2000). For example, in environmeafplications, soil moisture is typically used fdefining the water
stress occurring in natural and human systems Kratal., 2000) or for quantifying nitrate leachiagd drainage quality
(Clothier and Green, 1994). Here, we highlight teatl moisture measurements from the root zonedgiemportant
information for field irrigation scheduling, deteimng to a great extent the duration and frequewfciyrigation needed for
plant growth as a function of water availabilitydBquist et al., 2006; Jones, 2004; Campbell, 1982)

Soil moisture is highly variable in space and timginly as a result of the spatial variability ivilproperties (Hawley,
1983), topography (Burt and Butcher, 1985), landsufu, 1994), vegetation (Le Roux et al., 1995) atmospheric
conditions (Koster and Suarez, 2001). As a resoil, moisture data exhibits a strong scale effbat can substantially
affect the reliability of predictions depending tiie method of measurement used. For this reasas, ithportant to
understand how to measure soil moisture for iriigascheduling.

Nowadays, available techniques for measuring amesing soil moisture can provide data either anaall or at a large
scale. Gravimetric measurements (Gardner, 1986ha&tst soil moisture by the difference between tatural and the dry
weight of a given soil sample. They are used afarence value of soil moisture for sensor calibrafStarr and
Paltineanu, 2002) or soil moisture validation stsd{Bosch et al., 2006; Cosh et al., 2006). Thenrdesadvantage of this
method is that these measurements are time-congumsprs have to go to the field to collect sothpkes and place them
in the oven for a long time. Soil moisture sensarsh as Time Domain Reflectometry sensors (CladggpTand Reynolds,
1998; Schaap et al., 2003; Topp et al., 1980) pacitance sensors (Bogena et al., 2007; Dean, et987) are capable of
measuring soil moisture continuously using a dag@ér, thereby enabling the final user to save.tiBm moisture sensors
are especially useful for studying processes ahallsscale, but suffer from the typical low numbaédrin situ sensors that

provide an incomplete picture of a large area (Weset al.,, 1998). Nevertheless, the use of soitme sensors is a
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common practice for guiding irrigation schedulimgdropping field systems (Fares and Polyakov, 200fismpson et al.,
2007; Vellidis et al., 2008).

Remote sensing can estimate soil moisture contslyawer large areas (Jackson et al., 1996). n ¢hse, soil moisture
estimations refer to the Near Surface Soil Mois{iIN€SM), which represents the first 5 cm (or lexfsthe top soil profile.
In recent years, Remote Sensing techniques havweuag and diversified their estimation, making theminteresting tool
for monitoring NSSM and other variables such as Mwemalized Difference Vegetation Index (NDVI) atite Land
Surface Temperature (LST). Different satellitesse#iat are capable of estimating NSSM: the Soilsiioe Active Passive
(SMAP) satellite, the Advanced Scatterometer (ASECEEMote sensing instrument on board the Meteoicdb@perational
(METOP) satellite the Advanced Microwave Scanning Radiometer 2 (R2Binstrument on board of the Global Change
Observation Mission 1-Water (GCOM-W1) satelliteddhe Soil Moisture and Ocean Salinity (SMOS) diseédlaunched in
November 2009 (Kerr et al., 2001). The SMOS s#telias global coverage and a revisit period of & dd the equator,
giving two soil moisture estimations, the first da&en during the ascending overpass at 6:00 anthensecond one during
the descending overpass at 6:00 pm local solar. filmeSMOS satellite is a passive 2D interferometer dpegat L-band
(1.4 GHz) (Kerr et al., 2010). The spatial res@ntranges from 35 to 55 km, depending on the imtidagle. Its goal is to
retrieve NSSM with a target accuracy of a 0.0%nm (Kerr et al., 2012). Since SMOS NSSM have beeidatd on a
regular basis since the beginning of its missiomafBet al., 2012; Delwart et al., 2008), it is s@ered suitable for hydro-
climate applications (Lievens et al., 2015; Wandral., 2014).

