
<Author’s response> 

Journal: HESS 

Title: Evaluation of impact of climate change and anthropogenic change on regional hydrology. 

Author(s): S. Chang et al. 

MS No.: hess-2018-91 

MS Type: Research article 

 

Editor 

We appreciate the thoughtful comments from the editor, which have helped us to improve the original 

manuscript significantly. We explain in detail how we responded to the reviewer’s comments, with line 

numbers referring to the revised manuscript unless otherwise noted. 

Index Comments 

1 Editor 

decision 

The authors were provided with three detailed and substantive reviews, each of 

which pointed out significant issues associated with the assumptions, methods and 

framing of results. While the authors have made a serious and good faith effort to 

address these issues, it is clear that the manuscript remains imperfect, at least with 

respect to its stated intent of identifying and quantifying the relative impacts of 

climate change and anthropogenic change on regional hydrology.  
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Abstract 12 

General circulation models (GCMs) have been widely used to simulate current and future 13 

climate at the global scale. However, the development of frameworks to apply GCMs to assess 14 

potential climate change impacts on regional hydrologic systems, the ability to meet future water 15 

demand, and compliance with water resource regulations is more recent.  In this study eight 16 

GCMs were bias-corrected and downscaled using the Bias Correction and Stochastic Analog 17 

(BCSA) downscaling method and then used, together with three ET0 methods, and eight different 18 

water use scenarios to drive an integrated hydrologic model previously developed for the Tampa 19 

Bay region in west central Florida. Variance-based sensitivity analysis showed that changes in 20 

projected streamflow were very sensitive to GCM selection, but relatively insensitive ET0 21 

method or water use scenario. Changes in projections of groundwater level were sensitive to both 22 

GCM and water use scenario, but relatively insensitive to ET0 method. Five of eight GCMs 23 

projected a decrease in streamflow and groundwater availability in the future regardless of water 24 

use scenario or ET method. For the business as usual water use scenario all 8 GCMs indicated 25 

that, even with active water conservation programs, increases in public water demand projected 26 

for 2045 could not be met from ground and surface water supplies while achieving current 27 
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groundwater level and surface water flow regulations. With adoption of 40% wastewater reuse 28 

for public supply and active conservation 4 of the 8 GCMs indicate that 2045 public water 29 

demand could be met while achieving current environmental regulations; however, drier climates 30 

would require a switch from groundwater to surface water use. These results indicate a high 31 

probability of a reduction in future freshwater supply in the Tampa Bay region if environmental 32 

regulations intended to protect current aquatic ecosystems do not adapt to the changing climate.  33 

Broad interpretation of the results of this study may be limited by the fact that all future water 34 

use scenarios assumed that increases in water demand would be the result of intensification of 35 

water use on existing agricultural, industrial and urban lands. Future work should evaluate the 36 

impacts of a range of potential land use change scenarios, with associated water use change 37 

projections, over a larger number of GCMs. 38 

1. Introduction 39 

The Intergovernmental Panel on Climate Change (IPCC) along with many other studies 40 

have indicated that climate change is likely to alter both the global hydrologic cycle and regional 41 

hydrologic cycles (Aalst et al., 2014; Déry et al., 2009; Georgakakos et al., 2014; Hawkins et al., 42 

2014; Milliman et al., 2008). These studies have indicated that climate change is likely to 43 

increase the frequency of droughts, as well as the magnitude of floods in many regions 44 

(Diffenbaugh and Field, 2013; Georgakakos et al., 2014; Walsh et al., 2014). It is necessary to 45 

investigate future climate change and its potential impacts on the natural environment in order to 46 

reduce risks and increase resilience for future water resources planning and management (Vano 47 

and Lettenmaier, 2013). 48 

General Circulation Models (GCMs) and hydrologic models have been widely used to 49 

evaluate future climate change and its impact on regional hydrologic cycles (Boé et al., 2007; 50 

Maurer and Hidalgo, 2008). However, there are a variety of barriers to direct use of GCMs to 51 

drive regional hydrologic models. For example, the current generation of GCMs contain biases 52 

that prevent accurate reproduction of historic hydrological conditions when used to drive 53 

hydrologic models (Giorgi and Mearns, 2002; Wood et al., 2002). In addition, the coarse 54 

resolution of GCMs prevents direct use of their results with regional hydrologic models that 55 

require higher resolution climate variables (Solomon et al., 2007). Many bias correction methods 56 

and downscaling methods have been developed and evaluated to overcome these limitations 57 
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(Chen et al., 2013; Ghosh and Mujumdar, 2008; Hwang and Graham, 2013; Langousis et al., 58 

2015; Muerth et al., 2013; Quintana Seguí et al., 2010; Stoll et al., 2011; Zhang and 59 

Georgakakos, 2012).  Although these bias correction and downscaling methods do not correct 60 

problems with large scale synoptic forcing, and are not particularly good at reproducing extreme 61 

floods or droughts in the retrospective period, previous research has shown that they are able to 62 

simulate broad features of the climate system and are useful for characterizing plausible 63 

projections of possible futures (Kundzewicz et al, 2008, 2009). Furthermore, previous work in 64 

the study region has shown that hydrologic models driven by bias-corrected downscaled 65 

retrospective GCM output adequately reproduce retrospective  high stream flows (e.g. 7Q2 and 66 

7Q10), as well as the long term mean and standard deviation of monthly flows (Hwang and 67 

Graham, 2014).  68 

In addition to studies that focus on climate impacts on the hydrological cycle, it is also 69 

necessary to evaluate the effects of direct human behavior (Haddeland et al., 2014; Wang and 70 

Hejazi, 2011). Human activities such as agricultural production, irrigation (Gupta et al., 2015), 71 

municipal pumping (Patterson et al., 2013), deforestation, and urban development alter regional 72 

hydrologic behavior (Siriwardena et al., 2006). For robust water resources management and 73 

planning better understanding of the influence and relative importance of climate change and 74 

human-induced change on hydrology and water resources is essential (Chang et al., 2016; Ma et 75 

al., 2008; Tan & Gan, 2015; Ye et al., 2013; Zheng et al., 2009). 76 

The relative contributions of climate change and human activities to hydrologic responses 77 

have been evaluated using GCM data to drive hydrologic models with plausible future 78 

anthropogenic scenarios (Liu et al., 2013; Maurer et al., 2010; Wood et al., 2002). Murray et al. 79 

(2012) used the Land-surface Processes and eXchanges (LPX) dynamic global vegetation model 80 

and the WaterGAP hydrological model to evaluate the impacts of climate change and socio-81 

economic change on global hydrologic response for the 2070 – 2099 time period. They found 82 

that climate change and population growth increased water stress in many regions, and change in 83 

runoff was most highly correlated with precipitation change in large global catchments. Harding 84 

et al. (2012) applied downscaled outputs of 16 GCMs with the VIC model to investigate the 85 

future change in streamflow for the Colorado river basin. They suggested that impact analyses 86 

relying on only a few scenarios were unacceptably influenced by the choice of GCM projections.  87 
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For studies using GCMs to project future hydrologic responses, uncertainties resulting 88 

from the choice of GCM, RCP (Representative Concentration Pathways) trajectory, and 89 

reference evapotranspiration (ET0) estimation methods are all significant, and it is important to 90 

quantify the relative uncertainties of these factors (Chang et al., 2016; Hawkins & Sutton, 2009, 91 

2010; Kingston et al., 2009; Koedyk & Kingston, 2016; McAfee, 2013; Thompson et al., 2014; 92 

W. Wang et al., 2015). Furthermore, the effects of climate change on groundwater levels have 93 

not explored as extensively as the effects of climate change on surface water flows (Green et al., 94 

2011; Kløve et al., 2014). Kløve et al. (2014) suggested that the uncertainties of groundwater 95 

projections attributed to climate models, downscaling techniques, emission scenarios, land use 96 

changes and social economic development should be evaluated.  97 

This study evaluated the future projections of regional hydrologic response using eight 98 

GCMs, three ET0 estimation methods, and eight human water use scenarios to drive a calibrated 99 

regional hydrologic model developed for the Tampa Bay region. A comprehensive evaluation of 100 

the relative sensitivity of projections of regional hydrologic response to the choice of GCM, ET0 101 

estimation method, and human water use scenario was conducted. Statistical analyses were 102 

performed to determine whether differences in streamflow and groundwater level between 103 

retrospective hydrologic and projected future climate were statistically significant given these 104 

underlying prediction uncertainties. The ability to satisfy projected increases in future water 105 

demand while meeting current groundwater level and surface water flow regulations was 106 

evaluated over the suite of GCM and water management scenarios. 107 

2. Materials and Methods 108 

2.1 Study Region 109 

Tampa Bay Water operates a diverse regional water supply system comprised of a 110 

desalination plant, well fields that extract water from the Floridan Aquifer, and surface water that 111 

is extracted from the Hillsborough and Alafia Rivers (https://tampabaywater.org/water-supply-112 

sources-tampa-bay-region ). The fresh groundwater system in the region is composed of two 113 

aquifer systems, a thin surficial aquifer and the thick and highly productive carbonate rocks of 114 

the Floridan aquifer system (Tihansky & Knochenmus, 2001). Dynamic interacting surface-115 

water and groundwater systems (in which groundwater from in the aquifer used for agricultural 116 
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irrigation and public water supply also feeds the surface springs and rivers) characterize the 117 

region and must be considered in the management of water resources (Tihansky, 1999). For 118 

example the SWFWMD regulates groundwater pumping for water supply to maintain 119 

groundwater levels that promote environmental protection of lakes and wetlands near well-fields.  120 

