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Referee #2 

We appreciate the thoughtful comments from the reviewer, which have helped us to improve the original 

manuscript. We explain in detail how we responded to the reviewer’s comments, with line numbers 

referring to the revised manuscript unless otherwise noted. 

Index Comments 

1 Referee 

review 

Downscaling: the authors’ prior published BCSA Downscaling Method yields 

3,000 precipitation realizations that are constrained to NLDAS-2 daily 

spatiotemporal statistical structure. It is not clear to me how this approach avoids 

acting like a low-pass stochastic filter for increasingly extreme temperatures, 

droughts, or floods. Specifically when contemplating more extreme quantiles that 

are rarely observed or have not been observed. The GCMs themselves are not 

strongly capable of capturing extremes. Moreover, limits in the observation record 

reduce the value for NLDAS-2 daily statistics in capturing extremes. Likewise, 

bias filtering also often eliminates extreme events. It is not clear to me how well 

the authors have even captured stationary extremes. 

Author’s 

response 
We agree with the reviewer that GCMs are not particularly good at reproducing 

interannual climate cycles such as ENSO, or extreme temperature and 

precipitation events. We also agree that bias correction and downscaling methods 

cannot these correct problems, and will not produce climate events that are 

significantly outside the range of those that occurred during the historic period 

used for bias correction. Nevertheless previous research has shown that they are 

able to simulate broad features of the climate system and are useful for 

characterizing plausible projections of possible futures (Kundzewicz et al, 2008, 

2009).   

The BCSA method used in this paper was developed by Hwang & Graham 

(2013).  Hwang & Graham (2013) showed that BCSA performed better than 

BCCA, BCSD, or SDBC in reproducing the mean, variance and spatial correlation 

structure of daily precipitation over the state of Florida. Hwang and Graham 

(2014) showed that BCSA showed better performance than BCSD or SDBC in 

predicting retrospective streamflow and groundwater levels streamflow in the 

Tampa Bay Region when using the same INTB model used in this study.  In 

particular Hwang and Graham (2014) showed that, when driven by GCMs 

downscaled using the BCSA method,  the INTB model not only reproduced the 

mean and variance of daily streamflows  but also accurately reproduced 



frequencies of extreme high and extreme low retrospective streamflows as well as 

7Q2 and 7Q10 retrospective streamflows in the Tampa Bay region.” 

 

The introduction of the paper was modified to include the following: 

“Although these bias correction and downscaling methods do not correct 

problems with large scale synoptic forcing, and are not particularly good at 

reproducing extreme floods or drought in retrospective period, previous research 

has shown that they are able to simulate broad features of the climate system and 

are useful for characterizing plausible projections of possible futures (Kundzewicz 

et al, 2008, 2009).  Furthermore, previous work has shown that hydrologic models 

driven by bias-corrected downscaled retrospective GCM output adequately 

reproduce retrospective  high stream flows (e.g. 7Q2 and 7Q10, as well as the 

long term mean and standard deviation of monthly flows (Hwang and Graham, 

2014).”  

 

Section 2.4 of the paper was modified to include the following: 

“Hwang & Graham (2014) showed that BCSA showed better 

performance than other statistical downscaling methods (i.e .BCSD (Maurer et al, 

2012) or SDBC (Abatzaglou and Brown, 2012)) in reproducing spatiotemporal 

statistics of both precipitation and daily streamflow in the Tampa Bay region.  In 

particular, the INTB model, when driven by GCMs downscaled using the BCSA 

method,  accurately reproduced frequencies of extreme high and extreme low 

retrospective streamflows as well as 7Q2 and 7Q10 retrospective streamflows in 

the Tampa Bay region.” 

 

In addition the description of the BCSA method in Section 2.4 was improved. 

 

 

 

 

2 Referee 

review 

Human use scenarios: Although I understand that the authors are managing the 

computational demands of their work, the experiment being presented lacks a 

balance in how it treats humans versus climate in a manner that likely pre-ordains 

their attained results and ultimately may make them poorly representative of the 

uncertainties and impacts from the human decisions in the system. I found the 

human scenario justifications to be lacking in clarity and justification for their 

appropriateness. I suspect had the authors even done a basic parametric 

uncertainty for the aquifer conductivities that many of their claimed inferences 

would disappear into neglected parametric uncertainty effects. Moreover, the 

underlying “off/on”nature of the eight scenarios described in lines 237-271 mix 

mean behaviors and oddly unlikely human use combinations. 

