Dear Editor,

We are grateful to you, the Editor and the Reviewers for the time and effort spent on the
review of our manuscript. Our detailed response to the comments raised by the Reviewers is
attached. We believe our responses and the revisions made to the manuscript fully address
the issues raised by the Reviewers. These revisions have helped clarify important aspects of
our work and improve its presentation.

Page/Line numbers given in our response refer to the pages/lines of the ORIOGINAL and the
NEW version of the manuscript to allow tracking the answer with respect to the original
comments.

Sincerely,

Mireia Fontanet Ambros on behalf of all co-authors

Legend

Bold: the comments and questions by the editor and the reviewers.
Blue: our answers.

Red: the detailed changes introduced in the manuscript.

Yellow: restructured

Green: rewritten
Response to Reviewer 1:

GENERAL COMMENTS

1) MAIJOR: The text of the manuscript does not read well in many parts. In the specific
comments, | added some suggestions for the abstract only. The whole text should be
revised avoiding repetitions, improving English writing (but | am not mother-tongue),
and taking care to write accurately symbols, equations, acronyms. Being a scientific
paper, the structure and the methodology used should be clear to the readerships.

- We have completely revised the manuscript to avoid repetitions, clarify some
parts of the manuscript and also improve English quality.

- We have also modified mistakes regarding acronyms and symbols, especially at the
abstract.

- Specific comments have been corrected. Please, see the list of specific comments
at the end of this document.

2) MAIJOR: The authors found that 1-km SMOS soil moisture product is not suitable to
detect small scale irrigation, even though theorically the 1-km resolution of the
product should be suitable for detecting irrigation in the investigated area. The



authors investigated spatial variability of NDVI and LST and found it is much larger
(even if not specified in the text) than the extend of in situ soil moisture
measurements, therefore the comparison should not be carried out. Moreover, the
problem is not related to the spatial variability of NDVI or LST, but to their capability
to detect the irrigation signal. Much better should be to carry put a specific analysis
with NDVI and LST to assess if they are able to “see” irrigation.

- The range of a semivariogram is the distance at which spatial correlation vanishes.
This geostatistical property is used here to measure the size of independent image
details. This is described at page 8 line 4 (new version): “The distance beyond
which y(h) can be considered to be a constant value is known as the range, which
represents the transition of the variable to the state of negligible correlation. Thus,
the range can ultimately be seen as the size of independent objects in the image.”
Of course, if the size of independent information content is too large compared to
our field site, the satellite image cannot capture the spatial variation occur at the
scale of the field site. This is essentially the same as saying that there is no
statistical difference between neighbor pixels.

To further demonstrate this point, we can complement the geostatistical analysis
with a visual comparison of the NDVI and LST pixel data obtained at a certain
distance away from the Foradada pixel.

Page 11 line 12 (new version): We have added this information

To further corroborate this point, Figure 6 compares the temporal evolution of LST
and NDVI obtained from two adjoin MODIS pixels: the Foradada pixel and its
North-West neighbour pixel. Note that the neighbor pixel corresponds to a not
irrigated area. Data was downloaded using MOD13A2 and MOD11A1 products
with Google Earth Engine website, from DOY036 to DOY298. In general, irrigation
in an agriculture field site should produce a decrease in LST values and an increase
in NDVI. However, Figure 6 shows the same dynamics and similar values in both
pixels even when irrigation is applied. Results show that the LST and NDVI
information cannot detect neither the sprinkler irrigation nor the crop growth as a
consequence of irrigation in this case.
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Figure 6. Temporal evolution of LST and NDVI obtained at the Foradada pixel and its neighbour North-
West pixel situated 2 kms away.

In our opinion, we think that this extra information clarifies the information in the
manuscript.

MAIJOR: Related to point (2), | believe that the problem is the strong dependency of
the disggregated SMOS 1-km product to SMOS soil moisture product. SMOS has a
spatial resolution of around 40 km, therefore it is not sensitive to small scale
irrigation in the area. As the 1-km product is strongly dependent on SMOS, it is
simply not suitable for detecting irrigation at a field scale (we obtain similar results
in scientific analyses we doing). As mentioned above, the analysis of the NDVI and
LST signal by MODIS should be carried out, even though the temporal resolution
might be not good due to cloud coverage. | believe that if we want to consider a
disaggregated soil moisture product for irrigation detection, a different strategy
should be implemented.

- We agree with your comment when you say that a different strategy for
measuring soil moisture should be implemented, in fact, this is a part of our
conclusions in page 12, line 7 (new version): “From a different perspective, these
results also suggest that irrigation scheduling based on satellite information
coupled with the DISPATCH downscaling algorithm can be appropriate in regions of



the world with extensive irrigation surface coverage, larger than approximately 10
km (e.g., Punjab basin). However, caution should be paid to the direct application
of this method as its performance will strongly depend on the spatiotemporal
variation of the irrigation within the area. These variations can generate occasional
heterogeneity leading to the failure of the soil moisture prediction method.”

We would like to note that the DISPATCH method uses NDVI and LST information
from Terra and Aqua satellite data to downscale soil moisture. The NDVI and LST
satellite data is supposed to have a spatial resolution of 1 km and therefore one
should expect these estimates to be affected by local irrigation at the scale of the
given field site (and consequently the DISPATCH product). The point here is that
we actually see that the DISPATCH product is not affected, which calls for a
reanalysis of the spatial resolution of these input variables. In the revised
manuscript, we have added this information for making this discussion clear:

We have added this information Page 10 line 2 (new version):

We seek to answer the important question of why the DISPATCH soil moisture
estimates obtained by downscaling satellite information from 40 km to 1 km of
resolution are not sensitive to sprinkler irrigation in this case. The following
possible sources of discrepancies can be identified: (i) errors associated with the
approximations used in the DISPATCH downscaling formulation; (ii) differences in
the scale of observations; and (iii) low quality of information associated with
DISPATCH input variables. We concentrate the analysis on (ii) and (iii).

MODERATE: As mentioned before, the text should be improved and specifically the
structure of the paper. In section 4 “Discussion” the theoretical background of
geostatistical analysis is described. It should be moved to the methodology section.

