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Abstract:  Choosing a probability distribution to represent daily precipitation depths is 12 

important for precipitation frequency analysis, stochastic precipitation modeling and in 13 

climate trend assessments.  Early studies identified the 2-parameter Gamma (G2) 14 

distribution as a suitable distribution for wet-day precipitation based on traditional 15 

goodness of fit tests.  Here, probability plot correlation coefficients and L-moment 16 

diagrams are used to examine distributional alternatives for the wet-day series of daily 17 

precipitation for hundreds of stations at the point and catchment scales in the United 18 

States.  Importantly, the G2 distribution performs poorly in comparison to either the 19 

Pearson Type-III (P3) or Kappa (KAP) distributions particularly for point rainfall.  Our 20 

analysis indicates that the KAP distribution best describes the distribution of wet-day 21 

precipitation at the point scale, whereas the performance of G2 and P3 distributions are 22 

comparable for wet-day precipitation at the catchment scale, with P3 generally providing 23 

improved goodness of fit over G2.  Since the G2 distribution is currently the most widely 24 

used probability density function, our findings could be considerably important, 25 

especially within the context of climate change investigations. 26 
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1. Introduction 32 

Precipitation is paramount in the fields of hydrology, meteorology, climatology, and 33 

others.  However, long series of precipitation data are not always available; therefore, 34 

establishing a probability distribution that provides a good fit to daily precipitation depths 35 

has long been a topic interest.  Investigations into the probability distribution of daily 36 

precipitation can be found in at least three main research areas, namely, (1) stochastic 37 

precipitation models, (2) frequency analysis of precipitation, and (3) precipitation trends 38 

related to global climate change.  Table 1 displays a sampling of the literature related to 39 

those three topics including the particular precipitation series and durations under 40 

investigation, and the proposed probability distributions recommended.  Table 1 is by no 41 

means exhaustive; it only attempts to document the widespread interest in the 42 
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determination of a suitable distribution for daily precipitation totals in a wide range of 43 

studies across a wide range of fields of inquiry.   44 

[Table 1 goes here] 45 

1.1 Stochastic precipitation models: 46 

Our central goal is to select a suitable generalized probability distribution for modeling 47 

daily precipitation depths, thus we are only concerned with the class of “two-part” 48 

stochastic daily precipitation models that utilize a probability distribution function to 49 

describe precipitation amounts on wet-days, while a probabilistic representation of 50 

precipitation occurrences can be separately described using a Markov model or some 51 

form of a stochastic renewal process (Buishand, 1978;Geng et al., 1986;Waymire and 52 

Gupta, 1981;Watterson, 2005).  We only consider the selection of a suitable distribution 53 

for modeling wet-day daily rainfall, leaving the stochastic representation of the 54 

occurrence of zeros, to others.   55 

It is evident from Table 1 that the wet-day precipitation series is the primary 56 

series considered within the stochastic precipitation model literature.  Thom’s (1951) 57 

suggestion of the 2-parameter Gamma (G2) distribution function for wet-day amounts 58 

seems to carry considerable weight.  Buishand (1978) lent support to the suggestion of 59 

the G2 distribution by showing that for the wet-day series at six stations, the empirical 60 

Coefficient of Variation to Coefficient of Skewness ratio was quite close to the 61 

theoretical value of two for a G2 distribution.  Geng et al. (1986) provided a review of 62 

other literature supporting the use of the G2 distribution for modeling wet-day rainfall.  63 

While the G2 distribution is by far the most commonly advocated distribution for 64 

wet-day precipitation amounts, other distributions have also been suggested.  Woolhiser 65 

and Roldan (1982), Wilks (1998) and Li et al. (2013) suggested the use of a three-66 

parameter mixed exponential distribution instead of G2.  Through a variety of goodness 67 

of fit tests and log-likelihood analyses, the mixed exponential was preferred to G2 (Wilks, 68 

1998).   69 

The Weibull (W2) and to a lesser extent the exponential distribution have also 70 

been suggested for modeling daily precipitation amounts (Duan et al., 1995;Burgueno et 71 

al., 2005).  Duan et al. (1995) used a Chi-squared test to demonstrate that synthetic 72 

rainfall generated from the W2 and G2 models best match the observed daily rainfall data 73 

within each month.  Burgueno et al. (2005) used graphical methods and the Kolmogorov-74 

Smirnov test to give support to the W2 and exponential distributions.   75 

1.2 Precipitation frequency analysis: 76 

The second section of Table 1 displays a small portion of the literature related to 77 

precipitation frequency analyses.  Since extreme rainfall values are of primary 78 

importance in these studies, censored series of rainfall (e.g. the Annual Maximum Series 79 

(AMS) and Partial Duration Series (PDS)) are often useful in these analyses (Stedinger et 80 

al., 1993).  Table 1 displays that many of the precipitation frequency investigations of 81 

daily precipitation depths have selected the AMS series.   82 

For many years, the most common approach to summarizing precipitation 83 

frequency analyses in the United States was the work of Hershfield (1961), which is 84 
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commonly referred to as TP-40.  Hershfield (1961) fitted a Gumbel distribution to the 85 

