Answer to Review by Referee #2

The paper has been improved compared to the previous version. However, it seems the Authors are not willing
to include an additional test case based on real data taken from Bauser et al. (2016), on ground that it would
not give new conceptual insights and it would make the paper too long. I disagree. In my opinion, it is very
important to show that the proposed approach can work even in real-world applications. The literature is full
of approaches shown to work very well for synthetic test cases but never really applied with real-world data.
Given that the simulations are done already, the amount of work required to include these new results in
the paper would be relatively limited. Also, new insights not necessarily related directly to the inflation, but
linked to the physics of the problem would be more than welcome. These additions would not make the paper
too long, but rather more interesting and robust, resulting in o valuable contribution to the data assimilation
literature in soil hydrology.

Reply: We agree with the reviewer that it is important that methods do work with real-world data. As
stated in the manuscript (with the main result shown in the previous answer), the method does work on the
real-world case by Bauser et al. (2016). It is thus not so much a lack of willingness to do the demonstration,
which we already did, but to prove our words to be true in this paper. We include the key phase of Bauser
et al. (2016) in the modified manuscript.

In the PhD thesis by Bauser (2018, Chapter 5), the real-world case is repeated with the proposed
inflation method. Mostly, the case is less demanding for the inflation method than the presented synthetic
case in this paper. This is due to a detailed assessment and representation of relevant uncertainties as well as
a three stage approach (improving the prior, standard EnKF and closed-eye EnKF). Particularly, improving
the prior of Miller scaling factors reduced the requirements for the inflation method. However, Bauser et
al. (2016) introduced the concept of the closed-eye period to bridge times when the model errors cannot
be represented. During this time the inflation method is relevant, since the applicability of the closed-eye
period can be limited by the adjustment speed of the inflation factor. The new inflation method is capable of
increasing (and decreasing) the inflation within the closed-eye period rapidly and makes the closed-eye period
more applicable. Note that during the closed-eye period the parameters are kept constant and therefore the
transfer of the inflation to the parameters is not of importance. We include this finding in the manuscript.
Apart from this the insights found in Bauser et al. (2016) could be confirmed. We would find it impertinent
to basically repeat the findings of a previously published paper again. We refer to Bauser et al. (2016) for
the detailed explanations describing the real-world case the closed-eye period. For the readers interested in
the full reanalysis, we refer to Bauser (2018).

We changed the manuscript to (page 12, line 1 - page 13, line 7):

“Incidentally, we have also tested the inflation method by reanalyzing the real-world application by
Bauser et al. (2016), where measurements from 11 TDR probes were assimilated with an EnKF. There, the
inflation method confirmed the behavior observed in the small synthetic case presented in this paper. For
the details of the real-world case as well as the concept of the closed-eye period please refer to Bauser et al.
(2016) or Bauser (2018, Chapter 5), where the latter includes the reanalysis of the case.

In this paper, we only show the inflation related to the closed-eye period (Fig. 6), which presents the
major challenge to the inflation in that particular application. During this time, preferential flow occurs and
the underlying local equilibrium assumption of the Richards equation is violated. With a standard approach,
parameters become biased to compensate these errors. To avoid this, Bauser et al. (2016) introduced the
closed-eye period, which pauses the parameter estimation and only guides the water content states through
times, when assumptions are violated. Compared to the standard approach, this leads to a reduced bias in
the parameters, but effectively increases the model errors during the closed-eye period. A strong inflation
is required to compensate this error. The inflation method used in Bauser et al. (2016) was just able to



accomplish this and the authors were concerned that a too slow adjustment speed of the inflation limits the
applicability of the closed-eye period for cases with larger model errors.

Figure 6 confirms the fast adjustment speed of the new inflation method proposed in this paper for the
real-world application. The strong required inflation stays well within the closed-eye period. This enables
the EnKF to pick up the parameter estimation after the period from a water content state consistent with
the TDR measurements and facilitates the use of the closed-eye period.”

