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Abstract. Sensitivity Analysis (SA) and Uncertainty Analysis (UA) are important steps for better understanding and evaluation 

of hydrological models. The aim of this paper is to briefly review main classes of SA methods, and to presents the results of 10 

the practical comparative analysis of applying them. Six different global SA methods: Sobol, eFAST, Morris, LH-OAT, RSA 

and PAWN are tested on three conceptual rainfall-runoff models with varying complexity: (GR4J, Hymod and HBV) applied 

to the case study of Bagmati basin (Nepal), and also initially tested on the case of Dapoling-Wangjiaba catchment in China. 

The methods are compared with respect to effectiveness, efficiency and convergence. A practical framework of selecting and 

using the SA methods is presented. The result shows that, first of all, all the six SA methods are effective. Morris and LH-15 

OAT methods are the most efficient methods in computing SI and ranking. eFAST performs better than Sobol, thus can be 

seen as its viable alternative for Sobol. PAWN and RSA methods have issues of instability which we think are due to the ways 

CDFs are built, and using Kolmogorov-Smirnov statistics to compute Sensitivity Indices. All the methods require sufficient 

number of runs to reach convergence. Difference in efficiency of different methods is an inevitable consequence of the 

differences in the underlying principles. For SA of hydrological models, it is recommended to apply the presented practical 20 

framework assuming the use of several methods, and to explicitly take into account the constraints of effectiveness, efficiency 

(including convergence), ease of use, as well as availability of software. 

1 Introduction 

Hydrological models are widely used to simulate natural phenomena, mainly for the purpose of generating forecasts. 

Deterministic forecasts inevitably raise the issue of its uncertainty. This uncertainty mainly comes from the error of gathering 25 

input data, e.g. rainfall and evapotranspiration, parameters of the model and the model structure itself. Nowadays, the interests 

to Uncertainty Analysis (UA) methods and procedures have grown considerably. The study of the UA will not only improve 

the credibility of the model itself but also be conductive to decision making under uncertainty. 
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There are various definitions of UA proposed by different researchers (Cacuci, 2005; Pappenberger and Beven, 2006; 

Tong, 2006; Saltelli et al, 2008; Bastin et al, 2013). UA gives a qualitative or quantitative assessment of the uncertainty in the 

model results. The results can be qualitatively expressed in a graph showing the spread an ensemble of values or a distribution, 

as probabilistic flood maps, etc. 

Due to the complexity and non-linear nature of hydrological models, it is hard to use analytical methods to study the 5 

uncertainty of hydrological models. Therefore, non-intrusive, sampling-based methods are commonly used, generally referred 

to as Monte Carlo Simulation (MCS), which can be seen as the simulation of a system that encloses stochastic or uncertain 

components. It can be easily implemented, model independent and dimension independent.  

The Monte Carlo method can be expressed as "the use of random sampling as a tool to produce observations on which 

statistical inference can be performed to extract information about a system" (Lemieux, 2009). The main steps of MCS are 10 

firstly generating n samples of input X over the input variable space. The input variables can be external model inputs, initial 

model conditions or model parameters. For each such realisation, simulation of the model Y=f(X) is carried out, to obtain n 

sets of output (could be either time series or single value), which statistics are analysed. 

There is another concept used to analyse the impact of uncertainties on modelling results, Sensitivity Analysis (SA), 

which is ideologically close to UA. It can be defined as the study of “how the uncertainty in the output of a model (numerical 15 

or otherwise) can be apportioned to different sources of uncertainty in the model input” (Saltelli et al., 2008). (One may notice 

that this definition is not comprehensive, since uncertainty not only comes from model inputs but also from parameters, so for 

this reason, we will use the term “factor” instead of “model input”.) The main aim here is to identify the degree with which 

changes in various factors (manifesting the corresponding uncertainty) influence a change in model output. SA should be seen 

as a standard step in any modelling study, and there is plenty of literature on SA published during the last 40-50 years, but still 20 

various updates and improvements of SA techniques are proposed regularly (see e.g. Razavi and Gupta, 2016a, 2016b; Pianosi 

and Wagener, 2015).  

SA is often implemented before model parameterization (calibration). On one hand, for conceptual rainfall-runoff models, 

the parameters cannot be gathered from field measurement, implementing, and SA can help to find out the most influential 

parameters to reduce the cost of calibration time. On the other hand, for distributed hydrological models, whose parameters 25 

can be gathered from the field, SA can help to target the most important parameters, on which more resources can be put to 

ensure their higher accuracy. (It should be noted that there is a certain danger and even a methodological flaw in conducting 

SA of parameters before model calibration: it is not yet really known what is the optimal parameter vector, and hence it is 

possible that sensitivity is investigated considering non-feasible parameters values. So it would be advisable to carry out at 

least some initial calibration before turning to SA.) 30 

SA is conducive to UA, and the main difference between their aims lies in that SA tries to explicitly apportion the 

uncertainty of the output to the different factors. Therefore, SA can help to target the sources of the model output uncertainty 
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due to that in inputs or parameters, whereas UA provides a more general and often more detailed and rigorous account of 

model uncertainty. 

Saltelli et al. (2008) formulates the three main specific purposes of SA: 

 Factor Prioritization (FP): ranking the factor in terms of their relative sensitivity; 

 Factor Fixing (FF), or screening: determining the factors are influential or not to the output uncertainty; 5 

 Factor Mapping (FM): given specific output values or ranges, locating the regions in the factor space that produces them. 

In this study, we only focus on ranking and screening. 

SA is typically categorized into Local Sensitivity Analysis (LSA) and Global Sensitivity Analysis (GSA). LSA 

concentrates on the sensitivity of factors at particular points in the factor space, for example, around the vector of the calibrated 

parameters. GSA, on the other hand, assesses the sensitivity of the factor through the whole factor space. By design, LSA is 10 

simpler and faster. 