The relatively large variability of soil moistur@mpared to the low resolution of SMOS-NSSM datadbis the direct
application of this method to irrigation schedulittpwever, the need for estimating NSSM with a gtgmn higher than 35
— 55 km using Remote Sensing has increased fardiff reasons: 1) Data are freely available; 2l finstallation of soil
moisture sensors is not necessary; and 3) No $peudintenance is needed. For these reasons, ifashdew years,
different algorithms have been developed to dowesRamote Sensing soil moisture data to tens odtads of meters.
Chauhan et al., (2003) developed a Polynomiahfjttmethod which estimates soil moisture at 1 knoltgi®n (Carlson,
2007; Wang and Qu, 2009). This method links soilstowe data with surface temperature, vegetatidexrand albedo. It

does not require in situ measurements but cannatsee under cloud coverage conditions. The impr@rgsnin the
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detection method reported by Narayan et al. (2@8ynscales soil moisture at 100 m resolution. Tiign optimal
resolution for agricultural applications, but thestirod is highly dependent on the accuracy of imuirdata. The same
problem is attributed to the Baseline algorithm tiee Soil Moisture Active Passive (SMAP) satelliizas and Mohanty,
2006), which downscales soil moisture at 9 km nasmh. These algorithms have to be validated usirgitu measurements.
For this purpose, most studies use soil moistuneas installed at the top soil profile, i.e., filist 5 cm of soil (Albergel et
al., 2011; Cosh et al., 2004; Jackson et al., 204B)le others use gravimetric soil moisture measents (Merlin et al.,
2012) or the combination of both methodologies @bet al., 2000). Satellite soil moisture has besgently used for
providing irrigation detection signals (Lawstonagt 2017), quantifying the amount of water appl{8rocca et al., 2018;
Zaussinger et al., 2018), and estimating the wader(Zaussinger et al., 2018). All these deal véthtively homogeneous
and extensive irrigation surface coverages (sekana).

Other satellites, such as Sentinel-1, can estiR&8M at 1 km resolution (Bauer-Marschallinger et 2018; Hornacek et
al., 2012; Mattia et al., 2015; Paloscia et al130 Sentinel-1 provides two kinds of products, fin&t one is Single Look
Complex (SLC)algorithmand the second one is Ground Range Detected (GRi2)atter can be used for solving a wide
range of problems related to Earth surface momigprsuch as soil moisture, but it is not a direeasurement and therefore
data processing is heeded. In this case, the GB@upt is converted into radar backscatter coefficéand then into dB units
to estimate soil moisture. Usually, thesenversionsare cumbersome because these kind of measureimergssurface
roughness and vegetation influence that affecsitneal (Garkusha et al., 2017; Wagner et al., 2010)

The DISPATCH method (DISaggagregation based oniPdlyAnd Theorical CHange) (Merlin et al., 2012; Nie et al.,
2008) is an algorithm that downscales SMOS NSSM €tam 40 km (low resolution) to 1 km resolutiongf resolution).
This algorithm uses Terra and Aqua satellite datastimate NDVI and LST twice a day using the MatkerResolution
Imaging Spectroradiometer (MODIS) sensor. Thesenaibnshave a resolution df km and can be conducted only if there
is no cloudcover. This downscaling process provides the final wgén the possibility of estimating NSSM using Remot
Sensing techniques at high resolution. DISPATCHsads to reveal spatial heterogeneitieshas rivers, large irrigation
areas and floods (Escorihuela and Quintana-Se@Qdf;2Vlalbéteau et al., 2015, 2017; Molero et @16 and it has also

been validated (Malbéteau et al., 2015; Merlinlgt2012; Molero et al., 2016) in fairly large ahdmogeneous irrigation
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areas but it has not been applieth complex settings with spatially changing hydgt conditions such as those
representing a local irrigation field.

In this work, we evaluate the value of Remote Sensn agricultural irrigation scheduling by compeyiin situ soil
moisture data obtained from gravimetric and soilistuse sensors, with soil moisture data determibgddownscaling

Remote Sensing information with the DISPATCH altjori.