(a) Standard EnKF

0 1.5
10 1.4 <
- —
E 1.3 %
£ o2
20 =
B, 0 1.2 .8
) . -E_é
A =
30 1.1 5

T T T T 1.0

0 1 2 3 4 5
Time [day]

(b) Closed-eye EnKF
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Figure 6: Inflation factor for the water content state in a real-world application
for a standard and closed-eye EnKF. A fast adjustment of the inflation factors
facilitates the use of a closed-eye period. Modified from Bauser (2018).
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Abstract. The ensemble Kalman filter (EnKF) is a popular data assimilation method in soil hydrology. In this context, it
is used to estimate states and parameters simultaneously. Due to unrepresented model errors and a limited ensemble size,
state and parameter uncertainties can become too small during assimilation. Inflation methods are capable of increasing state
uncertainties, but typically struggle with soil hydrologic applications. We propose a multiplicative inflation method specifically
designed for the needs in soil hydrology. It employs a Kalman filter within the EnKF to estimate inflation factors based on
the difference between measurements and mean forecast state within the EnKF. We demonstrate its capabilities on a small
soil hydrologic test case. The method is capable of adjusting inflation factors to spatiotemporally varying model errors. It

successfully transfers the inflation to parameters in the augmented state, which leads to an improved estimation.

1 Introduction

Data assimilation combines information from models and measurements into an optimal estimate of a geophysical field of
interest (Reichle, 2008). It has applications in all branches of the geosciences, with weather forecasting as the driving force
behind many recent advances (van Leeuwen et al., 2015). The advantage of data assimilation methods (in contrast to e.g.
inverse modeling) is the possibility to consider model errors, which are characteristic for geophysical systems.

The ensemble Kalman filter (EnKF) (Evensen, 1994; Burgers et al., 1998) is a popular data assimilation method due to its
simple conceptional formulation and ease of implementation (Evensen, 2003). It is an extension of the Kalman filter (Kalman,
1960) for nonlinear models.

In hydrology, the EnKF was used for soil moisture estimation from satellite data (e.g. Reichle et al., 2002; Crow and
Van Loon, 2006) or from local measurements (e.g. De Lannoy et al., 2007, 2009; Camporese et al., 2009). However, the largest
uncertainties in hydrology are associated with soil hydraulic material properties. They can neither be measured directly, nor
can they be transferred from the lab to the field, and are typically parameterized. Thus, including material properties into the
estimation can be crucial in hydrology. Liu and Gupta (2007) called for an integrated assimilation framework including not
only states but parameters, and even model structure.

The joint estimation of states and parameters in data assimilation might be one possibility to reduce the influence of model
errors on parameter estimation (Liu et al., 2012). Such a joint estimation in the EnKF with an augmented state was already

demonstrated by Anderson (2001) for an atmospheric model. In hydrology Vrugt et al. (2005) combined an EnKF and the
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shuffled complex evolution Metropolis algorithm, while Moradkhani et al. (2005) used a dual EnKF approach to estimate
states and parameters for a rainfall-runoff model. The joint assimilation of states and parameters in an augmented state was
successfully performed for example in groundwater research (e.g. Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach,
2008; Kurtz et al., 2012, 2014; Erdal and Cirpka, 2016), but also in soil hydrology for land surface models (e.g. Bateni and
Entekhabi, 2012; Han et al., 2014; Zhang et al., 2017) and on smaller scales based on the Richards equation (e.g. Li and Ren,
2011; Wu and Margulis, 2011, 2013; Song et al., 2014; Erdal et al., 2014, 2015; Shi et al., 2015; Bauser et al., 2016; Brandhorst
et al., 2017; Botto et al., 2018).

Due to unrepresented model errors and due to a limited ensemble size, the EnKF underestimates model errors, which can
lead to filter inbreeding. Systematic model errors are common for example in land surface models (Vereecken et al., 2015).
Additionally, in soil hydrology spatially and temporally varying model errors occur due to un- or ill-represented processes
like preferential flow or hysteresis. Underestimated errors cause an insufficient ensemble spread in the augmented state. This
is especially severe for parameters, which are typically not changed through a forward propagation and consequently cannot
increase their uncertainty again. Due to the convergent dynamics in soil hydrology, the uncertainty in the state depends strongly
on the parameter spread and becomes too small as well.