Similarly they regulate the daily volume of flow permitted for extraction from rivers based on 121 

maintaining sufficient in-stream flows and spring flows to protect aquatic ecosystems. 122 

This study focused on the Integrated Northern Tampa Bay (INTB) model domain 123 

(Geurink and Basso, 2013; Hwang and Graham, 2014). Figure 1 shows the INTB model domain, 124 

model sub-basins, locations of agricultural, industrial and public water supply wells, two  125 

streamflow locations where water is withdrawn for public supply, and three monitoring wells 126 

near Tampa Bay Water’s consolidated well fields that are used to evaluate compliance with 127 

groundwater level regulations. The INTB region land use currently consists of grass/pasture (25 128 

%), urban (22 %), forested (15 %), mining/other (7 %), agriculture/irrigated land (6 %), open 129 

water (4 %), and wetlands (21 %). 130 

2.2 The Integrated Northern Tampa Bay Model 131 

Tampa Bay Water and the Southwest Florida Water Management District (SWFWMD) 132 

developed the Integrated Hydrologic Model (IHM) simulation engine which integrates the EPA 133 

Hydrologic Simulation Program-Fortran (Bicknell et al., 2005) for surface water modeling with 134 

the U.S. Geological Survey (USGS) MODFLOW96 (Harbaugh and McDonald, 1996) for 135 

groundwater modeling. The IHM simulates the dynamic interaction of surface water and 136 

groundwater systems within the INTB region including all processes which affect flow and water 137 

levels in uplands, within the unsaturated soil, and within wetlands, rivers and aquifers. In 138 

addition, the INTB model can account for variability in climate and anthropogenic stresses such 139 

as land use change, groundwater pumping, and diversions to/from rivers, lakes, and wetlands. 140 

Tampa Bay Water and the SWFWMD calibrated model parameters to simulate 141 

streamflows, groundwater levels, and wetland hydroperiods in the INTB model region. The 142 

INTB model was calibrated from 1989 to 1998 and verified from 1999 to 2006 (Geurink and 143 

Basso, 2013). Precipitation data for calibrating and validating the model were obtained from 302 144 

point gages maintained by National Oceanic and Atmospheric Administration (NOAA), the 145 

SWFWMD, and Tampa Bay Water in the model region. Maximum and minimum daily 146 
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temperature were obtained from six NOAA stations within the INTB region and used to estimate 147 

ET0 using the Hargreaves method. Over the calibration and validation period (1989 to 2006) 148 

average annual precipitation input to the model was 1308 mm/year and average annual actual 149 

evapotranspiration estimated by the model was 940 mm/year, resulting in net available water 150 

(precipitation-actual evapotranspiration) of 368 mm/yr. During this period surface discharge 151 

from the domain was 272 mm/year (74 % of net available water), groundwater pumping was 69 152 

mm/year (19 %), surface water diversions for water supply were 10 mm/year (3 %), and 153 

irrigation applied within the domain was 18 mm/year (5 %). More details about the processes 154 

and results of model calibration and validation are described in Geurink and Basso (2013). 155 

 Streamflow predictions at two United States Geological Survey (USGS) gauging 156 

stations, the Hillsborough river (USGS ID: 02303330) and Alafia river (USGS ID: 02301500), 157 

were used in this study to evaluate retrospective and future IHM streamflow predictions and 158 

quantities of surface water available for public supply. Three Tampa Bay Water monitoring wells 159 

(NWH-RMP-08s, CBR-SERW-s, and STK-STARKEY-20s) were used to evaluate retrospective 160 

and future groundwater level predictions and compliance with environmental regulations 161 

intended to protect nearby wetlands from dewatering as a result of consolidated well field 162 

pumping. 163 

2.3 Climate Data 164 

Forcing data from Phase 2 of the North American Land Data Assimilation System 165 

(NLDAS-2) from 1982 to 2005 were used as historical reference climate data for bias correction. 166 

Hourly precipitation, air temperature, solar radiation (surface downward longwave radiation and 167 

surface downward shortwave radiation), surface pressure and average wind speed were obtained 168 

from the NLDAS-2 archive and aggregated to the daily scale at a 1/8th-degree grid spacing over 169 

the Tampa Bay region. 170 

For retrospective and future climate data, the Coupled Model Intercomparison Project 5 171 

(CMIP5) General Circulation Models (GCMs) data set for the 1982-2005 period was used for the 172 

retrospective period and 2030-2060 (Future 1) and 2070-2100 (Future 2) were used as future 173 

periods. Gridded daily precipitation, air temperature, solar radiation, surface pressure, and 174 

average wind speed were obtained for eight GCMs listed in Table 1. These GCMs were chosen 175 

because they spanned the range of cool to warm bias and wet to dry bias exhibited by 41 CMIP5 176 
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GCMs for the southeastern United States (Rupp, 2016), and they had daily values available for 177 

all the parameters needed to estimate Penman-Monteith reference evapotranspiration. Mean 178 

changes in precipitation projected by these GCMs ranged from -68 mm/year to 293 mm/year 179 

over the 2030-2060 period, and from 154 mm/year to 400 mm/year over the 2070-2100 period. 180 

Mean changes in ET0 ranged from 24 mm/year to 137 mm/year over the 2030-2060 period and 181 

from 122 mm/year to 351 mm/year over the 2070-2100 period. Mean changes in P-ET0 ranged 182 

from -162 mm/year to 220 mm/year over the 2030-2060 period and from -420 mm/year to 159 183 

mm/year over the 2070-2100 period (Table 1).  184 

Chang et al. (2016) evaluated projected changes in P – ET0 over the continental USA 185 

using nine GCMs, ten ET0 estimation methods, and three RCP scenarios. They showed that the 186 

first order sensitivities of water deficit projections (P-ET0) over the Southeast USA were much 187 

higher to choice of GCM and ET0 estimation method than to choice of RCP. First order 188 

sensitivities of water deficit projections to RCP scenarios were negligible (<0.01) for the 2030-189 

2060 time period, and averaged 0.2 for the 2070-2100 time period. Therefore for computational 190 

efficiency, and to evaluate the influence of the most extreme carbon dioxide forcing on the 191 

hydrologic projections, only the RCP 8.5 scenario data was utilized for the future analyses in this 192 

study.   193 

2.4 BCSA Downscaling Method 194 

The BCSA downscaling method, developed by Hwang and Graham (2013), was used in 195 

this study. Hwang & Graham (2014) showed that BCSA demonstrated  better performance than 196 

other statistical downscaling methods (i.e, BCSD (Maurer et al, 2012) or SDBC (Abatzoglou and 197 

Brown, 2012)) in reproducing spatiotemporal statistics of both precipitation and daily streamflow 198 

in the Tampa Bay region. In particular, the INTB model, when driven by GCMs downscaled 199 

using the BCSA method, accurately reproduced frequencies of extreme high and extreme low 200 

retrospective streamflows as well as 7Q2 and 7Q10 retrospective streamflows in the Tampa Bay 201 

region.  202 

The BCSA method preserves both the cumulative frequency distribution of observed 203 

daily precipitation as well as the spatial autocorrelation structure of observed daily precipitation 204 

fields. BCSA downscaling consists of two separate steps for bias-correction and stochastic 205 

analog spatial downscaling. In the first step, a cumulative distribution function (CDF) mapping 206 
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approach ( Block et al., 2009; Hwang et al., 2013, 2014; Hwang & Graham, 2014; Ines & 207 

Hansen, 2006; Teutschbein & Seibert, 2012) is used to reduce the biases in raw GCM output at 208 

the GCM scale. In this study, NLDAS-2 P and ET0 were aggregated up to the GCM scale and P 209 

and ET0 from the raw GCMs were bias corrected at the GCM scale using the sequential 210 

univariate CDF mapping method (Chang, 2017). NLDAS-2 was selected for bias correction 211 

because it includes all the parameters needed to estimate Penman-Monteith reference 212 

evapotranspiration. Comparison of the gridded NLDAS-2 data to the precipitation and 213 

temperature observations from the weather stations used to calibrate the INTB model showed 214 

that the NLDAS-2 data reproduced observed long term monthly means values with biases that 215 

ranged from 4 to 12 mm for daily precipitation and 1 to 2°C for daily temperature. Correlations 216 

among daily values ranged from 0.75 to 0.87 for rainfall and 0.75 to 0.98 for temperature. The 217 

second step in the BCSA method is stochastic analog (SA) spatial downscaling (Hwang & 218 