AMS of 24-hour precipitation.  In the context of a national revision to the TP-40, Bonnin 86 

et al., (2006) fitted a generalized extreme value (GEV) distribution to the AMS of rainfall.   87 

While the results of Bonnin et al. (2006) apply to the United States, other 88 

researchers have found similar results using similar methods in other parts of the world.  89 

Pilon et al. (1991) used L-moment goodness-of-fit results to show that the Gumbel 90 

distribution should be rejected in the favor of the GEV in Ontario, Canada.  In Korea, 91 

Park and Jung (2002) successfully used the Kappa distribution (of which the GEV is a 92 

special case) to generate extreme precipitation quantile maps.  In perhaps the most 93 

comprehensive assessment of the distribution of precipitation extremes, Papalexiou and 94 

Koutsoyiannis (2013) examined the goodness-of-fit of the GEV distribution to a global 95 

dataset of AMS.  Analysis of such a large dataset enabled them to conclude that GEV 96 

models of AMS of daily precipitation provide a good approximation.  97 

Interestingly, while a great deal of attention is given to fitting distributions to the 98 

relatively short AMS series of precipitation depths, very few studies directly explore the 99 

probability distribution of the complete series of daily precipitation (including zeros) or 100 

the wet-day series of daily precipitation (zeros excluded).  Shoji and Kitaura (2006) 101 

investigated both complete and wet-day daily precipitation series, but included only the 102 

normal, lognormal, exponential, and W2 distributions as candidate distributions, and did 103 

not employ modern regional hydrologic methods such as the method of L-moments.  104 

Deidda and Puliga (2006) investigated the degree of left-censoring of wet-day series 105 

needed to fit a Generalized Pareto (GPA) distribution for 200 stations in Italy with a 106 

range of modern statistical analysis techniques.  Wilson and Toumi (2005) derived a 107 

fundamental distribution for heavy rainfall, with a simple expression for rainfall as the 108 

product of mass flux, specific humidity and precipitation efficiency.  Statistical theory 109 

predicted that the tail of the derived rainfall distribution has a stretched exponential form 110 

with a shape parameter of 2/3, which was verified by a global daily precipitation data set. 111 

Perhaps the most thorough investigations, to date, on the probability distribution 112 

of daily precipitation amounts are the global studies by Papalexiou and Koutsoyiannis 113 

(2012, 2016).  Papalexiou and Koutsoyiannis (2012) derived a generalized Gamma 114 

distribution (GG) from Entropy theory, using plausible constraints for wet-day series of 115 

daily precipitation series. Together, the two studies by Papalexiou and Koutsoyiannis 116 

(2012, 2016) revealed that the GG distribution provides a good approximation to the 117 

behavior of observed L-moments of global series of wet-day daily precipitation at 11,519 118 

and 14,157 stations, respectively.  119 

1.3 Precipitation trends and changes: 120 

The third section of Table 1 summarizes a small portion of the precipitation trend 121 

literature which has become a rather large area of inquiry due to concerns over climate 122 

change, as evidenced from recent reviews on the subject (Easterling et al., 2000; 123 

Trenberth, 2011; Madsen et al., 2014).  Almost universally, the G2 distribution appears to 124 

be accepted without serious consideration of alternative distributions.  For instance, 125 

Groisman et al. (1999) compared maps of the empirical probability of summer 1-day 126 

rainfall exceeding 50.4 mm with maps of probabilities determined by a stochastic model 127 
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using the fitted G2 distribution for the amounts.  They found acceptable fits in regions 128 

where there are enough observed daily rainfall events greater than 50.4 mm.   129 

This is an interesting contrast to the precipitation frequency analysis literature 130 

where a G2 distribution is often fit to wet-day series for the purpose of examining 131 

extreme rainfalls instead of using the AMS series fitted by a GEV or other distribution.  132 

Yoo et al. (2005) explained that conventional frequency analysis (using AMS) cannot 133 

expect to predict precipitation changes resulting from climate change; while an 134 

examination of the differences in the G2 distribution’s parameters (fitted to the whole 135 

wet-day record) might predict such changes.  They found that modifying the parameters 136 

of the daily G2 distribution can explain changes in rainfall quantiles predicted by General 137 

Circulation Models under various climate change scenarios.   138 

In a national study of precipitation trends, Karl and Knight (1998) employed the 139 

G2 distribution to fill in missing precipitation observations.  Both Watterson and Dix 140 

(2003) and Watterson (2005) assumed a G2 distribution for daily precipitation in the 141 

development of stochastic rainfall models for use in evaluating changes in precipitation 142 

extremes. 143 

1.4 Research objectives: 144 

In summary, there are a wide variety of previous studies which have explored the 145 

probability distribution of daily precipitation for the purposes of precipitation frequency 146 

analysis, stochastic precipitation modeling and for trend detection.  There seems to be a 147 

consensus that annual maxima appear to be well approximated by either a GEV, Gumbel 148 

or GPA probability density function (pdf) and that series of wet-day daily precipitation 149 

totals are well approximated by a G2, GG, W2 or in some cases a mixed exponential pdf.  150 

However, other than the two recent global studies by Papalexiou and Koutsoyiannis 151 