A simplest expression of local sensitivity is the first-order partial derivatives of output to the factors. Define a model y = 

f(x), where y is the output of the model; x is factor of the model. The sensitivity of the factor (S) is defined as: 

𝑆𝑖 =  
Δ𝑦𝑖

Δ𝑥𝑖
                                                                                                                                                                                 (1) 

where i is the i-th factor of the model. (Note, that in quite many studies instead of model output y the model error is used, e.g. 15 

Root Mean Squared Error or Mean Absolute Error.) Higher value of Si indicates higher sensitivity of the factor. Such measure 

of sensitivity is often called Sensitivity Index (SI). Figure 1 shows the expression of sensitivity of a model with two parameters 

(factors).  

If we randomly sample several points in the whole parameter space, and obtain Si for each sample point. After that we 

can aggregate the results (e.g. calculating the mean value of these Si), assessing thus the global sensitivity of the model.  20 

Global Sensitivity Analysis methods can be classified into Generalised Sensitivity Analysis method, variance-based 

methods, GLS (globally aggregated measure of local sensitivities) methods, density-based methods and meta-modelling 

methods. Different methods arew based on different theories and principles, and as a result, have different efficiencies. Which 

method is the best to use is always an issue to discuss in the field. There are various studies comparing different SA methods. 

In the study of Tang et al. (2007), four SA methods have been analysed and compared on SAC-SMA coupled with SNOW-17. 25 

The results of the study show that the choice of SA methods has great impacts on the parameter sensitivity of the model. 

Pappenberger et al. (2008) tested five SA methods on a flood inundation model (HEC-RAS). It is demonstrated that different 

methods result in different ranking of factors, thus solid conclusions about the sensitivity of the factors are impossible to draw. 

Gan et al. (2014) have evaluated the effectiveness and efficiency of ten widely used SA methods on SAC-SMA model. The 

result demonstrates qualitative SA methods are more efficient than quantitative SA methods, whereas quantitative SA methods 30 

are more robust and accurate. Song (2015), Razavi and Gupta (2015) and Pianosi et al. (2016) gave systematic reviews of SA 

concepts, methods and framework respectively. Suggestions on how to choose SA methods are provided. However, these 
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suggestions are only made based on dissimilar studies and literature reviews, a comprehensive comparison of SA methods 

applied to one case study is lacked in their studies. 

With respect to sample-based SA methods, the coverage of the factor space is the key point in SA accuracy: with small 

samples the SA results are imprecise. In other words, there is also uncertainty in SA (in fact, the same can be said about UA). 

In order to deal with this issue, convergence of the Sensitivity Indices should be studied. 5 

In spite of many reviews and comparison of SA methods that have been carried out, there are not too many studies that 

investigate the convergence and uncertainty of the SA results. Yang (2011) assessed the convergence of Sensitivity Indices for 

five different Global Sensitivity Analysis methods using Central Limit Theory (CLT) and bootstrap techniques. In her study, 

the estimates of mean and Confidence Interval (CI) are plotted against increasing base sample size for each method. Once 

there is no significant fluctuation in the values, the convergence is reached. Sarrazin et al. (2016) proposed a methodology to 10 

study the convergence of Sensitivity Indices, ranking and screening. They have defined quantitative criteria for the 

convergence of Sensitivity Indices, ranking and screening, and tested the methodology on the three widely-used GSA methods 

applied to three hydrological models. 

Yet another aspect worth attention is the choice of SA method(s). Most of the studies concerning SA could not draw firm 

conclusions about how to choose the best SA method (and this is understandable since there are many ways to define what is 15 

the “best” one). Also, the uncertainty in SA is not investigated much.  

The first objective of the study is to test and compare the widely used classic SA methods as well as the SA methods 

developed recently (e.g., PAWN, Pianosi and Wagener, 2015a) in the aspects of efficiency, effectiveness and convergence. 

The second objective is to give suggestions on how to choose SA methods for various hydrological (or hydraulic models) 

based on their computational cost, robustness and easiness of implementation. The third objective of the study is to formulate 20 

a practical framework of sensitivity and uncertainty analysis of hydrological models, thus contributing to and complementing 

the guidelines published earlier (e.g. Saltelli et al., 2008; Baroni and Tarantola, 2014; Song et al., 2015; Pianosi et al., 2016). 

Each individual SA study has its specifics so it is hardly possible to have a unified framework or procedure that would fit all 

possible requirements. Each researcher or practitioner would have a choice of various approaches, principles and components 

to combine and follow in SA. 25 

The structure of the paper is as follows. Section 2 gives detailed introduction and description of Global Sensitivity 

Analysis methods. Section 3 presents the methodology and case study of this study to evaluate GSA methods. The results of 

the study are shown in Sect. 4 and followed by discussions in Sect. 5. Finally, conclusions are drawn in Sect. 6. 
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2 Global Sensitivity Analysis methods 

This section is in no way a detailed presentation of the methods, but rather a brief introduction to the techniques compared in 

this study. For comprehensive reviews, please refer to Song et al. (2015), and Pianosi and Wagener (2015), and for a relatively 

recent interesting insight into the SA problem to Razavi and Gupta (2015, 2016a, 2016b). 

2.1 Classification of GSA methods 5 

2.1.1 Generalised (Regionalised) Sensitivity Analysis method 

Generalized Sensitivity Analysis method (also referred to as Regionalised SA) has gained popularity in environmental and 

water-related research in the end of 1970s, especially after the papers by Spear and Hornberger (1980, 1981); to some extent 

Whitehead and Young (1979), and it is also worth checking the earlier work by Spear (1970). This approach was positioned 

as a Monte Carlo framework used for “probabilistic calibration” which aimed at finding regions in parameter space leading 10 

sets of “behavioural” (good) and “non-behavioural” (bad) models (which point at the regions of critical uncertainty), rather 

than aiming at finding one “best” model. Simulation results are split into these two groups based on their performance (e.g. 

model error), the Cumulative Distribution Function (CDF) of each factor is generated for each group, and their difference is 

analysed. Typically, the Kolmogorov-Smirnov statistic (Massey Jr, 1951) is used to compute the discrepancy between these 

CDFs. GSA allows for identifying the regions of the model parameter space in which parameters have the significant effect 15 

on the model behaviour. One can see also that GSA, being based on the Mote Carlo framework and using statistical analysis 

of outputs, can be also seen as a representative of UA. 