Graham, 2013, 2014) for P. In this method, a synthetic downscaled precipitation field is 219 

produced which preserves the GCM-scale daily precipitation amount and the month-specific 220 

local-scale spatial correlation structure. For more details on the BCSA method, see ( Hwang & 221 

Graham, 2013, 2014). ET0 was not downscaled in this study because observed spatial variability 222 

of ET0 over the INTB region is very small, and the spatial correlation is large compared to P 223 

(Chang, 2017).   224 

2.5 Reference Evapotranspiration Estimation Methods 225 

The Chang et al. (2016) study referenced above found that the projected changes in P – 226 

ET0 were sensitive to both the choice of GCM and the choice of ET0 method, and that for the 227 

Southeast USA the choice of GCM and ET0 method had approximately equal influence on 228 

changes in future P – ET0 throughout most of the year. However, they noted that not all ten ET0 229 

methods were equally appropriate for use in all US regions, and that regional studies should use 230 

methods for which retrospective predictions of ET0 are generally consistent with historic 231 

observations. Several of the ET0 methods used by Chang et al. (2016) were found to produce 232 

unreasonably high or low historic ET0 estimates for the study region using retrospective and 233 

observation data. Therefore in this study three ET0 estimation methods that are widely used in the 234 

Southeast USA, produced retrospective predictions that were consistent with observations, and 235 

showed a range of wet to fairly dry projections of future P-ET0  (Chang et al, 2016) were 236 

included in the analysis. These methods include a temperature-based method (Hargreaves; 237 
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Hargreaves and Allen, 2003), a radiation-based method (Priestley-Taylor; Allen et al., 1998), and 238 

a combination method (Penman-Monteith; Allen et al., 1998). All hourly climate variables 239 

described above were aggregated to the daily scale and used to calculate daily ET0 using these 240 

three methods. 241 

2.6 Retrospective Simulations 242 

Water-use in the  study region is comprised of five categories; 1) public supply, 2) 243 

agricultural, 3) industrial/commercial, 4) mining, and 5) recreational (e.g. golf course irrigation) 244 

(Geurink and Basso, 2013).  Groundwater sources are used for agricultural, 245 

industrial/commercial, mining and recreational water supplies. Public water supply is provided 246 

by a combination of groundwater, surface water (Hillsborough and Alafia Rivers), and a 25 247 

MGD desalinization plant operated by Tampa Bay Water. The SWFWMD regulates all 248 

groundwater pumping and surface water extraction in the study region to protect natural aquatic 249 

ecosystems and prevent saltwater intrusion. Over the 1989-2006 calibration-verification period 250 

groundwater extractions from the INTB model domain averaged 36 mm/yr for public water 251 

supply, 18mm/yr for agricultural irrigation, 9 mm/year for  industrial/commercial uses, 6 252 

mm/year for mining, and 3 mm/year for recreational uses (Geurink and Basso, 2013).  253 

 Public Water Supply: Tampa Bay Water has a consolidated permit for its eleven 254 

wellfields (the Consolidated Wellfields, hereafter referred to as the CWF). The CWFs are 255 

operated as an interconnected system with a combined maximum permitted pumping rate of 90 256 

MGD (13 mm/yr over the INTB region). Individual well pumping rates are optimized to 257 

maintain minimum groundwater levels near sensitive wetlands to meet regulatory requirements 258 

intended to prevent ecological harm. The three monitoring wells evaluated in this study are 259 

located near wetlands adjacent to the CWFs (Fig. 1). From 1992-2008 Tampa Bay Water’s total 260 

water demand averaged ranged from 150-200 MGD. Groundwater is Tampa Bay Water’s most 261 

inexpensive source for public water supply, therefore for the retrospective simulations the CWFs 262 

were assumed to withdraw groundwater continuously at the 90 MGD maximum permitted rate.  263 

For the retrospective simulations groundwater extraction for other public water supply (outside 264 

of Tampa Bay Water’s CWF), industrial/commercial and mining uses were assumed occur 265 

continuously at the average pumping rates between years 1989 to 2006 cited above. 266 
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Maximum available surface water available to Tampa Bay Water for public supply was 267 

calculated on a daily basis from retrospective streamflow predictions for both the Hillsborough 268 

River and the Alafia River according to site-specific regulations set to maintain sufficient in-269 

stream flows and spring flows to protect aquatic ecosystems. Diversion rates for pumping from 270 

the Hillsborough river reservoir by the City of Tampa and from the Tampa Bypass Canal by 271 

SWFWMD were set at the historical average daily rate spanning 2003 to 2009 for all 272 

retrospective simulations. All other diversion rates were set to zero including the Withlacoochee-273 

Hillsborough overflow. These diversion locations are located either downstream or outside of the 274 

watersheds contributing to the surface water gages, and outside the zone of influence of the 275 

monitoring wells evaluated in this study so these assumptions do not impact on the results (Fig. 276 

1).   277 

Agricultural Irrigation Demand: The AFSIRS (Agricultural Field-Scale Irrigation 278 

Requirements Simulation) model (Jacobs and Dukes, 2007; Smajstrla, 1990) was used to 279 

estimate climate-driven irrigation demand for the retrospective period. The AFSIRS model tracks 280 

the water budget in the crop root zone including inputs from rain and irrigation, and outputs from 281 

the root zone by drainage and evapotranspiration. The AFSIRS model defines the water storage 282 

capacity in the crop root zone as the product of the water-holding capacity of the soil (estimated 283 

by the difference between field capacity and wilting point) and the depth of the effective root 284 

zone for the crop being grown. Crop evapotranspiration (ETc) is estimated from the product of 285 

potential evapotranspiration (ET0) and crop water use coefficients. The AFSIRS model 286 

subdivides the crop root zone into irrigated and non-irrigated zones and maintains separate water 287 

budgets for both zones in order to simulate different types of irrigation systems, such as surface 288 

irrigation and subsurface irrigation. 289 

The AFSIRS was used as a basis to estimate irrigation demand for the retrospective 290 

period using CMIP5 bias-corrected downscaled daily P and bias-corrected ET0 (using the three 291 

ET0 methods discussed above) and the land use from the calibrated INTB model. Crop 292 

coefficients (Kc) for estimating ETc were obtained from the calibrated INTB model database 293 

(Geurink and Basso, 2013) for all vegetative covers except row crops. The crop coefficient for 294 

row crops was estimated by the superposition of crop coefficients for tomato and strawberry 295 

(Dukes et al., 2012), the two dominant row crops in the region. The relative proportion of these 296 

two crops constituting the row crop land use were calculated based on water usage records for 297 
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the region for 2011 (Jackson and Albritton, 2013). The root zone depth, field capacity, wilting 298 

point and other information needed for the AFSIRS model were taken from the calibrated INTB 299 

model database. Groundwater pumping required to satisfy the AFSIRS estimated  irrigation 300 

assumed 85% irrigation efficiency based on Irmak et al. (2011) and Jacobs & Dukes (2007), i.e., 301 

𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝑝𝑢𝑚𝑝𝑖𝑛𝑔 = 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 ×
100 %

85 %
                                       (3) 302 

 It should be noted that the AFSIRS model does not predict water demand for bed 303 

preparation, freeze protection, crop cooling requirements, or maintenance of irrigation systems. 304 

Thus the irrigation demand estimated for the retrospective period only includes crop water 305 

demand for evapotranspiration. 306 

Boundary Conditions: Lateral boundary conditions are required for aquifers in the model 307 

region. A repeating annual cycle of daily General Head Boundary (GHB) time series for the 308 

retrospective and future periods IHM simulations was derived using the daily average of the 309 

historical daily GHB time series spanning 2000 to 2006. More details about the water 310 

withdrawals such as groundwater pumping, agricultural irrigation, CWFs, diversions and 311 

boundary conditions during the calibration-verification period are described in Geurink and 312 

Basso (2013).  313 

2.7 Future Water Use Scenarios 314 

In addition to warming temperatures and reduced precipitation due to climate change, 315 

increases in water withdrawal for agriculture and other human uses are potentially significant 316 

causes of declining river flow and groundwater levels (Alcamo et al., 2003; Vorosmarty et al., 317 