(2012, 2016), we are unaware of any studies that have used recent developments in 152 

regional hydrologic frequency analysis such as L-moment diagrams or probability plot 153 

goodness of fit evaluations to evaluate the probability distribution of very large regional 154 

datasets comprised of the wet-day series of daily precipitation.  155 

The recent studies by Papalexiou and Koutsoyiannis (2012; 2016) represent 156 

perhaps the most comprehensive studies to date. However, their L-moment evaluations 157 

only evaluate the relationship between L-Skewness and L-Cv; thus they were unable to 158 

fully evaluate the goodness-of-fit of the several relatively new three-parameter pdfs 159 

introduced in their studies such as the GG and the generalized Burr type XII pdfs which 160 

would require construction of L-Kurtosis versus L-Skew diagrams which are currently 161 

unavailable for those pdfs.  Analogous to those two studies, this paper uses two large 162 

scale national datasets to re-examine the question of which of the commonly used 163 

continuous distribution functions which are widely used in the fields of hydrology, 164 

meteorology and climate best fit wet-day series of observed daily precipitation data.  We 165 

focus our research interest on the distribution of wet-day series of precipitation since the 166 

pdf of complete series can be derived by a mixed distribution consisting of a combination 167 

of the pdf of wet-day series and a stochastic model of the percentage and occurrence of 168 

zeros. 169 

Instead of considering the GG distribution, the pdf recommended by both 170 

Papalexiou and Koutsoyiannis (2012, 2016), which has seen very limited use and for 171 
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which analytical and/or polynomial relationships for L-Kurtosis are unavailable as they 172 

are for most commonly used pdfs in hydrology, we consider the more widely used 3 173 

parameter generalization of the G2 distribution known as the Pearson type III (P3) 174 

distribution.  Our primary objective is to use a very large national spatially distributed 175 

dataset at both the point and catchment scales, to determine a suitable probability 176 

distribution of wet-day series of daily precipitation using L-moment diagrams and 177 

probability plot correlation coefficient goodness of fit statistics.   178 

2. Study area and data 179 

Precipitation depths at the point and catchment scales provide important information in 180 

hydrology, meteorology, and other fields, thus our study focuses on both scales.  For 181 

point precipitation, we employ a data set comprised of daily precipitation depths at 237 182 

first-order NOAA stations from 49 U.S. states (Hawaii is excluded due to fundamentally 183 

different precipitation behavior).  Station locations are shown in Figure 1a.  In contrast, 184 

the areal average precipitation for 305 catchments in the international Model Parameter 185 

Estimation Experiment (MOPEX) data set (Duan et al., 2006) is also selected for analysis.  186 

The catchment locations and boundaries are shown in Figure 1b.  The data were quality 187 

controlled to remove null values.  When greater than 6 null values occurred in a given 188 

year or greater than 3 in a given month, the full year of data was removed.  When fewer 189 

than these numbers of null values were present, they were treated as zeroes.  The average 190 

record length for point precipitation depths for the 237 sites is 24,657 days (67.5 years).  191 

The distribution of record lengths corresponding to the 237 first-order NOAA stations is 192 

shown in Figure 2.  The MOPEX data set consists of 56 years of areal average daily 193 

precipitation from 1948 to 2003, corresponding to a fixed record length 20,454 days for 194 

each of the 305 catchments shown in Figure 1b.  195 

[Figure 1 goes here] 196 

[Figure 2 goes here] 197 

 The wet-day series were extracted from both data sets.  The wet-day series were 198 

constructed by excluding zero and “trace” values (those with less than 0.01 inches 199 

(approximately equivalent to 0.25 mm) recordable precipitation).  Wilks (1990) discussed 200 

other ways to treat trace precipitation and left-censored data, but for convenience, they 201 

are simply excluded.  The mean wet-day record lengths for point and areal average 202 

precipitation are 7,219 days (equivalent to nearly 20 years) and 14,043 days (more than 203 

38 years), respectively.  The distributions of wet-day record length are shown in Figure 3.  204 

As expected, the proportion of wet-days in the areal average precipitation data set is 205 

higher than that in the point precipitation data set.   206 

[Figure 3 goes here] 207 

3. Methodology 208 

This section describes the methods of analysis used for assessing the goodness-of-fit of 209 

various distributional hypotheses, namely, L-moment diagrams and probability plot 210 

correlation coefficients.   211 

3.1 L-Moment Diagrams 212 
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L-moment diagrams are now a widely accepted approach for evaluating the goodness of 213 

fit of alternative distributions to observations.  The theory and application of L-moments 214 

introduced by Hosking (1990) is now widely available in the literature (Stedinger et al., 215 

1993; Hosking and Wallis, 1997), hence it is not reproduced here.   216 

The distribution of daily precipitation totals is highly skewed due to the large 217 

proportion of days with zero or small precipitation.  Higher order conventional moment 218 

ratios such as skewness and kurtosis are very sensitive to extreme values and can exhibit 219 

enormous downward bias even for extremely large sample sizes (Vogel and Fennessey, 220 