1.1. Study Area

The study area shown in Figure 1 is located invilege of Foradada (1.015 lat., 41.866 lon.),hie Segarra — Garrigues
(SG) system (Lleida, Catalonia). The SG systermmisrgortant irrigation development project currgreing carried out in
the province of Lleida, Catalonia, which involvesngerting most of the currentry-land fields into irrigated fields. Its
construction enables 1000 new hectares with a &grgcultural tradition to be irrigated. To achiethgs, an 85 km long
channel was constructed to supply water for irfagatAt present, approximately 16000 irrigators po¢ential beneficiaries
of these installations. However, most farmers hasteyet installed this irrigation system, which medhat the SG systems
can still be regarded as dry land.

The Urgell area is located in the west of the S&esy. This area has totally different soil moistooaditions, especially
during the summer season when the majority of $iglce currently irrigated. This gives rise to tvWeacly distinguishable
wet and dry soil moisture conditions. Figure 1 shaWwe Foradada field, which represents 25 ha afrantercial field
irrigated by a solid set sprinkler irrigation systeistributed with 18 different irrigation sectofie soil texture, in a single
point, is 65.6% Clay, 17.6% Silt and 16.8 Sand.rizyear two different crops are grown, the firseaturing the winter and
spring seasons, when wet conditions are maintaiyegrecipitation, and the second one during thersamand autumn
seasons, when wet conditions are maintained bwpldpriirrigation. The Foradada field is thus ondhaf few irrigated fields
located within the SG system. Consequently, thdklfhas soil moisture conditions similar to thase¢he surrounding area
during the winter and spring season, but compleatdfgrent conditions during the summer and autis®asons. This makes

this site unique for assessing Remote Sensinglistict isolated irrigation field.
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2. Materialsand M ethods

2.1. In situ Soil M oisture M easurements

A total of 9 intensive and strategic field campaigmere conducted in the study area during 2016: B2)YDOY85,
DOY102, DOY187, DOY194, DOY200, DOY215, DOY221 abiDY224. During each field campaign, disturbed sail
samples were collected from the top soil profiles(6m depth) for measuring gravimetric soil moistdata. A total of 101
measurement points, depicted in Figure 1, werenddfaround the field. They are divided into twdadi#nt kinds of points:
1) Cross section points; 75 points defined to regmethe spatial variability of soil moisture irffdient cross sections. In
these cross sections, points are separated by@a)dl85 m; 2) Support points; 26 points definedamplement information
measured from cross sections, thereby adding gopbsting information about the spatial variabilégross the field. Each
soil sample is analyzed using the gravimetric mgttoo measuring gravimetric soil moisture contavitjch is transformed
to volumetric soil moisture content using bulk dgnsneasurements (Letelier, 1982). Daily averagégymavimetric
measurements and their standard deviations werpwechto represent the soil moisture associatdu tivit entire field site.
Soil moisture was also measured using capacitivé E€nsors (METER Group, Pullman, WA, USA), preegigicalibrated
in the laboratory (Star and Paltineanu, 2002). isife 1 shows, a total of 5 control points werddhed across one of the
three gravimetric cross sections. Each controltp@ipresents a different irrigation sector of tleddf Soil moisture sensors
were installed at 5 cm depth, taking into accoimet éxplore volume of these sensors. Their accuisaay.03 cnicn?
(Campbell and Devices, 1986). They were conneadeghtEM50G data logger (METER Group, Pullman, W/&AA) that

registers soil moisture every 5 minutes.

