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Abstract. Among the meteorological disasters, heavy rainfalls cause the second largest damage in Korea, following typhoons.

To confront with the potential disasters due to heavy rainfalls, understanding the observational characteristics of precipitation

is of utmost importance. In this study, we investigate the spatial and temporal characteristics of warm-season precipitation in

Korea, according to the precipitation types, by conducting the geostatistical analyses such as autocorrelogram, Moran’s I and

general G, on the composite (radar + station) precipitation data. The e-folding distance of precipitation ranges from 15 to 355

km, depending on the spatial distribution, rather than intensity, of precipitation, whereas the e-folding time ranges from 1 to 2 h.

The directional analyses revealed that the warm-season precipitation systems in Korea, especially those with high precipitation

amount, have high spatial autocorrelations in the southwest–northeast and west–east directions, in association with the frontal

rainfalls, convection bands, etc. Furthermore, the cluster versus dispersion patterns and the hot versus cold spots are analyzed

through Moran’s I and generalG, respectively. Water vapor, represented by the brightness temperature, from three Himawari-810

water vapor bands also shows similar characteristics with precipitation but with strong spatial correlation over much longer

distance (∼100 km), possibly due to the continuity of water vapor. We found that, under the e-folding based standard, the

current observation network of Korea is sufficient to capture the characteristics of most precipitation systems; however, under

a strict standard (e.g., autocorrelation of 0.6), a higher-resolution observation network is essentially required — especially in

local areas with frequent heavy rainfalls — depending on the directional features of precipitation systems. Establishing such an15

observation network based on the characteristics of precipitation enables us to improve monitoring/tracking/prediction skills

of high-impact weather phenomena as well as to enhance the utilization of numerical weather prediction.

1 Introduction

Heavy rainfall causes one of the most serious meteorological disasters in Korea. Most precipitation systems in Korea are

highly influenced by the East Asian summer monsoon, called Changma in Korean (Riyu et al., 2001; Kim et al., 2002; Lee20

et al., 2017b), and hence have high seasonal variation; they also show high spatial variation due to complex topographic
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features (e.g., Ko et al., 2005; Chang and Kwon, 2007; Park and Lee, 2007; In et al., 2014). Since heavy rainfalls including

typhoon cause serious damages to both human life and property, improving the their forecast accuracy is of utmost importance.

Many studies have been done to improve the quantitative precipitation forecast using numerical weather prediction models and

satellite or radar data (e.g., Fritsch et al., 1998; Lee et al., 2006; Kim and Oh, 2010; Feng and Kitzmiller, 2006; Yu et al., 2013).

In order to improve the forecast accuracy, it is essential to understand the spatial and temporal characteristics as well as the5

occurrence and development mechanisms of the precipitation systems.

The ground-based rainfall observation data, in Korea, are collected from the Automated Synoptic Observing Systems

(ASOS), the Automatic Weather Stations (AWS), and the Automated Agriculture Observing System (AAOS). The observation

density is about 67 km for ASOS and approximately 13 km by including AWS. The agrometeorological observation network

consists of 11 AAOS stations (Choi et al., 2015). Based on these precipitation observations, the mesoscale structures of pre-10

cipitation as well as the hydrologic budgets in Korea have been extensively studied (e.g., Kim and Lee, 2006; Cassardo et al.,

2009; Jeong et al., 2012; 2016; Jung and Lee, 2013; Lee et al., 2017a). Capturing the spatiotemporal features of precipitation

systems from the observation networks is essential to runoff forecast, especially at the catchment scale and for the flooding

cases (Volkmann et al., 2010). Given the limited resources, it is desirable to optimally design the observation networks, which

should be efficient to use the least amount of available instruments but sufficient to capture the precipitation characteristics15

— both amount and spatiotemporal variability. In other words, understanding temporal and spatial characteristics of precipita-

tion is fundamental, and essentially required for establishment of the optimal observation networks (see Ciach and Krajewski,

2006; Volkmann et al., 2010). Moreover, the appropriateness of such observation networks, in analyzing and/or forecasting the

precipitation systems, has seldom been assessed.

In this study, we investigate the spatial and temporal characteristics of precipitation in Korea using the geostatistical analysis20

methods — autocorrelogram, Moran’s I , and generalG (e.g., Ciach and Krajewski, 2006; Schiemann et al., 2011; Emmanuel et

al., 2012; Fu et al., 2014). Ciach and Krajewski (2006) estimated the spatial correlation functions in small-scale rainfall, based

on raingauges covering an area of about 3 km by 3 km in Central Oklahoma. They showed a dependence of the correlogram

parameters on the averaging time scale, large differences of the correlograms in the individual storms, and the ambiguities

in correlation estimates based on rainfall intensities. Bacchi and Kottegoda (1995) addressed the effects of weather systems,25

topography, and temporal/spatial scale of observation networks on spatial distribution of rainfall. Emmanuel et al. (2012)

analyzed the characteristics of spatiotemporal variability by rainfall types using variogram.

In Korea, the spatial and temporal characteristics of precipitation have been reported in several previous studies (e.g., Chang

and Kwon, 2007; Hong et al., 2006; Ha et al., 2007; In et al., 2014). Ha et al. (2007) found that the e-folding distance and time

in correlation coefficients of AWS precipitation ranged from 50 to 110 km and 1 to 2 h, respectively. In summer, precipitation30

showed localized features with relatively more precipitation mainly in the western part and southern coastal areas of Korea

(Kim et al, 2005; Hong et al., 2006; In et al. 2014). In et al. (2014) also analyzed the degree of localization in summer

precipitation, and noted a high locality of rainfalls, i.e., more frequent occurrence of short-lived local precipitation, in July and

August. In addition to these studies, we provide further analyses on variation of spatial correlation associated with distribution

and intensity of precipitation.35
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Water vapor is also strongly linked to the precipitation system because not only it is the absolute source of precipitation