- We have also reorganized the manuscript to improve the structure and flow of the
manuscript based on the comments raised by the two reviewers. We have
rewritten some parts of the manuscript. In this context, we have added a sub-
section entitled “Spatial Resolution and Spatial Variability” in section 2 (i.e.,
Materials and Methods). This way, the methods used to estimate the spatial
resolution of variables (which where before introduced in the discussion section)
were moved to the methods section. The new manuscript structure is as follow:

1. Introduction
1.1 Study Area
2. Materials and Methods
2.1 In Situ Soil Moisture Measurements
2.2 DISPATCH Soil Moisture Measurements
2.3 Spatial Resolution and Spatial variability
3. Results
3.1 General Observations
3.2 Analysis and Discussion
4. Conclusions

We hope this will largely improve the clarity of the manuscript.



- We have also improved the manuscript in several editing aspects based on the
comments raised by the two reviewers: avoiding repetitions, writing symbols, and
equations consistently, improve English grammar and clarify confusing aspects
about resolution and the use of scales.

SPECIFIC COMMENTS:
Note that the main specific comments are not in the document because we have
rewritten the manuscript.

Page 1, line 8: Soil moisture data are not really important for climate change studies.
We have deleted “climate change studies” and added “hydro-climate approaches”.
Page 1, line 10: “with both space and time” is not correct, to be revised.

We have rewritten this part.

Page 1, line 12: Currently we can obtain soil moisture estimated through 1) in situ
observation (fixed stations and field measurements), 2) remote sensing (satellite,
aire-planes, drones), and 3) modeling (hydrological and/or climate).

We have rewritten this part.

Page 1, line 13-14: “where soil moisture measurements...” Which measurements?
We have rewritten this part.

Page 4, line 16: Currently we have Setinel-1 that can provide 1-km soil moisture
measurements... and also new techniques (e.g. CYGNSS)

Even though Setinel-land other new techniques, such as CYNSS, provide soil moisture
at 1 km resolution, we consider that it is not relevant information for abstract, but, we
have added this information at the Introduction section (Page 4, line 6 new version):

Other satellites, such as Sentinel-1, can estimate NSSM at 1 km resolution (Hornacek
et al., 2012; Mattia et al., 2015; Paloscia et al., 2013). Sentinel-1 provides two kinds of
products, the first one is Single Look Complex (SLC) and the second one is Ground
Range Detected (GRD). The last one can be used for solving a wide range of problems
related to Earth surface monitoring, such as soil moisture, but it is not a direct
measurement and therefore data treatment is needed. In this case, GRD product is
converted into radar backscatter coefficient and then into dB units to estimate soil
moisture. Usually, these conversations are cumbersome because these kind of
measurements have surface roughness and vegetation influence that affect the signal
(Garkusha et al., 2017; Wagner et al., 2010).

Page 1, line 19: Acronyms should be defined (SMOS, NDV/I, LST...)
It is true and we have added acronyms definitions (Page 1, line 14, new version).

DISaggregation based on Physical And Theoretical scale CHange algorithm
(DISPATCH) has been proposed in the literature to downscale soil moisture satellite
data from 40 km to 1 km of resolution by combining the low resolution Soil Moisture
Ocean Salinity (SMOS) satellite soil moisture data with the high resolution (Normalized



Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) datasets
obtained from a Moderate Resolution Imaging Spectroradiometer (MODIS) sensor.

Page 1, line27: “reason for why” remove “for”
We have rewritten this part.

Response to Reviewer 2:

GENERAL COMMENTS:

1)

CRITICAL: The manuscript does not read well and it needs to be revised by improving
structure, avoiding repetitions, and by writing symbols, equations, acronyms
consistently. Being a scientific paper, the structure has to be clear for the readership.
I found the introduction doesn’t flow and lacks background information.
Methods/Results/Discussion sections are confusing; methods are scattered
throughout the sections and discussion reveals mainly results. Find comments and
suggestions in the document attached.

- We have improved the manuscript taking into account your specific comments,
avoiding repetitions, writing symbols, and equations consistently. You can see all
the corrections in the specific comments section.

- We have rewritten the abstract:

Abstract. Soil moisture measurements are needed in a large number of
applications such as hydro-climate approaches, watershed water balance
management and irrigation scheduling. Nowadays, different kinds of
methodologies exist for measuring soil moisture. Direct methods based on
gravimetric sampling or Time Domain Reflectometry (TDR) techniques measure
soil moisture in a small volume of soil at few particular locations. This typically
gives a poor description of the soil moisture spatial distribution in relatively large
agriculture fields. Remote sensing of soil moisture provides a large coverage and
can overcome this problem but suffers from other problems stemming from its
low spatial resolution. In this context, the DISaggregation based on Physical And
Theoretical scale CHange algorithm (DISPATCH) has been proposed in the
literature to downscale soil moisture satellite data from 40 km to 1 km of
resolution by combining the low resolution Soil Moisture Ocean Salinity (SMOS)
satellite soil moisture data with the high resolution (Normalized Difference
Vegetation Index (NDVI) and Land Surface Temperature (LST) datasets obtained
from a Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. In this
work, DISPATCH estimations are compared with soil moisture sensors and
gravimetric measurements to validate the DISPATCH algorithm in an agricultural
field during two different hydrologic scenarios; wet conditions driven by rainfall
events and local sprinkler irrigation. Results show that the DISPATCH algorithm
provides appropriate soil moisture estimates during general rainfall events but not
when sprinkler irrigation generates occasional heterogeneity. In order to explain
these differences, we have examined the spatial variability scales of NDVI and LST
data, which are the input variables involved in the downscaling process. Sample



2)

variograms show that the spatial scales associated with the NDVI and LST
properties are too large to represent the variations of the average soil moisture at
the site and this could be a reason why the DISPATCH algorithm is not working
properly in this field site.

We have also reorganized the manuscript to improve the structure and flow of the
manuscript based on the comments raised by the two reviewers. In this context,
we have added a sub-section entitled “Spatial resolution analysis” in section 3 (i.e.,
Materials and Methods). This way, the methods used to estimate the spatial
resolution of variables (which where before introduced in the discussion section)
were moved to the methods section. The new manuscript structure is as follow:
1. Introduction

1.1 Study Area
2. Materials and Methods

2.1 In Situ Soil Moisture Measurements

2.2 DISPATCH Soil Moisture Measurements

2.3 Spatial Resolution and Spatial variability
3. Results

3.1 General Observations

3.2 Analysis and Discussion
4. Conclusions

We hope this will largely improve the clarity of the manuscript.