2.2. DISPATCH Soil Moisture M easurements

In this section we briefly describe the DISPATCHyaithm. Further details can be found in Merlinagt (2013) and
references therein. The DISPATCH algorithm aimddanscale NSSM data obtained from SMOS at 40 kwlugésn to 1

km resolution. The method assumes that NSSM iseatifunction of the Soil Evaporative Efficiencye(S), which can be
estimated at high resolution (1 km) from the adtjois of two products obtained from MODIS, i.e., TSnd NDVI

datasets. This MODIS-derived SEE is further congideas a proxy for the NSSM variability within tB80S pixel. The
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estimation of SEE is assumed to be approximatehstemt during the day given clear sky conditionse THownscaling
relationship is given by Eq. (1)

Our = Osmos + Our (SEEsmos) X (SEEur — SEEgmos), (1)
wherebfgyos is the low resolution SMOS soil moisture d&8E,r is the MODIS-derived SEE at a high resolution (1) k
SEEgsumos IS the average FEEyR within the SMOS pixel at a low resolution (40 knand6yr (SEEgmos) is the partial
derivative of soil moisture with respect to thel saaporative efficiency at high resolution evatdhtit theSEEg),os value.
This partial derivative is typically estimated bging the linear soil evaporative efficiency modélBudyko (1956) and
Manabe (1969), whicls defined inEq. (2)

Our = SEEpg X 0, 2)
wherefyr represents the soil moisture of the top soilig9ed cm) at high resolution, arg is an empirical parameter that
depends on soil properties and atmospheric conditibhe soil evaporation efficiency at high resoluSEEyy is estimated

as a linear function of the soil temperature ahhiggsolution T gr), EQ. (3)

SEEHR — Ts,max_Ts,HR : (3)

Tsmax—Tsmin
The soil temperature at high resolution is estighditg partitioning the MODIS surface temperatureadtST) into the soil
and the vegetation component according to the z@gemethod of Moran et al. (1994). This also reggiian estimation of
the fractional vegetation cover, which is calcutateom the NDVI dataTy ,;, andT; ¢ are the soil temperature end-
members (Merlin et al., 2012).
In this work, the DISPATCH algorithm has beegpplied during the period from DOY36 to DOY298 @f1® to estimate
NSSM at 1 km resolution in the Foradada field SléSPATCH provides a daily NSSM pixel map (regutaid). The
Foradada field site is entirely included in onegpixn this pixel, 51.5% of the total area corremimto irrigated area. The

remaining portion of the pixel corresponds to @nyd (shown in Figure 2).

2.3. Image Spatial Resolution and Spatial Variability
The information contained in a satellite imageharacterized here by two properties: the spat@dlttion and the spatial

variability of the image attributes. The spatiedoteition of a satellite image is the ground argmasented by each pixel, i.e.,
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the raster cell size. It is essentially the repntatére support volume chosen to describe the tianis of the attributes of
interest at the ground surface. This is typicallyedmined based on the type of satellite sensar.sphatial variability refers
to the variations of the attributes presented & ithage at the ground surface, e.g., patterns atfadcontinuity, size of
objects in the scene, and so on. In random fieddphand geostatistics, the spatial variabilitynginly characterized by the
covariance function or by its equivalent, the saringram, which is defined by (Journel and Huijlised 978) Eq. (4),
y(h) = E{[Z(x + h) - Z(x)]?}, @)
whereZ(x) is the random variable at threposition, andi{-} is the expectation operator. Essentially, the gar@gram is a
function that measures the variability between paif variables separated by a distahce/ery often, the correlation
between two variables separated by a certain distatisappears whelk| becomes too large. At this instant,(h)
approaches a constant value. The distance beyoiah wh(h) can be considered to be a constant value is kresmine
range, which represents the transition of the béi#o the state of negligible correlation. Thimge tange can ultimately be
seen as the size of independent objects in thedmaghe pixel size is smaller than 10 times th@imum range (in the
absence of the nugget effect), then neighbour pixéll be alike, containing essentially the sameeleof information
(Journel and Huijbregts, 1978). This will be aicat point in the discussion of the results latar We note that the spatial
resolution and the spatial variability are two teth concepts. Several authors note that a ratiomaice of the spatial
resolution for remote sensing should be based enrdtationship between spatial resolution and apatependence
(Atkinson and Curran, 1997; Curran, 1988). Howewance this is not the usual procedure, the spegsblution can be
inappropriate in some cases @ovide unnecessary data in othéAtkinson and Curran, 1997; Woodcock and Strahler,

1987).

