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Abstract 13 

General circulation models (GCMs) have been widely used to simulate current and future 14 

climate at the global scale. However, the development of frameworks to apply GCMs to assess 15 

potential climate change impacts on regional hydrologic systems, the ability to meet future water 16 

demand, and compliance with water resource regulations is more recent. This study evaluated 17 

future streamflows and groundwater levels in the Tampa Bay region in west-central Florida 18 

using an ensemble of different GCMs, reference evapotranspiration (ET0) methods, and water 19 

use scenarios to drive an integrated hydrologic model (IHM). Eight GCMs were bias-corrected 20 

and downscaled using the Bias Correction and Stochastic Analog (BCSA) downscaling method 21 

and then used, together with three ET0 methods, to drive the IHM for eight different human 22 

water use scenarios. Variance-based sensitivity analysis showed that changes in projected 23 

streamflow were very sensitive to GCM selection, but relatively insensitive ET0 method or water 24 

use scenario. Changes in projections of groundwater level were sensitive to both GCM and water 25 

use scenario, but relatively insensitive to ET0 method. Five of eight GCMs projected a decrease 26 

in streamflow and groundwater availability in the future regardless of water use scenario or ET 27 
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method. For the business as usual water use scenario all 8 GCMs indicated that, even with active 28 

water conservation programs, increases in public water demand projected for 2045 cannot be met 29 

from ground and surface water supplies while achieveing current groundwater level and surface 30 

water flow regulations.  With adoption of 40% wastewater reuse for public supply and active 31 

conservation 4 of the 8 GCMs indicate that 2045 public water demand can be met while 32 

achieving current environmental regulations; however, drier climates will require a switch from 33 

groundwater to surface water use. These results indicate a high probability of a reduction in 34 

future freshwater supply in the Tampa Bay region if environmental regulations intended to 35 

protect current aquatic ecosystems do not adapt to the changing climate. 36 

1. Introduction 37 

The Intergovernmental Panel on Climate Change (IPCC) along with many other studies 38 

have indicated that climate change is likely to alter both the global hydrologic cycle and regional 39 

hydrologic cycles (Aalst et al., 2014; Déry et al., 2009; Georgakakos et al., 2014; Hawkins et al., 40 

2014; Milliman et al., 2008). These studies have indicated that climate change is likely to 41 

increase the frequency of droughts, as well as the magnitude of floods in many regions 42 

(Diffenbaugh and Field, 2013; Georgakakos et al., 2014; Walsh et al., 2014). It is necessary to 43 

investigate future climate change and its potential impacts on the natural environment in order to 44 

reduce risks and increase resilience for future water resources planning and management (Vano 45 

and Lettenmaier, 2013). 46 

General Circulation Models (GCMs) and hydrologic models have been widely used to 47 

evaluate future climate change and its impact on regional hydrologic cycles (Boé et al., 2007; 48 

Maurer and Hidalgo, 2008). However, there are a variety of barriers to direct use of GCMs to 49 

drive regional hydrologic models. For example, the current generation of GCMs contain biases 50 

that prevent accurate reproduction of historic hydrological conditions when used to drive 51 

hydrologic models (Giorgi and Mearns, 2002; Wood et al., 2002). In addition, the coarse 52 

resolution of GCMs prevents direct use of their results with regional hydrologic models that 53 

require higher resolution climate variables (Solomon et al., 2007). Many bias correction methods 54 

and downscaling methods have been developed and evaluated to overcome these limitations 55 

(Chen et al., 2013; Ghosh and Mujumdar, 2008; Hwang and Graham, 2013; Langousis et al., 56 

2015; Muerth et al., 2013; Quintana Seguí et al., 2010; Stoll et al., 2011; Zhang and 57 
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Georgakakos, 2012).  Although these bias correction and downscaling methods do not correct 58 

problems with large scale synoptic forcing, and are not particularly good at reproducing extreme 59 

floods or droughts in the retrospective period, previous research has shown that they are able to 60 

simulate broad features of the climate system and are useful for characterizing plausible 61 

projections of possible futures (Kundzewicz et al, 2008, 2009). Furthermore, previous work in 62 

the study region has shown that hydrologic models driven by bias-corrected downscaled 63 

retrospective GCM output adequately reproduce retrospective  high stream flows (e.g. 7Q2 and 64 

7Q10), as well as the long term mean and standard deviation of monthly flows (Hwang and 65 

Graham, 2014).  66 

In addition to studies that focus on climate impacts on the hydrological cycle, it is also 67 

necessary to evaluate the effects of direct human behavior (Haddeland et al., 2014; Wang and 68 

Hejazi, 2011). Human activities such as agricultural production, irrigation (Gupta et al., 2015), 69 

municipal pumping (Patterson et al., 2013), deforestation, and urban development alter regional 70 

hydrologic behavior (Siriwardena et al., 2006). For robust water resources management and 71 

planning better understanding of the influence and relative importance of climate change and 72 

human-induced change on hydrology and water resources is essential (Chang et al., 2016; Ma et 73 

al., 2008; Tan & Gan, 2015; Ye et al., 2013; Zheng et al., 2009). 74 

The relative contributions of climate change and human activities to hydrologic responses 75 

have been evaluated using GCM data to drive hydrologic models with plausible future 76 

anthropogenic scenarios (Liu et al., 2013; Maurer et al., 2010; Wood et al., 2002). Murray et al. 77 

(2012) used the Land-surface Processes and eXchanges (LPX) dynamic global vegetation model 78 

and the WaterGAP hydrological model to evaluate the impacts of climate change and socio-79 

economic change on global hydrologic response for the 2070 – 2099 time period. They found 80 

that climate change and population growth increased water stress in many regions, and change in 81 

runoff was most highly correlated with precipitation change in large global catchments. Harding 82 

et al. (2012) applied downscaled outputs of 16 GCMs with the VIC model to investigate the 83 

future change in streamflow for the Colorado river basin. They suggested that impact analyses 84 

relying on only a few scenarios were unacceptably influenced by the choice of GCM projections.  85 

For studies using GCMs to project future hydrologic responses, uncertainties resulting 86 

from the choice of GCM, RCP (Representative Concentration Pathways) trajectory, and 87 
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reference evapotranspiration (ET0) estimation methods are all significant, and it is important to 88 

quantify the relative uncertainties of these factors (Chang et al., 2016; Hawkins & Sutton, 2009, 89 

2010; Kingston et al., 2009; Koedyk & Kingston, 2016; McAfee, 2013; Thompson et al., 2014; 90 

W. Wang et al., 2015). Furthermore, the effects of climate change on groundwater levels have 91 

not explored as extensively as the effects of climate change on surface water flows (Green et al., 92 

2011; Kløve et al., 2014). Kløve et al. (2014) suggested that the uncertainties of groundwater 93 

projections attributed to climate models, downscaling techniques, emission scenarios, land use 94 

changes and social economic development should be evaluated.  95 

This study evaluated the future projections of regional hydrologic response using eight 96 

GCMs, three ET0 estimation methods, and eight human water use scenarios to drive a calibrated 97 

regional hydrologic model developed for the Tampa Bay region. A comprehensive evaluation of 98 

the relative sensitivity of projections of regional hydrologic response to the choice of GCM, ET0 99 

estimation method, and human water use scenario was conducted. Statistical analyses were 100 

performed to determine whether differences in streamflow and groundwater level between 101 

retrospective hydrologic and projected future climate were statistically significant given these 102 

underlying prediction uncertainties. The ability to satisfy projected increases in future water 103 

demand while meeting current groundwater level and surface water flow regulations was 104 

evaluated over the suite of GCM and water management scenarios. 105 

2. Materials and Methods 106 

2.1 Study Region 107 

Tampa Bay Water operates a diverse regional water supply system comprised of a 108 

desalination plant, well fields that extract water from the Floridan Aquifer, and surface water that 109 

is extracted from the Hillsborough and Alafia Rivers (https://tampabaywater.org/water-supply-110 

sources-tampa-bay-region ). The fresh groundwater system in the region is composed of two 111 

aquifer systems, a thin surficial aquifer and the thick and highly productive carbonate rocks of 112 

the Floridan aquifer system (Tihansky & Knochenmus, 2001). Dynamic interacting surface-113 

water and groundwater systems (in which groundwater from in the aquifer used for agricultural 114 

irrigation and public water supply also feeds the surface springs and rivers) characterize the 115 

region and must be considered in the management of water resources (Tihansky, 1999). For 116 
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example the SWFWMD regulates groundwater pumping for water supply to maintain 117 

groundwater levels that promote environmental protection of lakes and wetlands near well-fields.  118 