2000). To assess the relative importance of climate change versus anthropogenic impact on the 318 

hydrologic system, ability to meet future water demand, and compliance with water resource 319 

regulations in the study region, eight future water use scenarios were developed (Table 2). These 320 

scenarios were based on discussions with Tampa Bay Water staff, projected increases in public 321 

water demand (Tampa Bay Water Water Demand Management Plan Final Report, 2013), 322 

projected changes in agricultural land use and agricultural irrigation demand (Florida Statewide 323 

Agricultural Irrigation Demand Report, 2017), potential agricultural adaption behaviors, and 324 

potential changes in groundwater regulations. For naming simplicity in the future scenarios 325 

agricultural and recreational water use categories are combined as agricultural demand and 326 
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public supply, industrial/commercial and mining are combined as urban demand. The eight water 327 

use scenarios included: 1) No groundwater pumping for agriculture or urban demand, 2) No 328 

urban groundwater pumping, 3) No agricultural groundwater pumping, 4) Agricultural adaption 329 

(increased irrigation efficiency and/or use of reclaimed water), 5) Business as usual, 6) Increased 330 

agricultural demand, 7) Relaxed regulatory requirements for CWF pumping (increased CWF 331 

pumping), and 8) Relaxed regulatory requirements for all urban groundwater pumping (increased 332 

all urban pumping). Details regarding each of these water use scenarios are provided below. 333 

The business as usual scenario (scenario 5 in the Table 1) assumed no change in 334 

groundwater regulations. Thus the CWF pumping remained at the maximum permitted 90 MGD 335 

and all other urban pumping (industrial/commercial, mining and other public water supply) 336 

remained at the average pumping rates used in the retrospective simulations.  In this case all 337 

projected increases in future public water demand must be met by increased surface water 338 

extraction (if available), increased conservation, increased wastewater reuse, or desalination 339 

capacity. For the business as usual scenario agricultural irrigation demand was estimated using 340 

AFSIRS model and assuming 85% irrigation efficiency, as in the retrospective period 341 

simulations. However the P and ET0 used in the AFSIRS model were taking from the bias 342 

corrected downscaled future GCM projections for both future 1 (2030-2060) and future 2 (2070-343 

2100).  344 

To more clearly separate the impact of human water use versus climate change on the 345 

hydrologic system, three extreme groundwater use reduction scenarios were developed. The no 346 

agricultural or urban pumping scenario (scenario 1) assumed that there was no groundwater 347 

pumping at all in the region. For this scenario agricultural and recreational pumping (and the 348 

associated irrigation of the land surface) as well as all urban pumping (including CWF, other 349 

public water supply and industrial/mining) were set to zero. For the no urban pumping scenario 350 

(scenario 2) all urban pumping including CWF, other public water supplies, industrial/mining 351 

was set to zero, however agricultural pumping was assumed to be the same as the business as 352 

usual scenario. For the no agricultural pumping scenario (scenario 3) agricultural and 353 

recreational pumping were set to zero, however all urban pumping was assumed equal to the 354 

business as usual scenario. 355 
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The agricultural adaption scenario (scenario 4) assumed that increased irrigation 356 

efficiency and/or increased use of reclaimed water reduced groundwater pumping for agricultural 357 

and recreational irrigation by 40 MGD over climate driven demand (6 mm/year, ~25%).  All 358 

urban pumping was assumed to be the same as the business as usual scenario. The increased 359 

agricultural demand scenario (scenario 6) assumed that irrigation demand increased by 40 MGD 360 

over climate driven demand (6 mm/year, ~25%) due to more intensive farming on existing 361 

agricultural lands (Florida Statewide Agricultural Irrigation Demand Report, 2017) and that all 362 

urban pumping was the same as the business as usual scenario. The relaxed regulatory 363 

requirements for CWF pumping (scenario 7) assumed an increase of CWF pumping up to 130 364 

MGD (19 mm/year, ~44%) from the current 90 MGD (13 mm/year) to help meet increased 365 

public water demand, and that agricultural and recreational pumping followed the business as 366 

usual scenario. The relaxed regulatory requirements for all urban pumping (scenario 8) assumed 367 

all urban pumping, including CWF pumping, other public water supply, industrial and mining, 368 

increased by 44 %, (i.e. the same percentage increase as the CWF pumping for scenario 7) and 369 

that agricultural and recreational pumping followed the business as usual scenario. These water 370 

use scenarios consist of projected agricultural and urban groundwater pumping volumes that 371 

represent from 0 % to 27 % of historic P-ET0.   372 

It should be noted that land use change was not considered in this study. This assumption 373 

is consistent with a regional planning strategy that promotes agricultural and urban 374 

intensification on existing lands, along with protection of existing conservation lands, wetlands 375 

and water supplies (Barnett et al., 2007). This assumption is also consistent with the Florida 376 

Statewide Agricultural Irrigation Demand Report (2017) that projects a 2% decline in 377 

agricultural land area between 2015-2040, but an 8.5% increase in agricultural water use as a net 378 

result of agricultural intensification and increased conservation. Future work will build on this 379 

study to evaluate land use change scenarios. 380 

2.8 Statistical Analysis 381 

Variance-based sensitivity analysis is a global sensitivity analysis (GSA) method (Saltelli 382 

et al., 2008, 2010) used to apportion the total model output variance simultaneously onto all the 383 

varying input factors, and thus is preferred over the local, one factor at a time, sensitivity 384 

analyses (Homma and Saltelli, 1996; Saltelli, 1999). In this research the sensitivity of projected 385 
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changes between future and retrospective mean monthly streamflow and groundwater levels was 386 

evaluated using the variance-based GSA method described in Chang et al. (2016). 387 

Using the variance-based GSA method the variance-based first order effect is expressed 388 

as: 389 

𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖))                       (1) 390 

Where V is the scalar model output (i.e., change in mean monthly streamflow or 391 

groundwater level), and  𝑋𝑖 are the factors causing variation in the model output ( i.e. choice of 392 

GCM, ET0 method, water use scenario). The expectation operator 𝐸𝑋~𝑖
(𝑌|𝑋𝑖) indicates that the 393 

mean of Y is taken over all possible values of X except Xi (i.e., X∼i ) while keeping Xi fixed. The 394 

variance, 𝑉𝑋𝑖
 , is then taken of this quantity over all possible values of Xi .  The first-order 395 

sensitivity coefficient is  396 

𝑆𝑖 =
𝑉𝑋𝑖(𝐸𝑋~𝑖(𝑌|𝑋))

𝑉(𝑌)
                                                                                                                       (2) 397 

where 𝑉(𝑌) the total variance of Y over all 𝑋𝑖. 𝑆𝑖 is a normalized index varying between 398 

0 and 1, because 𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖)) varies between 0 and 𝑉(𝑌) according to the identity (Mood et 399 

al., 1974): 400 

𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖)) + 𝐸𝑋𝑖
(𝑉𝑋~𝑖

(𝑌|𝑋𝑖)) = 𝑉(𝑌)                                                                  (3) 401 

The first-order sensitivities of future changes in mean seasonal streamflow and 402 

groundwater level to the choice of GCM, ET0 estimation method, and water use scenario were 403 

calculated over the full ensemble of 8 GCMs, 3 ET0 methods and 8 water use scenarios (192 404 

samples) for each future period in order to evaluate the relative contributions of each of these 405 

factors on the variation among projections of future changes. 406 

In addition to variance-based GSA, differences in future changes of mean projected 407 

streamflow and groundwater level across GCMs and across future water use scenarios were 408 

evaluated for statistical significance using Tukey’s HSD (honest significant difference) test 409 

(Zieyel, 1988) that is a single-step multiple statistical test (pairwise comparison). The two-410 

sample t-test was used to test for significant differences between mean projected streamflow and 411 



15 

 

groundwater levels resulting from future climate/water use scenarios and mean retrospective 412 

streamflow and groundwater level using the business as usual water use scenario.  413 

3 Results and Discussion 414 

3.1 Global Sensitivity Analysis of Projected Changes 415 

The variance-based global sensitivity analysis was conducted for both the wet season 416 

(June – September) and the dry season (October – May) to evaluate the relative variation of 417 

projected changes in hydrologic response attributed to the choice of GCM, choice of water use 418 

scenario, and choice of ET0 method. Tables 3 and 4 show the first order sensitivity indices of 419 

changes in future streamflow and groundwater level (defined as future average seasonal 420 

streamflow – retrospective average seasonal streamflow and future average seasonal  421 

groundwater level – retrospective average seasonal groundwater level, respectively). 422 

Change in streamflow was much more sensitive to choice of GCM than to choice of ET0 423 

method or water use scenario for all river gages, both seasons, and both future periods (Table 3). 424 