(Eltahir and Bras, 1996; Park, 1999; Bretherton et al., 2004; Stohl et al., 2008; Gimeno et al., 2012) but also its transport in the

lower troposphere provides diabatic heating and hence promotes development of convective precipitation systems (Tompkins,

2001; Trenberth and Stepaniak, 2003a, b; Smith and Yuter, 2010). Therefore, the amount and behavior of water vapor are the

crucial factors in the precipitation system. For instance, a large amount of water vapor originated from the adjacent oceans5

is transported to the East Asian monsoon region through the large scale monsoon circulations. The origins of water vapor

supply can also distinguish the anomalous rainfall patterns (e.g., Zhou and Yu, 2005). Furthermore, about 70 % of precipitation

in extratropical cyclones is generated by water vapor already present when the storm formed in the atmosphere (Trenberth,

1999). Hence, we also conduct the spatial and temporal analysis of water vapor to enhance the understanding of precipitation

characteristics over Korea and adjacent areas.10

This study aims at classifying the precipitation types statistically based on the spatial distribution of precipitation, and

identifying the spatial and temporal characteristics of warm-season precipitation in Korea according to the precipitation types

via the geostatistical analysis methods, including autocorrelogram, Moran’s I , and general G. Furthermore, we investigate the

characteristics of water vapor over the Korean Peninsula associated with the precipitation types, using satellite data. Section 2

describes the data set used for the analyses, and Sect. 3 briefly introduces the geostatistical methods employed in this study.15

Results and discussions are provided in Sect. 4. Section 5 is devoted to conclusions.

2 Data description

We use the precipitation data from weather stations (see Fig. 1) to categorize the precipitation systems. We classify four

different precipitation types statistically, based on two criteria: the portion of weather stations with precipitation (C1; in %),

and the station average precipitation rate (C2; in mm h−1). In order to determine the threshold values for classifying the20

precipitation types, we have conducted a preliminary statistical analysis on precipitation events in the period of 2011–2015 (not

shown). As the precipitation events occur in a given time period and space interval, our precipitation data are assumed to follow

the Poisson distribution, which represents a probability situation of a large number of observation with a small probability of

occurrence. Many studies developed the Poisson distribution models to estimate rainfall and to cluster the rainfall systems (e.g.,

Rodriguez-Iturbe et al., 1987; Lee et al., 2014; Barton et al., 2016; Ritschel et al., 2017). We have chosen the threshold values25

when the cumulative percentage of precipitation events for each criterion (i.e., C1 and C2) reached approximately 80 %; thus

obtaining the threshold values of 20 % for C1 and 3 mm h−1 for C2, respectively. Our preliminary statistical analysis showed

that, in general, most precipitation events occur over small areas and precipitation events with high intensity rarely occur over

large areas. The locality of precipitation appeared higher as the precipitation intensity were higher, in accordance with Nam

et al. (2014). In particular, precipitation systems with the highest intensity (≥ 10 mm h−1) were mostly confined to a small30

area with the number of stations less than 10 % of total weather stations. This implies that the locality feature of precipitation

systems may depend on the threshold value in precipitation intensity.
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Based on these criteria, we define four different precipitation types, as shown in Table 1: 1) Low Precipitation at a Few

Points (LPFP) for C1 < 20 % and C2 < 3 mm h−1; 2) Low Precipitation at Many Points (LPMP) for C1 ≥ 20 % and C2 < 3

mm h−1; 3) High Precipitation at a Few Points (HPFP) for C1 < 20 % and C2≥ 3 mm h−1; and 4) High Precipitation at Many

Points (HPMP) for C1 ≥ 20 % and C2 ≥ 3 mm h−1. We practically exclude the LPFP type in our analyses, i.e., the case with

C1 < 20 % and C2 < 3 mm h−1, for it may be less effective.5

The Korea Meteorological Administration (KMA) has produced the composite precipitation data over Korea using the data

from radars, weather stations and satellites, through the following steps (see Hwang et al., 2015): 1) remove non-precipitation

echoes from the radar data using the satellite cloud type data; 2) calculate the difference between the station precipitation

and the radar estimated precipitation; 3) perform the objective analysis on the precipitation difference field and on the station

precipitation data; 4) correct the bias using the objectively-analyzed difference field; and 5) combine the corrected radar-10

estimated precipitation data and the objectively-analyzed station precipitation data to produce the composite precipitation data

(in mm h−1). In order to analyze the precipitation systems with the evenly distributed high-resolution data, we used these

composite precipitation data, which cover 1153 km × 1441 km over the Korean Peninsula, with a grid size of 1 km and a time

resolution of 1 h. Geostatistical analyses are conducted using the composite precipitation data sets from April to October in a

period of 2013–2015 to investigate the spatial and temporal characteristics of warm-season rainfall.15

We also used the Himawari-8 water vapor bands to investigate the distribution feature of water vapor in the lower to upper

atmosphere in association with precipitation. The water vapor bands are strongly linked with the properties of moisture, ther-

modynamics and dynamics of the troposphere. As they are sensitive to the moisture and temperature profiles in the radiation

path, they can provide information for a wide range of atmospheric processes (Georgiev et al., 2016), including atmospheric

motions such as the upper-level lows, jet stream, and blocking. Himawari-8, operated by the Japan Meteorological Agency20

since 7 July 2015, carries a new unit called the Advanced Himawari Imager (AHI) with higher radiometric, spectral, and

spatial resolution in the geostationary orbit (Bessho et al., 2016). The AHI has 16 observation bands — three visible (0.47,

0.51, 0.64 µm), three near-infrared (0.86, 1.6, 2.3 µm), and ten infrared (3.9, 6.2, 6.9, 7.3, 8.6, 9.6, 10.4, 11.2, 12.4, 13.3 µm).