Similarly they regulate the daily volume of flow permitted for extraction from rivers based on 119 

maintaining sufficient in-stream flows and spring flows to protect aquatic ecosystems. 120 

This study focused on the Integrated Northern Tampa Bay (INTB) model domain 121 

(Geurink and Basso, 2013; Hwang and Graham, 2014). Figure 1 shows the INTB model domain, 122 

model sub-basins, locations of agricultural, industrial and public water supply wells, two  123 

streamflow locations where water is withdrawn for public supply, and three monitoring wells 124 

near Tampa Bay Water’s consolidated well fields that are used to evaluate compliance with 125 

groundwater level regulations. The INTB region land use currently consists of grass/pasture (25 126 

%), urban (22 %), forested (15 %), mining/other (7 %), agriculture/irrigated land (6 %), open 127 

water (4 %), and wetlands (21 %). 128 

2.2 The Integrated Northern Tampa Bay Model 129 

Tampa Bay Water and the Southwest Florida Water Management District (SWFWMD) 130 

developed the Integrated Hydrologic Model (IHM) simulation engine which integrates the EPA 131 

Hydrologic Simulation Program-Fortran (Bicknell et al., 2005) for surface water modeling with 132 

the U.S. Geological Survey (USGS) MODFLOW96 (Harbaugh and McDonald, 1996) for 133 

groundwater modeling. The IHM simulates the dynamic interaction of surface water and 134 

groundwater systems within the INTB region including all processes which affect flow and water 135 

levels in uplands, within the unsaturated soil, and within wetlands, rivers and aquifers. In 136 

addition, the INTB model can account for variability in climate and anthropogenic stresses such 137 

as land use change, groundwater pumping, and diversions to/from rivers, lakes, and wetlands. 138 

Tampa Bay Water and the SWFWMD calibrated model parameters to simulate 139 

streamflows, groundwater levels, and wetland hydroperiods in the INTB model region. The 140 

INTB model was calibrated from 1989 to 1998 and verified from 1999 to 2006 (Geurink and 141 

Basso, 2013). Precipitation data for calibrating and validating the model were obtained from 302 142 

point gages maintained by National Oceanic and Atmospheric Administration (NOAA), the 143 

SWFWMD, and Tampa Bay Water in the model region. Maximum and minimum daily 144 

temperature were obtained from six NOAA stations within the INTB region and used to estimate 145 

ET0 using the Hargreaves method. Over the calibration and validation period (1989 to 2006) 146 
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average annual precipitation input to the model was 1308 mm/year and average annual actual 147 

evapotranspiration estimated by the model was 940 mm/year, resulting in net available water 148 

(precipitation-actual evapotranspiration) of 368 mm/yr. During this period surface discharge 149 

from the domain was 272 mm/year (74 % of net available water), groundwater pumping was 69 150 

mm/year (19 %), surface water diversions for water supply were 10 mm/year (3 %), and 151 

irrigation applied within the domain was 18 mm/year (5 %). More details about the processes 152 

and results of model calibration and validation are described in Geurink and Basso (2013). 153 

 Streamflow predictions at two United States Geological Survey (USGS) gauging 154 

stations, the Hillsborough river (USGS ID: 02303330) and Alafia river (USGS ID: 02301500), 155 

were used in this study to evaluate retrospective and future IHM streamflow predictions and 156 

quantities of surface water available for public supply. Three Tampa Bay Water monitoring wells 157 

(NWH-RMP-08s, CBR-SERW-s, and STK-STARKEY-20s) were used to evaluate retrospective 158 

and future groundwater level predictions and compliance with environmental regulations 159 

intended to protect nearby wetlands from dewatering as a result of consolidated well field 160 

pumping. 161 

2.3 Climate Data 162 

Forcing data from Phase 2 of the North American Land Data Assimilation System 163 

(NLDAS-2) from 1982 to 2005 were used as historical reference climate data for bias correction. 164 

Hourly precipitation, air temperature, solar radiation (surface downward longwave radiation and 165 

surface downward shortwave radiation), surface pressure and average wind speed were obtained 166 

from the NLDAS-2 archive and aggregated to the daily scale at a 1/8th-degree grid spacing over 167 

the Tampa Bay region. 168 

For retrospective and future climate data, the Coupled Model Intercomparison Project 5 169 

(CMIP5) General Circulation Models (GCMs) data set for the 1982-2005 period was used for the 170 

retrospective period and 2030-2060 (Future 1) and 2070-2100 (Future 2) were used as future 171 

periods. Gridded daily precipitation, air temperature, solar radiation, surface pressure, and 172 

average wind speed were obtained for eight GCMs listed in Table 1. These GCMs were chosen 173 

because they spanned the range of cool to warm bias and wet to dry bias exhibited by 41 CMIP5 174 

GCMs for the southeastern United States (Rupp, 2016), and they had daily values available for 175 

all the parameters needed to estimate Penman-Monteith reference evapotranspiration. Mean 176 
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changes in precipitation projected by these GCMs ranged from -68 mm/year to 293 mm/year 177 

over the 2030-2060 period, and from 154 mm/year to 400 mm/year over the 2070-2100 period. 178 

Mean changes in ET0 ranged from 24 mm/year to 137 mm/year over the 2030-2060 period and 179 

from 122 mm/year to 351 mm/year over the 2070-2100 period. Mean changes in P-ET0 ranged 180 

from -162 mm/year to 220 mm/year over the 2030-2060 period and from -420 mm/year to 159 181 

mm/year over the 2070-2100 period (Table 1).  182 

Chang et al. (2016) evaluated projected changes in P – ET0 over the continental USA 183 

using nine GCMs, ten ET0 estimation methods, and three RCP scenarios. They showed that the 184 

first order sensitivities of water deficit projections (P-ET0) over the Southeast USA were much 185 

higher to choice of GCM and ET0 estimation method than to choice of RCP. First order 186 

sensitivities of water deficit projections to RCP scenarios were negligible (<0.01) for the 2030-187 

2060 time period, and averaged 0.2 for the 2070-2100 time period. Therefore for computational 188 

efficiency, and to evaluate the influence of the most extreme carbon dioxide forcing on the 189 

hydrologic projections, only the RCP 8.5 scenario data was utilized for the future analyses in this 190 

study.   191 

2.4 BCSA Downscaling Method 192 

The BCSA downscaling method, developed by Hwang and Graham (2013), was used in 193 

this study. Hwang & Graham (2014) showed that BCSA demonstrated  better performance than 194 

other statistical downscaling methods (i.e, BCSD (Maurer et al, 2012) or SDBC (Abatzoglou and 195 

Brown, 2012)) in reproducing spatiotemporal statistics of both precipitation and daily streamflow 196 

in the Tampa Bay region. In particular, the INTB model, when driven by GCMs downscaled 197 

using the BCSA method, accurately reproduced frequencies of extreme high and extreme low 198 

retrospective streamflows as well as 7Q2 and 7Q10 retrospective streamflows in the Tampa Bay 199 

region.  200 

The BCSA method preserves both the cumulative frequency distribution of observed 201 

daily precipitation as well as the spatial autocorrelation structure of observed daily precipitation 202 

fields. BCSA downscaling consists of two separate steps for bias-correction and stochastic 203 

analog spatial downscaling. In the first step, a cumulative distribution function (CDF) mapping 204 

approach ( Block et al., 2009; Hwang et al., 2013, 2014; Hwang & Graham, 2014; Ines & 205 

Hansen, 2006; Teutschbein & Seibert, 2012) is used to reduce the biases in raw GCM output at 206 
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the GCM scale. In this study, NLDAS-2 P and ET0 were aggregated up to the GCM scale and P 207 

and ET0 from the raw GCMs were bias corrected at the GCM scale using the sequential 208 

univariate CDF mapping method (Chang, 2017). NLDAS-2 was selected for bias correction 209 

because it includes all the parameters needed to estimate Penman-Monteith reference 210 

evapotranspiration. Comparison of the gridded NLDAS-2 data to the precipitation and 211 

temperature observations from the weather stations used to calibrate the INTB model showed 212 

that the NLDAS-2 data reproduced observed long term monthly means values with biases that 213 

ranged from 4 to 12 mm for daily precipitation and 1 to 2°C for daily temperature. Correlations 214 

among daily values ranged from 0.75 to 0.87 for rainfall and 0.75 to 0.98 for temperature. The 215 

second step in the BCSA method is stochastic analog (SA) spatial downscaling (Hwang & 216 

Graham, 2013, 2014) for P. In this method, a synthetic downscaled precipitation field is 217 

produced which preserves the GCM-scale daily precipitation amount and the month-specific 218 

local-scale spatial correlation structure. For more details on the BCSA method, see ( Hwang & 219 