1993) as is the case here.  However, L-moment ratios are approximately unbiased in 221 

comparison to conventional moment ratios, thus providing a particularly useful tool for 222 

investigating the pdf of daily wet-day precipitation series.   223 

L-moment ratio diagrams provide a convenient graphical image to view the 224 

characteristics of sample data compared to theoretical statistical distributions.  The L-225 

moment diagrams: L-Kurtosis (τ4) vs L-Skew (τ3) and L-Cv (τ2) vs L-Skew (τ3) enable us 226 

to compare the goodness of fit of a range of three-parameter, two-parameter, and one-227 

parameter (or special case) distributions.  Table 2 displays distributions analyzed by 228 

means of the τ4 vs τ3 L-moment ratio diagrams. 229 

[Table 2 goes here] 230 

Table 3 displays distributions analyzed by means of the τ2 vs τ3 L-moment ratio 231 

diagrams. 232 

[Table 3 goes here] 233 

L-moment ratio diagrams have been used before to examine the distribution of 234 

series of annual maximum precipitation data (Pilon et al., 1991;Park and Jung, 2002;Lee 235 

and Maeng, 2003;Papalexiou and Koutsoyiannis, 2013) and left-censored records 236 

(Deidda and Puliga, 2006).  Other than the two recent global studies by Papalexiou and 237 

Koutsoyiannis (2012, 2016) which examined the agreement between empirical and 238 

theoretical relationships between L-Cv and L-Skew, this is the only study we are aware 239 

of, in which a set of daily wet-day precipitation records have been subjected to such a 240 

comprehensive L-moment goodness-of-fit analysis.  L-moment estimators were chosen in 241 

this study for a variety of reasons: (1) they are easily computed and nicely summarized 242 

by Hosking and Wallis (1997) for all the cases considered in this study, and (2) estimates 243 

of L-moments are unbiased and estimates of L-moment ratios are nearly unbiased, and 244 

thus for the extremely large sample sizes considered here, sampling variability of 245 

empirical L-moment ratios will be extremely small especially when contrasted to the 246 

variability among the theoretical L-moment ratios corresponding to the various 247 

distributions considered..   248 

3.2 Probability plot correlation coefficient goodness-of-fit evaluation 249 

Probability plots are constructed for each of the wet-day series using L-moment 250 

estimators of the distribution parameters (see Hosking and Wallis (1997)) for the 251 

distributions indicated in Table 4.  A probability plot is constructed in such a manner as 252 

to ensure that the observations will appear to create a linear relationship when they arise 253 

from the hypothesized distribution assumed for each plot. 254 



 7 

[Table 4 goes here] 255 

The goodness of fit of each probability plot is summarized using a probability plot 256 

correlation coefficient (PPCC, or simply, r) which is simply a measure of the linearity of 257 

the plot.  The PPCC statistic has a maximum value of 1.  The PPCC has been shown to be 258 

a powerful statistic for evaluating the goodness-of-fit of a  wide range of alternative 259 

distributional hypotheses (Stedinger et al., 1993) and for performing hypothesis tests of 260 

various two parameter distributional alternatives.   261 

To construct a probability plot and to estimate a PPCC, requires estimation of a 262 

plotting position.  There are two classes of plotting positions, those that yield unbiased 263 

exceedance probabilities and those that yield unbiased quantile estimates.  The Weibull 264 

plotting position given by p=i/(n+1) yields an unbiased estimate of exceedance 265 

probability regardless of the underlying distribution (see Stedinger et al. (1993)).  266 

Alternatively there would be a unique plotting position to use for each probability 267 

distribution, and it is now well known that unbiased plotting positions for three parameter 268 

distributions require an additional parameter to estimate within the plotting position.  For 269 

example, Vogel and McMartin (1991) derived an unbiased plotting position for the P3 270 

distribution which depends upon the skewness of the distribution, a parameter which adds 271 

so much additional uncertainty to the analysis that led Vogel and McMartin (1991), after 272 

considerable analysis, to not recommend its use.  To put all the distributional alternatives 273 

on the same footing, we chose to use the Weibull plotting position for estimation of all 274 

PPCC values. 275 

4. Results and analysis 276 

4.1 L-Moment Diagrams 277 

4.1.1 L-Cv vs L-Skew 278 

Figure 4 displays empirical and theoretical distributional relationships between L-Cv and 279 

L-Skew for point values of daily precipitation (Figure 4a) and areal average values of 280 

daily precipitation (Figure 4b).  The various curves represent the theoretical relationship 281 

between L-Cv and L-Skew for the distributions indicated.  Each plotted point represents 282 

the empirical relationship between L-Cv and L-Skew for a single precipitation station or 283 

catchment.  By comparing the empirically derived points with the theoretical curves, it is 284 

possible to see the degree to which the distributional tail behavior of the data record 285 

matches those of the candidate distributions.  We emphasize again, importantly, that the 286 

sample sizes are large enough in this study so that one may, approximately, ignore 287 

sampling variability in all L-moment diagrams.  This phenomenon was nicely illustrated 288 

in Figure 2 of Blum et al. (2017), using synthetic data, for record lengths similar to those 289 

used here, but corresponding to daily streamflow records.   290 

[Figure 4 goes here] 291 

In Figure 4a, the L-moment ratios fall primarily within a region bounded by the 292 