Covariance inflation can counteract filter inbreeding. Different methods have been proposed: (i) Additive inflation, which
adds a model error after the forward propagation. This method is especially useful if prior knowledge about the model error
exists. In atmospheric sciences additive inflation has been successfully applied by e.g. using reanalysis of historical weather
prediction errors (Whitaker et al., 2008). (ii) Relaxation methods, which relax the analysis back to a prior perturbation or
spread, have been proposed with tuning parameters (Zhang et al., 2004; Whitaker and Hamill, 2012) or based on deviations to
measurements (Ying and Zhang, 2015). (iii) Multiplicative covariance inflation, which inflates the complete state with a scalar
factor, where the inflation factor is either chosen manually (Anderson and Anderson, 1999) or is estimated based on deviations
from measurements (e.g. Wang and Bishop, 2003; Anderson, 2007; Li et al., 2009). This method has been further extended to
inflate each state component individually (Anderson, 2009).

All these inflation methods are developed in an atmospheric sciences context. Their transfer to soil hydrology is limited,
due to the spatiotemporally varying model errors and the typically employed augmented state. For groundwater research,
Kurtz et al. (2012) reported improved results by employing the inflation method by Anderson (2007), and Kurtz et al. (2014)
used the constant inflation by Anderson and Anderson (1999). In soil hydrology, however, adjusted methods have been used:
For example Han et al. (2014) and Zhang et al. (2017) apply a special case of the inflation method by Whitaker and Hamill
(2012) and keep the parameter spread constant to ensure a sufficient ensemble spread. Bauser et al. (2016) used the method by
Anderson (2009), but adjusted the inflation of parameters.

Alternatively, no inflation method is reported (e.g. Li and Ren, 2011; Shi et al., 2015), but instead a damping factor (Hen-
dricks Franssen and Kinzelbach, 2008), which can alleviate the issue, is employed. This is done by e.g. Wu and Margulis
(2011); Song et al. (2014); Erdal et al. (2014); Brandhorst et al. (2017); Botto et al. (2018), where Erdal et al. (2014) and
Brandhorst et al. (2017) combined this method with additive inflation.
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In this paper, we propose a novel multiplicative inflation method, specifically designed for the needs in the soil hydrology
community. The inflation method can vary rapidly in space and time to cope with the typically varying model errors and it
is capable of a transfer of the inflation in the state to the parameters in the augmented state. The remainder of this paper is
organized as follows: Sect. 2 describes (i) the EnKF, (ii) our proposed inflation method and (iii) a soil hydrologic test case.

Section 3 shows the results of our method applied to the test case, followed by discussion and conclusion in Sect. 4 and 5.

2 Method
2.1 Ensemble Kalman Filter

The EnKF (Evensen, 1994; Burgers et al., 1998) is the Monte Carlo extension of the Kalman filter (Kalman, 1960) for nonlinear
models and assumes unbiased Gaussian error distributions to combine model and measurement information. The filter is a
sequential method and alternates between a forecast step and an analysis step. The forecast propagates a state including its
uncertainty forward in time. The analysis combines uncertain model information with uncertain measurements at this time into
an optimal estimate of the state. These two steps are now explained in more detail.

The forecast propagates an ensemble of states " forward from time k — 1 to time k with a model M,
e = M(pi") +8", ey

where the superscripts f and a denote forecast and analysis respectively, while n denotes the ensemble members with n =
1,...,N. The uncertainty in the state is directly represented through the ensemble ;" and then propagated nonlinearly with
the model. Unrepresented model errors can be added through the unbiased Gaussian process noise 3. This is also called additive
inflation. However, the details of the model error are typically unknown and thus not represented adequately. The propagated
uncertainties are directly represented through the new forecast ensemble cpgn.

The state can be extended by e.g. model parameters ¢ to an augmented state u = [, ¢]. This requires a forecast for each

augmented state component. Parameters are typically assumed to be constant in time:

f, )
F= o )
The forecast of the state gofc’" now also depends on the corresponding parameter set ¢}";. This way, uncertainties in the
parameters are propagated as well and can be reduced jointly in the analysis.