Graham, 2013, 2014). ET0 was not downscaled in this study because observed spatial variability 220 

of ET0 over the INTB region is very small, and the spatial correlation is large compared to P 221 

(Chang, 2017).   222 

2.5 Reference Evapotranspiration Estimation Methods 223 

The Chang et al. (2016) study referenced above found that the projected changes in P – 224 

ET0 were sensitive to both the choice of GCM and the choice of ET0 method, and that for the 225 

Southeast USA the choice of GCM and ET0 method had approximately equal influence on 226 

changes in future P – ET0 throughout most of the year. However, they noted that not all ten ET0 227 

methods were equally appropriate for use in all US regions, and that regional studies should use 228 

methods for which retrospective predictions of ET0 are generally consistent with historic 229 

observations. Several of the ET0 methods used by Chang et al. (2016) were found to produce 230 

unreasonably high or low historic ET0 estimates for the study region using retrospective and 231 

observation data. Therefore in this study three ET0 estimation methods that are widely used in the 232 

Southeast USA, produced retrospective predictions that were consistent with observations, and 233 

showed a range of wet to fairly dry projections of future P-ET0  (Chang et al, 2016) were 234 

included in the analysis. These methods include a temperature-based method (Hargreaves; 235 

Hargreaves and Allen, 2003), a radiation-based method (Priestley-Taylor; Allen et al., 1998), and 236 

a combination method (Penman-Monteith; Allen et al., 1998). All hourly climate variables 237 
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described above were aggregated to the daily scale and used to calculate daily ET0 using these 238 

three methods. 239 

2.6 Retrospective Simulations 240 

Water-use in the  study region is comprised of five categories; 1) public supply, 2) 241 

agricultural, 3) industrial/commercial, 4) mining, and 5) recreational (e.g. golf course irrigation) 242 

(Geurink and Basso, 2013).  Groundwater sources are used for agricultural, 243 

industrial/commercial, mining and recreational water supplies. Public water supply is provided 244 

by a combination of groundwater, surface water (Hillsborough and Alafia Rivers), and a 25 245 

MGD desalinization plant operated by Tampa Bay Water. The SWFWMD regulates all 246 

groundwater pumping and surface water extraction in the study region to protect natural aquatic 247 

ecosystems and prevent saltwater intrusion. Over the 1989-2006 calibration-verification period 248 

groundwater extractions from the INTB model domain averaged 36 mm/yr for public water 249 

supply, 18mm/yr for agricultural irrigation, 9 mm/year for  industrial/commercial uses, 6 250 

mm/year for mining, and 3 mm/year for recreational uses (Geurink and Basso, 2013).  251 

 Public Water Supply: Tampa Bay Water has a consolidated permit for its eleven 252 

wellfields (the Consolidated Wellfields, hereafter referred to as the CWF). The CWFs are 253 

operated as an interconnected system with a combined maximum permitted pumping rate of 90 254 

MGD (13 mm/yr over the INTB region). Individual well pumping rates are optimized to 255 

maintain minimum groundwater levels near sensitive wetlands to meet regulatory requirements 256 

intended to prevent ecological harm. The three monitoring wells evaluated in this study are 257 

located near wetlands adjacent to the CWFs (Fig. 1). From 1992-2008 Tampa Bay Water’s total 258 

water demand averaged ranged from 150-200 MGD. Groundwater is Tampa Bay Water’s most 259 

inexpensive source for public water supply, therefore for the retrospective simulations the CWFs 260 

were assumed to withdraw groundwater continuously at the 90 MGD maximum permitted rate.  261 

For the retrospective simulations groundwater extraction for other public water supply (outside 262 

of Tampa Bay Water’s CWF), industrial/commercial and mining uses were assumed occur 263 

continuously at the average pumping rates between years 1989 to 2006 cited above. 264 

Maximum available surface water available to Tampa Bay Water for public supply was 265 

calculated on a daily basis from retrospective streamflow predictions for both the Hillsborough 266 

River and the Alafia River according to site-specific regulations set to maintain sufficient in-267 
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stream flows and spring flows to protect aquatic ecosystems. Diversion rates for pumping from 268 

the Hillsborough river reservoir by the City of Tampa and from the Tampa Bypass Canal by 269 

SWFWMD were set at the historical average daily rate spanning 2003 to 2009 for all 270 

retrospective simulations. All other diversion rates were set to zero including the Withlacoochee-271 

Hillsborough overflow. These diversion locations are located either downstream or outside of the 272 

watersheds contributing to the surface water gages, and outside the zone of influence of the 273 

monitoring wells evaluated in this study so these assumptions do not impact on the results (Fig. 274 

1).   275 

Agricultural Irrigation Demand: The AFSIRS (Agricultural Field-Scale Irrigation 276 

Requirements Simulation) model (Jacobs and Dukes, 2007; Smajstrla, 1990) was used to 277 

estimate climate-driven irrigation demand for the retrospective period. The AFSIRS model tracks 278 

the water budget in the crop root zone including inputs from rain and irrigation, and outputs from 279 

the root zone by drainage and evapotranspiration. The AFSIRS model defines the water storage 280 

capacity in the crop root zone as the product of the water-holding capacity of the soil (estimated 281 

by the difference between field capacity and wilting point) and the depth of the effective root 282 

zone for the crop being grown. Crop evapotranspiration (ETc) is estimated from the product of 283 

potential evapotranspiration (ET0) and crop water use coefficients. The AFSIRS model 284 

subdivides the crop root zone into irrigated and non-irrigated zones and maintains separate water 285 

budgets for both zones in order to simulate different types of irrigation systems, such as surface 286 

irrigation and subsurface irrigation. 287 

The AFSIRS was used as a basis to estimate irrigation demand for the retrospective 288 

period using CMIP5 bias-corrected downscaled daily P and bias-corrected ET0 (using the three 289 

ET0 methods discussed above) and the land use from the calibrated INTB model. Crop 290 

coefficients (Kc) for estimating ETc were obtained from the calibrated INTB model database 291 

(Geurink and Basso, 2013) for all vegetative covers except row crops. The crop coefficient for 292 

row crops was estimated by the superposition of crop coefficients for tomato and strawberry 293 

(Dukes et al., 2012), the two dominant row crops in the region. The relative proportion of these 294 

two crops constituting the row crop land use were calculated based on water usage records for 295 

the region for 2011 (Jackson and Albritton, 2013). The root zone depth, field capacity, wilting 296 

point and other information needed for the AFSIRS model were taken from the calibrated INTB 297 
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model database. Groundwater pumping required to satisfy the AFSIRS estimated  irrigation 298 

assumed 85% irrigation efficiency based on Irmak et al. (2011) and Jacobs & Dukes (2007), i.e., 299 

𝑎𝑔𝑟𝑖𝑐𝑢𝑙𝑡𝑢𝑟𝑎𝑙 𝑝𝑢𝑚𝑝𝑖𝑛𝑔 = 𝑖𝑟𝑟𝑖𝑔𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 ×
100 %

85 %
                                       (3) 300 

 It should be noted that the AFSIRS model does not predict water demand for bed 301 

preparation, freeze protection, crop cooling requirements, or maintenance of irrigation systems. 302 

Thus the irrigation demand estimated for the retrospective period only includes crop water 303 

demand for evapotranspiration. 304 

Boundary Conditions: Lateral boundary conditions are required for aquifers in the model 305 

region. A repeating annual cycle of daily General Head Boundary (GHB) time series for the 306 

retrospective and future periods IHM simulations was derived using the daily average of the 307 

historical daily GHB time series spanning 2000 to 2006. More details about the water 308 

withdrawals such as groundwater pumping, agricultural irrigation, CWFs, diversions and 309 

boundary conditions during the calibration-verification period are described in Geurink and 310 

Basso (2013).  311 

2.7 Future Water Use Scenarios 312 

In addition to warming temperatures and reduced precipitation due to climate change, 313 

increases in water withdrawal for agriculture and other human uses are potentially significant 314 

causes of declining river flow and groundwater levels (Alcamo et al., 2003; Vorosmarty et al., 315 

2000). To assess the relative importance of climate change versus anthropogenic impact on the 316 

hydrologic system, ability to meet future water demand, and compliance with water resource 317 

regulations in the study region, eight future water use scenarios were developed (Table 2). These 318 

scenarios were based on discussions with Tampa Bay Water staff, projected increases in public 319 

water demand (Tampa Bay Water Water Demand Management Plan Final Report, 2013), 320 

projected changes in agricultural land use and agricultural irrigation demand (Florida Statewide 321 