One of the drawbacks of RSA is that the results are influenced by the selection of different thresholds and so this 

undermines its objectivity. To resolve this problem, Wagener et al. (2001) presented an extension of this method. The 

parameter sets are grouped into ten groups instead of two, based on the model performance. They are sorted from best to worst, 20 

in which the first group produces the best 10% results (e.g. the results with least 10% model error), the second group produces 

the best 10%-20% results and so on. Empirical CDFs of the parameters are also plotted for each group, if the curves are 

concentrated or overlapped, the parameter are not sensitive, and vice versa. For detailed description and implementation of the 

method, please refer to Jakeman et al. (1990) and Wagener et al. (2001). 

2.1.2 Variance-based methods 25 

Variance-based methods are today the most popular approaches for SA. The underlying assumption of variance-based 

methods is that the sensitivity can be measured by the contribution of the factor’s variance (the contribution of the factor itself, 

or interactions with two or more factors) to the variance of the output. The biggest advantage of a variance-based method is 

that it can compute the main effect and higher-order effect of factors respectively, and make it distinguishable which factor 

have high influence on the output by its own, and which factor have high interaction with others.  30 
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It is normally unrealistic to analytically compute the Sensitivity Index because of the complexity of hydrological models. 

Instead, Sobol’ proposed an efficient sample-based approach to compute first and total-order Sensitivity Indices - the called 

Sobol’ method - which is perhaps the most popular variance-based SA method (Sobol’, 1993). A detailed description of the 

method and its implementation can be also found in Saltelli et al. (2008). 

Though the result of Sobol’ method is robust, often considered as benchmark run for study, it is computationally expensive, 5 

requiring large number of base samples. Another popular approach to numerically compute variance-based Sensitivity Indices 

is the Fourier Amplitude Sensitivity Test (FAST), presented by Cukier et al. (1973). The key idea of FAST is applying the 

ergodic theorem to transform the n-dimension integral to one-dimension integral. Saltelli and Bolado (1998) provide a detailed 

description of principles and procedures for implementation of the method. One of the drawbacks of FAST method is that it 

can only compute the main effect. However, an improved version of FAST, which is extended FAST (eFAST, Saltelli, et al., 10 

1999), can compute first and total order Sensitivity Indices. 

2.1.3 Globally aggregated measure of local sensitivities (GLS) method  

As mentioned in sect. 1, the globally aggregated measure of local sensitivities methods use average value of SA measures (e.g. 

first-order derivative) at each local sample points in the factor space as Sensitivity Index for each factor. 

Morris (1991) proposed an approach which he referred to as Elementary Effects Test (EET) to compute the sensitivity. It 15 

is also called Morris Screening method. Its modification was proposed by Campolongo et al. (2007). Its principle concept is 

to use the mean and standard deviations of the gradients of each sample as the measure of the overall effect and interaction 

effect of each factor across the p level factor space. Morris Screening is a simple but effective method, widely used for 

screening in hydrological modelling. A more detailed description of the method can be found in Saltelli et al. (2008). 

Since sampling is time-consuming, it is reasonable to use economical techniques for it, and e.g., van Griensven et al. 20 

(2006) employed Latin Hypercube Sampling, followed by assessments of the local error derivatives at each point “one at a 

time” (OAT), which they named LH-OAT method. The Sensitivity Index of each factor is obtained by averaging the derivatives 

of all perturbed samples. 

All GLS methods conceptually are quite simple and their reported implementations typically do not require large number 

of runs. However, Razavi and Gupta (2015) have pointed out that they may suffer from scale issue, that is, the selection of the 25 

step size may influence the results due to the complexity of response surface of the model. 

2.4 Density-based methods 

Both GLS methods and variance-based methods are moment-dependent approaches, which use the first moment (first-order 

derivatives) or the second moment (variance) to compute Sensitivity Indices. The density-based methods do more, and explore 

PDFs or CDFs of the output. Sensitivity is measured by the comparison of unconditional PDF derived from purely random 30 

samples and conditional PDF derived when prescribing one factor. Entropy-based sensitivity measures (Park and Ahn, 1994; 
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Krykacz-Hausmann, 2001; Liu et al., 2006) and the δ-sensitivity measure (Borgonovo, 2007; Plischke et al., 2013) are 

implementations of this concept.  

The production of empirical PDFs is a crucial step in most of the density-based methods. However, the derivation of 

empirical PDFs is either too simple, so that the results may not be accurate, or too complex to implement. Recently, Pianosi 

and Wagener (2015a) proposed a novel method called PAWN that partly overcomes this difficulty. The key idea of PAWN 5 

method is to compare the unconditional CDF of output with conditional CDFs of output which prescribe one parameter at a 

fixed value (the conditioning value) while others vary randomly.  

2.1.5 Use of meta-modelling to reduce running times 

Sampling used in SA requires considerable computational time, for complex models prohibitively long. The basic idea of 

meta-modelling is to substitute the original model (and hence its response function linking factors and model output) with a 10 

simpler function or a model. This substitution is typically done by using statistical or machine (statistical) learning techniques, 

and employing methods of the so-called experimental design for generating data by the model runs to be used for training the 

meta-model. SA is carried out using the meta-model, and for this mostly variance-based method is used. 