For example, 94.4% of the variance of the change in wet season Hillsborough river streamflow 425 

in Future 1 period (2030-2060) is attributed to differences among GCMs, 0.2% of the variance is 426 

attributed to differences among ET0 method, and 1.6% of the variance is caused by water use 427 

scenario, respectively (top row Table 3). Similarly, projected changes in groundwater level were 428 

generally more sensitive to the choice of GCM for all monitoring wells and both seasons. 429 

However, unlike the projected changes in streamflow, changes in groundwater level were also 430 

quite sensitive to the choice of water use scenario (Table 4). The higher sensitivity of 431 

groundwater level to groundwater pumping is expected since the monitoring wells are 432 

intentionally located near the consolidated wellfields (locations of major groundwater pumping) 433 

to detect and mitigate localized impacts of water supply pumping on nearby wetlands. On the 434 

other hand, the stream gages are located further from the consolidated well fields and accumulate 435 

flow from a large area of the model domain. The first order sensitivity index of groundwater 436 

level to water use scenario decreased in future period 2 (2070-2100) over future period 1 (2030-437 

2060), due to the increased variability of GCM precipitation projections in future 2 (2070-2100) 438 

versus future 1 (2030-2060).  439 
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As mentioned previously Chang et al. (2016) evaluated projected changes in P – ET0 over 440 

the continental USA using nine GCMs, ten ET0 estimation methods, and three RCP scenarios 441 

and found that for the Southeast USA the choice of GCM and ET0 method had approximately 442 

equal influence on changes in future P – ET0 throughout most of the year. Because this study 443 

eliminated several ET0 estimation methods that produced unreasonably high and low historic ET0 444 

estimates for the study region using the NLDAS-2 data, the first order sensitivity index for ET0 is 445 

significantly lower in this study than in their results. It should be noted that these results do not 446 

indicate that the choice of reference ET estimation method does not affect the change in 447 

streamflow or groundwater, only that the choice of reference ET estimation method is much less 448 

influential than the choice of GCM or choice of water use scenario.  449 

3.2 Projections of Streamflow 450 

The INTB was run to compare retrospective hydrologic response to historical 451 

observations and model predictions generated with the calibrated model using NLDAS-2 data, as 452 

well as to future hydrologic response as a result of alternative GCMs, ET0 methods and water use 453 

scenarios. Figure 2 shows observed, NLDAS-2 and retrospective mean monthly streamflow for 454 

the Hillsborough river (Fig. 2a) and Alafia river (Fig. 2b), as well as future mean monthly 455 

streamflow in future 1 (2030-2060) and future 2 (2070-2100) for the business as usual water use 456 

scenario using the Hargreaves ET0 method originally used to calibrate the INTB model. The 457 

boxplots represent the range of mean monthly streamflow projections over eight GCMs for the 458 

business as usual water use scenario. Retrospective GCMs (blue box plots) reproduced mean 459 

streamflow simulated using NLDAS-2 data quite closely for both river gages with relatively 460 

small variation among GCMs. In the dry season (October-May) future 1 (red box plots) and 461 

future 2 (green box plots) business as usual mean monthly streamflow values over the 8 GCMs 462 

(red box plots) also showed relatively small differences with the retrospective predictions, but 463 

larger variation across GCMs. However in the wet season (June through September) future mean 464 

monthly streamflows for the business as usual scenario were lower than retrospective, especially 465 

in future 2 (2070-2100), and showed much larger variability across GCMs.   466 
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3.3 Projections of Groundwater Level 467 

Figure 3 shows observed, NLDAS-2 predicted, and retrospective mean monthly 468 

groundwater level for the NWH-RMP-08s (Fig. 3a), CBR-SERW-s (Fig. 3b), and STK-469 

STARKEY-20s wells (Fig. 3c), as well as future mean monthly groundwater level in future 1 470 

(2030-2060) and future 2 (2070-2100) for the business as usual water use scenario and the 471 

Hargreaves ET0 method. Groundwater levels projected by retrospective GCMs showed relatively 472 

small variation across GCMs and were very similar to groundwater levels simulated using the 473 

historic NLDAS-2 data for all three wells. Although observed seasonal patterns were reproduced 474 

accurately for all wells during the retrospective period, NWH-RMP-08s retrospective 475 

groundwater level predictions were lower than observed groundwater levels throughout the year 476 

(Fig. 3a). In contrast, all CBR-SERW-s and STK-STARKEY-20s retrospective groundwater 477 

lever predictions were higher than observed groundwater levels throughout the year (Figs. 3b and 478 

3c). These deviations (which are generally less than 0.5m) are consistent with deviations 479 

between the observed data and groundwater levels simulated by the original calibrated model 480 

using the locally-observed point weather data (Guerink and Basso, 2013). The mean groundwater 481 

levels averaged over GCMs for the future period 1 (2030-2060) business as usual scenario were 482 

similar to, or slightly lower than, the mean retrospective groundwater levels; however the mean 483 

groundwater levels for future 2 (2070-2100) were significantly lower than mean groundwater 484 

levels in the retrospective period, especially in the wet season for all wells. Similar to the 485 

streamflow results variability in projected groundwater levels among GCMs was larger in future 486 

2 (2070-2100) than in future 1 (2030-2060). 487 

3.4 Changes in Future Surface Water Availability for Public Supply  488 

Tampa Bay Water operates surface-water pumps on the Hillsborough and Alafia rivers to 489 

help meet public water demand. The volume of flow permitted for extraction varies daily based 490 

on maintaining sufficient in-stream flows and spring flows to protect aquatic ecosystems. In this 491 

study, the amount of water that could be withdrawn for public water supply, while meeting 492 

current environmental regulations, was analyzed to evaluate projected changes in future water 493 

availability for different GCMs and  water use scenarios. Boxplots in Fig. 4a show the variation 494 

in the projected change in the mean available water that can be withdrawn from the Hillsborough 495 

river (the mean available water that can be withdrawn for future streamflow – the mean available 496 
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water that can be withdrawn for retrospective streamflow) over all GCMs and all ET0 methods 497 

for each water use scenario. The boxplots show large variations due to large differences in future 498 

streamflow projections. All boxplots encompass both positive and negative changes for both 499 

future periods, but indicate generally lower water availability in future 2 (2070-2100) than future 500 

1 (2030-2060). Figure 4b compares the change in the projected mean available water that can be 501 

withdrawn from the Hillsborough river over water use scenarios and ET0 methods for each GCM. 502 

While there is some variation across water use scenarios and ET0 methods, Fig. 4b clearly shows 503 

that projected changes in future surface water availability depend strongly on choice of GCM, 504 

with 5 GCMs showing less surface water availability in the future regardless of  water use 505 

scenario. Plots for the Alafia River show very similar behavior both by water use scenario and by 506 

GCM (Figure S1 in supplemental materials). 507 

The differences between the mean projected changes in available water that can be 508 

withdrawn from the Hillsborough and Alafia rivers for individual water use scenarios over 509 

GCMs and ET0 methods (left columns in Table 5), and for individual GCMs over water use 510 

scenarios and ET0 methods (right columns in Table 5), were evaluated for statistical significance 511 

using Tukey’s HSD (honest significant difference) test. The HSD test confirmed that none of the 512 

differences in the mean projected change in available water for different water use scenarios 513 

shown in Figure 3a were statistically significant for the Hillsborough river for either future 514 

period (In Table 5 scenarios with  the same alphabetic subscripts are not statistically significantly 515 

different). For the Alafia river the mean projected changes in available water for the extreme 516 

groundwater pumping reduction scenario was statistically significantly different from the other 517 

water use scenarios in future 1 (2030 – 2060), but no statistically significant changes were 518 

detected in future 2 (2070 – 2100). These results imply that due to the large variations in climate 519 

projections produced by different GCMs, differences in mean projected changes in streamflow 520 

projections due to differences water use scenarios and ET0 methods cannot be reliably predicted 521 

by averaging over GCMs.   522 

On the other hand, many of the differences between mean projected changes in available 523 

water that can be withdrawn from the Hillsborough and Alafia rivers for individual GCMs over 524 

water use scenarios were statistically significant for both future periods (i.e. many of the GCMs 525 

on the right side of Table 5 have different alphabetic subscripts). Two GCMs show a distinct 526 

increase water availability from these rivers for public supply (GFDL-CM3 and MRI-CGCM3) 527 
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however, most GCMs show a decrease in water availability (BNU-ESM, GFDL-ESM2G, 528 

MIROC-ESM, NorESM1-M, and BCC-CSM). These results underscore the fact that differences 529 

in projections of future availability of water from these rivers for public supply are driven more 530 

strongly by differences climate models than differences in future human water use scenarios or 531 

ET0 methods. Furthermore manipulating groundwater use to change the amount of available 532 

surface water has a very small effect for a given climate. These results are similar to previous 533 

studies (Bosshard et al., 2013; Forzieri et al., 2014; Guimberteau et al., 2013; Harding et al., 534 