Agricultural Irrigation Demand Report, 2017), potential agricultural adaption behaviors, and 322 

potential changes in groundwater regulations. For naming simplicity in the future scenarios 323 

agricultural and recreational water use categories are combined as agricultural demand and 324 

public supply, industrial/commercial and mining are combined as urban demand. The eight water 325 

use scenarios included: 1) No groundwater pumping for agriculture or urban demand, 2) No 326 
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urban groundwater pumping, 3) No agricultural groundwater pumping, 4) Agricultural adaption 327 

(increased irrigation efficiency and/or use of reclaimed water), 5) Business as usual, 6) Increased 328 

agricultural demand, 7) Relaxed regulatory requirements for CWF pumping (increased CWF 329 

pumping), and 8) Relaxed regulatory requirements for all urban groundwater pumping (increased 330 

all urban pumping). Details regarding each of these water use scenarios are provided below. 331 

The business as usual scenario (scenario 5 in the Table 1) assumed no change in 332 

groundwater regulations. Thus the CWF pumping remained at the maximum permitted 90 MGD 333 

and all other urban pumping (industrial/commercial, mining and other public water supply) 334 

remained at the average pumping rates used in the retrospective simulations.  In this case all 335 

projected increases in future public water demand must be met by increased surface water 336 

extraction (if available), increased conservation, increased wastewater reuse, or desalination 337 

capacity. For the business as usual scenario agricultural irrigation demand was estimated using 338 

AFSIRS model and assuming 85% irrigation efficiency, as in the retrospective period 339 

simulations. However the P and ET0 used in the AFSIRS model were taking from the bias 340 

corrected downscaled future GCM projections for both future 1 (2030-2060) and future 2 (2070-341 

2100).  342 

To more clearly separate the impact of human water use versus climate change on the 343 

hydrologic system, three extreme groundwater use reduction scenarios were developed. The no 344 

agricultural or urban pumping scenario (scenario 1) assumed that there was no groundwater 345 

pumping at all in the region. For this scenario agricultural and recreational pumping (and the 346 

associated irrigation of the land surface) as well as all urban pumping (including CWF, other 347 

public water supply and industrial/mining) were set to zero. For the no urban pumping scenario 348 

(scenario 2) all urban pumping including CWF, other public water supplies, industrial/mining 349 

was set to zero, however agricultural pumping was assumed to be the same as the business as 350 

usual scenario. For the no agricultural pumping scenario (scenario 3) agricultural and 351 

recreational pumping were set to zero, however all urban pumping was assumed equal to the 352 

business as usual scenario. 353 

The agricultural adaption scenario (scenario 4) assumed that increased irrigation 354 

efficiency and/or increased use of reclaimed water reduced groundwater pumping for agricultural 355 

and recreational irrigation by 40 MGD over climate driven demand (6 mm/year, ~25%).  All 356 
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urban pumping was assumed to be the same as the business as usual scenario. The increased 357 

agricultural demand scenario (scenario 6) assumed that irrigation demand increased by 40 MGD 358 

over climate driven demand (6 mm/year, ~25%) due to more intensive farming on existing 359 

agricultural lands (Florida Statewide Agricultural Irrigation Demand Report, 2017) and that all 360 

urban pumping was the same as the business as usual scenario. The relaxed regulatory 361 

requirements for CWF pumping (scenario 7) assumed an increase of CWF pumping up to 130 362 

MGD (19 mm/year, ~44%) from the current 90 MGD (13 mm/year) to help meet increased 363 

public water demand, and that agricultural and recreational pumping followed the business as 364 

usual scenario. The relaxed regulatory requirements for all urban pumping (scenario 8) assumed 365 

all urban pumping, including CWF pumping, other public water supply, industrial and mining, 366 

increased by 44 %, (i.e. the same percentage increase as the CWF pumping for scenario 7) and 367 

that agricultural and recreational pumping followed the business as usual scenario. These water 368 

use scenarios consist of projected agricultural and urban groundwater pumping volumes that 369 

represent from 0 % to 27 % of historic P-ET0.   370 

It should be noted that land use change was not considered in this study. This assumption 371 

is consistent with a regional planning strategy that promotes agricultural and urban 372 

intensification on existing lands, along with protection of existing conservation lands, wetlands 373 

and water supplies (Barnett et al., 2007). This assumption is also consistent with the Florida 374 

Statewide Agricultural Irrigation Demand Report (2017) that projects a 2% decline in 375 

agricultural land area between 2015-2040, but an 8.5% increase in agricultural water use as a net 376 

result of agricultural intensification and increased conservation. Future work will build on this 377 

study to evaluate land use change scenarios. 378 

2.8 Statistical Analysis 379 

Variance-based sensitivity analysis is a global sensitivity analysis (GSA) method (Saltelli 380 

et al., 2008, 2010) used to apportion the total model output variance simultaneously onto all the 381 

varying input factors, and thus is preferred over the local, one factor at a time, sensitivity 382 

analyses (Homma and Saltelli, 1996; Saltelli, 1999). In this research the sensitivity of projected 383 

changes between future and retrospective mean monthly streamflow and groundwater levels was 384 

evaluated using the variance-based GSA method described in Chang et al. (2016). 385 
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Using the variance-based GSA method the variance-based first order effect is expressed 386 

as: 387 

𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖))                       (1) 388 

Where V is the scalar model output (i.e., change in mean monthly streamflow or 389 

groundwater level), and  𝑋𝑖 are the factors causing variation in the model output ( i.e. choice of 390 

GCM, ET0 method, water use scenario). The expectation operator 𝐸𝑋~𝑖
(𝑌|𝑋𝑖) indicates that the 391 

mean of Y is taken over all possible values of X except Xi (i.e., X∼i ) while keeping Xi fixed. The 392 

variance, 𝑉𝑋𝑖
 , is then taken of this quantity over all possible values of Xi .  The first-order 393 

sensitivity coefficient is  394 

𝑆𝑖 =
𝑉𝑋𝑖(𝐸𝑋~𝑖(𝑌|𝑋))

𝑉(𝑌)
                                                                                                                       (2) 395 

where 𝑉(𝑌) the total variance of Y over all 𝑋𝑖. 𝑆𝑖 is a normalized index varying between 396 

0 and 1, because 𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖)) varies between 0 and 𝑉(𝑌) according to the identity (Mood et 397 

al., 1974): 398 

𝑉𝑋𝑖
(𝐸𝑋~𝑖

(𝑌|𝑋𝑖)) + 𝐸𝑋𝑖
(𝑉𝑋~𝑖

(𝑌|𝑋𝑖)) = 𝑉(𝑌)                                                                  (3) 399 

The first-order sensitivities of future changes in mean seasonal streamflow and 400 

groundwater level to the choice of GCM, ET0 estimation method, and water use scenario were 401 

calculated over the full ensemble of 8 GCMs, 3 ET0 methods and 8 water use scenarios (192 402 

samples) for each future period in order to evaluate the relative contributions of each of these 403 

factors on the variation among projections of future changes. 404 

In addition to variance-based GSA, differences in future changes of mean projected 405 

streamflow and groundwater level across GCMs and across future water use scenarios were 406 

evaluated for statistical significance using Tukey’s HSD (honest significant difference) test 407 

(Zieyel, 1988) that is a single-step multiple statistical test (pairwise comparison). The two-408 

sample t-test was used to test for significant differences between mean projected streamflow and 409 

groundwater levels resulting from future climate/water use scenarios and mean retrospective 410 

streamflow and groundwater level using the business as usual water use scenario.  411 
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3 Results and Discussion 412 

3.1 Global Sensitivity Analysis of Projected Changes 413 

The variance-based global sensitivity analysis was conducted for both the wet season 414 

(June – September) and the dry season (October – May) to evaluate the relative variation of 415 

projected changes in hydrologic response attributed to the choice of GCM, choice of water use 416 

scenario, and choice of ET0 method. Tables 3 and 4 show the first order sensitivity indices of 417 

changes in future streamflow and groundwater level (defined as future average seasonal 418 

streamflow – retrospective average seasonal streamflow and future average seasonal  419 

groundwater level – retrospective average seasonal groundwater level, respectively). 420 

Change in streamflow was much more sensitive to choice of GCM than to choice of ET0 421 

method or water use scenario for all river gages, both seasons, and both future periods (Table 3). 422 

For example, 94.4% of the variance of the change in wet season Hillsborough river streamflow 423 

in Future 1 period (2030-2060) is attributed to differences among GCMs, 0.2% of the variance is 424 

attributed to differences among ET0 method, and 1.6% of the variance is caused by water use 425 

scenario, respectively (top row Table 3). Similarly, projected changes in groundwater level were 426 

generally more sensitive to the choice of GCM for all monitoring wells and both seasons. 427 