Techniques used for this purpose include Radial-basis function network (RBF, Broomhead and Lowe, 1988), multivariate 

adaptive regression splines (MARS, Friedman, 1991), support vector machine (SVM, Cortes and Vapnik, 1995), Gaussian 15 

processes (GP, Rasmussen, 2004) and treed Gaussian processes (TGP, Gramacy and Lee, 2008). The advantage of meta-

modelling is that by simplification of the original complex model, the overall running time is considerably decreased; the 

trade-off is a possible loss of accuracy.  

3. Methodology and Experimental set-up 

3.1 Methodology for evaluating SA methods 20 

3.1.1 What aspects do we evaluate 

Different SA methods have different concepts and principles behind them, and, accordingly, the Sensitivity Indices may have 

different meaning and metrics. However, it would be logical to try to follow the general principles behind any method for a 

model (method) evaluation, i.e. effectiveness and efficiency. The evaluation of SA methods’ effectiveness is aimed at finding 

out whether the relative Sensitivity Indices, ranking and screening of parameters have sense and indeed can be used in SA. 25 

Efficiency of SA methods is assessed by how fast (in terms of computational time) they provide the result: the lesser number 

of model runs is required, the more efficient the method is. Therefore, the evaluation of SA methods efficiency is to figure out 

the minimum number of runs required for each SA method to get satisfactory results - and it is not always clear and explicitly 

defined what “satisfactory” actually means. Due to the fact that sampling is employed, there is always uncertainty in the SA 

results, and the values of the Sensitivity Indices calculated depend on the sample size. In order to take into account the 30 
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uncertainty nature of SA results, the convergence of the SA results should be studied, and this forms the last aspect of the 

evaluation of SA methods. 

3.1.2 Evaluation of effectiveness 

The result of SA is not an absolute one and nobody can say what is the “correct answer”. Unlike assessing the accuracy of a 

hydrological model, which can be compared with the observation values, for sensitivity there are no ‘observations’ to be 5 

compared with. To start somewhere, we will initially randomly sample a large number (say, 10,000) parameter (factor) vectors 

and run the model for each of them. The RMSE of the model output will be plotted against parameter values as a scatter plot 

which will provide a rough image of the sensitivity of each parameter. The preliminary assessment of the sensitivities of each 

parameter will be treated as a reference. Then all considered SA methods will be run, and their results will be compared with 

the reference to assess their performance. Effectiveness will be evaluated on the three aspects: Sensitivity Indices values, 10 

ranking and screening. 

We realize that constructing a reference this way provides quite a rough estimation of sensitivity, and this is an inevitable 

limitation. Therefore, the results of all the methods will be taken into account, compared and analysed to see the differences 

and similarities between them and not only with the reference. 

3.1.3 Evaluation of efficiency 15 

For each method, one benchmark test will be run with a considerable size of the base sample set of 10,000. Different base 

sample sizes will be set for each SA method, to be compared with the results of its benchmark run. From the results, the 

minimum base sample size will be found for each SA method to ensure the effective results in terms of Sensitivity Indices 

stability and factors ranking. 

3.1.4 Evaluation of convergence 20 

Convergence of Sensitivity Indices will be analysed by calculating 95% confidence intervals, mean and variance for various 

sample sizes. To increase the confidence of estimates, bootstrapping (see e.g. Efron and Tibshirani, 1986) will be used as well. 

The following procedure will be employed (adapted from Yang, 2011): 

1. Generate N samples of parameters as the base sample set. 

2. The N base samples are re-sampled B times with replacement, and for each replica, the Sensitivity Indices are 25 

computed, producing B Sensitivity Indices to construct the distribution of them. 

From this sampling distribution, statistics of the Sensitivity Indices distribution is calculated to quantify uncertainty. 
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3.2 Case study 

The presented methods have been tested on two case studies: Dapoling-Wangjiaba catchment in China, and the Bagmati 

catchment located in central Nepal. Due to data limitations issues not all experiments with the first case have been finalised, 

so it is not reported here, and is left for the future publications.  

Bagmati catchment covers an area of approximately 3700 km2  (see Fig. 2). The altitude of the region varies from 2913 m in 5 

the Kathmandu Valley, to Terai Plain, where it reaches the Ganges River, in India with an altitude of 57 m. The Bagmati River 

has an extension of about 195 km, flowing from Shivapuri to the Ganges River in the south. In this study, focus is put on the 

part of the basin that drains to the Pandheradobhan station, with an area of 2900 km2 and river length of 134 km. 

In this study, daily precipitation and air temperature from Kathmandu, Hariharpurgadhi, and Daman station and daily discharge 

in Pandheradobhan station from 1 March 1991 to 31 December 1995 are used. The daily average precipitation was assessed 10 

using Theissen polygon method and the potential evapotranspiration is calculated by the modified Penman method 

recommended by the Food and Agriculture Organization- FAO (Allen, 1998). The hydrograph is shown in Fig. 3. 

3.3 Test model 

The SA will be tested on three conceptual rainfall-runoff models: GR4J, Hymod and HBV, with increasing complexity 

and the parameters number. 15 

The modèle du Génie Rural (Agricultural Engineering Model) à 4 paramètres Journalier (4 parameters Daily, GR4J) was 

developed by Perrin et al. (2003). It uses daily precipitation and evapotranspiration as input to simulate the runoff discharge. 

The model structure assumes that after neutralization of precipitation by evapotranspiration, a portion of net rainfall goes to 

production store, where percolation takes place. The leakage flow, together with the remaining part of the net rainfall, go to 

routing store, where they are split into two parts and routed by two unit hydrographs. After exchanging with groundwater, the 20 

total runoff is generated by adding these two parts.  The four parameters with their meaning and ranges are shown in Table 1.  