Assuming unbiased Gaussian distributions, the ensemble of augmented states is characterized through the forecast error

covariance matrix Pf,

Pl = [ui" — ui] [ui" - 172} T, 3)

where the overline denotes the expectation value and uii is the ensemble mean.
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The analysis combines model and measurement information based on the Gaussian error assumption. The measurement

error covariance matrix R of the measurements d is defined analogously as

R, = [€}][e}]"

) “)

where € is the measurement error. The measurements are linked to the state through the linear measurement operator H, which

maps from the state space to the measurement space:
di, = Hywype i + €5 - (5

The Kalman gain K weighs the forecast error covariance matrix with the measurement error covariance matrix and maps

from the measurement space back to the state space, based on the covariances in the forecast error covariance matrix:

K, = P{H} [HyP{H] + R;] . 6)
Based on the measurements, the Kalman gain updates the forecast ensemble to the analysis ensemble:

uy" = u;" +K; [dk +ep — Hkugn} ) 7
This update to the ensemble wy" minimizes the analysis error covariance P, which fulfills

Pi = [I- K, H,| P, (®)

for infinite ensemble sizes.
Through spurious correlations and non-Gaussian distributions, P, will become too small, which can lead to filter inbreeding
and ultimately filter divergence (e.g. Hamill et al., 2001). This is intensified, if the model error required in Eq. (1) is unknown.
A common way to alleviate this issue in hydrology is the use of a damping factor v € [0, 1] (Hendricks Franssen and Kinzel-
bach, 2008), which is multiplied to the correction vector in Eq. (7) and consequently lessens the uncertainty reduction. The
damping factor can be extended to a vector ~ (and an entrywise multiplication) to treat augmented state components differently
(Wu and Margulis, 2011). Typically, parameters are multiplied with a smaller factor than the state. However, the damping factor

can only alleviate and not completely prevent the inbreeding problem.
2.2 Multiplicative inflation for soil hydrology

Multiplicative inflation is another heuristic way to avoid filter inbreeding. Anderson and Anderson (1999) proposed to increase

the distance of each ensemble member to the ensemble mean by multiplying this distance by v/ for the inflation factor A > 1:

uft = VA (ut" — ) 4. ©)

This inflation factor is applied to the complete augmented state and has to be adjusted to the specific problem. By construction, it

does not alter the mean value: ul = ul. A temporally varying inflation factor can be estimated by comparing uncertainties with
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the distance of measurement and forecast (e.g. Wang and Bishop, 2003; Anderson, 2007; Li et al., 2009). A spatiotemporally
adaptive inflation has been achieved by estimating a vector A for the complete augmented state (Anderson, 2009). The author
uses the correlation between measurements and augmented state dimensions and asks the question: How much inflation is
required in each dimension to explain the observed differences to the measurements? Anderson (2009) showed that this works
excellently for the actual state. However, we experienced possible over-inflation in parameters (which do not have any dynamics
to compensate for this), which can lead to filter collapses.

We propose a more conservative inflation method and ask the question: How much of the required change of the inflation
are we allowed to transfer to the state dimensions based on the correlation information? This can be achieved by applying a
Kalman filter for the inflation within the EnKF.

In this Kalman filter, the inflation vector is treated as the state variable. As for parameters, we choose a constant model for

the forecast in time:
AL =2 . (10)

For convenience we will drop the time subscript & in the following. Furthermore, we will use the same symbols as for the
EnKF, but denote them with the subscript A\. We approximate the forecast error covariance matrix for lambda, Pf\, based on
the covariance matrix of the augmented state in the EnKF, Pf, as the normalized absolute correlation matrix of the augmented

state ensemble. The matrix component ¢ is determined as

(), @9, . (1)

where o denotes the uncertainty of the inflation factors. It is a tuning parameter that is kept constant over time and is assigned

(Pg\)ij =03 ‘ (Pf)ij

to all state dimensions. It influences how fast the inflation factors are adjusted. This follows the idea by Anderson (2007,
2009) to avoid a closure problem, where the inflation estimation would require its own inflation. Instead, the uncertainty is
kept constant. Furthermore, only the absolute value of the correlation is considered, since the inflation is based on differences
between measurement and model, but ignores their direction. Note, that this presumes that the correlations of the model state
can be transferred to the inflation. In the presence of unknown model errors this assumption may or may not be correct.
However, the estimation at measurement locations will remain meaningful in any case.

For the analysis, the distance dy between mean forecast and measurement is used as measurement for A:

inf

dy = ‘deuT . (12)

The measurement error covariance matrix R of d can be calculated based on the error covariance matrices of d and Hu!