Author’s 

response 

In response to comments from all three reviewers we have significantly revised 

the justification and explanation of the future water use scenarios, and added an 

analysis of each one’s ability to meet future water demand and maintain or 

improve compliance with current water resource regulations. In short, the future  

scenarios were developed based on discussions with Tampa Bay Water staff, 

projected increases in public water demand (Tampa Bay Water Water Demand 

Management Plan Final Report, 2013), projected changes in agricultural land use 

and agricultural irrigation demand (Florida Statewide Agricultural Irrigation 



Demand Estimated Agricultural Water Demand, 2015-2040., 2017), potential 

agricultural adaption behaviors, and potential changes in groundwater regulations.  

The range of scenarios was designed to explore the largest range in possible future 

water uses that were consistent with these sources of information.   

 

In the early 2000s Tampa Bay Water was permitted to pump 158 MGD 

groundwater to meet public water supplies. However at that time local 

groundwater overdraft was adversely affecting wetlands and lakes in the area and 

leading to salt water intrusion.  Thus in 2002 the permitted groundwater pumping 

capacity was reduced to 121 MGD in 2002 and further reduced to 90 MGD in 

2008.   

 

To more clearly separate the impact of human water use versus climate change on 

the hydrologic system, three extreme groundwater use reduction scenarios were 

developed. As discussed in the revised manuscript, and shown in the new Figure 

6, climate scenarios that project that future precipitation will be approximately 

equal to retrospective rainfall can only meet both 2045 public water demand and 

maintain existing compliance with groundwater level regulations  for these 

extreme scenarios that completely eliminate groundwater pumping for public 

water supply purposes. 

 

In addition scenarios that increased groundwater pumping were also examined.  In 

the most extreme of these scenarios pumping from the Tampa Bay Water’s 

consolidated wellfields (CWFs) was increased from the current permitted 90 

MGD to 130 MGD, which is less than the 158 MGD that was permitted in the 

early 2000s. Figure 6 shows that only the 2 wettest future climates projected by 

the GCMs used in this study can meet both projected public water supply 

demands and maintain or improve compliance with current ground water 

regulations if CWF pumping is increased to 130 MGD. 

 

The full improved justification and explanation of the future water use scenarios is 

included in Section 2.7 of the revised manuscript.  The full analysis of the 

scenarios’ ability to meet future water demand is included in Section 3.6 of the 

revised manuscript. 

  

 

Regarding model parameter uncertainty, the INTB model was calibrated and 

validated with data from the 1989-2006 time period. The results of this 

calibration/validation as well as  basic parametric uncertainty and sensitivity tests 

are reported  Geurink & Basso (2013).  The goals of this study was to evaluate the 

impact of climate change and water use change using the existing calibrated 

model.  

 

 

3 

 

Referee 

review 

Global sensitivity analysis: the authors claim a variance decomposition is being 

done, but by merit of their experimental design the core potential for generating 

variance in the model is strongly concentrated within their climate sampling. 

Variance decomposition is strongly influence by factor ranges and deterministic 

human scenarios are extreme a priori statistical assumptions that strongly under 

sample the human component of the work. Additionally, the authors report only 

1st order indices, which is tacit to a One-at-a-Time analysis in only highlighting 



separable single factor effects (e.g., Table 4 clearly indicates that a Total Order 

index in contrast to the 1st order index should be analyzed). 

Author’s 

response 
We used variance-based global sensitivity analysis (Saltelli et al., 2008, 2010) to 

apportion the variance  in projected changes  between future and retrospective 

streamflow and groundwater level onto the three input factors: GCM selection, 

ET0 method and water use scenario.  The first-order sensitivity coefficients were 

presented which represents the fraction of the total variance attributed solely to 

each factor, not accounting for interactions among factors.  As the reviewer points 

out this analysis showed that differences among GCM projections drive the results 

presented in this study, for example the first order sensitivities of change in 

streamflow to GCM ranged from 87-96%.  However  the sums of first-order 

sensitivities range from approximately 96% to 98% for streamflow and 82% to 

90% for groundwater level, indicating very small interactions among factors.  

Thus we not understand why the reviewer believes that Table 4 indicates that a 

total order index (in contrast to the 1st order index) should be analyzed 

 

 

Mean changes in precipitation projected by GCMs used in this study ranged from 

-68 mm/year to 293 mm/year over the 2030-2060, and from 154 mm/year to 400 

mm/year over the 2070-2100. Mean changes in ET0 ranged from 24 mm/year to 

137 mm/year over the 2030-2060 and from 122 mm/year to 351 mm/year over the 

2070-2100. Groundwater pumping scenarios ranged from 0 mm/year to 74 

mm/year which we agree is much lower than the variation over P or ET0.  