However, unlike the projected changes in streamflow, changes in groundwater level were also 428 

quite sensitive to the choice of water use scenario (Table 4). The higher sensitivity of 429 

groundwater level to groundwater pumping is expected since the monitoring wells are 430 

intentionally located near the consolidated wellfields (locations of major groundwater pumping) 431 

to detect and mitigate localized impacts of water supply pumping on nearby wetlands. On the 432 

other hand, the stream gages are located further from the consolidated well fields and accumulate 433 

flow from a large area of the model domain. The first order sensitivity index of groundwater 434 

level to water use scenario decreased in future period 2 (2070-2100) over future period 1 (2030-435 

2060), due to the increased variability of GCM precipitation projections in future 2 (2070-2100) 436 

versus future 1 (2030-2060).  437 

As mentioned previously Chang et al. (2016) evaluated projected changes in P – ET0 over 438 

the continental USA using nine GCMs, ten ET0 estimation methods, and three RCP scenarios 439 

and found that for the Southeast USA the choice of GCM and ET0 method had approximately 440 

equal influence on changes in future P – ET0 throughout most of the year. Because this study 441 
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eliminated several ET0 estimation methods that produced unreasonably high and low historic ET0 442 

estimates for the study region using the NLDAS-2 data, the first order sensitivity index for ET0 is 443 

significantly lower in this study than in their results. It should be noted that these results do not 444 

indicate that the choice of reference ET estimation method does not affect the change in 445 

streamflow or groundwater, only that the choice of reference ET estimation method is much less 446 

influential than the choice of GCM or choice of water use scenario.  447 

3.2 Projections of Streamflow 448 

The INTB was run to compare retrospective hydrologic response to historical 449 

observations and model predictions generated with the calibrated model using NLDAS-2 data, as 450 

well as to future hydrologic response as a result of alternative GCMs, ET0 methods and water use 451 

scenarios. Figure 2 shows observed, NLDAS-2 and retrospective mean monthly streamflow for 452 

the Hillsborough river (Fig. 2a) and Alafia river (Fig. 2b), as well as future mean monthly 453 

streamflow in future 1 (2030-2060) and future 2 (2070-2100) for the business as usual water use 454 

scenario using the Hargreaves ET0 method originally used to calibrate the INTB model. The 455 

boxplots represent the range of mean monthly streamflow projections over eight GCMs for the 456 

business as usual water use scenario. Retrospective GCMs (blue box plots) reproduced mean 457 

streamflow simulated using NLDAS-2 data quite closely for both river gages with relatively 458 

small variation among GCMs. In the dry season (October-May) future 1 (red box plots) and 459 

future 2 (green box plots) business as usual mean monthly streamflow values over the 8 GCMs 460 

(red box plots) also showed relatively small differences with the retrospective predictions, but 461 

larger variation across GCMs. However in the wet season (June through September) future mean 462 

monthly streamflows for the business as usual scenario were lower than retrospective, especially 463 

in future 2 (2070-2100), and showed much larger variability across GCMs.   464 

3.3 Projections of Groundwater Level 465 

Figure 3 shows observed, NLDAS-2 predicted, and retrospective mean monthly 466 

groundwater level for the NWH-RMP-08s (Fig. 3a), CBR-SERW-s (Fig. 3b), and STK-467 

STARKEY-20s wells (Fig. 3c), as well as future mean monthly groundwater level in future 1 468 

(2030-2060) and future 2 (2070-2100) for the business as usual water use scenario and the 469 

Hargreaves ET0 method. Groundwater levels projected by retrospective GCMs showed relatively 470 
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small variation across GCMs and were very similar to groundwater levels simulated using the 471 

historic NLDAS-2 data for all three wells. Although observed seasonal patterns were reproduced 472 

accurately for all wells during the retrospective period, NWH-RMP-08s retrospective 473 

groundwater level predictions were lower than observed groundwater levels throughout the year 474 

(Fig. 3a). In contrast, all CBR-SERW-s and STK-STARKEY-20s retrospective groundwater 475 

lever predictions were higher than observed groundwater levels throughout the year (Figs. 3b and 476 

3c). These deviations (which are generally less than 0.5m) are consistent with deviations 477 

between the observed data and groundwater levels simulated by the original calibrated model 478 

using the locally-observed point weather data (Guerink and Basso, 2013). The mean groundwater 479 

levels averaged over GCMs for the future period 1 (2030-2060) business as usual scenario were 480 

similar to, or slightly lower than, the mean retrospective groundwater levels; however the mean 481 

groundwater levels for future 2 (2070-2100) were significantly lower than mean groundwater 482 

levels in the retrospective period, especially in the wet season for all wells. Similar to the 483 

streamflow results variability in projected groundwater levels among GCMs was larger in future 484 

2 (2070-2100) than in future 1 (2030-2060). 485 

3.4 Changes in Future Surface Water Availability for Public Supply  486 

Tampa Bay Water operates surface-water pumps on the Hillsborough and Alafia rivers to 487 

help meet public water demand. The volume of flow permitted for extraction varies daily based 488 

on maintaining sufficient in-stream flows and spring flows to protect aquatic ecosystems. In this 489 

study, the amount of water that could be withdrawn for public water supply, while meeting 490 

current environmental regulations, was analyzed to evaluate projected changes in future water 491 

availability for different GCMs and  water use scenarios. Boxplots in Fig. 4a show the variation 492 

in the projected change in the mean available water that can be withdrawn from the Hillsborough 493 

river (the mean available water that can be withdrawn for future streamflow – the mean available 494 

water that can be withdrawn for retrospective streamflow) over all GCMs and all ET0 methods 495 

for each water use scenario. The boxplots show large variations due to large differences in future 496 

streamflow projections. All boxplots encompass both positive and negative changes for both 497 

future periods, but indicate generally lower water availability in future 2 (2070-2100) than future 498 

1 (2030-2060). Figure 4b compares the change in the projected mean available water that can be 499 

withdrawn from the Hillsborough river over water use scenarios and ET0 methods for each GCM. 500 

While there is some variation across water use scenarios and ET0 methods, Fig. 4b clearly shows 501 
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that projected changes in future surface water availability depend strongly on choice of GCM, 502 

with 5 GCMs showing less surface water availability in the future regardless of  water use 503 

scenario. Plots for the Alafia River show very similar behavior both by water use scenario and by 504 

GCM (Figure S1 in supplemental materials). 505 

The differences between the mean projected changes in available water that can be 506 

withdrawn from the Hillsborough and Alafia rivers for individual water use scenarios over 507 

GCMs and ET0 methods (left columns in Table 5), and for individual GCMs over water use 508 

scenarios and ET0 methods (right columns in Table 5), were evaluated for statistical significance 509 

using Tukey’s HSD (honest significant difference) test. The HSD test confirmed that none of the 510 

differences in the mean projected change in available water for different water use scenarios 511 

shown in Figure 3a were statistically significant for the Hillsborough river for either future 512 

period (In Table 5 scenarios with  the same alphabetic subscripts are not statistically significantly 513 

different). For the Alafia river the mean projected changes in available water for the extreme 514 

groundwater pumping reduction scenario was statistically significantly different from the other 515 

water use scenarios in future 1 (2030 – 2060), but no statistically significant changes were 516 

detected in future 2 (2070 – 2100). These results imply that due to the large variations in climate 517 

projections produced by different GCMs, differences in mean projected changes in streamflow 518 

projections due to differences water use scenarios and ET0 methods cannot be reliably predicted 519 

by averaging over GCMs.   520 

On the other hand, many of the differences between mean projected changes in available 521 

water that can be withdrawn from the Hillsborough and Alafia rivers for individual GCMs over 522 

water use scenarios were statistically significant for both future periods (i.e. many of the GCMs 523 

on the right side of Table 5 have different alphabetic subscripts). Two GCMs show a distinct 524 

increase water availability from these rivers for public supply (GFDL-CM3 and MRI-CGCM3) 525 

however, most GCMs show a decrease in water availability (BNU-ESM, GFDL-ESM2G, 526 

MIROC-ESM, NorESM1-M, and BCC-CSM). These results underscore the fact that differences 527 

in projections of future availability of water from these rivers for public supply are driven more 528 

strongly by differences climate models than differences in future human water use scenarios or 529 