The Hymod model, first introduced by Boyle (2001) and presented in Wagener et al. (2001) has been used quite widely 

for rainfall-runoff modelling because of its simplicity. It consists of a simple rainfall excess model with two parameters and a 

routing module with three parameters. In the rainfall excess model, the soil moisture storage capacity is assumed to be variable, 

described by a distribution function. The routing module contains two sets of parallel linear reservoirs. Three identical linear 25 

reservoirs account for the fast runoff component and a single linear reservoir accounts for the slow runoff component. The 

name, meaning and ranges of the parameters are shown in Table 2. 

The HBV (Hidrologiska Bryåns Vattenbalansaldevning) model is a conceptual rainfall-runoff model widely used in 

Europe. It was developed by the Swedish Meteorological and Hydrological Institute (Bergström, 1976) and then promoted by 

Lindström et al. (1997) to become the HBV-96 model. In this study, a simplified version of the HBV-96 model is used. It 30 

consists of the three main modules, which is characterized as tank respectively, with 13 parameters: four of the parameters are 

related to snow accumulation and melt module, four with soil moisture accounting module and five with river routing and 
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response module. For river routing and response module, two runoff reservoirs are included. The upper non-linear reservoir 

accounts for the quick flow and the lower linear reservoir accounts for the base flow. Since there is little snowfall in the applied 

case study, the snow accumulation and melt module are excluded, so only nine parameters will be analysed. The name, meaning 

and ranges of the parameters are shown in Table 3. 

3.4 Experimental set-up 5 

The experimental set-up is presented in Table 4. The evaluation is done on six SA methods: Sobol, eFAST, Morris, LH-OAT, 

RSA and PAWN. All software is implemented in MATLAB. For Sobol method, eFAST. Morris screening, RSA and LH-OAT, 

the codes are constructed by the first author. For PAWN method, the codes from the SAFE toolbox (Pianosi et al., 2015b) are 

used. In the present study we follow a widely adopted approach when instead of studying the sensitivity of the model directly, 

the sensitivity of the model error (deviation from observations) is analysed instead. For the model error, we use the Root Mean 10 

Squared Error (𝐸𝑅𝑀𝑆𝐸): 

𝐸𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑄𝑠𝑖𝑚

𝑡 − 𝑄𝑜𝑏𝑠
𝑡 )2𝑛

𝑡=1                                                                                                                                         (2) 

where 𝑄𝑠𝑖𝑚
𝑡  is the simulated model output at time step t, 𝑄𝑜𝑏𝑠

𝑡  is the observation value at time step t, n is the number of time 

steps. To avoid the influences of model initial states, the first three months (90 time steps) are excluded when computing 

𝐸𝑅𝑀𝑆𝐸 . 15 

Due to the characteristics of FAST sampling in eFast method, bootstrapping resample is not applicable, evaluation of 

convergence will not be done for eFAST method. The resample size for other SA methods for evaluation is 100. 

4. Results 

4.1 Preliminary assessment of sensitivity 

The model was run 10,000 times; the scatter plots of the 𝐸𝑅𝑀𝑆𝐸 against parameters for the three models are shown in Fig. 4-6. 20 

From the scatter plot, the relative sensitivity of the parameter can be seen from the randomness of its distribution (i.e. proximity 

to the uniform distribution). The more randomly the RMSEs are distributed, the less sensitive the parameter is. 

In the GR4J model (Fig. 4) X4 is shown to be the most influential parameter, followed by X3 and X2, while X1 seems to 

be of little influence. X4 is the time when the ordinate peak of flood hydrograph is created, which actually determines the 

shape of the hydrograph, so it is no surprise it appears to the most influential parameter in the model. X1 is the storage of 25 

rainfall in the soil surface, which does not affect the routing process too much, thus it is the least sensitive parameter. 

In Hymod model (Fig. 5), ALFA, RS and RF have high influence on RMSE. SM and BETA, however, seem to be non-

influential. This is understandable, because ALFA, RS and RF controls the fast and slow pathway in flow-routing module 
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which is more important in determining flows, while SM and BETA only account for soil moisture routine which is less 

important. 

In Fig. 6, it can be seen that in HBV model, MAXBAS is obviously the most influential parameter; FC, ALFA, BETA 

and PERC also shows certain degree of sensitivity; LP, K, K4 and CFLUX are non-influential. The reason is that MAXBAS 

is the (routing) transfer function parameter which controls the shape of the hydrograph. 5 

4.2 Effectiveness 

Figure 7 shows the results of benchmark runs of each method for three models, and one may see the following: 

1) all the methods identify the same set of sensitive parameters (X3 and X4 for GR4J, ALFA, RS and RF for Hymod, MAXBAS 

for HBV);  

2) for less influential or non-influential parameters, different methods show relatively large discrepancy in results;  10 

3) the results of Sobol and eFAST are close, and it is also so for Morris and LH-OAT, RSA and PAWN, which indicates that 

the methods of the same category have similar results. This is due to the reason that both Sobol and FAST are variance-based 

methods, they all calculate the contribution of the variance to the output. Both Morris and LH-OAT compute the first-order 

partial derivatives of the output. Similarly, RSA and PAWN use empirical CDFs and KS statistics to quantify the sensitivity. 

These groups of methods share the same principle;  15 

4) comparatively, the results of RSA and PAWN are always quite different from other methods. There may be two reasons: 

firstly, the generation of empirical CDFs may be inaccurate; secondly, the use of KS statistics to compute Sensitivity Index in 

both methods may bring instability into the results (sensitivity to sampling) because KS statistics takes into account only the 

maximum difference between CDFs;  

5) ranking of parameters for the three models by different SA methods has many differences, but they are quite close in 20 

identifying sensitive and insensitive parameters, which means they are effective in screening. 

In general, it can be said that all six methods are effective in computing SI. The results of RSA and (to a smaller extent) 

PAWN are to be treated with care because they use the (sensitive) KS statistics based only on the maximum difference in 

CDFs between the behavioural and non-behavioural models’ sets. 