2012; Kay and Davies, 2008) that showed climate models are a large source of uncertainty for 535 

climate-impact projections because of the divergence of GCM projections. 536 

 In addition, to the HSD test, the two sample t-test was conducted to evaluate statistical 537 

significance of differences between the mean available water that can be withdrawn for the 538 

retrospective period and the mean available water that can be withdrawn for each future water 539 

use scenario calculated over all GCMs and ET0 methods. The two sample t-test indicated that, at 540 

the 0.05 significance level, none of the future scenarios were statistically significantly different 541 

from the retrospective business as usual scenario for the Hillsborough river. For the Alafia river 542 

only the no pumping and no urban pumping scenarios in future 1 (2030-2060) showed significant 543 

differences from the retrospective scenario in the available water that can be withdrawn from the 544 

Alafia river (marked as † on the left hand columns of Table 5). In contrast most GCMs projected 545 

significantly different mean available water in both future periods compared to the retrospective 546 

period when averaged over water use scenarios (marked as † in right hand columns of Table 5). 547 

The results that future streamflow projections are relatively insensitive to water use 548 

scenarios are contrary to that of Dale et al. (2015). They used historical streamflow and climate 549 

data to evaluate the impacts of anthropogenic change on streamflow and found that for an 550 

irrigation intensive watershed located in an area with hot summer and limited precipitation 551 

(North Central Oklahoma, U.S.) irrigation from groundwater pumping increased antecedent soil 552 

moisture and played an equally important role in streamflow variability as climate change. These 553 

differences are likely due to that fact that the region studied here is wetter than their study region, 554 

the aquifer underlying the study region is large and productive, and land use changes were not 555 

considered in this study. 556 

3.5 Changes in Compliance with Groundwater Level Regulations 557 
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Groundwater pumping for water supply in the Tampa Bay region is regulated to maintain 558 

groundwater levels that promote environmental protection by preventing dewatering of lakes and 559 

wetlands near wellfields. The relative importance of water use scenario and GCM selection on 560 

the change in percent of time that future groundwater levels were above the target levels (the 561 

percent of the time that groundwater level is above the target level for future scenario – the 562 

percent of the time that groundwater level is above the target level for retrospective scenario) 563 

was evaluated for three monitoring wells. Boxplots in Fig. 5a show the change in percent of the 564 

time that groundwater level was above the target level in the dry season (Oct – May) for the 565 

NWH-RMP-08s well over all GCMs for each water use scenario and ET0 methods. Tukey’s 566 

HSD test showed that the two most extreme water use reduction scenarios, i.e. the no pumping 567 

scenario and the no urban pumping scenario, showed a statistically significant higher percent of 568 

time that groundwater is above the target level in future 1 (2030-2060) compared to the other 569 

future water use scenarios for the NWH-RMP-08s well (Table 6). Furthermore the T-test showed 570 

a statistically significant difference in the percent of time this well was above the target level in 571 

both futures 1 (2030-2060) and 2 (2070-2100) for these two scenarios compared to the 572 

retrospective scenario (marked with † in Table 6). Results for the other two wells were more 573 

ambiguous with Tukey’s HSD test showing differences among several of the water use scenarios 574 

in future 1 for both wells, and among several water use scenarios in future 2 for STK-575 

STARKEY-20s. The T-test for CBR-SERW-s and STK-STARKEY-20s showed statistically 576 

significant differences for the two most extreme water use reduction scenarios compared to the 577 

retrospective scenario both future 1 and future 2. Collectively these results confirm that future 578 

compliance with groundwater levels is sensitive to water use scenario. Scenarios that assume 579 

differences in CWF pumping predict statistically significant differences in future groundwater 580 

compliance when averaged over possible future climates and ET0 methods. On the other hand 581 

scenarios that assume similar differences in the magnitude of agricultural pumping generally do 582 

not show statistically significant differences in future groundwater compliance. These results are 583 

largely explained by the concentration of CWF wells near monitoring wells versus the 584 

distribution of agricultural pumping wells throughout the model domain. 585 

Fig 5b indicates and Tukey’s HSD test (Table 7) confirms that the mean change in 586 

percent of time that groundwater is above the target level in the monitoring wells was 587 

significantly different for many GCMs in both future periods for all three wells (Figure 5 and 588 
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Figures S2 – S3 in the supplemental material. Two “wet” GCMs (GFDL-CM3 and MRI-589 

CGCM3) projected statistically significant increases in the mean percent of the time that 590 

groundwater is above the target level for both future periods compared to the retrospective period 591 

in all three wells  when averaged over future water use scenario and ET0 method(Fig. 5b and 592 

marked as † in the Table 7). Three “drier” GCMs (BNU-ESM, MIROC-ESM and BCC-CSM) 593 

projected statistically significant decreases in percent of the time that groundwater level is above 594 

the target level compared to the retrospective period in future 2 (2070-2100) for all three wells. 595 

More GCMs showed significant differences in future period 2 (2070-2100) than in future period 596 

1 (2030-2060) compared to the retrospective period because the differences among climate 597 

model projections increase in the later future. These results indicate that for drier future climate 598 

groundwater level regulations may be difficult to achieve regardless of groundwater pumping 599 

scenario, and thus may have to change with the changing climate. 600 

3.6 Ability to Meet Future Water demand  601 

Future water demand projections for Tampa Bay Water indicate that even with active 602 

urban water conservation programs public water supply demand is expected to increase from 603 

approximately 220 MGD in 2010 to approximately 278 MGD in 2045 (Tampa Bay Water Water 604 

Demand Management Plan Final Report, 2013). At the present time the Tampa Bay water supply 605 

system includes 90 MGD groundwater pumping permitted for the CWF, a 25 MGD desalination 606 

plant and permitted water withdrawals from the Hillsborough and Alafia rivers that vary daily to 607 

maintain ecologically protective in-stream flows. Scenario discovery analysis (Tariq et al., 2017)  608 

was used to explore the ability of Tampa Bay Water to meet 2045 water demand with while 609 

maintaining or improving existing levels of compliance with surface and groundwater 610 

regulations.   611 

Figure 6 presents the results of the scenario discovery analyses that evaluates which 612 

climate and water use scenarios achieve these objectives in future 1 (2030-2060) using the 613 

Hargreaves ET0 method. In these analyses it was assumed that Tampa Bay Water’s desalination 614 

capacity would remain at 25 MGD, surface water would be extracted at the maximum rate that 615 

complied with existing regulations, and 0% (current condition), 20%, or 40% of Tampa Bay 616 

Water’s public water supply (surface water, groundwater, and desalination) might be reclaimed 617 

and reused to satisfy public demand. The axes in figure 6 represent the two most important 618 
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factors in the climate and water use scenarios that affect achievement of Tampa Bay Water’s 619 

goals:  mean change in precipitation projected by the different GCMs and volume of agricultural 620 

and urban groundwater pumping in the water use scenario. Green filled circles indicate futures 621 

that meet both 2045 water demand and maintain groundwater compliance levels at or above 622 

current conditions in future 1 (2030-2060). Yellow filled circles indicate futures that meet 2045 623 

water demand but decrease the level of groundwater compliance. Orange filled circles indicate 624 

futures that do not meet 2045 water demand but maintain groundwater compliance levels at or 625 

above current conditions. Red filled circles indicate futures that do not meet 2045 water demand 626 

and decrease the level of groundwater compliance. The black filled circle indicates the 627 

retrospective business as usual condition.  628 

 Figure 6a shows that, without using reclaimed water to satisfy public water demand only 629 

4 scenarios are able to meet 2045 demand and maintain or improve existing levels of compliance 630 

with groundwater regulations (filled green circles on Fig 6a).  These 4 scenarios assume the 2 631 

wettest future climates (projected by GFDL-CM3 and MRI-CGM3) will occur and permitted 632 

CWF pumping will increase from 90 MGD to 130 MGD.  No other climate-water use scenarios 633 

are able to meet 2045 demand without use of reclaimed water (there are no yellow filled circles 634 

on Fig. 6a).  In fact a significant number of the scenarios, including many that assume the 635 

business as usual water use scenario, are not able to meet 2045 demand and also decrease 636 

compliance groundwater regulations (red filled circles on Fig 6a).  637 

Figure 6b shows that 20% of freshwater withdrawn is reclaimed and used to satisfy 638 

public demand the two wettest future climates can meet 2045 demand and maintain or improve 639 

existing levels of compliance with groundwater regulations for all water use scenarios. However 640 

no other scenarios are able to achieve both goals. If 40% of freshwater withdrawn is reclaimed 641 

and used to satisfy public demand more scenarios are able to achieve both goals. These scenarios 642 

include the climate scenarios that project that at least the existing average annual rainfall will 643 

occur in the future (i.e. projected change in average annual rainfall greater than or equal to zero). 644 