Among them the water vapor absorption bands — 8 (6.2 µm), 9 (6.9 µm), and 10 (7.3 µm) — represent upper-, mid-, and

mid-/lower-level water vapor, respectively. The calibration of the Himawari-8 water vapor bands is accurate to within 0.2 K by25

validating an approach developed under the Global Space-based Intercalibration System (GSICS) project with hyper-spectral

infrared sounders (e.g., Okuyama et al., 2015; Bessho et al., 2016). In this study, we used the scan area for Full Disk by the AHI

that covers the East Asia region: the Full Disk images are taken every 10 min with a 2 km spatial resolution. The analyses are

conducted on the data of the hour over the domain of 120.132−134.243◦E and 30.436−44.068◦N (600 × 770 grids), similar

to the area of the precipitation data.30

3 Geostatistical methods

In this study, we use several methods to analyze the spatial characteristics — the spatial autocorrelation, Moran’s I , and general

G. The spatial autocorrelation shows how the precipitation observations at a certain distance are correlated with each other.

4



Thus, it is possible to determine the degree of spatial scale, or the effective influence range, of a single precipitation system

or associated precipitation systems. Through Moran’s I , we can figure out the property of spatial correlations, especially

distinguishing between the cluster and dispersion patterns/areas of precipitation. In other words, Moran’s I identifies local

cluster areas of strong precipitation, large areas of precipitation, or precipitation boundaries. General G indicates whether the

cluster region has high or low precipitation.5

3.1 Spatial autocorrelation

Autocorrelation in spatial analysis implies that a variable is correlated with itself at different points. Simply speaking, pairs

of precipitation data close to each other likely to have more similar values than those far apart from each other. When the

precipitation data are spatially autocorrelated, precipitation at one place is related to that at another place, and they are not

independent to each other. The autocorrelation coefficient can be obtained once the autocovariance has been calculated. The10

autocovariance indicates the degree of similarity of a variable itself at a certain distance. Generally, the autocovariance is

greater as the separation distance decreases, becomes smaller as the distance increases, and does not show any tendency (e.g.,

converge) after a certain distance. For the one-dimensional data, the autocovariance (cov) in terms of the grid distance (or lag;

k) between the data pairs, X = (x1,x2, · · · ,xn−k) and X ′ = (x1+k,x2+k, · · · ,xn), is defined as:

cov(X,X ′) = E[(X −µX)(X ′−µX′)] (1)15

= E(XX ′)−E(X)E(X ′)

= µXX′ −µXµX′ .

Here E(XX ′), E(X) and E(X ′) are the means of sub-datasets (i.e., XX ′, X and X ′, respectively), and are calculated as the

followings:

E(XX ′) =
1

n− k

n−k∑
i=1

xixi+k = µXX′ , (2)20

E(X) =
1

n− k

n−k∑
i=1

xi = µX

and

E(X ′) =
1

n− k

n−k∑
i=1

xi+k = µX′ ,

where n is the number of total points and i is the grid point index. The lag index, k, depicts the grid distance between two point

values, xi and xi+k. The autocorrelation coefficient (ρ) is defined as:25

ρ(X,X ′) =
cov(X,X ′)√
var(X)var(X ′)

=
µXX′ −µXµX′√
var(X)var(X ′)

, (3)

where var(X) means the variance of X and can be regarded as the covariance of X with itself, i.e., var(X) = cov(X,X). At

the zero separation distance, the autocovariance has the same value as the variance and the autocorrelation coefficient becomes
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unity. For the two-dimensional data, the autocorrelation coefficient of all data pairs within the separation distance is obtained

by using the relaxed separation distance, and by following the same calculation principle as in the one-dimensional data. In

order to compute the relaxed separation distance, the distance between the data pairs is rounded.

3.2 Moran’s I

Moran’s I is a statistical index for measuring the similarity of neighboring data (Moran, 1948). It is obtained by comparing the5

values of the target and neighboring feature pairs with the average of the entire targets:

I =
n
∑

i

∑
jwij(xi−x)(xj −x)∑

i

∑
jwij

∑
i(xi−x)2

, (4)

where n is the number of the entire target observations, xi is the variable value at the i-th location, x is the mean of the

entire targets. Here, wij is the spatial weight of the link between i and j, which is defined by the inverse distance weight, i.e.,

wij = 1/dij with dij representing the distance between grids i and j. Moran’s I is ranged from −1 to 1 with the following10

interpretation: 1) the positive value means that the variable of interest and its spatial lags are positively autocorrelated, defining

a cluster pattern; 2) the negative value indicates spatially negative autocorrelation, defining a dispersion pattern; and 3) the

zero value represents a random spatial pattern. Equation (4) denotes the global Moran’s I that identifies the pattern — either

cluster or dispersion — but with no information on the magnitude of variables. In addition, the local Moran’s I (Ii), showing

the location of cluster/dispersion, is computed as the following (Anselin, 1995):15

Ii =
(xi−x)∑n

k=1(xk −x)2/(n− 1)

n∑
j=1

wij(xj −x). (5)

Ii is interpreted the same as I but with no specific range. The Z-score (Z) can be analyzed together to confirm the significance

of Ii, and is calculated as:

Z(Ii) =
Ii−E(Ii)

SD(Ii)
, (6)

whereE(Ii) =−
∑

jwij/(n−1) is the expected value of Ii if random, and SD(Ii) is the standard deviation of Ii. The Z-score20

suggests whether we can reject the null hypothesis or not. In this case, the null hypothesis states “there is no spatial clustering”.

To determine if the Z-score is statistically significant, we compare it to the range of values for a particular confidence level.

For example, at the significance level of 0.1, 0.05, 0.01, the absolute value of Z-score would have to be greater than 1.65, 1.96,

2.57, respectively, to be statistically significant, and the clusters are not created by chance.

3.3 General G25

We can identify the cluster patterns through Moran’s I; however, it does not indicate whether the clustered variable values are

low or high. In addition to Moran’s I , it is necessary to determine whether the properties of the cluster are hot spots (i.e., high

values) or cold spots (i.e., low values) by using Getis-Ord general G (Getis and Ord, 1992; hereafter, referred to as general G).