4.3 Efficiency 25 

Figure 8 demonstrates the results of six SA methods for the three models for different number of runs. The minimum number 

of runs needed to get stable ranking of the parameters can be found in Table 5. As can be seen, among all the methods, Morris 

and LH-OAT converge quickly and are very stable across all numbers of run: they can get reliable SI and ranking at a very 

small number of runs (100 base sample for each model for both methods). eFAST is also quite stable, and it can get reliable 

results after approximately 300 base sample size. Comparing eFAST with Sobol method, it can be concluded that eFAST is 30 

more stable and more reliable (note also that at some point Sobol method results even in negative SI). RSA and PAWN are 
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not very efficient, for the reason already stated in the previous section. RSA performs better than PAWN, especially for GR4J 

and Hymod model, for it can get stable SI at early runs. For PAWN method, the minimum number of runs to obtain reliable 

results is larger than for the other methods, and the reason is that it needs sufficiently large number of samples to create smooth 

eCDFs. Besides, the sample size of the conditioning values will affect the conditional eCDFs. It also needs sufficient number 

of samples of conditioning values to cover the factor space well: this results in high computational cost since for each 5 

conditioning value k*Nc runs of the model are needed. 

For all methods, it can be seen that with the increase of the model complexity and number of parameters, the results of 

SA become less stable. Especially for HBV model, except MAXBAS, all other parameters seem to be of similar sensitivity, 

therefore there is a considerable fluctuation in results. This can also be seen in GR4J and Hymod in which parameters have 

similar sensitivity (X1 and X3 for GR4J, SM and BETA for Hymod). 10 

4.4 Convergence 

Figure 9 presents the estimates of the mean and the 95% Confidence Interval of all SA methods for three models with different 

number of runs. Overall, with increasing number of runs, the width of CI become narrower and have less and less variation. 

There are still differences in the width of CI and speed of convergence between the methods. It can be seen that Morris, LH-

OAT and RSA converge well already at early runs, and the width of CI are quite narrow across all runs. PAWN method 15 

converges comparatively slower and the width of CI is also wider. Sobol method is slowest, especially at small number of runs. 

The upper and lower bound of SI significantly exceed the range 0 to 1, which is quite unacceptable.  

For all methods, similar conclusions as in efficiency can be drawn that with the increase of the model complexity and 

number of parameters, the uncertainty of SA also goes up. This increase of uncertainty also results in unstable results when 

the sensitivities of the parameters are close as shown in results of efficiency. 20 

From the results shown above, it is proven that all six methods are effective in calculating Sensitivity Indices, screening 

and ranking. Their efficiencies, however, differ. The minimum number of runs for computing Sensitivity Indices, ranking and 

reaching convergence with each method are presented in Table 5. 

In general, it takes many more runs to reach convergence, but many less runs is sufficient to obtain reliable ranking of the 

parameters. Sobol method requires large number of runs to be stable and reach convergence, which is very inefficient. Same 25 

as variance-based method, eFAST method is much more efficient and stable. It is a good alternative for Sobol method with 

high efficiency. Morris and LH-OAT are also quite efficient and can provide results of ranking after relatively small number 

of runs. Also, the uncertainties of the values of Sensitivity Indices are not so high, and especially they are good at ranking and 

screening. The density-based methods, however, need sufficient number of runs to produce reliable eCDFs, thus the efficiency 

is not so high. Furthermore, using KS statistics to compute Sensitivity Indices may be problematic for some types of 30 

distributions. Comparing RSA with PAWN, one can see that RSA performs better, especially for ranking, however, due to its 

design, it provides less detailed analysis of sensitivity. 
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5 Discussion and recommendations 

5.1 Principles behind SA methods 

From the results above we can see that different methods show different performance in computing SI, ranking and 

convergence. One of the reason is that there are different theories, concepts and principles behind each method, and methods 

of the same category (sharing similar principles) show similar results. Comparing their performance within each category, it 5 

can be seen that GLS methods have the highest efficiency and fastest convergence speed. Variance-based and density-based 

methods perform less well. GLS methods use first-moments to compute SI and the principles they use are relatively simple. 

Therefore, the propagation of the uncertainty in the SA is also simpler and more direct. Variance-based methods, however, 

with much more complex principles, result in higher uncertainty in SA. On the other hand, density-based methods may suffer 

from the necessity to producing reliable and accurate eCDFs, and the fact that using K-S statistics to compute SI. As a result, 10 

they are highly unstable and uncertain. RSA performs better than PAWN, owing to its relatively idea (dividing the factor 

vectors into only two or several sets). 

Although variance-based methods seem to be less efficient in computational cost, they use more sophisticated 

mathematical and statistical apparatus and quantify sensitivity most accurately. Comparatively, GLS methods use only the first 

derivatives to compute SI, which is of course carries less information (and we can say, less accurate). Density-based methods 15 

are moment-independent, they do not need complex equations or computation to get SI, but their strength in quantifying 

sensitivity is problematic, as stated earlier. Generally speaking, the efficiency and depth of quantification are in inverse 

relationship. To obtain greater degree of quantification, it takes more model runs, and aiming to reach higher efficiency will 

lead to inevitable sacrifices in accuracy and reliability of the results. The method that best balances these two aspects seems to 

be the eFAST method. It uses variance to quantify the sensitivities, and at the same time, requires much smaller number of 20 

runs than Sobol method. 

Another aspect to be mentioned is the easiness of methods implementation and their integration with (hydrological) 

models. If the method is too difficult to implement and integrate with the already existing and operational models, its use may 

be quite limited. This is especially true for distributed models, when sampling may be required at every grid cell, so it is not 

realistic to use too complex sampling methods, such as in eFAST. In these situations, methods with very simple principals like 25 

RSA and LH-OAT are more suitable. 