(Ra);; = |(R),; + (HPLHT), |, (13)

ij

where the inflated forecast error covariance matrix P! . can be calculated from the inflation vector and the forecast error co-

/NN
variance matrix by combining Eq. (9) (with vector lambda and entrywise multiplication) and Eq. (3): P{ . =Plo [V A"V A" .
The entrywise product is denoted by o and the entrywise square root of A by v/A.
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The expected distance between measurement and mean forecast based on the current inflation is

(X)) = [(R), % (3

%

which combines the uncertainties of d and Hu!

..r- To be able to determine the Kalman gain, we first calculate the Jacobian

matrix H of partial derivatives of h) with respect to A:

7= (ma) (14)

8 (Af)j i
=[] (o) | S, @, () ] (15)

With this approximated measurement operator H, the Kalman gain K and the analysis state A* are obtained as

(Hk)ij =

K, =P{H] [H\P H] +R,] ', (16)
A= AT K, [d,\ _ hA()\f)] . (17)

Note, that the matrices Pg\ and R can possibly become indefinite, due to the absolute value in Eq. (11) and Eq. (13). Con-
sequently, the inverse in Eq. (16) could become unfeasible. However, we never encountered such a case. In a situation with
uncorrelated measurements, the issue can be resolved by reducing o just for that single time step.

With this Kalman filter, the inflation vector is updated at each time step based on the difference of the mean forecast to
the measurements. Following Anderson (2007), we additionally prohibit a deflation by constraining the inflation values to

(A); > 1.
2.3 Model

We test the proposed inflation method on a small hydrologic test case. We constructed it specifically to require a strong inflation.
This makes it possible to explore features of the inflation in detail on a rather short timescale. Due to a small ensemble size,
the results vary depending on the seed of the random numbers. This however, is related to different performance of the EnKF
itself. In simulations (results are not shown), we found that the behavior of the inflation remains consistent.
The Richards equation describes the change of volumetric soil water content 6 (-) in a continuous porous medium,

00

o = VA KO)[Vha(0) ~ 1)) =0, (18)
where K (L T~1) is the isotropic conductivity and h,, (L) is the matric head. Both are related to the water content. This relation

is typically described through parameterized material properties. We choose the Mualem—van Genuchten parameterization

(Mualem, 1976; van Genuchten, 1980),

1-1/n72
K(0) = K,0" [1— [1—@”/["—”} ] , (19)
1 1/n
_ 1 g-n/tn-1 _
hn(©) =~ [0 1, (20)
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with the saturation O (-),

06,

O: R

ey

The parameterization is described by a set of six parameters: 6 (-), 6; (), a (L™1), n (=), Ko (LT 1) and 7 ().

We additionally consider small scale heterogeneity through Miller scaling. It assumes geometrical similarity. With this
the microscopic geometry of the pore space at a macroscopic position is parameterized by a single length scale ¢ and the
macroscopic heterogeneity field can be generated with a single scalar field of this length scale. Miller and Miller (1956)

showed that the hydraulic functions scale with this parameter according to

K(0)=K"(9) &, (22)
1

hm(0) = hiy(6) - (23)

¢
where the functions K () and h,,,(6) are defined at a reference point * with Miller scaling parameter £ = 1 and from there are
projected to all locations.

For the test, we choose a one-dimensional case with a depth of 50 cm for a time of 6 days. We set a groundwater table as
the lower boundary condition throughout the whole time and start from equilibrium conditions. The upper boundary condition
is no flux, except for a rain event with 2.0-10”7 [ms~!] during the fourth day. As observations we choose two water content
measurements at a depth of 9.5 cm and 19.5 cm as they would be available from time domain reflectometry (TDR). We set the
measurement uncertainty to a standard deviation of 0.007 (e.g. Jaumann and Roth, 2017).

As material we choose sandy loam from Carsel and Parrish (1988): 6, = 0.41, 6, = 0.065, a = —7.5m™!, n = 1.89,
Ky =1.23-103ms~! and 7 = 0.5. For the Miller scaling we choose &; = 0.32 at the upper measurement position and &, = 3.2
at the lower measurement position. We reduce the description of the heterogeneity to these two parameters. The full function
of the scaling factors is calculated by linearly interpolating between the measurement positions and constantly extrapolating to
the boundaries.

The forward simulations are performed using MuPhi (Ippisch et al., 2006) with a spatial resolution of 1 cm. This corresponds
to a state with 50 dimensions.