CRITICAL: The authors investigated the spatial variability of NSSM, NDVI and LST.
Although, the spatial resolution of LST and NDVI is 1 km (using MODIS dataset),
the spatial resolution of soil moisture is few centimeters by using gravimetric
measurements. Thus, the comparison does not make any sense and the
respective discussion is wrong. It would be interesting to explore the value of
DisPATCh and LST for different field scales over large areas, such as the SG
region. Or you explore LST and NDVI at high spatial resolution using Landsat
data. Find comments and suggestions in the document attached.

There is some confusion here. The support volume of gravimetric soil moisture
punctual measurements is few centimeters but the reviewer should notice that
our comparison is not between point measurements and satellite information. The
comparison is between the averages of these measurements over the entire field
site (very well distributed with more than 100 measurement points) with satellite
information. The average of the soil moisture is representative of the entire field
site with a support volume of about 25 ha. Consequently, these two variables have
similar support scale and therefore are comparable.

We have rewritten part of the manuscript to clarify this issue, Page 8, Line 23 (new
version):

Figures 3 compares gravimetric and soil moisture sensor measurements with the
DISPATCH soil moisture estimates obtained from remote sensing data during the
first period of time (without irrigation). We note that the comparison here is not
between punctual gravimetric measurements (with support volume of few
centimetres) and satellite information (1 km in resolution). We compare the



3)

average of these punctual measurements over the entire field site (very well
distributed with more than 100 measurement points) with satellite information.
The average of the soil moisture is representative of the entire irrigated area
associated with the Foradada field site. Consequently, these two variables have
similar support scale and are therefore comparable. Error bars in the gravimetric
measurements represent the standard deviation of all the measurements obtained
in one day. In addition, the green region in this figure displays the daily minimum
and maximum values of soil moisture data obtained from 5 EC-5 sensors.

- Another point along the same line is that soil moisture sensor data is also
measured at the centimeter scale. This data is interesting because it shows the
daily fluctuations of soil moisture. Sensors are well distributed over the entire field
site but in this case we have only 5 sensors. Gravimetric measurements show that
the average of soil moisture over the entire field site lays always between the
maximum and minimum values of these sensors. Based on this, we have chosen to
exhibit the minimum and maximum values of these 5 sensors in the figures. This
way, the reader knows that the average soil moisture value lays within this region
and can therefore appreciate the differences between the average soil moisture
and satellite information in days where only sensor data is available. This point
was also not clearly explained in the manuscript and we therefore understand the
confusion of the reviewer.

We have now rewritten the manuscript to clarify this point. Page 9, Line 7 (new
version):

We note that the average of gravimetric soil moisture data lays always within this
region.

We agree that it would be interesting to explore the value of DisPATCh and LST for
different field scales over larger areas, such as the SG region, but the DISPATCH
algorithm has been already well validated over large areas (Escorihulea et al. 2016,
Malbeteau et al. 2015 2018, Molero et al. 2016) and we thought it is more
interesting to analyze this under different conditions, i.e., punctual heterogeneity
produced by local irrigation. Note that we already mentioned in the manuscript
that the DISPATCH algorithm is capable to detect water bodies such as rivers,
floods and large irrigated areas (page 4, line 19, new version).

MAJOR: The authors evaluated DisPATCh NSSM using in situ measurements,
however this study needs to be fulfilled by a statistical analysis (Correlation, Bias
etc..). The result section would be improved by adding a temporal
description/comparison of NSSM.

We sincerely do not understand this point; we have done more than this. We have
conducted a geostatistical analysis of the key data involved, which is more than a
simple statistical analysis. Even the field campaigns were designed to characterize
the spatial variability. In the end, we decided to only show the variograms because
we think it is the information needed to understand the discrepancy observed
between satellite information and measurements. Moreover, the scope of the
manuscript is not to report a geostatistical analysis but to understand the worth of
satellite information for local irrigation.



4) MAIJOR: | don’t think that concluding statement: “DisPATCh algorithm fails to
describe the fluctuations in water content caused by irrigation” is correct; the
current spatial resolution of DisPATCh might still be too coarse for local irrigation
detection. However, DisPATCh succeeded to reveal spatial heterogeneity as
rivers, irrigation areas, floods (Escorihuela et al. 2016, Malbeteau et al., 2015
2018, Molero et al., 2016). It would be interesting to discuss the value and the
limitation of DisPATCh over irrigated area (from local to large irrigation system).
This conclusion needs to be balanced and the limitation of the analysis
performed in this study need to be considered.

- We have changed the sentence “DisPATCh algorithm fails to describe the

fluctuations in water content caused by irrigation” with Page 11, Line 25 (new
version):
Results have shown that in this case the downscaled soil moisture estimations are
capable of predicting the variations in soil moisture caused by general rainfall
events but fail to reproduce the temporal fluctuations of the average water
content caused by local irrigation.

- To clarify the advantages of DisPATCh we have added in the introduction section

Page 4, Line 18 (new version):
DISPATCH succeed to reveal spatial heterogeneities as rivers, large irrigation areas
and floods (Escorihuela and Quintana-Segui, 2016; Malbéteau et al., 2015, 2017;
Molero et al., 2016) and it has also been validated (Malbéteau et al., 2015; Merlin
et al., 2012; Molero et al., 2016) in fairly large and homogeneous irrigation areas,
but not in complex settings with spatially changing hydrologic conditions such as
those representing a local irrigation field.

MINOR: (1) Figures 1 to 4 need to be improved before publication. | suggest that
they can be merged into one figure with two subfigures (figures 2, 3 and 4 into
one map + zoon out figure 1 in order to see the coastline and Barcelona). (2)
DisPATCh pixels on figure 4 are not squared, any explanation? Is it really 1x1 km?
We think that we can merge Figure 1, 2 and 3 like the figure is shown below
(Figure 1), but we think that merge also Figure 4 is too much information in a

single figure.
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Figure 1. Location of the Foradada field site within the Segarra-Garriga irrigation system and
distribution of soil moisture measurement points. Gravimetric measurement points are arranged with
Cross section points in green and support points in yellow. The location of EC-5 sensors are
represented in red.

- ltisnotexactly 1 x 1 km, itis 0.9 x 1.1 km.