However to meet both public water demand and maintain existing compliance with groundwater 645 

regulations, scenarios that predict the same rainfall as current climate require a complete switch 646 

of public water supply from groundwater to surface water sources (bottom two water use 647 

scenarios in Fig 6). This would require Tampa Bay Water to significantly increase their surface 648 

water storage and treatment capacity and eliminates the use of their most inexpensive water 649 
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source (groundwater). If groundwater regulations were relaxed, and 40% freshwater withdrawn 650 

in reclaimed, 2045 demand could be met under any climate scenario (yellow circles in Fig. 6c). It 651 

should be noted that the Regional Water Supply Planning (2016) reported that in 2015 only 652 

about 11.5% of total freshwater withdrawn was reused in Florida. Therefore reclaiming 20% - 653 

40% of freshwater withdrawn will be a significant investment.  654 

4 Conclusions 655 

It is important to evaluate possible changes in future streamflow and groundwater levels 656 

to evaluate risks in water resources management and planning. This study investigated potential 657 

future changes in hydrologic systems, ability to meet future water demand, and compliance with 658 

water resource regulation using eight GCMs, eight human water use scenarios and three ET0 659 

methods to drive an integrated hydrologic model developed for the Tampa Bay region.  660 

Variance-based sensitivity analysis showed that changes in projected streamflow were very 661 

sensitive to GCM selection, but relatively insensitive ET0 method or water use scenario. Changes 662 

in projections of groundwater level were sensitive to both GCM and water use scenario, but 663 

relatively insensitive to ET0 method. 664 

The eight GCMs projected diverse changes in streamflow and groundwater level, with 665 

most GCMs projecting statistically significant different future streamflow and groundwater 666 

levels than the current condition. Five of the 8 GCMs projected a decrease in future streamflow 667 

and groundwater level in the INTB region regardless of water use scenario or ET method.  None 668 

of the 8 GCMs projected that 2045 water demand could be met under the business as usual water 669 

use scenario. Two GCMs (GFDL-CM3 and MRI-CGCM3) predicted increased streamflow and 670 

groundwater levels and an ability to meet 2045 projected water demand and maintain existing 671 

levels of compliance with groundwater standards if permitted CWF pumping were increased 672 

from the current 90 MGD to 130 MGD. The GCM that predicted that future annual average 673 

rainfall will be approximately equal to current rainfall met 2045 demand maintained existing 674 

levels of compliance with groundwater standards only for the water use scenarios that eliminated 675 

CWF pumping completely and reclaimed 40% of freshwater withdrawals.  676 

These results suggest that it is more likely than not that climate change will reduce the 677 

availability of both surface and groundwater for public supply in the Tampa Bay Region. Current 678 

regulations on water withdrawals (surface water withdrawal permit thresholds and target levels 679 
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in monitoring wells near lakes and wetlands) may have to adapt to future climate conditions 680 

since only extreme changes human water use (i.e. dramatic increases in use of reclaimed water 681 

and a complete switch from groundwater to surface water) may be able to maintain retrospective 682 

hydrologic regimes and associated aquatic ecosystems and meet human water demand in the 683 

future. 684 

It should be noted that the findings of this study are limited by a few major assumptions.  685 

For example this study used only 8 GCMs to project future climate which is a relatively small 686 

number. However these 8 GCMs spanned the range of cool to warm bias and wet to dry bias  687 

exhibited by 41 CMIP5 GCMs for the southeastern United States (Rupp, 2016). In addition land 688 

use change was not considered in this study. Instead we assumed the increases in agricultural and 689 

urban water demand were the result of intensification of water use on existing land uses. This 690 

assumption is consistent with a regional planning strategy that promotes agricultural and urban 691 

intensification on existing lands, along with protection of existing conservation lands, wetlands 692 

and water supplies (Barnett et al., 2007). However future work should build on this study to 693 

evaluate the additional impacts of potential land use change scenarios (Gupta et al., 2015; Lin et 694 

al., 2015; Matheussen et al., 2000; Yan et al., 2013). 695 
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 987 

Figure 1. Study region showing the INTB model domain and locations of agricultural, industrial 988 

and public water supply wells, the Tampa Bay Waters Consolidated Wellfields (CWF), two 989 

streamflow locations where water is withdrawn for public supply, the Tampa Bay Bypass Canal, 990 

and three  monitoring wells near Tampa Bay Water’s CWFs that are used to evaluate compliance 991 

with groundwater level regulations. 992 
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 994 

Figure 2. Mean monthly streamflow for the Hillsborough river (top) and Alafia river (bottom) for 995 

business as usual scenario water use and Hargreaves ET0 method.  Box plots indicate range of 996 

prediction over the 8 GCMs. 997 
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 999 

Figure 3. Mean monthly groundwater level for the NWH-RMP-08s (top), CBR-SERW-s 1000 

(middle) and STK-STARKEY-20s (bottom) for business as usual water use scenario and 1001 

Hargreaves ET0 method. Box plots indicate range of prediction over the 8 GCMs. 1002 
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 1005 

Figure 4. The change in amount of available water can be withdrawn from Hillsborough river by 1006 

(a) different water use scenarios over GCMs and ET0 methods and by (b) different GCMs over 1007 

water use scenarios and ET0 methods. 1008 
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 1010 

Figure 5. The change in the percent of the time that groundwater level is above the target level 1011 

for NWH-RMP-08s well by (a) different water use scenarios over GCMs and ET0 methods and 1012 

by (b) different GCMs over water use scenarios and ET0 methods. 1013 
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 1015 

Figure 6. Scatterplot of futures in which the Tampa Bay Water meets 2045 water 1016 

demands and maintains or improves compliance with groundwater regulations in future 1 (2030-1017 

2060) assuming 0%, 20% and 40% of freshwater withdrawn is reclaimed and reused to satisfy 1018 

urban demand. Green filled circles indicate futures that meet both 2045 water demand and 1019 

maintain groundwater compliance levels at or above current conditions. Yellow filled circles 1020 

indicate futures that meet 2045 water demand but decrease the level of groundwater compliance. 1021 

Orange filled circles indicate futures that do not meet 2045 water demand but maintain 1022 

groundwater compliance levels at or above current conditions. Red filled circles indicate futures 1023 

that do not meet 2045 water demand and decrease the level of groundwater compliance. The 1024 

black filled circle indicates the retrospective business as usual condition.  1025 

  1026 

Jason
Sticky Note
Removed title for each plots.



39 

 

Table 1. Description of the CMIP5 models used in this study. 1027 

Model Institute (country) Resolutions Calendar 

∆Precipitation 

(mm/yr)* 

∆ET0 (mm/yr)* 

Reference 

2030-

2060 

2070-

2100 

2030-

2060 

2070-

2100 

(1) BNU-ESM College of Global 

Change and Earth 

System Science, 

Beijing Normal 

University (China) 

2.8° lat × 

2.8° lon 

No leap 

-68.9 -57.1 93.3 273.5 

Ji et al. 

(2014) 

(2) GFDL-

CM3 

NOAA/Geophysical 

Fluid Dynamics 

Laboratory (USA) 

2.0° lat × 

2.5° lon 

No leap 

293.6 400.0 133.1 351.5 

Guo et al. 

(2014) 

(3) GFDL-

ESM2G 

NOAA/Geophysical 

Fluid Dynamics 

Laboratory (USA) 

2.0° lat × 

2.5° lon 

No leap 

-36.8 -134.6 56.2 133.5 

Taylor et al. 

(2012) 

(4) MIROC-

ESM 

Atmosphere and Ocean 

Research Institute, 

National Institute 

for Environmental 

Studies, and Japan 

Agency for 

Marine-Earth 

Science and 

Technology 

(Japan) 

2.8° lat × 

2.8° lon 

Leap year 

7.5 -153.9 99.9 240.8 

Watanabe et 

al. (2011) 

(5) MPI-ESM-

LR 

Max Planck Institute 

for Meteorology 

(Germany) 

1.87° lat × 

1.87° lon 

Leap year 

105.1 77.8 81.8 230.9 

Block and 

Mauritsen 

(2013) 

(6) MRI-

CGCM3 

Meteorological 

Research Institute 

(Japan) 

1.12° lat × 

1.12° lon 

Leap year 

244.2 281.2 24.4 122.1 

Yukimoto et 

al. (2012) 

(7) NorESM1-

M 

Norwegian Climate 

Centre (Norway) 

1.9° lat × 

2.5° lon 

No leap 

11.6 3.0 137.7 324.6 

Bentsen et al. 

(2013) 

(8) BCC-

CSM1.1 

Beijing Climate Center 

(China) 

2.8° lat × 

2.8° lon 

No leap 

-20.4 -117.5 118.1 303.6 

Xiao-Ge et al. 