G2 and GP2 theoretical curves, with the W2 passing through some of the points.  In 293 

Figure 4b, the L-moment ratios fall primarily in the upper region of the W2 theoretical 294 

curve, with the G2 passing through or very close to most of the points.  These patterns do 295 

not indicate a clearly preferred distribution for point values, especially considering that 296 
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the large sample sizes associated with these series result in negligible sampling variability.  297 

However, Figure 4b documents that the G2 pdf provides a good approximation to the pdf 298 

of wet-day series for areal average values.  299 

Blum et al. (2017, Figure 2) used L-moment diagrams for complete and synthetic 300 

series of daily streamflow observations to demonstrate that the sampling variability in L-301 

moment ratios is negligible for the sample sizes considered in this study.  Thus, the 302 

scatter shown in Figure 4 is likely due to real distributional differences rather than due to 303 

sampling variability as is often the case when one constructs L-moment diagrams for 304 

short AMS precipitation and streamflow records, as is the case in most previous studies 305 

which have employed L-moment ratio diagrams.   306 

4.1.2 L-Kurtosis vs L-Skew 307 

Figure 5 displays empirical and theoretical distributional relationships between L-308 

Kurtosis vs L-Skew point values of daily precipitation (Figure 5a) and areal average 309 

values of daily precipitation (Figure 5b).  The empirical relationships of plotted points for 310 

both wet-day series are very similar to the theoretical relationship for the P3 distribution.  311 

In fact, among the pdfs considered in Figure 5, the P3 pdf seems to be the only 3-312 

parameter distribution that could possibly fit the wet-day record data.  Although there is a 313 

small proportion of points lying outside the P3 curve, the overall fit is still very striking.   314 

It should also be noted that the L-moment ratio estimates for both wet-day series 315 

occupy a space that can be well represented by the KAP distribution, which occupies a 316 

region of the L-Kurtosis vs L-Skew diagram as shown in Figure A1 of Hosking and 317 

Wallis (1997).  A complete description of the 4-parameter KAP distribution is referred to 318 

Hosking (1994) and Hosking and Wallis (1997).   319 

[Figure 5 goes here] 320 

4.2 PPCC 321 

4.2.1 Standard boxplots of PPCC 322 

The L-moment ratio diagrams were useful for identifying several potential candidate 323 

distributions for representing the wet-day daily precipitation series at the point and 324 

catchment scales.  From that analysis we conclude that a four parameter Kappa pdf is 325 

needed to approximate the pdf of point wet-day series whereas a G2 and P3 pdf are 326 

adequate to approximate the pdf of areal average wet-day series.  The PPCC statistic 327 

offers another quantitative method for comparing the goodness of fit of different 328 

distributions to the daily precipitation observations.  Table 5 summarizes the central 329 

tendency and spread of the values of PPCC for each of the distributions for the wet-day 330 

series of point and catchment scale daily precipitation, respectively.  The highest values 331 

for the mean, median, 95th percentile, and 5th percentile of the PPCC are shown in bold 332 

type.  The lowest values of the sample standard deviation of the PPCC values, denoted ŝ, 333 

are also shown in bold.  Figure 6 illustrates box-plots of the values of PPCC for 334 

distributions fitted to the wet-day series of daily precipitation data at the point and 335 

catchment scales. 336 

[Table 5 goes here] 337 

[Figure 6 goes here] 338 
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Figure 6 and Table 5 indicate that for the wet-day-series of point daily 339 

precipitation depths, all the distributions have median PPCCs well above 0.9, but only the 340 

median PPCCs of G2, P3, and KAP distributions are over 0.99.  The same situation 341 

appears in the catchment scale precipitation, except that the median PPCCs of the 342 

remaining four distributions are significantly lower than the corresponding values for 343 

point precipitation. 344 

The insets in Figure 6 show detailed views of the boxplots of PPCC values for the 345 

G2, P3, and KAP distributions for point and areal average daily precipitation.  From 346 

Figure 6a, KAP distribution results in the best goodness-of-fit for point precipitation 347 

because all of its indices are the best, while the P3 distribution generally performs better 348 

than the G2 distribution.  However, for catchment-scale precipitation (Figure 6b), the 349 

four parameter KAP distribution is no longer competitive, and both the G2 and P3 pdfs 350 

will suffice.  We are reluctant to advocate the use of a four parameter pdf, such as the 351 

KAP distribution, due to its inherent complexity, though such a pdf may be needed for 352 

point values as evidenced from our analyses.  353 

4.2.2 Graphical comparison of P3, G2, and KAP 354 

Across all previous comparisons, the P3, G2, and KAP are the best fitting distributions 355 

for describing daily precipitation at the point or catchment scales.  The insets in Figure 6 356 

identify the distributions that exhibit the best fit to the each observed series.  However, 357 

these inserts do not indicate by how much the best performing distribution outperforms 358 

the second or third best.  For this purpose, pairwise comparisons of the PPCC values of 359 

two highly performing distributions for all the stations and catchments are instructive.  A 360 

simple graphical method can accomplish this goal.  361 

Figure 7 compares the PPCC values of the P3 (vertical axis) and G2 (horizontal 362 

axis) distributions for point- and catchment-scale daily precipitation.  Approximately 363 