Density-based methods seem attractive due to their simplicity, but they have two problems. On the one hand, the reliability 

of eCDF produced is questionable. On the other hand, the use of Kolomogorov-Smirnov statistic to compute the Sensitivity 

Indices, unstable by design, may lead to slow convergence. However, they have two advantages: first, they are moment 

independent methods, which do not need complicated computational process; second, the results of SA can be expressed in 30 

graphs which provide yet another instrument for analysis. One of the idea that can be explored is to quantify the results not by 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-78
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 28 February 2018
c© Author(s) 2018. CC BY 4.0 License.



14 

 

 

K-S statistics, which is the maximum difference between the two eCDFs, but to consider an integral difference (the area 

between two CDFs). 

5.2 Recommendations for choosing SA methods 

Based on the experiments and considerations presented above, we can formulate the following recommendations for choosing 

SA method(s): 5 

• For simple conceptual hydrological models (not requiring much time for running them multiple times), variance-based 

methods as Sobol and eFAST are recommended, because they have a strong theoretical background and provide more 

insight into sensitivity. 

• For more complex hydrological or hydraulic models, that need considerable time to run, GLS methods can be used, since 

they are more efficient. 10 

• For distributed models, methods with simple concepts and sampling techniques are more suitable, such as RSA and LH-

OAT. 

• For very complex models, e.g. 2D (or even 3D) models, like flood inundation models, or high resolution groundwater 

models of large aquifers, the Local SA instead of Global SA can be used (Hill and Tiedeman, 2007), or LSA at a selected 

limited number of points in the factor (sub)space, for a reduced number of factors. 15 

• In situations when only relative sensitivity of the factors is needed, rather than the exact value of SI, it is advisable to aim 

only at determining ranking or screening of SA which needs significantly less time than the calculation of global SI. 

• If time allows, it is recommended, however, to employ several different SA methods rather than using only one method.  

5.3 Practical framework 

Based on the analysis of effectiveness, efficiency and convergence of methods, and the recommendations above, we may 20 

suggest a practical framework for Sensitivity Analysis and Uncertainty Analysis, as shown in Fig. 10. We consider both SA 

and UA to be important phases of model analysis, both focusing on certain aspects of model uncertainty, so it is reasonable to 

bring them together under one framework.  

This framework assumes the model is already calibrated, however, it is also applicable to uncalibrated models for 

choosing a (limited) set of the (sensitive) parameters to calibrate which can improve the efficiency of calibration process. 25 

In case there is a possibility to employ several methods, we can suggest to select one method from each category: variance-

based methods, methods aggregating the local sensitivity measures, and density-based ones; the overall judgement about 

sensitivity will be then better informed. If time does not allow for a large number of runs, Local Sensitivity Analysis method 

can also be used for the calibrated or observed values of the factors. 

It is also recommended to first start with a small number of sample size, and then gradually increasing the sample size 30 

until the Sensitivity Indices or ranking converges or stabilizes. The stopping criteria is subjective, depending on one’s 

requirement of accuracy or limitation on number of runs. Note that one should balance between the accuracy of the results and 

the efficiency to obtain these results. 
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5.4 Limitations 

We see the following main limitations of this work: 

First, the models used in this study are only conceptual rainfall-runoff models with similar structures, so the results may 

be different for other types of models. 

Second, the evaluations we did to SA methods are still qualitative, so to evaluate each aspect of SA methods some more 5 

rigorous quantitative standard should be set. For example, when evaluating convergence, a threshold of the CI width should 

be defined for reaching convergence. Quantitative assessment will strengthen the conclusions of the comparisons. 

6 Conclusions 

SA and UA are important steps for better understanding and evaluation of hydrological models. For complex hydrological 

models, sample-based SA methods are often used. In this study, six different Global Sensitivity Analysis methods: Sobol, 10 

FAST, Morris, LH-OAT, RSA and PAWN are tested on the three conceptual rainfall-runoff models: GR4J, Hymod and HBV 

with increasing complexity and the number of parameters. The methods are compared according to the three criteria: 

effectiveness, efficiency and convergence. 

The results of each method are not exactly identical, but still similar to each other. All of the methods are proven to be 

effective. Methods from the same category show similar results as they are based on similar principles. The credibility of 15 

density-based methods is slightly undermined for two reasons: first, the reliability of eCDF produced may not be always high; 

second, the use of Kolomogorov-Smirnov statistic to compute the Sensitivity Indices lead to slow convergence. 

The evaluation of each method’s efficiency demonstrates that GLS methods as Morris and LH-OAT are very efficient 

and stable in computing SI and ranking. Sobol method can provide quantitative results of SA, but it requires large number of 

runs to obtain stable results. eFAST is much more stable and efficient than Sobol, thus it may be seen as a good alternative for 20 

Sobol method. The efficiency of density-based methods is not so high, but RSA can give reliable results of ranking with small 

number of runs. 

All the methods need significant number of runs (>8000) to reach convergence. The uncertainty in the values of Sensitivity 

Indices is not negligible. One should be careful when interpreting the results if the number of samples is not sufficiently large. 

The difference in efficiency of different methods may be due to the difference in the underlying principles. Methods based on 25 

simple concepts are more efficient and stable. Methods based on the more complex concept seem to be less stable and efficient, 

however, their quantification of sensitivity is more accurate and reliable. 

The presented recommendation for choosing SA methods, and the framework for SA and UA based on effectiveness, 

efficiency and convergence, as well as ease of integration with the models, add to other useful SA frameworks (workflows) 

(e.g. Pianosi et al., 2016), and may be of assistance for practitioners assessing reliability of their models.  30 
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Future work will be aimed at considering more SA methods (the first candidate being VARS, Razavi and Gupta, 2016a, 

2016b), developing quantitative and more informed measures for their assessment, and testing the results and recommendations 

against other types of models and scenarios of their practical use. 

Data Availability 
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Table 1. Description and ranges of parameters in GR4J mdoel. 