ET0 methods. Furthermore manipulating groundwater use to change the amount of available 530 

surface water has a very small effect for a given climate. These results are similar to previous 531 

studies (Bosshard et al., 2013; Forzieri et al., 2014; Guimberteau et al., 2013; Harding et al., 532 
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2012; Kay and Davies, 2008) that showed climate models are a large source of uncertainty for 533 

climate-impact projections because of the divergence of GCM projections. 534 

 In addition, to the HSD test, the two sample t-test was conducted to evaluate statistical 535 

significance of differences between the mean available water that can be withdrawn for the 536 

retrospective period and the mean available water that can be withdrawn for each future water 537 

use scenario calculated over all GCMs and ET0 methods. The two sample t-test indicated that, at 538 

the 0.05 significance level, none of the future scenarios were statistically significantly different 539 

from the retrospective business as usual scenario for the Hillsborough river. For the Alafia river 540 

only the no pumping and no urban pumping scenarios in future 1 (2030-2060) showed significant 541 

differences from the retrospective scenario in the available water that can be withdrawn from the 542 

Alafia river (marked as † on the left hand columns of Table 5). In contrast most GCMs projected 543 

significantly different mean available water in both future periods compared to the retrospective 544 

period when averaged over water use scenarios (marked as † in right hand columns of Table 5). 545 

The results that future streamflow projections are relatively insensitive to water use 546 

scenarios are contrary to that of Dale et al. (2015). They used historical streamflow and climate 547 

data to evaluate the impacts of anthropogenic change on streamflow and found that for an 548 

irrigation intensive watershed located in an area with hot summer and limited precipitation 549 

(North Central Oklahoma, U.S.) irrigation from groundwater pumping increased antecedent soil 550 

moisture and played an equally important role in streamflow variability as climate change. These 551 

differences are likely due to that fact that the region studied here is wetter than their study region, 552 

the aquifer underlying the study region is large and productive, and land use changes were not 553 

considered in this study. 554 

3.5 Changes in Compliance with Groundwater Level Regulations 555 

Groundwater pumping for water supply in the Tampa Bay region is regulated to maintain 556 

groundwater levels that promote environmental protection by preventing dewatering of lakes and 557 

wetlands near wellfields. The relative importance of water use scenario and GCM selection on 558 

the change in percent of time that future groundwater levels were above the target levels (the 559 

percent of the time that groundwater level is above the target level for future scenario – the 560 

percent of the time that groundwater level is above the target level for retrospective scenario) 561 

was evaluated for three monitoring wells. Boxplots in Fig. 5a show the change in percent of the 562 
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time that groundwater level was above the target level in the dry season (Oct – May) for the 563 

NWH-RMP-08s well over all GCMs for each water use scenario and ET0 methods. Tukey’s 564 

HSD test showed that the two most extreme water use reduction scenarios, i.e. the no pumping 565 

scenario and the no urban pumping scenario, showed a statistically significant higher percent of 566 

time that groundwater is above the target level in future 1 (2030-2060) compared to the other 567 

future water use scenarios for the NWH-RMP-08s well (Table 6). Furthermore the T-test showed 568 

a statistically significant difference in the percent of time this well was above the target level in 569 

both futures 1 (2030-2060) and 2 (2070-2100) for these two scenarios compared to the 570 

retrospective scenario (marked with † in Table 6). Results for the other two wells were more 571 

ambiguous with Tukey’s HSD test showing differences among several of the water use scenarios 572 

in future 1 for both wells, and among several water use scenarios in future 2 for STK-573 

STARKEY-20s. The T-test for CBR-SERW-s and STK-STARKEY-20s showed statistically 574 

significant differences for the two most extreme water use reduction scenarios compared to the 575 

retrospective scenario both future 1 and future 2. Collectively these results confirm that future 576 

compliance with groundwater levels is sensitive to water use scenario. Scenarios that assume 577 

differences in CWF pumping predict statistically significant differences in future groundwater 578 

compliance when averaged over possible future climates and ET0 methods. On the other hand 579 

scenarios that assume similar differences in the magnitude of agricultural pumping generally do 580 

not show statistically significant differences in future groundwater compliance. These results are 581 

largely explained by the concentration of CWF wells near monitoring wells versus the 582 

distribution of agricultural pumping wells throughout the model domain. 583 

Fig 5b indicates and Tukey’s HSD test (Table 7) confirms that the mean change in 584 

percent of time that groundwater is above the target level in the monitoring wells was 585 

significantly different for many GCMs in both future periods for all three wells (Figure 5 and 586 

Figures S2 – S3 in the supplemental material. Two “wet” GCMs (GFDL-CM3 and MRI-587 

CGCM3) projected statistically significant increases in the mean percent of the time that 588 

groundwater is above the target level for both future periods compared to the retrospective period 589 

in all three wells  when averaged over future water use scenario and ET0 method(Fig. 5b and 590 

marked as † in the Table 7). Three “drier” GCMs (BNU-ESM, MIROC-ESM and BCC-CSM) 591 

projected statistically significant decreases in percent of the time that groundwater level is above 592 

the target level compared to the retrospective period in future 2 (2070-2100) for all three wells. 593 
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More GCMs showed significant differences in future period 2 (2070-2100) than in future period 594 

1 (2030-2060) compared to the retrospective period because the differences among climate 595 

model projections increase in the later future. These results indicate that for drier future climate 596 

groundwater level regulations may be difficult to achieve regardless of groundwater pumping 597 

scenario, and thus may have to change with the changing climate. 598 

3.6 Ability to Meet Future Water demand  599 

Future water demand projections for Tampa Bay Water indicate that even with active 600 

urban water conservation programs public water supply demand is expected to increase from 601 

approximately 220 MGD in 2010 to approximately 278 MGD in 2045 (Tampa Bay Water Water 602 

Demand Management Plan Final Report, 2013). At the present time the Tampa Bay water supply 603 

system includes 90 MGD groundwater pumping permitted for the CWF, a 25 MGD desalination 604 

plant and permitted water withdrawals from the Hillsborough and Alafia rivers that vary daily to 605 

maintain ecologically protective in-stream flows. Scenario discovery analysis (Tariq et al., 2017)  606 

was used to explore the ability of Tampa Bay Water to meet 2045 water demand with while 607 

maintaining or improving existing levels of compliance with surface and groundwater 608 

regulations.   609 

Figure 6 presents the results of the scenario discovery analyses that evaluates which 610 

climate and water use scenarios achieve these objectives in future 1 (2030-2060) using the 611 

Hargreaves ET0 method. In these analyses it was assumed that Tampa Bay Water’s desalination 612 

capacity would remain at 25 MGD, surface water would be extracted at the maximum rate that 613 

complied with existing regulations, and 0% (current condition), 20%, or 40% of Tampa Bay 614 

Water’s public water supply (surface water, groundwater, and desalination) might be reclaimed 615 

and reused to satisfy public demand. The axes in figure 6 represent the two most important 616 

factors in the climate and water use scenarios that affect achievement of Tampa Bay Water’s 617 

goals:  mean change in precipitation projected by the different GCMs and volume of agricultural 618 

and urban groundwater pumping in the water use scenario. Green filled circles indicate futures 619 

that meet both 2045 water demand and maintain groundwater compliance levels at or above 620 

current conditions in future 1 (2030-2060). Yellow filled circles indicate futures that meet 2045 621 

water demand but decrease the level of groundwater compliance. Orange filled circles indicate 622 

futures that do not meet 2045 water demand but maintain groundwater compliance levels at or 623 
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above current conditions. Red filled circles indicate futures that do not meet 2045 water demand 624 

and decrease the level of groundwater compliance. The black filled circle indicates the 625 

retrospective business as usual condition.  626 

 Figure 6a shows that, without using reclaimed water to satisfy public water demand only 627 

4 scenarios are able to meet 2045 demand and maintain or improve existing levels of compliance 628 

with groundwater regulations (filled green circles on Fig 6a).  These 4 scenarios assume the 2 629 

wettest future climates (projected by GFDL-CM3 and MRI-CGM3) will occur and permitted 630 

CWF pumping will increase from 90 MGD to 130 MGD.  No other climate-water use scenarios 631 

are able to meet 2045 demand without use of reclaimed water (there are no yellow filled circles 632 

on Fig. 6a).  In fact a significant number of the scenarios, including many that assume the 633 

business as usual water use scenario, are not able to meet 2045 demand and also decrease 634 

compliance groundwater regulations (red filled circles on Fig 6a).  635 

Figure 6b shows that 20% of freshwater withdrawn is reclaimed and used to satisfy 636 

public demand the two wettest future climates can meet 2045 demand and maintain or improve 637 

existing levels of compliance with groundwater regulations for all water use scenarios. However 638 

no other scenarios are able to achieve both goals. If 40% of freshwater withdrawn is reclaimed 639 

and used to satisfy public demand more scenarios are able to achieve both goals. These scenarios 640 

include the climate scenarios that project that at least the existing average annual rainfall will 641 

occur in the future (i.e. projected change in average annual rainfall greater than or equal to zero). 642 