98% of stations are displayed on the figure; the remaining points lie outside the plot 364 

domains.  Points lying above the diagonal line indicate that the P3 distribution has a 365 

higher PPCC for that particular station, and points lying below the diagonal line indicate 366 

the G2 results in a higher PPCC.  Figure 7a shows that in nearly every case, the P3 367 

distribution outperforms the G2 distribution.  When the G2 does outperform the P3, the 368 

PPCCs are both very high and nearly equal.  The point-scale precipitation plot shows that 369 

the P3 distribution performs significantly better than the G2 distribution in many cases.  370 

Thus, we conclude the P3 distribution better represents wet-day daily point precipitation 371 

than the more commonly used G2 distribution in nearly every case.  Figure 7b compares 372 

the PPCC values of P3 and G2 for the catchment-scale precipitation.  The results are 373 

nearly the same as for the point-scale precipitation in the sense that most points are above 374 

the diagonal line; while, for a few catchments where G2 does outperform P3, the points 375 

lie on the dividing line, showing only very slight superiority. 376 

[Figure 7 goes here] 377 

Figure 8 displays similar plots comparing the KAP (vertical axis) and P3 378 

(horizontal axis) distribution for point- and catchment-scale daily precipitation.  It can be 379 

seen in Figure 8a that the KAP distribution does not always outperform the P3 pdf, as one 380 

might expect given that it has an additional parameter.  We are reluctant to advocate the 381 
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KAP pdf given its additional model complexity combined with the fact that it does not 382 

appear to provide a uniform improvement, in either case, over the P3 pdf.   383 

[Figure 8 goes here] 384 

 385 

5. Discussion 386 

From the L-moment diagrams and PPCC comparisons we concluded that a KAP pdf is 387 

required to fully capture the tail behavior of point wet-day series, though both P3 and G2 388 

can provide reasonable approximations in many situations.  In contrast, we found that a 389 

KAP pdf is not needed to approximate the behavior of areal average wet-day series, 390 

where instead, either a P3 or G2 model would suffice.  In this section we evaluate the 391 

relationship between these findings and the size of the catchments considered. 392 

Figure 9 displays the PPCC values of P3 and G2 pdfs versus catchment drainage 393 

area for areal average wet-day series.  The PPCC values are chosen from 0.99-1, 394 

approximately 96% of catchments are displayed on the figure; the remaining points lie 395 

outside the plot domains.  It can be seen that for most of the catchments, the PPCC values 396 

for G2 and P3 pdfs are very close, with points corresponding to G2 and P3 pdfs almost 397 

overlapping.  This is especially true for PPCC values higher than 0.998.  The phenomena 398 

clearly indicates that when G2 can well represent the behavior of catchment-scale wet-399 

day precipitation series, P3 also provides very good performance.  However, for the areas 400 

where PPCC values are lower than 0.996, the P3 distribution outperforms the G2 401 

distribution for most cases, with a very slight improvement.   402 

[Figure 9 goes here] 403 

Figure 10 shows the spatial map of catchments with the corresponding best 404 

distribution functions for areal average wet-day series.  KAP distribution is the best pdf 405 

for large proportion of the catchments especially in the middle of US.  P3 distribution 406 

occupies the second large proportion of the catchments especially in east-central US. 407 

Only a very few catchments can be best represented by G2 distribution.  Seen from 408 

Figure 10, it seems that the performances of the three pdfs vary greatly.  However, as we 409 

have seen from previous figures, the differences between the three pdfs for catchments 410 

are very small. 411 

[Figure 10 goes here] 412 

6. Conclusions 413 

This study has demonstrated that L-moment diagrams and probability plot correlation 414 

coefficient goodness of fit evaluations can provide new insight into the distribution of 415 

very long series of daily wet-day precipitation at both the point and catchment scales.  416 

Although previous studies have claimed that the commonly used 2-parameter Gamma 417 

distribution performs fairly well on the basis of traditional goodness-of-fit tests, this 418 

study reveals, through the use of L-moment diagrams and probability plot correlation 419 

coefficient goodness of fit evaluations that very long series of uncensored daily point and 420 

areal average precipitation are better approximated by a KAP distribution and a Pearson-421 

III distribution respectively, and importantly, they do not resemble any of the other 422 
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commonly used distributions.  Analogous to the recent study by Papalexiou and 423 

Koutsoyiannis (2016), our evaluations yield very different conclusions than previous 424 

research on this subject and thus could have important implications in climate change 425 

investigations and other studies which employ a pdf of daily precipitation.   426 

We conclude that for representing wet-day precipitation, the Gamma and Pearson-427 

III distributions are comparable with the 4-parameter Kappa distribution for the areal 428 

average precipitation; however, when the point precipitation is of concern, the Kappa 429 

distribution should be the distribution of choice.  We also conclude that future 430 

investigations should consider comparisons between the generalized Gamma distribution 431 

introduced by Papalexiou and Koutsoyiannis (2012, 2016) for wet-day daily precipitation 432 

and  the G2, Pearson type III and Kappa distributions recommended here.   433 

Once analytical and polynomial L-moment relationships and parameter estimation 434 

methods become available for the GG distribution, future studies should compare the P3 435 

and GG distributions on wet-day series, because on the basis of this study, and 436 