SPECIFIC COMMENTS:

Note that the main specific comments are not in the document because we have
rewritten the manuscript.
e Pagelline8:
We have deleted “climate change”
e Pagelline12:
We have rewritten this part of the abstract.
* Pagelline 22:

We have rewritten this part of the abstract.

e Pagelline 27:
We have rewritten this part of the abstract.

* Page2line12:
We have rewritten this part.
e Page2linel:
We have added some information Page 2 line 7 (new version):

“Here, we highlight that soil moisture measurements from the root zone yields
important information for field irrigation scheduling, determining to a great extent the
duration and frequency of irrigation needed for plant growth as a function of water
availability (Blonquist et al., 2006; Jones, 2004; Campbell, 1982).”

e Page2line 16:

we have added Page 2 line 11 (new version): “ and with atmospheric conditions (Koster
and Suarez, 2001)”.

e Page3line7:

We have rewritten this part.

e Page 3 line 25:

We have connected better both sentences with. Page 3, Line 8 (new version):



“It has global coverage and a revisit period of 3 days at the equator, giving two soil
moisture estimations, the first one taken during the ascending overpass at 6:00 am
and the second one during the descending overpass at 6:00 pm local solar time.”

Page 3 line 16:

We have modified the sentence with Page 3, Line 13 (new version):

“Since SMOS NSSM have been validated on a regular basis since the beginning of its
mission (Bitar et al., 2012; Delwart et al., 2008), it is considered suitable for hydro-
climate applications (Lievens et al., 2015; Wanders et al., 2014).

Page 4 line 7:

We have deleted “authors” and added “studies”. Page 4 line 2 (new version).

Page 4 line 11:

Your comment is “This makes it sound like its 'just another algorithm'. Rephrase the
sentence in a way that introduces DISPATCH already as a superior method”.

We do not know or we do not have any reference that this algorithm is superior to the
other algorithms.

Page 4 line 17:

Your comment is “Great! But why do we need it validated in irrigation fields? Highlight
the importance of having this. Also, was there anywhere a mention between
differences in soil moisture in irrigation vs rain fail? That is critical and missing here.

We think that is necessary validate this algorithm in irrigation fields because one of the
aim of this algorithm is monitor soil moisture for irrigation scheduling and
management. Thus, this validation is the next step for the algorithm.

We assume that precipitation and irrigation increase water content in the field and this
process is measured by soil moisture sensors, but we consider that there is no
difference between them except the scale effect (general rain fall versus local
irrigation).

Page 4 line 23:

We have changed “lot” by “lon”. Page 5 line 2 (new version).

Page 5 line 5:
We have changed “has” by “represents”. Page 5 line 11 (new version).

Page 6 line 8:
We changed the title of the subsection “ Remote Sensing Soil Moisture
Measurements” by “DISPATCH Soil Moisture Measurements”. Page 6 line 13 (new
version).



Page 6 line 9:
We modified the sentence “The main objective of the DISPATCH algorithm is to
downscale” by “DISPATCH algorithm aims to downscale”. Page 6 line 15 (new
version).

Page 7 line 7:

We have rewritten this part.

Page 10 line 18:
We have rewritten this part.

Page 11 line 14:
We have rewritten this part.
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The value of satellite remote sensing soil moisture data and the
DISPATCH algorithm inirrigation fields
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Correspondence to: Mireia Fontanet (mireia@lab-ferrer.com)

Abstract. Soil moisture measurements are needed in a laug@er of applications such &ydro-climate approachges
watershed water balance management and irrigatbedslling. Nowadays, different kinds of methododsgiexist for
measuring soil moisturé@irect methods based on gravimetric sampling oreTDomain Reflectometry (TDR) techniques
measure soil moisture in a small volume of sofeat particular locations. This typically gives agoalescription of the soil
moisture spatial distribution in relatively larggrzulture fields. Remote sensing of soil moistprevides a large coverage
and can overcome this problem but suffers fromropineblems stemming from its low spatial resolutibmthis context, the
DISaggregation based on Physical And Theoreticales€Hange algorithm (DISPATCH) has been proposethe
literature to downscale soil moisture satelliteadom 40 km to 1 km of resolution by combining b resolution Soil
Moisture Ocean Salinity (SMOS) satellite soil moist data with the high resolution Normalized Difflece Vegetation
Index (NDVI) and Land Surface Temperature (LST) adats obtained from a Moderate Resolution Imaging
Spectroradiometer (MODIS3ensor. In this work, DISPATCH estimations are pared with soil moisture sensors and
gravimetric measurements to validate the DISPATQ¢brithm in an agricultural fieldduring two different hydrologic
scenarios; wet conditions driven by rainfall eveants local sprinkler irrigation. Results show ttieg DISPATCH algorithm
provides appropriate soil moisture estimates dudegeral rainfall eventbut not when sprinkler irrigation generates
occasional heterogeneity. In order to explain tliifferences, we have examined the spatial vaiiglsitales of NDVI and
LST data, which are theput variables involved in the downscaling process. Samariograms show that the spatial scales
associated with the NDVI and LST properties arelémge to represent the variations of the averageisture at the site
and this could be a reason why the DISPATCH algorit not working properly in this field site.

1. Introduction
Soil moisture measurements taken over differentiadpand temporal scales are increasingly required wide range of
environmental applications, which include crop gi@recasting (Holzman et al., 2014), irrigatioaning (Vellidis et al.,

2016), early warnings for floods and draughts (Klei and Rientjes, 2016), and weather forecastirigp(Det al., 2016).
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This is mostly due to the fact that soil moistuentcols the water and energy exchange between keyoamental
compartments (atmosphere and earth) and hydrolqmiceesses, such as precipitation, evaporatidittration, and run-off
(Ochsner, 2013; Robock et al., 2000).

There are several applications in which soil meestmeasurements have been shown to provide relénBmtmation
(Robock et al., 2000). For example, in environmeeafplications, soil moisture is typically used fdefining the water
stress occurring in natural and human systems Kratal., 2000) or for quantifying nitrate leachiagd drainage quality
(Clothier and Green, 1994Here, we highlight that soil moisture measuremerisn the root zone yields important
information for field irrigation scheduling, deteimng to a great extent the duration and frequewfciyrigation needed for
plant growth as a function of water availabilityy@Bquist et al., 2006; Jones, 2004; Campbell, 1982)

Soil moisture is highly variable in space and timginly as a result of the spatial variability ivilproperties (Hawley,
1983), topography (Burt and Butcher, 1985), landsuf~u, 1994), vegetation (Le Roux et al., 19858)l atmospheric
conditions (Koster and Suarez, 2001As a result, soil moisture data exhibits a strengle effect that can substantially
affect the reliability of predictions depending tme method of measurement used. For this reasas,important to
understand how to measure soil moisture for iriigascheduling in a commercial field site.