3. Results

3.1. General Observations

One of the main advantages of our experiment is rdr@ote sensing soil moisture data is evaluatethguwo different
hydrologic periods of the same year in a givenadftire field site. The first period representspcgyowth with soil wet

conditions caused by natural rainfall events (withiorigation). This period occurs during the wingand spring season, i.e.,
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from February to June. The following period ocadusing the dry season with artificially createdt soilconditions caused
by sprinkler irrigationoperating to satisfy crop water requiremedtsing the summer and autumn season, from June to
October. In contrast to the rainfall events, sdenlrrigation creates a local artificial rainfalent using several rotating
sprinkler heads. The comparisons of these two hgdioperiods allow us to evaluate the effect aalosprinkler irrigation
on remote sensing soil moisture estimations.

Figures 3 compares gravimetric and soil moistunesge measurements with the DISPATCH soil moistusgneates
obtained from remote sensing data during the fiestod of time (without irrigation). We note thdtet comparison here is
not between the point gravimetric measurementh(aisupport volume of few centimetres) and thellgatenformation (1
km in resolution). Instead, we compare the averaigéhese point measurements over the entire figkl (sery well
distributed with more than 100 measurement poinith the satellite information. The average of the soil stwie is
representative of the entire irrigated area assstiaith the Foradada field site. Consequentlyse¢hivo variables have
similar support scale and are therefore compardbieor bars in the gravimetric measurements reptede standard
deviation of all the measurements obtained in cme th addition, the area between the light and dgeen lines in this
figure displays the daily minimum and maximum valwé soil moisture data obtained from the five E€ebisors. We note
that the average offie gravimetric soil moisture data always lies witktiis region. This supports the use of this infoiorat
to complement soil moisture data on days where nawigetric sampling is available. The error barsoagated with
DISPATCH data refer to the standard deviation olg@iwith two daily SMOS estimations and four MOQI&a (two at
6:00am and two more at 6:00 pm). To better appiet¢endencies, the same information is also predest a normalized
relative soil moisture, i.e(® — 0.,in)/(Omax — Omin), Whered ;, and6, ., are the minimum and maximum values of the
soil moisture time series data obtained with theFE€ensors. Results show that DISPATCH estimatagpoaperly detect
the relative increase in soil moisture estimatesed by rainfall events. Note for instance thatr@thods produce a similar
relative increase in soil moisture signal after teezurrence of a strong rainfall event. In absolgtens, we see that
DISPATCH slightly underestimates the true valuesaf moisture but this could be attributed to snaifferences between

the support volume of the field site and the spagisolution of the satellite image.
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A similar analysis is shown in Figure 4, which camgs gravimetric and sensor soil moisture measuresmeith
DISPATCH soil moisture estimations during the setperiod (vet soil conditions maintained by sprinkler irrigation). In
contrast to our previous results, it can be seanttie DISPATCH dataset is essentially not seresitivsprinkler irrigation
even though there is a proper response to sposmiéd! rainfall events. Likewise, the relative ingse in soil moisture
measurements also shows that sprinkler irrigatioasdnot affect the DISPATCH estimation. Thus, etleough the
DISPATCH estimations seems to properly respondaiofall events during the first period, irrigatimperating at the
Foradada field scale remains undetected duringékend period. The DISPATCH dataset is not seeditiwrigation and
merely indicates that soil dry conditions exisadarger picture.

This can also be seen from a different perspediivdooking at the scatterplot between the averagth® normalized
relative soil moisture data obtained with the E€ehsors and the corresponding DISPATCH measureseéertmined at the
same day. Figure 5 shows the scatterplots obtaioedg rainfall events and irrigation period. Wetenthat even though a
clear tendency is seen during rainfall event&=(F57), no correlation seems to exist during itia (R*=0.04). We
conclude then that the DISPATCH dataset providgsesentative estimates of soil moisture at a réispldower than

expected.