(2013) 

* Change in precipitation (or ET0) is defined as average of future period minus average of retrospective period. 
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Table 2. Future scenario summary 1029 

Scenario Name 
Scenario 

Number  

Irrigation Applied to Land 

Surface 
Agricultural pumping Urban pumping 

No pumping 1 No No No 

No urban pumping 2 AFSIRS* 85 % efficiency No 

No agricultural 

pumping 
3 No No 

RETRO ** 

CWF 13 mm/yr, 

Total 51 mm/yr 

Agricultural 

adaption 
4 AFSIRS 

85 % efficiency 

Groundwater pumping 

offset by 6 mm/yr 

RETRO  

CWF 13 mm/yr, 

Total 51 mm/yr 

Business as Usual 5 AFSIRS 85 % efficiency 

RETRO 

CWF 13 mm/yr, 

Total 51 mm/yr 

Increased 

agricultural demand 
6 Increased by 6 mm/yr 85 % efficiency 

RETRO  

CWF 13 mm/yr, 

Total 51 mm/yr 

Relaxed regulatory 

requirements for 

urban pumping 

7 AFSIRS 85 % efficiency 

Increase CWF by 6 mm/yr 

to 19 mm/yr 

CWF 19 mm/yr, 

Total 57 mm/yr 

Relaxed regulatory 

requirements for all 

pumping 

8 AFSIRS 85 % efficiency 

Increase all urban  

pumping by 130/90 

CWF 19 mm/yr, 

Total 74 mm/yr 

* AFSIRS: climate driven irrigation water demand estimated by AFSIRS model using GCMs.  

** RETRO: groundwater pumping in the future will be equal to retrospective groundwater pumping.  
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Table 3. The first order sensitivity index of change in streamflow (future – retrospective period). 1032 

River gage Season Period GCM ET0 Water use 

scenario 

Hillsborough Wet season 2030-2060 0.944 0.002 0.016 

  2070-2100 0.940 0.041 0.006 

 Dry season 2030-2060 0.948 0.012 0.029 

  2070-2100 0.961 0.001 0.018 

      

Alafia Wet season 2030-2060 0.928 0.010 0.031 

  2070-2100 0.952 0.021 0.012 

 Dry season 2030-2060 0.876 0.012 0.072 

  2070-2100 0.927 0.001 0.068 
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Table 4. The first order sensitivity index of change in groundwater level (future – retrospective 1035 

period). 1036 

Monitoring well Season Period GCM ET0 Water use 

scenario 

NWH-RMP-08s Wet season 2030-2060 0.442 0.005 0.501 

  2070-2100 0.576 0.004 0.278 

 Dry season 2030-2060 0.475 0.007 0.435 

  2070-2100 0.550 0.002 0.288 

      

CBR-SERW-s Wet season 2030-2060 0.656 0.000 0.214 

  2070-2100 0.755 0.002 0.143 

 Dry season 2030-2060 0.639 0.001 0.221 

  2070-2100 0.747 0.002 0.146 

      

STK-STARKEY-

20s 
Wet season 

2030-2060 

0.604 0.000 0.325 

  2070-2100 0.718 0.004 0.198 

 Dry season 2030-2060 0.584 0.002 0.330 

  2070-2100 0.707 0.001 0.200 
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Table 5. The results of Tukey’s HSD test of mean change in amount of available water (MGD) 1039 

that can be withdrawn from Hillsborough river or Alafia river for each water use scenario over 1040 

GCM and ET0 method, or for each GCM over water use scenario and ET0 method (Comparison 1041 

of all possible pairs of means). 1042 

By human water 

use scenario 

Hillsborough Alafia By GCM Hillsborough Alafia 

2030-

2060 

mean 

2070-

2100 

mean 

2030-

2060 

mean 

2070-

2100 

mean 

2030-

2060 

mean 

2070-

2100 

mean 

2030-

2060 

mean 

2070-

2100 

mean 

No Pumping 11.63 a 3.88 a 4.89 a† 2.28 a BNU-ESM -14.03 e† -18.76 d† -4.25 d† -5.89 c† 

No Urban 

Pumping 
10.10 a 2.61 a 4.00 a† 1.45 a GFDL-CM3 39.20 a† 40.27 a† 8.16 a† 9.11 a† 

No Ag. Pumping 5.57 a -1.21 a 1.48 a -0.99 a GFDL-ESM2G -12.24 de† -21.68 d† -1.84 cd -5.70 c† 

Ag. Adaption 4.22 a -2.54 a 0.85 ab -1.60 a 
MIROC-

ESM2G 
-5.01 c -22.31 d† -0.09 c -6.26 c† 

Business as 

Usual 
4.16 a -2.59 a 0.82 ab -1.63 a MPI-ESM-LR 9.71 b† 1.07 b 2.01 b -0.56 b 

Increased Ag. 

Demand 
4.56 a -2.27 a 1.00 ab -1.47 a MRI-CGCM3 41.64 a† 41.34 a† 10.64 a† 10.46 a† 

Increased CWF 

pumping 
2.90 a -3.66 a 0.81 ab -1.64 a NorESM1-M -5.58 c -10.71 c† 0.78 bc -2.21 c† 

Increased All 

Pumping 
1.72 a -4.65 a -0.43 b -2.73 a BCC-CSM -8.84 cd† -19.67 d† -1.98 cd -5.28 c† 

Means with different subscripts were significantly different in Tukey’s HSD test. 

†: The results were significantly different than retrospective BAU by two sample t-test at the 0.05 

significance level. 
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Table 6. The results of Tukey’s HSD test of mean change in the percent of the time that 1045 

groundwater level is above the target level for monitoring wells over all GCMs and ET0 methods 1046 

for each water use scenario (Comparison of all possible pairs of means).  1047 

 By human water use 

scenario NWH-RMP-08s CBR-SERW-s STK-STARKEY-20s 

  2030-2060 

mean 

2070-2100 

mean 

2030-2060 

mean 

2070-2100 

mean 

2030-2060 

mean 

2070-2100 

mean 

No Pumping 46.04 a† 32.21 b† 31.93 a† 22.79 a† 27.87 a† 18.00 a† 

No Urban Pumping 41.17 a† 28.36 a† 31.40 ab† 22.45 a† 26.91 ab† 17.22 ab† 

No Ag. Pumping 10.28 b 3.69 b 11.00 c† 7.21 a 3.92 a† -2.04 bc 

Ag. Adaption 6.66 b 0.88 b 10.76 c 7.06 a 3.15 ab -2.79 c 

Business as usual 6.55 b 0.81 b 10.73 c 7.04 a 3.12 ab -2.80 c 

Increased Ag. Demand 6.70 b 0.89 b 11.14 bc† 7.32 a 3.21 ab -2.73 c 

Increased CWF 

pumping 
-4.25 b -7.81 b 5.23 c 3.01 a -4.31 b -9.05 c 

Increased All Pumping -4.64 b -8.13 b 4.08 c 1.93 a -6.07 b -10.52 c† 

 Means with different subscripts were significantly different in Tukey’s HSD test. 1048 

†: The results were significantly different than retrospective BAU by two sample t-test at the 0.05 significance level. 1049 

  1050 



45 

 

Table 7. The results of Tukey’s HSD test of mean change in percent of the time that 1051 

groundwater level is above the target level for monitoring wells over all water use scenarios and 1052 

ET0 methods for each GCM (Comparison of all possible pairs of means). 1053 

 By GCM NWH-RMP-08s CBR-SERW-s STK-STARKEY-20s 

  
2030-2060 mean 2070-2100 mean 2030-2060 mean 2070-2100 mean 2030-2060 mean 2070-2100 mean 

BNU-ESM -6.39 c -18.59 bc† -12.08 c† -16.66 c† -12.55 d -18.30 def† 

GFDL-CM3 32.35 ab† 39.44 a† 48.12 ab† 56.39 a† 19.56 ab† 24.50 ab† 

GFDL-ESM2G -3.22 bc -18.93 bc -7.58 c -22.84 c† -12.96 d† -16.40 cde† 

MIROC-ESM -4.83 c -35.79 c† 4.97 c -15.52 c† -12.96 d† -39.01 f† 

MPI-ESM-LR 11.26 abc 3.41 b 29.83 b† 14.15 b† 12.02 abc† 4.06 bc 

MRI-CGCM3 41.27 a† 39.67 a† 62.87 a† 56.38 a† 34.45 a† 26.16 a† 

NorESM1-M 3.84 bc -3.47 b 1.18 c -8.40 c 2.31 bcd 0.17 cd 

BCC-CSM -2.38 bc -25.30 bc† 1.17 c -12.51 c† -11.45 cd -28.99 ef† 

 Means with different subscripts were significantly different in Tukey’s HSD test. 1054 

†: The results were significantly different than retrospective BAU by two sample t-test at the 0.05 significance level. 1055 
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