Nowadays, available techniques for measuring admesing soil moisture can provide data on a smallasge scale.
Gravimetric measurements (Gardner, 1986) estinwiten®isture by the difference between the nataral the dry weight
of a given soil sample. They are used as a trugevai soil moisture for sensor calibration (Stard &altineanu, 2002) or
soil moisture validation studies (Bosch et al., 00osh et al., 2006). The main disadvantage &f itiethod is that these
measurements are time-consuming; users have to the field to collect soil samples and place therthe oven for a long
time. Soil moisture sensors such as Time DomaiteBR®imetry sensors (Clarke Topp and Reynolds, 19@8aap et al.,
2003; Topp et al., 1980) or capacitance sensorgd&B® et al., 2007; Dean et al., 1987) are capdableeasuring soil
moisture continuously using a data logger, thematgbling the final user to save time. Soil moistegasors are especially
useful for studying processes at a small scaleshffer from the fact that field data is typicallgarce and provides an

incomplete picture of a large area (Western etl898). Nevertheless, the use of soil moisture@sris a common practice
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for guiding irrigation scheduling in cropping fiekystems (Fares and Polyakov, 2006; Thompson,&ttf)7; Vellidis et al.,
2008).

Remote Sensing, can estimate soil moisture contislyaver large areas (Jackson et al., 1996).ilndhse, soil moisture
estimations refer to the Near Surface Soil MoistiiN8SM), which represents the first 5 cm of the $op profile. In recent
years, Remote Sensing techniques have been impemgdiversified their estimation, making them ateiesting tool for
monitoring NSSM and other variables such as themdtized Difference Vegetation Index (NDVI) and thend Surface
Temperature (LST). Different satellites exist tha¢ capable of estimating NSSM, one of them isSb# Moisture and
Ocean Salinity (SMOS) satellite launched in Noven@09 (Kerr et al., 2001)t has global coverage and a revisit period
of 3 days at the equator, giving two soil moistestimations, the first one taken during the ascendiverpass at 6:00 am
and the second one during the descending overpa€s0@ pm local solar timeSMOS satellite is a passive 2D
interferometer operating at L-band (1.4 GHz) (Ketral., 2010). The spatial resolution ranges fr&@ma55 km, depending
on the incident angle. Its goal is to retrieve NS@ith a target accuracy of a 0.04 m3/m3 (Kerr et2012).Since SMOS
NSSM have been validated on a regular basis shecbdginning of its mission (Bitar et al., 2012;\iaat et al., 2008), it is
considered suitable for hydro-climate applicatifiisvens et al., 2015; Wanders et al., 2014).

The relatively large variability of soil moistur@mpared to the low resolution of SMOS-NSSM datadéis the direct
application of this method to irrigation scheduliktpwever, the need for estimating NSSM with a hgtgmn higher than 35
— 55 km using Remote Sensing has increased fardiif reasons: 1) This data can be downloaded/damih different web
sites; 2) A field installation of soil moisture sems is not necessary; and 3) No specific mainten# needed. For these
reasons, in the last few years, different algorghmave been developed to downscale Remote Serwingasture data to
tens or hundreds of meters.

Chauhan et al., (2003) developed a Polynomiahfjttmethod which estimates soil moisture at 25 ksoltgion. This
method links soil moisture data with surface terapee, vegetation index and albedo. It does notireqin situ
measurements but cannot be used under cloud ceveomglitions. The change in the detection methpdrted by Narayan
et al. (2006) downscales soil moisture at 100 rolegi®n. This is an optimal resolution for agriautl applications, but the

method is highly dependent on the accuracy ohpait data. The same problem is attributed to theel@e algorithm for
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the Soil Moisture Active Passive (SMAP) satellif@aé and Mohanty, 2006), which downscales soil moéstat 9 km
resolution. These algorithms have to be validatsithguin situ measurements. For this purpose, masties use soil
moisture sensors installed at the top soil profike, the first 5 cm of soil (Albergel et al., 20XCosh et al., 2004; Jackson et
al., 2010), while others use gravimetric soil maist measurements (Merlin et al., 2012) or the caoatlwin of both
methodologies (Robock et al., 2000).

Other satellites, such as Sentinel-1, can esti&8M at 1 km resolution (Hornacek et al., 2012; tMa¢t al., 2015;
Paloscia et al., 2013). Sentinel-1 provides twal&iof products, the first one is Single Look Com8LC) and the second
one is Ground Range Detected (GRD). The last onebeaused for solving a wide range of problemstedldo Earth
surface monitoring, such as soil moisture, bus ihdt a direct measurement and therefore datartegatis needed. In this
case, GRD product is converted into radar baclkercatiefficient and then into dB units to estimai# sioisture. Usually,
these conversations are cumbersome because tmesefkineasurements have surface roughness andatiegeinfluence
that affect the signal (Garkusha et al., 2017; Véagn al., 2010).

The DISPATCH method (DISaggagregation based oniPdlyAnd Theorical CHange) (Merlin et al., 2012; Nie et al.,
2008) is an algorithm that downscales SMOS NSSM €tam 40 km (low resolution) to 1 km resolutiongf resolution).
This algorithm uses Terra and Aqua satellite datastimate NDVI and LST twice a day using the MadierResolution
Imaging Spectroradiometer (MODIS) sensor. Thesenasibns have 1 km resolution and can be condueted if there is
no cloud coverage. This downscaling process previde final user with the possibility of estimatiN$SM using Remote
Sensing techniques at high resolutionSPATCH succeed to reveal spatial heterogenedtiesvers, large irrigation areas
and floods (Escorihuela and Quintana-Segui, 201&b&teau et al., 2015, 2017; Molero et al., 2018) ih has also been
validated (Malbéteau et al., 2015; Merlin et aQ12; Molero et al., 2016) in fairly large and horaeagous irrigation areas,
but not in complex settings with spatially changmglrologic conditions such as those representilogal irrigation field.