The global general G, like the global Moran’s I , shows the cluster characteristics for the entire study area as a statistical index.
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Therefore, we use the local general G which can represent locations where features with either high or low values are spatially

clustered. The following equation calculates the local general G (Gi(d)):

Gi(d) =

∑
jwij(d)xj∑

j xj
, j 6= i, (7)

where d is the distance between the target feature and the neighboring feature, and wij is the same spatial weight (i.e., the

inverse distance weight) used for calculating Moran’s I as in Eqs. (4) and (5). To be a statistically significant hot spot or cold5

spot, the Z-score of generalG can be calculated. Ord and Getis (1995) redefinedGi(d), which can be considered as the Z-score

(Z(Gi)), as:

Z(Gi) =
Gi−E(Gi)

SD(Gi)
, j 6= i, (8)

whereE(Gi) =
∑

jwij(d)/(n−1) is the expected value if random, and SD(Gi) is the standard deviation ofGi. High positive

values indicate the possibility of a local cluster of high values, whereas negative values indicate a similar cluster of low values.10

An absolute value of the Z-score would have to be greater than 1.65, 1.96, 2.57 to be statistically significant at a significance

level of 0.1, 0.05, 0.01, respectively.

4 Results and discussions

4.1 Spatial autocorrelation

4.1.1 Precipitation15

The general characteristics of the spatial autocorrelation structure in precipitation for each type are shown in Fig. 2. We have

calculated the correlation coefficients for all points in the range from 0 to 100 km. In order to compare the characteristics

between different precipitation types, we defined the e-folding value as the threshold. The e-folding distance means the separa-

tion distance when autocorrelation becomes e−1 (i.e., 0.3674). In other words, it refers to the spatial scale of precipitation that

autocorrelation decreases to ρ= e−1 from the value at the zero separation distance (i.e., ρ= 1). The e-folding value, under the20

assumption that atmospheric variables decrease exponentially with time and distance, has often been used to estimate both the

temporal and spatial structure of precipitation (e.g., Skøien et al, 2003; Ha et al., 2007; Kursinski and Mullen, 2008; Zeweldi

and Gebremichael, 2009; In et al., 2014). As classified in Table 1, the LPMP and HPMP cases (i.e., C1 is high, regardless of

C2) show the e-folding distance at ∼35 km. On the other hand, the HPFP cases (i.e., C1 is low) depict the e-folding distance

at ∼15 km.25

This result can be expected from the classification of precipitation types: precipitation with smaller spatial scale brings

about more rapid decrease in the spatial correlation, thus showing smaller correlation at the e-folding distance. Ha et al. (2007)

estimated the e-folding distance of warm-season precipitation as 50–110 km, and In et al. (2014) pointed out that the e-folding

distance varied depending on months and regions with the minimum being 40 km. Our results show shorter e-folding distances

than those from the previous studies: it is ascribed to exclusion of the LPFP cases (see Table 1). Nam et al. (2014) examined the30
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relationship between precipitation intensity and spatial autocorrelation, and noticed that the latter became smaller as the former

appeared stronger, thus depicting a larger locality in precipitation. They found that the e-folding distance was 14 km for the

precipitation intensity in excess of 30 mm h−1, whereas it was about 40 km for the intensity greater than 5 mm h−1. However,

our results indicate that the spatial autocorrelations of HPMP and LPMP are in similar shape. Generally, the spatial locality is

proportional to precipitation intensity; however, strictly speaking, the number of points with precipitation has a greater effect5

on spatial characteristics than the precipitation intensity.

In Fig. 3, in order to identify the spatial characteristics of precipitation for each case, we show a histogram depicting the

number of cases according to the e-folding distance. We found that the e-folding distance of the mode (the most frequent value)

was 15 km for HPFP, 30 km for LPMP, and 34.7 km for HPMP, respectively. It is evident that, as shown in Fig. 2, the e-folding

distance depends on the precipitation spatial scale rather than the precipitation intensity.10

We additionally analyzed the directional features of precipitation distribution over the Korean Peninsula in order to know

the spatial structures of precipitation systems (see Figs. 4 and 5). We classified the direction range from 0◦ to 180◦ with

an interval of 45◦, considering the symmetry. Here the direction is a measure of the angle from the origin–east axis, whose

magnitude increases counterclockwise (see the radar chart in Fig. 5). Figure 4 shows the averaged directional autocorrelation

for different precipitation types. The autocorrelation curves show similar shape and property in HPMP (Fig. 4a) and HPFP (Fig.15

4c), which depict two distinct directional characteristics: the precipitation structures have similar spatial features in directional

pair of 45◦ and 0◦ and of 135◦ and 90◦. For HPFP where the precipitation spatial scale is small, the autocorrelations of all

directions decrease more rapidly than those for LPMP and HPMP, resulting in a smaller gap between the two distinct curves

compared to HPMP. For LPMP, i.e., low precipitation rate with a large spatial scale, the spatial correlation is the highest with

the precipitation axis of 45◦ (i.e., southwest–northeast), whereas it is the lowest with that of 135◦ (northwest–southeast).20

Figure 5 shows a radar chart representing the directional e-folding distance at the mode in the directional histogram of case

numbers (not shown). In general, the directional e-folding distances (and hence the spatial correlations) are larger for the cases

with large spatial scale (i.e., LPMP and HPMP) than the cases with small spatial scale (i.e., HPFP). It is noteworthy that the

e-folding distances in LPMP have no characteristic directionality (i.e., isotropic), indicating that the precipitation systems in

LPMP are mostly related to both the migratory cyclones that move into Korea from various directions and the cloud clusters25

where moderate convective systems in large area are closely connected to each other. On the other hand, the cases with high

precipitation intensity, i.e., HPFP and HPMP, both show strong directionality (i.e., anisotropic) with large e-folding distances

along the axes of 45◦ and 0◦ (i.e., the southwest–northeast and west–east directions, respectively). They are considered to be

strongly linked to the frontal rainfalls, convection bands, etc. (e.g., Sun and Lee, 2002; Kim and Lee, 2006; Lee et al., 2008;

Jeong et al., 2012, 2016; Jung and Lee, 2013).30

As we have used the 3-year data, the spatial autocorrelations here are considered to include the temporal features implicitly.