However to meet both public water demand and maintain existing compliance with groundwater 643 

regulations, scenarios that predict the same rainfall as current climate require a complete switch 644 

of public water supply from groundwater to surface water sources (bottom two water use 645 

scenarios in Fig 6). This would require Tampa Bay Water to significantly increase their surface 646 

water storage and treatment capacity and eliminates the use of their most inexpensive water 647 

source (groundwater). If groundwater regulations were relaxed, and 40% freshwater withdrawn 648 

in reclaimed, 2045 demand could be met under any climate scenario (yellow circles in Fig. 6c). It 649 

should be noted that the Regional Water Supply Planning (2016) reported that in 2015 only 650 

about 11.5% of total freshwater withdrawn was reused in Florida. Therefore reclaiming 20% - 651 

40% of freshwater withdrawn will be a significant investment.  652 
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4 Conclusions 653 

It is important to evaluate possible changes in future streamflow and groundwater levels 654 

to evaluate risks in water resources management and planning. This study investigated potential 655 

future changes in hydrologic systems, ability to meet future water demand, and compliance with 656 

water resource regulation using eight GCMs, eight human water use scenarios and three ET0 657 

methods to drive an integrated hydrologic model developed for the Tampa Bay region.  658 

Variance-based sensitivity analysis showed that changes in projected streamflow were very 659 

sensitive to GCM selection, but relatively insensitive ET0 method or water use scenario. Changes 660 

in projections of groundwater level were sensitive to both GCM and water use scenario, but 661 

relatively insensitive to ET0 method. 662 

The eight GCMs projected diverse changes in streamflow and groundwater level, with 663 

most GCMs projecting statistically significant different future streamflow and groundwater 664 

levels than the current condition. Five of the 8 GCMs projected a decrease in future streamflow 665 

and groundwater level in the INTB region regardless of water use scenario or ET method.  None 666 

of the 8 GCMs projected that 2045 water demand could be met under the business as usual water 667 

use scenario. Two GCMs (GFDL-CM3 and MRI-CGCM3) predicted increased streamflow and 668 

groundwater levels and an ability to meet 2045 projected water demand and maintain existing 669 

levels of compliance with groundwater standards if permitted CWF pumping were increased 670 

from the current 90 MGD to 130 MGD. The GCM that predicted that future annual average 671 

rainfall will be approximately equal to current rainfall met 2045 demand maintained existing 672 

levels of compliance with groundwater standards only for the water use scenarios that eliminated 673 

CWF pumping completely and reclaimed 40% of freshwater withdrawals.  674 

These results suggest that it is more likely than not that climate change will reduce the 675 

availability of both surface and groundwater for public supply in the Tampa Bay Region. Current 676 

regulations on water withdrawals (surface water withdrawal permit thresholds and target levels 677 

in monitoring wells near lakes and wetlands) may have to adapt to future climate conditions 678 

since only extreme changes human water use (i.e. dramatic increases in use of reclaimed water 679 

and a complete switch from groundwater to surface water) may be able to maintain retrospective 680 

hydrologic regimes and associated aquatic ecosystems and meet human water demand in the 681 

future. 682 
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It should be noted that the findings of this study are limited by a few major assumptions.  683 

For example this study used only 8 GCMs to project future climate which is a relatively small 684 

number. However these 8 GCMs spanned the range of cool to warm bias and wet to dry bias  685 

exhibited by 41 CMIP5 GCMs for the southeastern United States (Rupp, 2016). In addition land 686 

use change was not considered in this study. Instead we assumed the increases in agricultural and 687 

urban water demand were the result of intensification of water use on existing land uses. This 688 

assumption is consistent with a regional planning strategy that promotes agricultural and urban 689 

intensification on existing lands, along with protection of existing conservation lands, wetlands 690 

and water supplies (Barnett et al., 2007). However future work should build on this study to 691 

evaluate the additional impacts of potential land use change scenarios (Gupta et al., 2015; Lin et 692 

al., 2015; Matheussen et al., 2000; Yan et al., 2013). 693 
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 985 

Figure 1. Study region showing the INTB model domain and locations of agricultural, industrial 986 

and public water supply wells, the Tampa Bay Waters Consolidated Wellfields (CWF), two 987 

streamflow locations where water is withdrawn for public supply, the Tampa Bay Bypass Canal, 988 

and three  monitoring wells near Tampa Bay Water’s CWFs that are used to evaluate compliance 989 

with groundwater level regulations. 990 
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 992 

Figure 2. Mean monthly streamflow for the Hillsborough river (top) and Alafia river (bottom) for 993 

business as usual scenario water use and Hargreaves ET0 method.  Box plots indicate range of 994 

prediction over the 8 GCMs. 995 
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 997 

Figure 3. Mean monthly groundwater level for the NWH-RMP-08s (top), CBR-SERW-s 998 

(middle) and STK-STARKEY-20s (bottom) for business as usual water use scenario and 999 

Hargreaves ET0 method. Box plots indicate range of prediction over the 8 GCMs. 1000 
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 1003 

Figure 4. The change in amount of available water can be withdrawn from Hillsborough river by 1004 

(a) different water use scenarios over GCMs and ET0 methods and by (b) different GCMs over 1005 

water use scenarios and ET0 methods. 1006 
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 1008 

Figure 5. The change in the percent of the time that groundwater level is above the target level 1009 

for NWH-RMP-08s well by (a) different water use scenarios over GCMs and ET0 methods and 1010 

by (b) different GCMs over water use scenarios and ET0 methods. 1011 
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 1013 

Figure 6. Scatterplot of futures in which the Tampa Bay Water meets 2045 water 1014 

demands and maintains or improves compliance with groundwater regulations in future 1 (2030-1015 

2060) assuming 0%, 20% and 40% of freshwater withdrawn is reclaimed and reused to satisfy 1016 

urban demand. Green filled circles indicate futures that meet both 2045 water demand and 1017 

maintain groundwater compliance levels at or above current conditions. Yellow filled circles 1018 

indicate futures that meet 2045 water demand but decrease the level of groundwater compliance. 1019 

Orange filled circles indicate futures that do not meet 2045 water demand but maintain 1020 

groundwater compliance levels at or above current conditions. Red filled circles indicate futures 1021 

that do not meet 2045 water demand and decrease the level of groundwater compliance. The 1022 

black filled circle indicates the retrospective business as usual condition.  1023 
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Table 1. Description of the CMIP5 models used in this study. 1025 

Model Institute (country) Resolutions Calendar 

∆Precipitation 

(mm/yr)* 

∆ET0 (mm/yr)* 

Reference 

2030-

2060 

2070-

2100 

2030-

2060 

2070-

2100 

(1) BNU-ESM College of Global 

Change and Earth 

System Science, 

Beijing Normal 

University (China) 

2.8° lat × 

2.8° lon 

No leap 

-68.9 -57.1 93.3 273.5 

Ji et al. 

(2014) 

(2) GFDL-

CM3 

NOAA/Geophysical 

Fluid Dynamics 

Laboratory (USA) 

2.0° lat × 

2.5° lon 

No leap 

293.6 400.0 133.1 351.5 

Guo et al. 

(2014) 

(3) GFDL-

ESM2G 

NOAA/Geophysical 

Fluid Dynamics 

Laboratory (USA) 

2.0° lat × 

2.5° lon 

No leap 

-36.8 -134.6 56.2 133.5 

Taylor et al. 

(2012) 

(4) MIROC-

ESM 

Atmosphere and Ocean 

Research Institute, 

National Institute 

for Environmental 

Studies, and Japan 

Agency for 

Marine-Earth 

Science and 

Technology 

(Japan) 

2.8° lat × 

2.8° lon 

Leap year 

7.5 -153.9 99.9 240.8 

Watanabe et 

al. (2011) 

(5) MPI-ESM-

LR 

Max Planck Institute 

for Meteorology 

(Germany) 

1.87° lat × 

1.87° lon 

Leap year 

105.1 77.8 81.8 230.9 

Block and 

Mauritsen 

(2013) 

(6) MRI-

CGCM3 

Meteorological 

Research Institute 

(Japan) 

1.12° lat × 

1.12° lon 

Leap year 

244.2 281.2 24.4 122.1 

Yukimoto et 

al. (2012) 

(7) NorESM1-

M 

Norwegian Climate 

Centre (Norway) 

1.9° lat × 

2.5° lon 

No leap 

11.6 3.0 137.7 324.6 

Bentsen et al. 

(2013) 

(8) BCC-

CSM1.1 

Beijing Climate Center 

(China) 

2.8° lat × 

2.8° lon 

No leap 

-20.4 -117.5 118.1 303.6 

Xiao-Ge et al. 