To test the inflation method, we perform a perfect model experiment. With the EnKF we estimate the water content state
and four parameters (&1, &2, K and 7) through the augmented state u = [0,log(£1),10g10(&2),10g,,(Ko),T]. We choose to
include the logarithm of &1, £; and K, because we expect a more linear relation to the water content state, than for the actual
parameters. For the water content state, we use the correct initial condition as the mean with an uncertainty of 0.005. The
uncertainty is spatially correlated using the fifth-order piecewise rational function by Gaspari and Cohn (1999) with the length-

scale ¢ = 5cm. As initial guess for the parameters, we start with unknown heterogeneity log;,(£1) = log;((&2) = 0.0 £0.25,

corresponding to two standard deviations away from the true values of log,,(£1) = —0.5 and log;(§2) = 0.5. For the saturated
hydraulic conductivity, we choose a too small value of log;(Ko) = —5.540.5, Ko in (ms~1), which is about one standard
deviation away from the true value of log;,(Ky) = —4.9. For the tortuosity 7 = 0.5 £ 0.5 we start from the true value.
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Through the unrepresented heterogeneity, we can mimic a model error, leading to a bias towards smaller values for the
estimation of K during times without dynamics, which may necessitate inflation. The parameter 7 is expected to have a
smaller influence, since the uncertainty is chosen small and it is already at the true value. This way it can act as an indicator
parameter for the inflation as it does not require inflation.

The EnKF is set up with a total of 25 ensemble members and a damping vector of v = [1.0, 0.3, 0.3, 0.3, 0.3], which we also
apply to the inflation. The damping factor of 0.3 is applied to the parameters to alleviate issues of nonlinear relations between

observations and parameters. For the uncertainty of the inflation factors we choose oy = 1.0.

3 Results

We estimate the water content state together with the four parameters &1, &2, K and 7 with the EnKF as described in Sect. 2.3.
The development of the water content at the two measurement locations at a depth of 9.5cm and 19.5 cm is shown together
with the inflation factor at these locations in Fig. 1. The inflation factor is applied to the forecast ensemble before the analysis.
The standard deviation of the inflated ensemble should describe the distance of the estimated mean to the synthetic truth. Note,
that the inflation factor is not based on this distance and relies on the noisy measurements. Therefore, it is only an indicator.

During the first three days without any dynamics, the uncertainty for the upper measurement is slightly underestimated,
while the uncertainty in the lower measurement is slightly overestimated. This leads to an inflation factor of basically 1 for
the lower measurement (factors smaller than 1 are not allowed), while the inflation factor for the upper measurement is larger.
However, due to correlations between the measurement locations a stronger inflation to fully explain the difference to the truth
is prevented.

The deviation from the synthetic truth is induced through the initial guess of no heterogeneity and can also be seen in the
systematic deviation of the inflated mean (which is equal to the forecast mean) from the analysis mean. When the infiltration
front reaches the measurements, the deviations from the truth, underestimation of the uncertainty, and inflation factors increase
rapidly. All of them are more pronounced for the upper measurement location. After the main peak, the differences and also
the inflation factors decrease rapidly again.

The inflation factor for the state is shown in Fig. 2. It shows the strong increase of the inflation factor during the infiltration
and its fast decrease afterwards. The inflation is strongest at the measurement location at a depth of 9.5 cm. The inflation
factor is transferred to the other state locations through the correlations, which decrease with distance. Directly below the
measurement locations the inflation factors are increased less than above. This is due to the chosen interpolation of the Miller
scaling factors. Through the interpolation between the measurement locations and extrapolation to the boundaries changes, the
dynamics changes at the measurement locations. During the infiltration the dynamics is mainly influenced by the water content
above and the correlations to these locations are stronger.