Papalexiou and Koutsoyiannis (2016), the P3 and GG distributions appear to have 437 

tremendous potential for approximating the distribution of wet-day series. 438 

 439 

440 
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Table 1: Review of literature pertinent to daily precipitation probability distribution 565 

selection. 566 

Table 2: Table 2: Theoretical probability distributions presented on the L-Kurtosis vs L-567 

Skew L-moment diagram.  Italicized distributions are special cases of other distributions. 568 

Table 3: Theoretical probability distributions presented on the L-Cv vs L-Skew L-569 

moment diagram.  570 

Table 4: Distributions used in probability plot goodness of fit evaluations. 571 

Table 5: Central tendency and spread of values of PPCC for the 237 precipitation 572 

stations 305 areal average precipitation catchments. 573 

Figure captions: 574 

Figure 1: Map showing locations of a) 237 precipitation gaging stations, and b) 305 575 

catchments. 576 

Figure 2: Distribution of full record length of point precipitation base on weather stations. 577 

Figure 3: Distribution of wet-day record length: a) point precipitation; and b) areal 578 

average precipitation over watersheds.  Days with zero precipitation are removed in the 579 

wet-day records 580 

Figure 4: L-Cv vs L-Skew L-moment ratio diagram of sample L-moments and 581 

theoretical distributions: a) point precipitation; and b) areal average precipitation depths. 582 

Figure 5: L-Skew vs L-Kurtosis L-moment ratio diagram of sample L-moments and 583 

theoretical distributions: a) point precipitation; and b) areal average precipitation depths. 584 

Logistic (L), Normal (N), Uniform (U), Gumbel (G), and Exponential (E) distributions 585 

appear as a single point. 586 

Figure 6: Standard boxplots of r for all 7 distributions evaluated for wet-day series of a) 587 

point precipitation, and b) areal average precipitation depths. 588 

Figure 7:  Comparison of PPCC (r) values for the P3 (vertical axis) and G2 (horizontal 589 

axis) distributions for the a) point, and b) areal average precipitation depths series.  Points 590 

lying above the line represent stations with a higher r for the P3 distribution than G2 591 

distribution. 592 

Figure 8: Comparison of r values for P3 (horizontal axis) and KAP (vertical axis) 593 

distributions for the a) point and b) areal average precipitation depths’ wet-day series. 594 
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Figure 9: The spatial distribution of best daily precipitation distribution function. 595 

Figure 10: The spatial map of catchments with the corresponding best distribution 596 

functions for areal average wet-day series. 597 

598 
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Tables 599 
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Table 1: Review of literature pertinent to daily precipitation probability distribution selection. 

1. Stochastic Precipitation Modelling:      

 Author Year Stations Series type Duration Distribution Justification 

 Thom 1951  Wet-day 1-day Gamma  

 Buishand 1978 6 Wet-day 1-day Gamma Cv-Cs ratio 

 Geng et al 1986 6 Wet-day, by month 1-day, monthly Gamma Regress. fit: β vs mean wet-day depth 

 Woolhiser and Roldan 1982  Wet-day 1-day Mixed Exponential MLE, Akaike Information Criterion 

 Duan et al 1995 1 Wet-day, by month 1-day Calib. W2, Gamma MLE, Chi-sq test 

 Wilks 1998 25 Wet-day 1-day Mixed Exponential MLE, goodness of fit 

 Waterson and Dix 2003  Wet-day 1-day Gamma Literature 

 Burgueno et al 2005 75 Wet-day  1-day Exponential, Weibull Normalized Rainfall Curve 

 Kigobe et al 2011 110 Wet-day, by month  Gamma  

 Li et al 2013 24 Wet-day 1-day Mixed Exponential 
Goodness of fit and Kolmogorov–Smirnov 

tests 

 Schoof 2015 
Grided 

precipitation Wet-day 1-day Gamma Goodness of fit 
        

2. Precipitation Frequency Analysis      

 Author Year Stations Series type Duration Distribution Justification 

 Hershfield   (TP-40) 1962  AMS 24 hour Gumbel  

 Pilon et al 1991 75 AMS 5 min - 24 hour GEV L-moments 

 Naghavi & Yu 1995 25 AMS 1-24 hour GEV 
L-moments, PWMs, Monte Carlo 

experiments 

 Park and Jung 2002 61 AMS 1, 2-day Kappa(4)  

 Lee and Maeng 2003 38 AMS 1-day GEV, GLO L-moments 

 Bonnin et al 2006  AMS 5 min - 24 hour GEV L-moments 

 Shoji and Kitaura 2006 243 Complete, Wet-day 
Hour, Day, 

Month, Year Lognormal, Weibull Goodness of fit 

 Deidda and Puliga 2006 200 
Left Censored Wet-day 

PDS 1-day Generalized Pareto “Failure-to-reject” method, L-moments 

 Wilson and Toumi 2005 270 Complete 1-day Self-derived   

 
Papalexiou and 
Koutsoyiannis 2012 11,519 Wet-Day 1-day Generalized Gamma L-moments 