3.2. Analysisand Discussion

We seek to answer the important question of whyDf&PATCH soil moisture estimates obtained by dawating satellite
information from 40 km to 1 km of resolution aret rsensitive to sprinkler irrigation in this caseheTfollowing possible
sources of discrepancies can be identified: (Qrerassociated with the approximations used DS ATCH downscaling
formulation; (ii) differences in the scale of obsaions; (iii) low quality of information associatevith DISPATCH input
variables; and (iv) poor relationship between atign fluctuations and DISPATCH input variables dgics. We
concentrate the analysis on (ii), (iii). First, wete that the DISPATCH resolution of 1 km is simila the characteristic
scale of the irrigated area at the Foradada figtd and therefore a better performance was expediee extent of the
irrigated area in the DISPATCH pixel size of inras 51.5 % (see Figure 2). Given that soil meesia a linear property,
we contend that this cannot explain the negligitelative increase in soil moisture obtained durimgyation. Then, we

examine the semivariograms of the different inm@riables involved in the downscaling process, fte,NDVI and the LST

10
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properties provided by the MODIS sensor. The NDWitd & ST semivariograms were respectively estimatednfthe
MOD13A2 and MOD11A1 product data, which can be lfredownloaded from the Google Earth Engine website
(https://earthengine.google.com). We selected b dapresentative image of April, June and Augusie April image
describes a general rainfall event in the regibe,June image shows when local irrigation starthénForadada field, and
finally the August image represents when the cropvell developed and frequent irrigation is needegperimental
semivariograms have been fitted with a theoretimoaldel (spherical and exponential models for the Ll NDVI,

respectively), which can be formally expressed @s3and 6,

Yist(h) = c11 Sph (ﬂ) +C12 [1 —cos (ﬂ TT)] (5)

ajq aj

Ynovi(R) = c,1 Exp (E) + ¢y, Exp (%) +Cy3 [1 — cos (% ‘IT)], (6)
wherec;; are constant coefficients that represent the irtton of the different standard semivariogram eisdanch;; are
the corresponding ranges of the different strustufdne LST and NDVI experimental and theoreticahisariograms are
shown in Figure 6. The parameters adopted in thédaia function model are summarized in Tables 1 anthe analysis
determines a nested structure with a positive likeanbination between isotropic stationary semagiam models and the
hole effect model. Hole effect structures mostrofiedicate a form of periodicity (Pyrcz and Deuts2h03). In our case,
this periodicity reflects the presence of areas wifferent watering and crop growth conditions, ,iin contrast to the dry-
land conditions in the SG area, the Urgell ardzaised on irrigation.

The spatial variability of NDVI and LST vary withime according to changes in hydrologic conditiolms.April, the
semivariogram of NDVI displays more variability alebs spatial continuity due to the differencegtiowth rate and crop
type conditions existing at the regional scale myithe wet season (controlled by rainfall ever@y).the other hand, the
spatial dependence of LST is more significant ingst. Importantly, results show that the scale afiability (range)
associated with MODIS data during the dry seasdmnnva controlled amount of water by irrigation pked, ranges
between 35 and 36 km for the NDVI and between 22 Zihkm for the LST. Recalling the discussion pded in section
2.3., this means that the size of independent tbjecthe NDVI and LST images is about 30 km anat fhsignificant
spatial variations of NDVI and LST values are expdcbelow 1/18 of this size. This suggests that the NDVI and LST
products provided by MODIS cannot detect differenisetween neighbouring pixels with a size of 1 km.
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To further corroborate this point, Figure 7 comgatee temporal evolution of LST and NDVI obtainednfi two adjoining

MODIS pixels: the Foradada pixel, where Foradadadated, and its North-West neighbour pixel. Nibi@t the neighbour
pixel corresponds to an area that is not irrigafeata was downloaded using MOD13A2 and MOD11A1 potsl with

Google Earth Engine website, from DOY036 to DOY2B8general, based on DISPATCH suppositions, itiigain an

agriculture field site should produce a decreadeSi values as a consequence of uniform irrigatioer the entire field site
and an increase in NDVI due to well-developed ayopwth conditions. However, Figure 7 shows the sagamics and
similar values in both pixels even when irrigatisrapplied. Results show that the LST and NDVIiinfation cannot detect
neither the sprinkler irrigation nor the crop grbvas a consequence of irrigation in this case. Wadly note that these
results suggest that the resolution of LST and N¥hot appropriate in this case but can also eepthat these two
variables are simply not sensitive to irrigatiorcésgse they only provide information about the statfithe crop and land

surface. Further research is needed in this sense.