All the weather systems evolve in time (i.e., develop, mature and decay) and move in space during their life cycles. The fact that

precipitation systems have high correlation along a specific direction implies that those systems in that direction, even in the far

distances, have similar/common structures or are originated from the same weather system. For instance, the meteorological

systems with strong directionality include a squall line or a frontal system in which several thunderstorms banded together,35
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and a multicell cluster that comprises a series of individual storm at a different stage of life cycle with the same movement

direction. For the multicell cluster, new cells form along the upwind edge of the cluster, and decaying cells are found along the

downwind side with mature cells located at the center; thus it includes evolutions in both space and time.

In terms of the summertime heavy precipitation systems over the Korean Peninsula, Lee and Kim (2007) classified them into

four major types such as isolated thunderstorms, convection bands, squall lines and cloud clusters, whereas Song and Sohn5

(2015) classified them into two types: the cold type characterized by an eastward moving cloud system with an oval shape,

and the warm type with a comparatively wide spatial distribution over an area extending from the southwest to northeast. In

our case, the precipitation events in HPFP may correspond to the isolated thunderstorms or the cold-type heavy rainfalls while

those in HPMP to convection bands, squall lines, cloud clusters or the warm-type heavy rainfalls. On the other hand, Ha et al.

(2007) investigated the monthly characteristics in the directional features of rainfall from May to September, and reported that10

the cell type was dominant in May and September while the southwest–northeast tilted band type was ruling in June–August.

They addressed that the band type is mainly due to frontal rainfall during the rainy season. In our results, most cases of HPMP

and HPFP occurred in July and August (see Table 2); thus, indicating that the warm-season precipitation systems in Ha et

al. (2007) are mostly related to the long-lived (HPMP) and short-lived (HPFP) band type heavy rainfalls along the monsoon

frontal system.15

4.1.2 Himawari-8 water vapor bands

Water vapor is the core element and driver of the precipitation development through dynamical processes (e.g., advection and

convection) and physical processes (e.g., evaporation and condensation). For example, the East Asian monsoon starts when a

huge amount of water vapor from the adjacent ocean is transported to the monsoon region by the large scale atmospheric circu-

lation. Thus, the spatial analysis of water vapor will contribute to further understanding of the spatial patterns of precipitation.20

Many studies have been carried out on the relationship between satellite water vapor and extratropical/tropical cyclones and

storms (e.g., Velden, 1987; Milford and Dugdale, 1990; Krennert and Zwatz-Meise, 2003; De Haan et al., 2004; Rabin et al.,

2004; Mukhopadhyay et al., 2005; Chosh et al., 2008).

By analyzing the water vapor imagery, we can detect not only the horizontal distribution of tropospheric water vapor but

also the dynamical behavior of atmospheric flow such as the middle and upper troughs, vortexes, and jet streams, even in25

the absence of clouds. Therefore, analyzing the spatial characteristics of tropospheric water vapor is essential to improve the

understanding of precipitation systems. In particular, we are focusing on the extent and direction of spatial correlation of water

vapor flowing into the Korean Peninsula in association with the precipitation types.

In this study, we analyze the brightness temperatures from the Himawari-8 water vapor bands to characterize the lower to

upper atmosphere related to the precipitation systems. A humid atmosphere absorbs more longwave radiation from the Earth,30

resulting in a lower brightness temperature. On the other hand, a dry atmosphere absorbs less longwave radiation, bringing

about a higher brightness temperature. Although we cannot directly quantify the amount of water vapor through the water

vapor imager, we can sufficiently recognize the spatial distribution of water vapor. Moreover, using two water vapor bands

(i.e., 6.2 and 7.3 µm), we can clearly identify the moisture boundaries at the zone between the warm/moist and cold/dry side of
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the jet/wind maximums at two different levels in the troposphere (Georgiev et al., 2016). The spatial analyses were performed

with the mixed images of clouds and water vapor because it was hard to distinguish between clouds and water vapor without

a cloud detection algorithm. Since both water vapor and clouds are strongly linked to precipitation as its sources, analysis of

the mixed variables from the satellite data would not make a serious problem in understanding and relating to the precipitation

systems. As we focus on the spatial distribution of water vapor when precipitation occurs, we analyze water vapor for each5

precipitation type.

The general characteristics of the spatial autocorrelation structure in water vapor bands for each precipitation type are shown

in Fig. 6. The patterns of spatial autocorrelations of water vapor bands, for three precipitation types, are generally similar

to those of precipitation; however, the separation distances extend much longer (cf. Fig. 2). Even at a separation distance of

100 km, the spatial correlation is higher than 0.6. This strong spatial correlation is considered to be due to the continuity of10

water vapor. The largest spatial autocorrelation appears in LPMP, followed by HPMP and HPFP. The LPMP depicts similar

correlation coefficients regardless of bands and hence heights of atmospheric layers. This implies that the spatial structure of

water vapor bands is similar in the vertical. On the other hand, the spatial correlations in HPMP and HPFP become smaller

along the downward path, from band 8 to band 10.

In Fig. 7, the brightness temperature of water vapor bands characterizes directionality in the spatial correlations. In general,15

for all precipitation types and water vapor bands, the highest spatial correlations appear in the axis of 45◦ (southwest-northeast)

while the lowest in the axis of 135◦ (northwest-southeast), as in precipitation (cf. Fig. 4). In LPMP, the spatial correlations in

the axes of 0◦ and 90◦ coincide even at longer distances. We also notice that, for a given precipitation type and separation

distance, the spatial autocorrelation of water vapor becomes larger along the upward path, from band 10 to band 8. Figure

8 shows the directional separation distances at the mode in the directional histogram of case numbers (not shown) for each20

precipitation type with the autocorrelation coefficients of 0.7 (blue), 0.8 (black), and 0.9 (grey), respectively. The separation

distances generally show high values mainly in the axis of 45◦, similar to the directional features of precipitation (cf. Fig. 5).