(2013) 

* Change in precipitation (or ET0) is defined as average of future period minus average of retrospective period. 
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Table 2. Future scenario summary 1027 

Scenario Name 
Scenario 

Number  

Irrigation Applied to Land 

Surface 
Agricultural pumping Urban pumping 

No pumping 1 No No No 

No urban pumping 2 AFSIRS* 85 % efficiency No 

No agricultural 

pumping 
3 No No 

RETRO ** 

CWF 13 mm/yr, 

Total 51 mm/yr 

Agricultural 

adaption 
4 AFSIRS 

85 % efficiency 

Groundwater pumping 

offset by 6 mm/yr 

RETRO  

CWF 13 mm/yr, 

Total 51 mm/yr 

Business as Usual 5 AFSIRS 85 % efficiency 

RETRO 

CWF 13 mm/yr, 

Total 51 mm/yr 

Increased 

agricultural demand 
6 Increased by 6 mm/yr 85 % efficiency 

RETRO  

CWF 13 mm/yr, 

Total 51 mm/yr 

Relaxed regulatory 

requirements for 

urban pumping 

7 AFSIRS 85 % efficiency 

Increase CWF by 6 mm/yr 

to 19 mm/yr 

CWF 19 mm/yr, 

Total 57 mm/yr 

Relaxed regulatory 

requirements for all 

pumping 

8 AFSIRS 85 % efficiency 

Increase all urban  

pumping by 130/90 

CWF 19 mm/yr, 

Total 74 mm/yr 

* AFSIRS: climate driven irrigation water demand estimated by AFSIRS model using GCMs.  

** RETRO: groundwater pumping in the future will be equal to retrospective groundwater pumping.  
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Table 3. The first order sensitivity index of change in streamflow (future – retrospective period). 1030 

River gage Season Period GCM ET0 Water use 

scenario 

Hillsborough Wet season 2030-2060 0.944 0.002 0.016 

  2070-2100 0.940 0.041 0.006 

 Dry season 2030-2060 0.948 0.012 0.029 

  2070-2100 0.961 0.001 0.018 

      

Alafia Wet season 2030-2060 0.928 0.010 0.031 

  2070-2100 0.952 0.021 0.012 

 Dry season 2030-2060 0.876 0.012 0.072 

  2070-2100 0.927 0.001 0.068 
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Table 4. The first order sensitivity index of change in groundwater level (future – retrospective 1033 

period). 1034 

Monitoring well Season Period GCM ET0 Water use 

scenario 

NWH-RMP-08s Wet season 2030-2060 0.442 0.005 0.501 

  2070-2100 0.576 0.004 0.278 

 Dry season 2030-2060 0.475 0.007 0.435 

  2070-2100 0.550 0.002 0.288 

      

CBR-SERW-s Wet season 2030-2060 0.656 0.000 0.214 

  2070-2100 0.755 0.002 0.143 

 Dry season 2030-2060 0.639 0.001 0.221 

  2070-2100 0.747 0.002 0.146 

      

STK-STARKEY-

20s 
Wet season 

2030-2060 

0.604 0.000 0.325 

  2070-2100 0.718 0.004 0.198 

 Dry season 2030-2060 0.584 0.002 0.330 

  2070-2100 0.707 0.001 0.200 
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Table 5. The results of Tukey’s HSD test of mean change in amount of available water (MGD) 1037 

that can be withdrawn from Hillsborough river or Alafia river for each water use scenario over 1038 

GCM and ET0 method, or for each GCM over water use scenario and ET0 method (Comparison 1039 

of all possible pairs of means). 1040 

By human water 

use scenario 

Hillsborough Alafia By GCM Hillsborough Alafia 

2030-

2060 

mean 

2070-

2100 

mean 

2030-

2060 

mean 

2070-

2100 

mean 

2030-

2060 

mean 

2070-

2100 

mean 

2030-

2060 

mean 

2070-

2100 

mean 

No Pumping 11.63 a 3.88 a 4.89 a† 2.28 a BNU-ESM -14.03 e† -18.76 d† -4.25 d† -5.89 c† 

No Urban 

Pumping 
10.10 a 2.61 a 4.00 a† 1.45 a GFDL-CM3 39.20 a† 40.27 a† 8.16 a† 9.11 a† 

No Ag. Pumping 5.57 a -1.21 a 1.48 a -0.99 a GFDL-ESM2G -12.24 de† -21.68 d† -1.84 cd -5.70 c† 

Ag. Adaption 4.22 a -2.54 a 0.85 ab -1.60 a 
MIROC-

ESM2G 
-5.01 c -22.31 d† -0.09 c -6.26 c† 

Business as 

Usual 
4.16 a -2.59 a 0.82 ab -1.63 a MPI-ESM-LR 9.71 b† 1.07 b 2.01 b -0.56 b 

Increased Ag. 

Demand 
4.56 a -2.27 a 1.00 ab -1.47 a MRI-CGCM3 41.64 a† 41.34 a† 10.64 a† 10.46 a† 

Increased CWF 

pumping 
2.90 a -3.66 a 0.81 ab -1.64 a NorESM1-M -5.58 c -10.71 c† 0.78 bc -2.21 c† 

Increased All 

Pumping 
1.72 a -4.65 a -0.43 b -2.73 a BCC-CSM -8.84 cd† -19.67 d† -1.98 cd -5.28 c† 

Means with different subscripts were significantly different in Tukey’s HSD test. 

†: The results were significantly different than retrospective BAU by two sample t-test at the 0.05 

significance level. 
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Table 6. The results of Tukey’s HSD test of mean change in the percent of the time that 1043 

groundwater level is above the target level for monitoring wells over all GCMs and ET0 methods 1044 

for each water use scenario (Comparison of all possible pairs of means).  1045 

 By human water use 

scenario NWH-RMP-08s CBR-SERW-s STK-STARKEY-20s 

  2030-2060 

mean 

2070-2100 

mean 

2030-2060 

mean 

2070-2100 

mean 

2030-2060 

mean 

2070-2100 

mean 

No Pumping 46.04 a† 32.21 b† 31.93 a† 22.79 a† 27.87 a† 18.00 a† 

No Urban Pumping 41.17 a† 28.36 a† 31.40 ab† 22.45 a† 26.91 ab† 17.22 ab† 

No Ag. Pumping 10.28 b 3.69 b 11.00 c† 7.21 a 3.92 a† -2.04 bc 

Ag. Adaption 6.66 b 0.88 b 10.76 c 7.06 a 3.15 ab -2.79 c 

Business as usual 6.55 b 0.81 b 10.73 c 7.04 a 3.12 ab -2.80 c 

Increased Ag. Demand 6.70 b 0.89 b 11.14 bc† 7.32 a 3.21 ab -2.73 c 

Increased CWF 

pumping 
-4.25 b -7.81 b 5.23 c 3.01 a -4.31 b -9.05 c 

Increased All Pumping -4.64 b -8.13 b 4.08 c 1.93 a -6.07 b -10.52 c† 

 Means with different subscripts were significantly different in Tukey’s HSD test. 1046 

†: The results were significantly different than retrospective BAU by two sample t-test at the 0.05 significance level. 1047 
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Table 7. The results of Tukey’s HSD test of mean change in percent of the time that 1049 

groundwater level is above the target level for monitoring wells over all water use scenarios and 1050 

ET0 methods for each GCM (Comparison of all possible pairs of means). 1051 

 By GCM NWH-RMP-08s CBR-SERW-s STK-STARKEY-20s 

  
2030-2060 mean 2070-2100 mean 2030-2060 mean 2070-2100 mean 2030-2060 mean 2070-2100 mean 

BNU-ESM -6.39 c -18.59 bc† -12.08 c† -16.66 c† -12.55 d -18.30 def† 

GFDL-CM3 32.35 ab† 39.44 a† 48.12 ab† 56.39 a† 19.56 ab† 24.50 ab† 

GFDL-ESM2G -3.22 bc -18.93 bc -7.58 c -22.84 c† -12.96 d† -16.40 cde† 

MIROC-ESM -4.83 c -35.79 c† 4.97 c -15.52 c† -12.96 d† -39.01 f† 

MPI-ESM-LR 11.26 abc 3.41 b 29.83 b† 14.15 b† 12.02 abc† 4.06 bc 

MRI-CGCM3 41.27 a† 39.67 a† 62.87 a† 56.38 a† 34.45 a† 26.16 a† 

NorESM1-M 3.84 bc -3.47 b 1.18 c -8.40 c 2.31 bcd 0.17 cd 

BCC-CSM -2.38 bc -25.30 bc† 1.17 c -12.51 c† -11.45 cd -28.99 ef† 

 Means with different subscripts were significantly different in Tukey’s HSD test. 1052 

†: The results were significantly different than retrospective BAU by two sample t-test at the 0.05 significance level. 1053 
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