Parameter Description unit 
Lower 

bound 

Upper 

bound 

X1 
Production store: Storage of rainfall in the 

surface of soil 
mm 1 1500 

X2 

Groundwater exchange coefficient: a 

function of groundwater exchange which 

influence routing store 

mm -10 5 

X3 
Routing storage: amount of water can be 

stored in soil porous 
mm 1 500 

X4 
Time peak: the time when the ordinate 

peak of flood hydrograph is created 
day 0.5 4 
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Table 2. Description and ranges of parameters in Hymod mdoel. 

Parameter Description unit 
Lower 

bound 

Upper 

bound 

SM Maximum soil moisture mm 0 400 

BETA Exponential parameter in soil routing - 0 2 

ALFA Partitioning factor - 0 1 

RS Slow reservoir outflow coefficient - 0 0.1 

RF Fast reservoir outflow coefficient - 0.1 1 
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Table 3. description and ranges of parameters in HBV model. 

Parameter Description Unit Lower 

Bound 

Upper 

Bound 

FC Maximum soil moisture content mm 50 500 

LP Limit for potential evapotranspiration - 0.3 1 

ALFA Response box parameter - 0 4 

BETA Exponential parameter in soil moisture - 1 6 

K Recession coefficient for upper tank mm/d 0.05 0.5 

K4 Recession coefficient for lower tank mm/d 0.01 0.3 

PERC Percolation from upper to lower tank mm/d 0 8 

CFLUX Maximum value of capillary flow mm/d 0 1 

MAXBAS Transfer function parameter d 1 3 

 

 

  

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-78
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 28 February 2018
c© Author(s) 2018. CC BY 4.0 License.



23 

 

 

Table 4. Experimental set-up for evaluation of SA methods. 

Notes: 

k is the number of parameters; N is the base sample size, Ms is the number of higher harmonics to be considered; Ncs is the 

number of search curves; Nu is the number of samples for constructing unconditional CDFs; n is the number of conditioning 

values for each parameter, Nc is the number of samples for constructing conditional CDFs. For the detailed explanation of 5 

the parameters within each method please refer to the literature referred in Sect. 2. 

  

Method Measure 
Sampling 

method 

Required 

number of 

runs 

Parameters 

within the 

method 

Benchmark 

run 

Number of base samples 

for evaluation 

Sobol 

Sobol 

total-order 

index 

LHS (k+2) × N - N=10000 

N 

=100/200/300/500/1000/2

000/3000/5000 

eFAST 

FAST 

total-order 

index 

FAST 

sampling 
k×N 

Ms = 4 

Ncs = 1 
N=10000 

N 

=100/200/300/500/1000/2

000/3000/5000 

Morris 

Modified 

mean of 

Effect 

Elementar

y 

Morris one at 

a time 
(k+1) ×N 

p = 32 

Δ = 0.5161 
N=10000 

N 

=100/200/300/500/1000/2

000/3000/5000 

LH-OAT Effect S LHS (k+1) ×N Δ = 0.05 N=10000 

N 

=100/200/300/500/1000/2

000/3000/5000 

RSA 

Mean of 

KS 

statistics 

LHS N - N =k×10000 

N 

=100/200/300/500/1000/2

000/3000/5000 

PAWN 
Max of KS 

statistics 
LHS Nu+k×n×Nc - 

Nu =500 

n =40 

Nc=250 

[Nu, n, Nc] = 

[30,10,10]/[50,10,20]/[10

0,15,20]/[100,20,25]/[200,

25,40]/[200,25,80]/[200,3

0,100]/[500,50,100] 
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Table 5. Minimum number of runs for computing Sensitivity Indices, ranking and reaching convergence for different SA 

method. 

Method 

Minimum number of run for 

GR4J 

Minimum number of run for 

Hymod 

Minimum number of run for 

HBV 

SI Ranking 
Conver

-gence 
SI Ranking 

Conver-

gence 
SI Ranking 

Conver-

gence 

Sobol 15000 6000 60000 35000 2100 70000 11000 22000 110000 

eFAST 1188 388 - 2485 485 - 8937 8937 - 

Morris 1000 500 10000 1200 600 18000 5000 2000 20000 

LH-

OAT 
1000 500 10000 1200 600 18000 5000 5000 20000 

RSA 4000 400 8000 2500 500 15000 10000 10000 30000 

PAWN 12200 8200 40500 15200 10200 50500 18200 9200 100500 
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Fig. 1. Graphical expression of Sensitivity Analysis. 
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Fig. 2. Location of the Bagmati catchment. Triangles denote the rainfall stations and circles denote the discharge gauging stations 

(Shrestha, 2009). 
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Fig. 3. Hydrograph of the Bagmati Catchment from 1 March 1991 to 31 December 1995. 
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Fig. 4. Scatter plot of RMSE against parameter values with 10000 runs for GR4J model. 
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Fig. 5. Scatter plot of RMSE against parameter values with 10000 runs for Hymod model. 
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Fig. 6. Scatter plot of RMSE against parameter values with 10000 runs for HBV model. 
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Fig. 7. Sensitivity Indices (normalised) of six SA methods with benchmark run for GR4J (a), Hymod (b) and HBV (c) model, the 

number in the grid indicates the rank of the parameter within each SA method. 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-78
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 28 February 2018
c© Author(s) 2018. CC BY 4.0 License.



32 

 

 

 

Fig. 8. Sensitivity Indices of different SA methods with different number of runs for GR4J (left column), Hymod (mid column) and 

HBV (right column) model, the horizontal axis is in log scale. 
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Fig. 9. Estimate of mean and 95% CI of different SA methods with different number of runs for GR4J (left column), Hymod (mid 

column) and HBV (right column) model, the horizontal axis is in log scale. 
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Fig. 10. Framework for Sensitivity Analysis and Uncertainty Analysis of hydrological model. 
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