In this work, we evaluate the worth of Remote Semsn agricultural irrigation scheduling by compayiin situ soil
moisture data obtained from gravimetric and soilistuse sensors, with soil moisture data determibgddownscaling

Remote Sensing information with the DISPATCH altjori.
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1.1. Study Area

The study area shown in Figure 1 is located invilege of Foradada (1.015 lat., 41.886.), in the Segarra — Garrigues
(SG) system (Lleida, Catalonia). The SG systemmisrgortant hydraulic project currently being cadriout in the province
of Lleida, Catalonia, which involves converting mad the current dry land fields into irrigated léls. Its construction
enables 1000 new hectares with a long agriculteadition to be irrigated in most of the dry laffah achieve this, an 85 km
long channel was constructed to supply water fdgdtion. At present, approximately 16000 irrigatcare potential
beneficiaries of these installations. However, nfashers have not yet installed this irrigationteys, which means that the
SG systems can still be regarded as dry land.

The Urgell area is located in the west of the S&esy. This area has totally different soil moistooaditions, especially
during the summer season when the majority of $i@e currently irrigated. This gives rise to tveacly distinguishable
wet and dry soil moisture conditions. Figure 1 shaWwe Foradada field, whickepresent25 ha of a commercial field
irrigated by a solid set sprinkle irrigation systelistributed with 18 different irrigation sectorBhe soil texture is 65.6%
Clay, 17.6% Silt and 16.8 Sand. Every year twoedéht crops are grown, the first one during thetaviand spring seasons,
when wet conditions are maintained by precipitgtenmd the second one during the summer and autaasoss, when wet
conditions are maintained by sprinkler irrigatidine Foradada field is thus one of the few irrigdteltis located within the
SG system. Consequently, this field has soil magstionditions similar to those in the surroundingaaduring the winter
and spring season, but completely different cooddiduring the summer and autumn seasons. Thissnthisesite unique

for assessing Remote Sensing in a distinct isolatiggtion field.

2. Materialsand M ethods

2.1. In situ Soil M oisture M easurements

A total of 9 intensive and strategic field campaigmere conducted in the study area during 2016: B2)YDOY85,
DOY102, DOY187, DOY194, DOY200, DOY215, DOY221 abdY224. During each field campaign, disturbed soil
samples were collected from the top soil profiles(6m depth) for measuring gravimetric soil moistdata. A total of 101

measurement points, depicted in Figure 1., wermeéfaround the field. They are divided into twéfetient kinds of points:
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1) Cross section points; 75 points defined to regme the spatial variability of soil moisture irffdient cross sections. In
these cross sections, points are separated by&)d 85 m; 2) Support points; 26 points complenmgiormation measured
from cross sections, thereby adding and suppoitiftgmation about field spatial variability. Eacbilssample is analyzed
using the gravimetric method for measuring graviloesoil moisture content, which is transformedvimumetric soll
moisture content using bulk density measurementte(ler, 1982). Daily averages and their standagdiadions of
gravimetric measurements were computed to repréisersil moisture associated with the entire fiitd.

Soil moisture was also measured using capacitivé E€nsors (METER Group, Pullman, WA, USA), preegigicalibrated
in the laboratory (Star and Paltineanu, 2002). igsife 1 shows, a total of 5 control points werddhed across one of the
three gravimetric cross sections. Each controltp@presents a different irrigation sector of tieddf Soil moisture sensors
were installed at 5 cm depth, taking into accotstéxplore volume of these sensors. Their reseiligic0.03 cm3-cm-3.
They were connected to an EM50G data logger (MET&BuUp, Pullman, WA, USA) that register soil moigtievery 5

minutes.

2.2. DISPATCH Soil Moisture M easur ements
In this section we briefly describe the DISPATCHyaithm. Further details can be found in Merlinatt (2013) and
references thereimhe DISPATCH algorithm aims to downscN&SM data obtained from SMOS at 40 km resolutmf t
km resolution.The method assumes that NSSM is a linear functidheoSoil Evaporative Efficiency (SEE), which caa
estimated at high resolution (1 km) from the acitjois of two products obtained from MODIS, i.e., TSnd NDVI
datasets. This MODIS-derived SEE is further congides a proxy for the NSSM variability within tB80S pixel. The
estimation of SEE is assumed to be approximatehstemt during the day given clear sky conditiohBe downscaling
relationship is given by Eq. (1)

eI-IR = eSMOS + e;{R(SEESMOS) X (SEEHR - SEESMOS)' (1)
wherebfgyos is the low resolution SMOS soil moisture d&8E,r is the MODIS-derived SEE at a high resolution (1) k
SEEgmos is the average FEEyg within the SMOS pixel at a low resolution (40 knand6yr (SEEgmos) is the partial

derivative of soil moisture with respect to thel saaporative efficiency at high resolution evatdhtit theSEEg),os value.
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This partial derivative is typically estimated bging the linear soil evaporative efficiency modélBudyko (1956) and
Manabe (1969)which is written by Eq. (2)

Our = SEEug X 6, 2)
wheredyr represents the soil moisture of the top soilig9e5 cm) at high resolution, arg is an empirical parameter that
depends on soil properties and atmospheric conditiche soil evaporation efficiency at high resolutiiE is estimated

as a linear function of the soil temperature ahhigsolution T; yr), EQ. (3)

SEEHR — Ts,max_Ts,HR (3)

Tsmax—Tsmin’
The soil temperature at high resolution is estihditg partitioning the MODIS surface temperatureadaiST) into the soill
and the vegetation component according to the z@gaenethod of Moran et al. (1994). This also regglian estimation of
the fractional vegetation cover, which is calculateom the NDVI dataTy ,;, andT; ¢ are the soil temperature end-
members (Merlin et al., 2012).
In this work, the DISPATCH algorithm has been exeduluring period DOY36 and DOY298 to estimate NS&M. km
resolution in the Foradada field site. DISPATCH\pdes a daily NSSM pixel map (regular grid). Thedaada field site is
entirely included in one pixel. In this pixel, 5%5of the total area corresponds to irrigated afée. remaining portion of