 
Papalexiou and 
Koutsoyiannis 2013 15,137 AMS 1-day GEV L-moments 

 
Papalexiou and 
Koutsoyiannis,  2016 14,157 Wet-Day, by month 1-day 

Generalized Gamma 
and Burr type XII L-moments and Goodness-of-fit 

      



 19 

 

3. Precipitation Trends and Climate Change      

 Author Year Stations Series type Duration Distribution Justification 

 Waggoner 1989 55 Monthly 1-month Gamma Literature Review 

 Groisman et al  1999 1313 Summer (wet-day) 1-day Gamma 
Literature Review, goodness of fit to 

extreme rainfall quantiles 

 Wilby and Wigley 2002 GCM Seasonal 1-day Gamma Literature Review 

 Yoo et al 2005 31 Monthly (wet-day) 1-day Gamma Literature Review 

 Watterson 2005 GCM January, July 
1-month (daily 

forced) Gamma Literature Review 
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Table 2: Theoretical probability distributions presented on the L-Kurtosis vs L-Skew L-

moment diagram.  Italicized distributions are special cases of other 

distributions. 

Distribution Abbreviation PDF Parameters 
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Table 3: Theoretical probability distributions presented on the L-Cv vs L-Skew L-

moment diagram.  

Distribution Abbreviation PDF Parameters 
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Table 4: Distributions used in probability plot goodness of fit evaluations. 

Distribution Abbreviation Parameters 

Generalized Extreme Value Type III GEV 3 

Generalized Logistic GLO 3 

Generalized Pareto GPA 3 

Lognormal LN3 3 

Pearson Type III   P3 3 

Gamma G2 2 

Kappa KAP 4 

 

Table 5: Central tendency and spread of values of PPCC for the 237 precipitation 

stations and 305 catchments. 

Distribution 
Point precipitation Percentiles Areal average precipitation Percentiles 

Mean Median ŝ 95th 5th Mean Median ŝ 95th 5th 

P3 0.9952 0.9971 0.0063 0.9995 0.9872 0.9977 0.9985 0.0028 0.9996 0.9936 

GEV 0.9338 0.9375 0.0222 0.9609 0.8944 0.8003 0.7965 0.0474 0.8917 0.7264 

GPA 0.9793 0.9828 0.0145 0.9949 0.9500 0.8688 0.8687 0.0484 0.9586 0.7894 

GLO 0.9115 0.9154 0.0235 0.9423 0.8734 0.7800 0.7750 0.0441 0.8669 0.7101 

LN3 0.9838 0.9855 0.0075 0.9924 0.9727 0.9362 0.9373 0.0224 0.9737 0.8983 

G2 0.9925 0.9949 0.0079 0.9990 0.9789 0.9974 0.9985 0.0034 0.9996 0.9924 

KAP 0.9971 0.9985 0.0048 0.9997 0.9915 0.9976 0.9987 0.0026 0.9998 0.9929 
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Figures 

 

 

Figure 1: Map showing locations of a) 237 point precipitation gaging stations, and b) 

305 MOPEX catchments. 

0

20

40

60

80

100

120

15000 19000 23000 27000 31000 35000

N
u

m
b

e
r

o
f 

s
ta

ti
o

n
s

Number of day

Full record length of point Precipitation

 

Figure 2: Distribution of length of records of point daily precipitation data for the 237 

gaging stations depicted in Figure 1a. 
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Figure 3: Distribution of wet-day record lengths corresponding to the two datasets: a) 

point precipitation; and b) areal average precipitation over catchments.  Days with zero 

precipitation are removed in the wet-day records 
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Figure 4: L-Cv vs L-Skew L-moment ratio diagram of sample L-moments and 

theoretical distributions for: a) point daily precipitation; and b) areal average daily 

precipitation depths. 

 

 

Figure 5: L-Skew vs L-Kurtosis L-moment ratio diagram of sample L-moments and 

theoretical distributions for: a) point daily precipitation; and b) areal average daily 

precipitation depths. Note that Logistic (L), Normal (N), Uniform (U), Gumbel (G), and 

Exponential (E) distributions appear as a single point. 
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Figure 6: Standard boxplots of r for all 7 distributions evaluated for wet-day series of a) 

point precipitation, and b) areal average precipitation depths. 



 26 

 

 
 

Figure 7: Comparison of PPCC (r) values for the P3 (vertical axis) and G2 (horizontal 

axis) distributions for the a) point, and b) areal average precipitation depths series.  Points 

lying above the line represent stations with a higher r for the P3 distribution than G2 

distribution. 
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Figure 8: Comparison of r values for P3 (horizontal axis) and KAP (vertical axis) 

distributions for the a) point and b) areal average precipitation depths’ wet-day series. 

 

Figure 9: the PPCC values of P3 and G2 pdfs versus catchment drainage area for areal 

average wet-day series.  

 
Figure 10: The spatial map of catchments with the corresponding best distribution 

functions for areal average wet-day series. 

 