Note that, in LPMP, the brightness temperature shows a large separation distance (i.e., high spatial correlation) in the axis of

45◦ while precipitation depicts no directionality (cf. Fig. 5). This is possible because water vapor can form as a band type,

e.g., over a stationary front but precipitation can occur in cell type due to local features of convection over the same front.25

In addition, as the autocorrelation coefficient decreases, the directionality tends to disappear even though the autocorrelation

coefficient is as large as 0.7. As in Fig. 7, we note that for a given precipitation type and spatial autocorrelation, the separation

distance of water vapor becomes larger along the upward path. This is related to the stronger wind at upper atmosphere that

carries the characteristic feature of water vapor further downstream.

Through the satellite water vapor analyses, we found both similarity and dissimilarity in spatial correlations between water30

vapor and precipitation. Similar to the results of precipitation analyses, the spatial autocorrelations of water vapor for HPFP

decreased more rapidly than those for HPMP and LPMP (cf. Figs. 2 and 6). Water vapor and precipitation showed additional

similarity in terms of characteristic directionality in spatial autocorrelations (cf. Figs. 4 and 7, and Figs. 5 and 8). However,

both fields showed significant dissimilarity in the separation distances, i.e., the spatial scales (cf. Figs. 2 and 6). Note that water

vapor makes phase changes and the conversion from water vapor to precipitation includes a bunch of nonlinear processes;35
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thus it is not surprising to see such dissimilarity. Further studies on the relationship between precipitation systems and satellite

water vapor in Korea are essentially required.

4.2 Moran’s I and general G

Moran’s I represents the spatial distribution pattern, i.e., cluster or dispersion: the cluster (dispersion) patterns appear in the

areas with positive (negative) spatial autocorrelation. General G determines whether the cluster area is a hot or cold spot: a hot5

(cold) spot means an area with high (low) values and hence high (low) precipitation amount. For all precipitation cases in this

study, the values of global Moran’s I showed positive values meaning that clusters were detected, in the domain-average sense.

Through the local Moran’s I (Ii), we can define the similarity between the target feature and its neighbors, and check the spatial

outliers as well (Lalor and Zhang, 2001; McGrath and Zhang, 2003). For example, with a negative Ii, the target feature may

have high precipitation while its surroundings have low precipitation, and vice versa. Conversely, with a positive Ii, the target10

feature has similar amount of precipitation as its neighbors. Thus, the local Moran’s I can detect strong precipitation over local

clusters, precipitation boundaries, or precipitation over large areas. As Moran’s I cannot distinguish between low and high

precipitation, we employed the local general G to identify the hot/cold spots (i.e., high/low precipitation areas, respectively).

In order to calculate the indices, we selected a sub-domain for each precipitation case where the precipitation values were

extracted at an interval of 5 km. An inverse distance weighting function is used as the spatial weight.15

We present the analysis results for three cases — one from each precipitation type (see Figs. 9–11). For the selected cases, the

values of global Moran’s I were all positive: 0.1207, 0.1711 and 0.2357 for the cases of LPMP, HPMP and HPFP, respectively,

with a higher value representing a stronger clustering. This indicates that all three cases show the cluster patterns. Figure 9

shows an LPMP case, occurred at 05 Korean Standard Time (KST) 25 August 2015, in association with a tropical cyclone.

Typhoon Goni (2015) approached from Japan and brought rainfall all over Korea (Fig. 9a). In particular, heavy precipitation20

systems, with more than 30 mm h−1, developed around the mountain range along the east-central coast of the Korean Peninsula.

In Fig. 9b, the southeastern region is identified as hot spots (areas of high precipitation) while the southwestern region, over

both land and sea, as cold spots (areas of low precipitation). Figure 9c depicts several precipitation systems with maximum

intensity (i.e., precipitation rate; see Fig. 9a) in the cluster area (marked by the X symbols). These systems show the highest

local Moran’s I with the spatial scale of less than 30 km. The cluster patterns were statistically significant at a significance25

level of 0.01 (Fig. 9d). In Fig. 10, we illustrate a heavy rainfall case in the category of HPMP, which occurred at 17 KST 27

May 2013 as a migratory cyclone approached from the west, passed over the Korean Peninsula slowly, and brought rainfall

throughout the country, mainly in the western and southern regions (Fig. 10a). Such precipitation areas matched well with

the hot spots in Fig. 10b. The map of local Moran’s I shows that a precipitation system with a strong cluster feature has

developed, over the southwestern sea of the Korean Peninsula, along with the successive cluster patterns in a line type (Fig.30

10c), with a significance level of 0.01 (Fig. 10d). Figure 11 shows an HPFP case, occurred at 05 KST 24 October 2015. The

central-western region of the Korean Peninsula received rainfall of more than 8 mm h−1 (Fig. 11a): the hot spots appeared

in the precipitation area while the cold spots were located at the region of relatively low precipitation (Fig. 11b). Figure 11c
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illustrates an intense cluster pattern (dark red) over the relatively high rainfall area, and a weaker cluster pattern over the cold

spot, with a significance level of about 0.01 (Fig. 11d).

Overall, the spatial structures of the selected precipitation systems are well presented by the analyses of Moran’s I and

general G. The overall spatial pattern (cluster vs. dispersion) of a precipitation system is characterized by the global Moran’s

I , whereas the spatial distributions of clustered areas are represented by the local Moran’s I . The overall regional features of5

precipitation amount (i.e., hot vs. cold spot) are captured by the local general G. For example, precipitation in the HPFP case,

relevant to convective clusters, appeared over a small local area (Fig. 11a) but the value of global Moran’s I was much higher

(0.2357) than the others (0.1207 and 0.1711), implying a stronger cluster pattern; however, considering that the global Moran’s

I is a domain-averaged value, this high value may be due to less dispersion (negative correlation) areas. In fact, the HPFP case

shows a relatively weaker dispersion area (Fig. 11c), compared to the LPMP and HPMP cases (Figs. 9c and 10c, respectively).10

It is notable that the cluster pattern shows different spatial characteristics depending on the spatial scale and distribution feature

of precipitation systems: several strong local clusters develop, especially over areas of high precipitation, when precipitation

occurs over a large region (Figs. 9 and 10), whereas weaker clusters develop when precipitation occurs over a small region (Fig.