the pixel corresponds to dry land (shown in Figixe

2.3. Image Spatial Resolution and Spatial Variability

The information contained in a satellite imageharacterized here by two properties: the spatsdltgion and the spatial
variability of the image attributes. The spatiadoteition of a satellite image is the ground argaasented by each pixel, i.e.,
the raster cell size. It is essentially the repnestese support volume chosen to describe the tianis of the attributes of
interest at the ground. This is typically deterndifmsed on the type of satellite sensor. Instéedspatial variability refers
to the variations of the attributes presented & ithage at the ground surface, e.g., patterns atfadcontinuity, size of
objects in the scene, and so tmrandom field theory and geostatistics, the iapatriability is mainly characterized by the

covariance function or by its equivalent, the saaringram, which is defined by (Journel and Huijlised 978) Eq. (4),

y(h) =2 E{[Z(x+ h) — Z()]?}, (4)
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whereZ(x) is the random variable at tikgposition, ancE{-} is the expectation operator. Essentially, the garmgram is a
function that measures the variability between @t variables separated by a distahcé/ery often, the correlation
between two variables separated by a certain distatisappears whelh| becomes too large. At this instay(h)
approaches a constant value. The distance beyoimth y(h) can be considered to be a constant value is kremwthe
range, which represents the transition of the bdi#o the state of negligible correlation. Thig tange can ultimately be
seen as the size of independent objects in thedniathe pixel size is smaller than 10 times the minm range (in the
absence of the nugget effect), then neighbour pixéll be alike, containing essentially the sameeleof information
(Journel and Huijbregts, 1978). This will be aicst point in the discussion of the results later W/e finally note that the
spatial resolution and the spatial variability an® related concepts. Several authors contentalrational choice of the
spatial resolution for remote sensing should bedam the relationship between spatial resolutimh gpatial dependence.
However, since this is not the usual procedure, dbatial resolution can be inappropriate in somgesaor provide

unnecessary data (Atkinson and Curran, 1997; Wazdand Strahler, 1987).

3. Results

3.1. General Observations

One of the main advantages of our experiment is rdr@ote sensing soil moisture data is evaluatethguwo different
hydrologic periods of the same year in a givenadftire field site. The first period representspcgyowth with soil wet
conditions caused by natural rainfall events (withiorigation). This period transpired during thénter and spring season,
i.e., from February to June. The following perioztars during the dry season with artificially ceshisoil wet conditions
caused by sprinkler irrigation operating upon coemand during the summer and autumn season, framtduOctober. In
contrast to the rainfall events, sprinkler irrigaticreates a local artificial rainfall event usisgveral rotating sprinkler
heads. The comparisons of these two hydrologimgsrallow us to evaluate the sole effect of lopainkler irrigation on
remote sensing estimates.

Figures 3 compares gravimetric and soil moistunesse measurements with the DISPATCH soil moistusgneates

obtained from remote sensing data during the fiestod of time (without irrigation). We note thdet comparison here is
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not between punctual gravimetric measurements (suiport volume of few centimetres) and sateltiferimation (1 km in
resolution). We compare the average of these pahateasurements over the entire field site (veril distributed with
more than 100 measurement points) with satellfierimation. The average of the soil moisture is espntative of the entire
irrigated area associated with the Foradada figéd €onsequently, these two variables have sinsilgport scale and are
therefore comparable. Error bars in the gravimetrgasurements represent the standard deviatiolh theameasurements
obtained in one day. In addition, the green regiothis figure displays the daily minimum and mawim values of soil
moisture data obtained from 5 EC-5 sensW/s. note that the average of gravimetric soil moesiata lays always within
this region.Therefore, this information can be used to complensoil moisture data in days where no gravimeginpling
is available. The error bars associated with DISBATdata refer to the standard deviation obtaingtl o daily SMOS
estimations and four MODIS data (two at 6:00am amd more at 6:00 pm). To better appreciate tendsndhe same
information is also presented as a normalized ivelagoil moisture, i.€.(0 — 0nin)/ (Omax — Omin), Whereb,,;, are the
minimum and maximum values of all soil moisture sweaments. Results show that DISPATCH estimatespcaperly
detect the relative increase in soil moisture emtid® caused by general rainfall events. Note fetairce that all methods
produce a similar relative increase in soil mostsignal after the occurrence of a strong rairgfedint. In absolute terms, we
see that DISPATCH can slightly underestimate the tvalue of soil moisture but this could be attrnlito small
differences between the support volume of the ftiel and the spatial resolution of the satelfitage.

A similar analysis is shown in Figure 4, which camgs gravimetric and sensor soil moisture measuresmeith
DISPATCH soil moisture estimations during the setperiod (soil wet conditions maintained by spratkirrigation). In
contrast to our previous results, one can seetliegaDISPATCH dataset is essentially not sensitovegrinkler irrigation
even though they respond properly to sporadic smaafifall events. Likewise, the relative increase soil moisture
measurements also shows that sprinkler irrigatioesdnot affect the DISPATCH estimation. Thus, etleough the
DISPATCH estimations seems to properly respondgoificant rainfall events during the first periddjgation operating at
the Foradada field scale remains undetected duhiegsecond period. The DISPATCH dataset disregargstion and
merely indicates that soil dry conditions existaalarger picture. We conclude then that the DISPATdataset provides

representative estimates of soil moisture at aduiésa lower than expected.
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3.2. Analysis and Discussion

We seek to answer the important question of whyDtt&PATCH soil moisture estimates obtained by daaiieg satellite
information from 40 km to 1 km of resolution aret rs@nsitive to sprinkler irrigation in this caseéne following possible
sources of discrepancies can be identified: (prerassociated with the approximations used iDii$#ATCH downscaling
formulation; (ii) differences in the scale of obgaions; and (iii) low quality of information assated with DISPATCH
input variables. We concentrate the analysis 9rafid (iii). First, we note that the DISPATCH ragain of 1 km is similar
to the characteristic scale of the irrigated atehe Foradad field site and therefore a bettefopmance was expected. The
extent of the irrigated area in the DISPATCH pisie of interest is 51.5 % (see Figure 2). Giveat 8oil moisture is a
linear property, we content that this cannot expldie almost zero relative increase in soil moestabtained during
irrigation. Then, we examine the semivariogramshef different input variables involved in the dowakng process, i.e.,
the NDVI and the LST properties provided by the MGBensor. The NDVI and LST semivariograms werpaetvely
estimated from the MOD13A2 and MOD11A1 product dathich can be freely downloaded from the GooglghEBngine
website (https://earthengine.google.com). We seteet daily representative image of April, June Angust. The April
image describes a general rainfall event in thereghe June image shows when local irrigationtsta the Foradada field,
and finally the August image represents when tlog ¢8 well developed and frequent irrigation is desk Experimental
semivariograms have been fitted with a theoretmoaldel (spherical and exponential models for the L3l NDVI,