The development of the Miller scaling factors £; and &5 at the two measurement positions (9.5 cm and 19.5 cm depth) is
shown in Fig. 3(a) and 3(b) together with the estimated inflation factor for these parameters. Both initial conditions assume

no heterogeneity and start at log;,(&1) = log;(&2) = 0.0£0.25, corresponding to two standard deviations away from the
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Figure 1. Water content estimation at the two measurement locations. The standard deviation of the inflated ensemble should be able to
explain the differences between the inflated mean and the synthetic truth. The inflation factor is increased, when the ensemble uncertainty is

too small.

true value. At the upper location the true value of log;,(&1) = —0.5 corresponds to a finer material. Consequently, the water
content drops, as seen in Fig. 1, leading to a strong correlation with the scaling factor, and log,,(&1) is adjusted rapidly to lower
values. Accordingly, the inflation factor is increased quickly in the beginning and then reduced back to 1 when the estimation

of log;((&1) reaches and eventually underestimates the true value. The underestimation of the scaling factor corresponds to a
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Figure 2. Inflation factor for the water content state. The inflation is strongest at the upper measurement location during the infiltration, when
the uncertainty is underestimated the most. The inflation factor is transferred to the other measurement locations through the correlations in
the Kalman gain. The used interpolation of Miller scaling factors impacts these correlations and leads to the smaller inflation directly below

the measurement locations.

too fine material, which leads to slower changes in the water content state and therefore smaller correlations. The scaling factor
is corrected during the rain event on the fourth day, which also leads to an inflation.

The initial guess for the scaling factor for the depth of 19.5 cm underestimates the scaling factor, which corresponds to a
too fine material. Again, the correlations are small. The value increases slowly during the dry period in the beginning, but is
inflated and adjusted strongly during the rain event.

The saturated hydraulic conductivity K (Fig. 3(c)) was chosen to start a little more than one standard deviation below the
true value. Due to the unrepresented heterogeneity in the beginning, the value decreases even further. The inflation remains
very small due to correlations to both measurement locations. However, as soon as the infiltration event reaches the first
measurement location, the value is corrected towards the true value. At the same time, the inflation factor is increased due to
the too small uncertainty. After the rain event the inflation factor drops rapidly back to one. The hydraulic conductivity remains
below the true value. Another rain event would be required to improve the estimation further.

The tortuosity 7 (Fig. 3(d)) also influences the hydraulic conductivity function, but has in this case much smaller impact and
consequently smaller correlations to the measurements than K. We use it as an indicator parameter and start at the true value.
During the infiltration event the value is changed due to its correlation. The corresponding inflation factor is increased as well,
but remains small enough and drops back to 1 quickly enough to not cause any over-inflation of the parameter.

To emphasize the need of a fast adapting inflation factor, we reduce the uncertainty of the inflation factors to o = 0.5 to
slow down their adjustment. The results are summarized in Fig. 4. The inflation of the water content state (Fig. 4(a)) shows,
that the inflation factor does not reach as high values as before (see Fig. 2). To compensate for this, the inflation acts over a

longer period of time. The same effect is also observed in the inflation of the parameters (Fig. 4(b) and (c)). This leads to a
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Figure 3. Development of Miller scaling factors &; and 2, saturated hydraulic conductivity Ko and tortuosity 7 together with their corre-

sponding inflation factors during estimation with the EnKF.

smaller inflation during the rain event and consequently a too small uncertainty. At later times, when the cause of the error is
not active any more, the correlations to measurement locations are reduced leading to a slower reduction of the inflation in the
parameters. In the indicator parameter 7 the beginning of an over-inflation can be seen towards later times. This necessitates a
more rapid inflation when correlations are used to update inflation information.

The results for the parameters Ky and 7 of a run without inflation (and only damping) are shown in Fig. 5. Again, K
moves further away from the true value due to the unrepresented heterogeneity and comes closer to the true value during the
infiltration event. However, since the Miller scaling factor is not inflated in the beginning, it is adjusted slower. Consequently,
the K is corrected longer in the wrong direction. The uncertainty eventually becomes too small and in the end the mean is

more than 5 standard deviations away from the true value, since the uncertainty cannot be increased any more.
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Figure 4. Development of the inflation factor for the water content state and saturated hydraulic conductivity K and tortuosity 7 together

with their corresponding inflation factors for an estimation with a reduced inflation factor uncertainty of oy = 0.5.

Incidentally, we have also tested the inflation method by reanalyzing the real-world application by Bauser et al. (2016),
where measurements from 11 TDR probes were assimilated with an EnKF. There, the inflation method confirmed the behavior
observed in the small synthetic case presented in this paper. For the details of the real-world case as well as the concept of the
the case.