11). Through the integrated interpretation of these indices, we discovered some important spatial features of the precipitation

systems: 1) the area where the cluster pattern overlaps with the hot spots is characterized by heavy rainfall (e.g., the X-marked15

or dark red places in Figs. 9c and 10c); 2) the area where the dispersion pattern concurs with the cold spots is distinguished by

a relatively high precipitation surrounded by low precipitation (e.g., the rain cells denoted by arrows in Figs. 9c and 10c); 3)

the precipitation gets weaker as it moves away from the strong cluster area, that is, the cluster pattern appears at the center and

the dispersion pattern appears around; and 4) the secondary cluster pattern in a precipitation system over a wide area indicates

clusters of low-intensity precipitation.20

4.3 Temporal autocorrelation

We additionally calculated the temporal autocorrelation coefficients of precipitation and water vapor bands for each precipita-

tion type. For precipitation, HPFP represents the shortest e-folding time, followed by LPMP and HPMP (Fig. 12). This order in

the e-folding time is the same as in the e-folding distance: this implies that, for the precipitation types classified here, the tem-

poral correlation as well as the spatial correlation appears greater in the precipitation systems over a larger area than those over25

a smaller area. The range of the e-folding time for all precipitation types is 1–2 hours. The averaged temporal autocorrelations

of water vapor bands show similar features to those of precipitation for different precipitation types, though the correlations

decrease slowly over time (Fig. 13). In addition, compared with the spatial correlations, the temporal correlations do not show

significant dependence on the height of atmospheric layer.

Through this temporal correlation analyses, we noticed that the e-folding time is in a short range (1–2 hours), and its differ-30

ence among different precipitation types is only about 30 min. This short e-folding time scale for all precipitation types implies

that the precipitation systems affecting Korea in the warm season are mostly characterized by convective-type precipitation,

from either isolated storm cells or clustered bands, at least for the given analysis period. The e-folding time scale suggests an

adequate time interval for data collection and analysis for capturing the detailed structure of and better forecasting of precipi-
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tation systems. It also implies a proper time interval of incorporating observations in the operational data assimilation system,

for more accurate numerical forecasting of the precipitation systems.

Moreover, Ha et al. (2007) reported that the e-folding time of precipitation in Korea is 1–2 h regardless of months (from May

to September), and that the monthly difference of the e-folding time is approximately 30–40 min. Therefore, we can conclude

that the typical e-folding time of the warm-season precipitation systems in Korea is 1–2 h, regardless of the precipitation5

types and months. This conclusion is based on the analyses of the hourly precipitation data: we may find different temporal

characteristics for different precipitation types using a data set of shorter interval (e.g., 10 min). In terms of the satellite water

vapor data, a further study is also necessary to investigate the relationship between water vapor transport and precipitation,

regarding the temporal scale as well as the spatial scale, with more detailed analyses.

5 Conclusions10

Heavy rainfall causes many casualties as well as property damage, and thus its accurate forecast is very important. To improve

the forecast accuracy, it is necessary to understand the characteristics of the precipitation systems through analyses of data from

observation and/or numerical modeling. Furthermore, a well-designed observation network is essentially required to capture

the characteristic features of precipitation systems.

In this study, we identify the characteristics of warm-season precipitation systems in Korea, via the geostatistical analyses15

on the composite precipitation and satellite water vapor data. We have classified the precipitation cases into four types, based

on the average rainfall amount per point and the ratio of the points with precipitation (i.e., spatial scale): 1) Low Precipitation

at a Few Points (LPFP); 2) Low Precipitation at Many Points (LPMP); 3) High Precipitation at a Few Points (HPFP); and 4)

High Precipitation at Many Points (HPMP), among which the LPFP cases are excluded from the analysis.

We have conducted analyses of the spatial and temporal autocorrelations of precipitation and water vapor for the precipitation20

cases of each classification type, and found that the e-folding distance of precipitation ranges between 15 and 35 km while the

e-folding time ranges between 1 and 2 h. The e-folding distance is as short as 15 km for an HPFP case (e.g., a local shower), but

as large as 35 km for the cases of both LPMP and HPMP, implying that the spatial correlation becomes larger as precipitation

occurs over a wider area and is less affected by the precipitation amount. We also noted that the spatial autocorrelations have

characteristic directionality as the followings: 1) precipitation systems with high precipitation amount (i.e., HPFP and HPMP)25

have high spatial autocorrelations in the southwest–northeast and west–east directions, mainly associated with frontal rainfalls

during the monsoon season; and 2) those with low precipitation amount (i.e., LPMP) have no directionality, pertaining to both

the migratory cyclones moving in various directions and the moderate convective systems in the cloud clusters. Other spatial

characteristics were identified as well, including cluster versus dispersion patterns, hot versus cold spots, strong precipitation

over local clusters, precipitation boundaries, precipitation over a large area, and so forth. In general, heavy rainfalls appear over30

the hot spots with the cluster pattern while an isolated high precipitation system, surrounded by low precipitation, occurs over

the cold spots with the dispersion pattern.

13



The Advanced Himawari Imager (AHI), on board Himawari-8, has three water vapor bands — 8 (6.2 µm), 9 (6.9 µm)

and 10 (7.3 µm) — representing lower atmospheric layer with higher wavelength. Since water vapor has continuity in time

and space, the autocorrelation coefficients of water vapor bands drop more slowly than those of the composite precipitation.

However, the comparative analyses according to the precipitation type reveal that the spatial correlations of water vapor bands

behave similarly to those of precipitation: the correlations of water vapor bands are also large (small) for precipitation systems5

occurred over a large (small) area.