However, as explained above, this range in future groundwater pumping is 

plausible, and based on discussions with Tampa Bay Water staff, projected 

increases in public water demand (Tampa Bay Water Water Demand Management 

Plan Final Report; 2013), projected changes in agricultural land use and 

agricultural irrigation demand (Florida Statewide Agricultural Irrigation Demand 

Report, 2017), potential agricultural adaption behaviors, and potential changes in  

groundwater regulations .  

4 Referee 

review 

Introduction: at several points in the text (see lines 36-39; 49-53; 59-61; 75-80) 

the authors declaratively enumerate the existence of literature without any 

analysis for connection to this work and its novel contributions. Simple listing 

citations is not the same as providing readers with a guided narration of strengths, 

weaknesses, needs, and clarifying your own contribution. 

Author’s 

response 

We edited introduction to more clearly present the connection of referenced 

literature to this work and clarify the contribution of this paper.  

 

5 Referee 

review 

At several points in the Methods it was not clear what was new or novel in this 

work relative to prior published work. 

Author’s 

response 

We significantly revised the abstract, introduction and conclusions of the paper to 

more clearly point out the new contribution which we believe is the use of 

downscaled GCMs to drive regional hydrologic models in order to understand the 

likelihood of meeting future projected water demand while complying with water 

resource regulations over a range of possible climate and water management 

futures. In particular section 3.6 was added that includes a scenario discovery 

analysis (Tariq et al., 2017) that investigates which combinations of climate and 

water use scenarios are able to meet future water demand and maintain or improve 

compliance with current water resource regulations. This provides a framework 

for water management agencies to use GCM and water use projections to 



prioritize actionable, low risk water management strategies that are robust across a 

wide range of possible futures. We believe study will be useful other regional 

water management agencies who seek to develop water management plans that 

incorporate future climate risks.  

6 Referee 

review 

In terms of sensitivity analysis results, I would encourage the authors to improve 

their work by bootstrapping and reporting the confidence of their reported 

variance decomposition. 

Author’s 

response 
As mentioned above variance-based sensitivity analysis (Saltelli et al., 2008, 

2010) was used to apportion the variance  in projected changes  between 

future and retrospective streamflow and groundwater level onto the three 

input factors: GCM selection, ET0 method and water use scenario.   

Using the variance-based GSA method the variance-based first order 

effect is expressed as: 

𝑉𝑋𝑖 (𝐸𝑋~𝑖
(𝑌|𝑋𝑖))            

Where V is the scalar model output (i.e., streamflow or groundwater 

level), and  𝑋𝑖 are the factors causing variation in the model output ( i.e. choice of 

GCM, ET0 method, water use scenario). The expectation operator 

𝐸𝑋~𝑖
(𝑌|𝑋𝑖) indicates that the mean of Y is taken over all possible values of X 

except Xi (i.e., X∼i ) while keeping Xi fixed. The variance, 𝑉𝑋𝑖 , is then taken of 

this quantity over all possible values of Xi .  The first-order sensitivity coefficient 

is  

𝑆𝑖 =
𝑉𝑋𝑖(𝐸𝑋~𝑖

(𝑌|𝑋))

𝑉(𝑌)
                                                                                          

where 𝑉(𝑌) the total variance of Y over all 𝑋𝑖. 𝑆𝑖 is a normalized index 

varying between 0 and 1, because 𝑉𝑋𝑖 (𝐸𝑋~𝑖
(𝑌|𝑋𝑖)) varies between 0 and 𝑉(𝑌) 

according to the identity (Mood et al., 1974): 

𝑉𝑋𝑖 (𝐸𝑋~𝑖
(𝑌|𝑋𝑖)) + 𝐸𝑋𝑖 (𝑉𝑋~𝑖

(𝑌|𝑋𝑖)) = 𝑉(𝑌)                                                  

In this study the variances and expected values in the equations above were 

calculated over the full ensemble of 8GCM*3ET0 methods*8water use scenarios 

= 192 samples of 24 year time series in the retrospective period, or 30 year time 

series in the future period. We did not sub-sample the ensemble, but used the 

entire set of model outputs generated by all possible combinations of input 

factors. 

Section 2.8 was revised to better explain  how the variance based sensitivity 

analysis was performed in this study,   

 
 

7  Referee 

review 

I found the figures poorly designed and difficult to interpret. Even Zooming to 

200%, many of the claimed insights were not easily interpretable. 

Author’s 

response 

 All figures were edited to improve clarity.  
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