respectively), which can be formally expressed @s5eand 6,

Yist(h) = ¢;; Sph (ﬂ) + Cpp [1 — cos (M "T)]’ (%)

a1y a1z

Ynovi(h) = c31 Exp (g) + ¢y, Exp (%) + Cy3 [1 — cos (M 1'[)], (6)

az3

wherec;; are constant coefficients that represent the itton of the different standard semivariogram eisdanca;; are

the corresponding ranges of the different strustuidie LST and NDVI experimental and theoreticathisariograms are
shown in Figure 5. The parameters adopted in théamm function model are summarized in Tables 12Znthe analysis
determines a nested structure with a positive tigeabination between isotropic stationary semognam models and the

hole effect model. Hole effect structures mostrofitedicate a form of periodicity (Pyrcz and Deuts2h03). In our case,

10
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this periodicity reflects the presence of areas wlifferent watering and crop growth conditions,,iin contrast to the SG
area, the Urgell area is based on irrigation.

The spatial variability of NDVI and LST vary withime according to changes in hydrologic conditiolms.April, the
semivariogram of NDVI displays more variability alebs spatial continuity due to the differencegtiowth rate and crop
type conditions existing at the regional scale miyithe wet season (controlled by rainfall ever®).the other hand, the
spatial dependence of LST is more significant ing@at. Importantly, results show that the scale afiability (range)
associated with MODIS data during the dry seasdmnaa controlled amount of water by irrigation Epked, ranges
between 35 and 36 km for the NDVI and between 22 2ihkm for the LSTRecalling the discussion provided in section
2.3., this means that the size of independent tbjacthe NDVI and LST images is about 30 kms dmat tnsignificant
spatial variations of NDVI and LST values are expdcbelow 1/10 of this size. This suggests thatNi&/I and LST
products provided by MODIS cannot detect differenisetween neighbour pixels of size 1 km.

To further corroborate this point, Figure 6 compattee temporal evolution of LST and NDVI obtainedni two adjoin
MODIS pixels: the Foradada pixel and its North-Wiestghbour pixel. Note that the neighbour pixelresponds to a not
irrigated area. Data was downloaded using MOD13A@ IOD11A1 products with Google Earth Engine weysftom
DOY036 to DOY298. In general, irrigation in an agiiure field site should produce a decrease in MalDes and an
increase in NDVI. However, Figure 6 shows the salyrgamics and similar values in both pixels evenmwinggation is
applied. Results show that the LST and NDVI infotiora cannot detect neither the sprinkler irrigatiwor the crop growth

as a consequence of irrigation in this case.

4. Conclusions

We analyze the value of Remote Sensing and the TSP downscaling algorithm for predicting soil mhige variations
in an irrigated field site of size close to imagsalution. The DISPATCH algorithm based on the NRWid LST data
obtained from the MODIS satellite is used for dogalmg the SMOS information and transforming the@®soil moisture
estimations from a resolution of 40 km to 1 km. 3de=stimates are then compared with average graidnaad soil

moisture sensors measures taken all over the dieddResults have shown that in this case the downscaidnoisture

11
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estimations are capable of predicting the variationsoil moisture caused by general rainfall evdnit fail to reproduce the
temporal fluctuations of the average water contentsed by local irrigationTo provide insight into this problem, we
examine the spatial variability of the differenpirt variables involved, i.e., the NDVI, the LST.dR#és indicated that the
size of individual objects in the NDVI and LST inemis too large to be able to represent adequtitelyariations of the
average water content at the site. This effectoissignificant during rainfall events because thigidal spatial scale of
rainfall events is much larger than the size ofithigated field site.

From a different perspective, these results alggest that irrigation scheduling based on satehifiermation coupled with
the DISPATCH downscaling algorithm can be apprdpria regions of the world with extensive irrigatisurface coverage,
larger than approximately 10 km (e.g., Punjab Badttowever, caution should be paid to the direqgiliaption of this
method as its performance will strongly depend lom $patiotemporal variation of the irrigation withthe area. These

variations can generate occasional heterogeneitlrig to the failure of the soil moisture predintimethod.
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Figure 1. Location of the Foradada field site within the Segarra-Garriga irrigation system and distribution of soil moisture
measurement points. Gravimetric measurement points are arranged with cross section points in green and support points in
yellow. Thelocation of EC-5 sensorsarerepresented in red.
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Figure 2. The DISPATCH grid representing the Foradada field, outlined in dark blue; irrigated fields, in light blue; and dry land
inlight red.
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Figure 3. Comparison of average gravimetric soil moisture measurements (red) with the DISPATCH soil moisture estimations
(yellow) and the daily maximum and minimum soil moisture sensors measurements (green) during the first hydrologic period (soil

wet conditions caused by rainfall events only).
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Figure 4. Comparison of average gravimetric soil moisture measurements (red) with the DISPATCH soil moisture estimations
(yellow) and the daily maximum and minimum soil moisture sensors measur ements (green) during the second hydrologic period
(soil wet conditions caused by irrigation). Thetop figure showsthe intensity of precipitation and irrigation.
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Figure 5. LST and NDVI experimental and theoretical semivariograms associated with April (blue), June (green), and August
(red).
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Figure 6. Temporal evolution of LST and NDVI obtained at the Foradada pixel and its neighbour North-West pixel situated 2 kms
away.
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Tables

LST

Variogram Hole effect
Month Model Sill (c14) Range (a11) Sill (c12) Range (ap;)
April Spheric 8.4 46000 - -
June Spheric 7.5 22000 15 25000
August Spheric 14 32000 2 29000
Table 1. Randon function model parameters of LSTismigrams.
NDVI

Variogram Hole effect

Month  Model Sill (cy1) Range (ay;)  Sill (cy)) Range (ay,) Sill (c,3) Range (as)
April Exponential 0.013 8000 0.02 55000 - -
June Exponential 0.013 35000 - - 0.22 28000
August  Exponential 0.015 36000 - - 0.21 28000

Table 2. Random function model parameters of NDVtisariograms.
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