We can also assess the current observational network in Korea, focusing on the warm-season precipitation systems, via

the geostatistical analyses. Currently, the precipitation observation network in Korea has a spatial resolution of ∼13 km,

distributing the analysis in an interval of 1 h. For a standard based on the e-folding values, such observation network is

capable of deriving the spatiotemporal characteristics of the precipitation systems in all three types — LPMP, HPMP and10

HPFP. However, if we apply a strict standard (e.g., autocorrelation of 0.6), the separation distance and time for the HPFP cases

fall down to ∼6 km and ∼35 min, respectively. This implies that, regarding the spatial resolution, the current observation

network can hardly capture the characteristic features of the localized precipitation systems; the temporal resolution might be

sufficiently high because the composite precipitation data are produced at every 10 min. Therefore, for more accurate analyses

of the precipitation systems with a higher correlation, a denser observation network should be considered in local areas where15

a heavy rainfall often occurs. This study has enabled us not only to explore the characteristics of precipitation systems in Korea

but also to suggest the criteria for evaluating the observation network.

We note that the spatial distribution and movement features of the precipitation systems are strongly affected by terrain, but

the orographic effect is not fully assessed in this study. Bacchi and Kottegoda (1995) demonstrated the orographic effect of

the Alps mountain range on the spatial distribution of the rainfalls and addressed the directional characteristics of the spatial20

correlations. Other studies also confirmed the direct and induced effect of mountain on spatial distribution of rainfall (e.g.,

Mass, 1981; Carruthers and Choularton, 1983; Barros and Kuligowski, 1997; Park and Lee, 2007). As the Korean Peninsula

is represented by a highly complex terrain with many mountains, the spatial properties of precipitation systems will be dis-

tinctively affected. It is essential to conduct a further research about the orographic effect on the spatiotemporal characteristics

of precipitation, specifically over different slope sides of various mountain ranges in Korea. We additionally suggest a further25

study to analyze the autocorrelations by considering the storm cell movement and the occurrences of initial precipitation and

maximum rainfall intensity.

Data availability. The composite precipitation and Himawari-8 data are available from the Korea Meteorological Administration database:

http://203.247.66.28/ (instructed in Korean), in which a user registration is required. The Himawari-8 data is also disseminated via the

HimawariCast from the Japan Meteorological Agency at http://www.data.jma.go.jp/mscweb/en/himawari89/himawari_cast/himawari_cast.30

html.
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Table 1. Classification of precipitation types with the number of events (in bold).

The portion of weather stations with precipitation (C1)

< 20 % ≥ 20 %

The station average

precipitation rate (C2)

< 3 mm h−1
Low Precipitation at a Few Points (LPFP)

5858

Low Precipitation at Many Points (LPMP)

1157

≥ 3 mm h−1
High Precipitation at a Few Points (HPFP)

980

High Precipitation at Many Points (HPMP)

594

Table 2. Monthly occurrences of precipitation systems according to the precipitation types from April to October in the period of 2013–2015.

LPMP HPMP HPFP

APR 277 31 21

MAY 106 54 37

JUN 130 50 186

JUL 191 213 250

AUG 193 158 326

SEP 138 56 116

OCT 122 32 44

20



Figure 1. The weather station locations (blue dots) and radar locations (red “+” symbols) and coverages (white area) in Korea.
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Figure 2. The averaged spatial autocorrelations of precipitation for each precipitation type. The red line indicates the e-folding value.
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Figure 3. A histogram depicting the number of cases according to the e-folding distance for (a) HPFP, (b) LPMP, and (c) HPMP.
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Figure 4. The averaged directional spatial autocorrelation of precipitation for (a) HPFP, (b) LPMP, and (c) HPMP.
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Figure 5. A radar chart representing the directional e-folding distance (in km) for each precipitation type at the mode in the directional

histogram (not shown) depicting the number of cases according to the e-folding distance in different directions.
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Figure 6. The averaged spatial autocorrelation of brightness temperature of the Himawari/AHI water vapor band (a) 8, (b) 9, and (c) 10 for

each precipitation type.
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Figure 7. The averaged directional spatial autocorrelation of the brightness temperature of the Himawari/AHI water vapor band 8, 9 and 10

by each precipitation type (i.e., HPFP, HPMP, and LPMP) for directions of 0◦ (black), 45◦ (blue), 90◦ (red), and 135◦ (green). The direction

(angle) is measured counterclockwise from the origin–east axis (i.e., 0◦).
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Figure 8. A radar chart representing the directional separation distance (in km) of brightness temperature of the Himawari/AHI water vapor

band 8, 9, and 10 at the mode in the histogram of case numbers for LPMP (solid), HPMP (dashed), and HPFP (dotted). The colors indicate

autocorrelation coefficients of 0.7 (blue), 0.8 (black), and 0.9 (grey), respectively.
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Figure 9. An LPMP case at 05 KST 25 August 2015: (a) Precipitation distribution (from https://afso.kma.go.kr/), (b) local Z(Gi), (c) local

Moran’s I (Ii), and (d) Z-score of Ii. The computational domain covers the area of 34.34–38.97◦N and 124.25–130.05◦E. Precipitation

systems with maximum intensity and strong cluster characteristics are marked by the X symbols, and the cold spots with dispersion pattern

are denoted by the arrow. Non-precipitating areas have no color shading.

29



Figure 10. Same as in Fig. 9 but for an HPMP case at 17 KST 27 May 2013 and the computational domain of 33.43–38.05◦N and 124.25–

130.04◦E.
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Figure 11. Same as in Fig. 9 but for an HPFP case at 05 KST 24 October 2015 and the computational domain of 37.14–39.06◦N and

123.32–131.21◦E.
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Figure 12. Same as in Fig. 2 but for the averaged temporal autocorrelation.
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Figure 13. Same as in Fig. 6 but for the averaged temporal autocorrelation.
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