4. Conclusions

We analyze the value of Remote Sensing and the TSP downscaling algorithm for predicting soil mhige variations
in an irrigated field site of size close to imagsalution. The DISPATCH algorithm based on the NRWHO LST data
obtained from the MODIS satellite is used for dogalmg the SMOS information and transforming the@®1soil moisture
estimations from a resolution of 40 km to 1 km. 3éde=stimates are then compared with average graidnaand soil

moisture sensors measures taken all over the digdd Results have shown that in this case the doaled soil moisture
estimations are capable of predicting the variation soil moisture caused by rainfall events biiit tta reproduce the
temporal fluctuations of the average water contentsed by local irrigation. To provide insight irttis problem, we
examine the spatial variability of the differenput variables involved, i.e., the NDVI and LST. Ris indicated that the
size of individual objects in the NDVI and LST inemgis too large to be able to represent adequttelyariations of the
average water content at the site. This effectoissignificant during rainfall events because thigidal spatial scale of

rainfall events is much larger than the size ofithigated field site.
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From a different perspective, these results alggest that irrigation scheduling based on satehifiermation coupled with
the DISPATCH downscaling algorithm might be apprager in regions of the world with extensive irrigat surface
coverage, larger than approximately 10 km (e.gnjd&ubasin). However, caution should be paid todihect application of
this method as its performance will strongly depemndthe spatiotemporal variation of irrigation viiththe area. These
variations can generate occasional areas withrdiffehydrologic scenarios and behaviors leadinth¢ofailure of the soll

moisture prediction method.
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Figure 1. Location of the Foradada field site within the Segarra-Garriga irrigation system and distribution of soil moisture
measurement points. Gravimetric measurement points are arranged with cross section points in green and support points in
yellow. Thelocation of EC-5 sensorsarerepresented in red.
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Figure 2. The DISPATCH grid representing the Foradada field, outlined in dark blue; irrigated fields, in light blue; and dry land
inlight red.
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(yellow) and the daily maximum and minimum soil moisture sensors measurements (green) during the first hydrologic period (soil

wet conditions caused by rainfall events only).
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Figure 4. Comparison of average gravimetric soil moisture measurements (red) with the DISPATCH soil moisture estimations
(yellow) and the daily maximum and minimum soil moisture sensors measur ements (green) during the second hydrologic period
(soil wet conditions caused by irrigation). Thetop figure showsthe intensity of precipitation and irrigation.
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measur ements obtained during both hydrologic scenarios, rainfall eventsand irrigation period.
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Figure 6. LST and NDVI experimental and theoretical semivariograms associated with April (blue), June (green), and August
(red).
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Figure 7. Temporal evolution of LST and NDVI obtained at the Foradada pixel and its neighbour North-West pixel situated 2 kms
away.
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Tables

LST

Variogram Hole effect
Month Model Sill (c14) Range (a11) Sill (c12) Range (ap;)
April Spheric 8.4 46000 - -
June Spheric 7.5 22000 15 25000
August Spheric 14 32000 2 29000

Table 1. Randon function model parameters of LSTismibgrams.

NDVI

Variogram Hole effect
Month  Model Sill (cy1) Range (ay) Sill (cy,) Range (ay) Sill (cy3) Range (ay;)
April Exponential 0.013 8000 0.02 55000 - -
June Exponential 0.013 35000 - - 0.22 28000
August  Exponential 0.015 36000 - - 0.21 28000

Table 2. Random function model parameters of NDViisariograms.
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