In this paper, we only show the inflation related to the closed-eye period (Fig. 6), which presents the major challenge to
the inflation in that particular application. During this time, preferential flow occurs and the underlying local equilibrium
assumption of the Richards equation is violated. With a standard approach, parameters become biased to compensate these
errors. To avoid this, Bauser et al. (2016) introduced the closed-eye period, which pauses the parameter estimation and only.
guides the water content states through times, when assumptions are violated. Compared to the standard approach, this leads
to a reduced bias in the parameters, but effectively increases the model errors during the closed-eye period. A strong inflation

12



(a) Sat. hydraulic conductivity (b) Tortuosity

—-4.0 2.0
‘U)
£,-5.0 1
=
K 6.0 R
=
0 $
S
— 7.0 = — -1.0 T T
0 2 4 6 0 2 4 6
Time [day] Time [day]
—— Mean (forecast) Ensemble (forecast)
Std. dev. (forecast) —— Truth

Figure 5. Development of saturated hydraulic conductivity K and tortuosity 7 for an estimation without inflation.

is required to compensate this error. The inflation method used in Bauser et al. (2016) was just able to accomplish this and the

authors were concerned that a too slow adjustment speed of the inflation limits the applicability of the closed-eye period for

cases with larger model errors.
Figure 6 confirms the fast adjustment speed of the new inflation method proposed in this paper for the real-world application.
5 The strong required inflation stays well within the closed-eye period. This enables the EnKF to pick up the parameter estimation
after the period from a water content state consistent with the TDR measurements and facilitates the use of the closed-eye
period.

4 Discussion

The proposed inflation method uses a Kalman filter to estimate inflation factors within the EnKF. It is based on the difference

10 between measurements and mean forecast state. It transfers correlations from the forecast of the augmented state to the inflation.
Consequently, the performance will be limited if model errors are structurally not represented in the forecast error covariance
matrix. The estimation of the inflation factors with a Kalman Filter is, like the EnKF itself, based on a linearized analysis. The
use of a damping factor can alleviate issues with estimating nonlinear dependent parameters. To keep the inflation consistent
with the analysis in the EnKF, we apply the same damping factor for both.

15 We designed a small synthetic hydrologic test case for the inflation. This test case mimics a model error through initially
unrepresented heterogeneity. We designed the test case so that a strong temporally varying inflation is necessary, as it can occur
with real data. We choose a short time so that the details of the behavior of the method can be explored. The method showed
that it is capable of inflating states and parameters. The inflation is adjusted fast and differentiates between parameters with
strong and not so strong correlations. No over-inflation of weakly correlated parameters occurred. In this specific test case the

20 estimation with inflation is far superior to an estimation without inflation.
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Figure 6. Inflation factor for the water content state in a real-world application for a standard and closed-eye EnKF. A fast adjustment of the

inflation factors facilitates the use of a closed-eye period. Modified from Bauser (2018).

The fast adjustment speed of the inflation factor is important because of the fast changing model errors and correlations to
parameters. The adjustment speed is determined by the uncertainty of the inflation factor. This uncertainty is set to a constant
value and has to be adjusted. For all our cases a value of oy = 1 was sufficient, but larger values were possible too. The need
for such a fast adjustment is shown by estimating the same case with a reduced uncertainty of o, = 0.5, which leads to a slower
adaptation of the inflation factor. This leads to smaller inflation factors, which is compensated by maintaining them for a longer
period of time. In this test case this leads to inflation at times after the infiltration front has passed the measurements already
and the model error is small again. This can cause over-inflation of weakly correlated parameters. Too large uncertainties of the
inflation (in our test case o = 4), where the uncertainty is larger than the typical range for the values of lambda, can also lead
to overinflation of weakly correlated parameters. Reasons for this can be the linearizations in the analysis and the calculation
of the Jacobian (Eq. 14). This limits the adjustment speed of the inflation.

Fast dropping correlations between measurements and parameters are a limit for the method. An example could be a param-

eter only acting on an infiltration boundary condition. After the infiltration is over, correlations to this parameter would drop
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to zero and the inflation factor for this parameter will not be changed any more. If the inflation factor is not equal to 1 at this
time, the parameter spread will keep increasing. In such a case, when there is no correlation, the parameter should be excluded
from the estimation and consequently also from the inflation.

The method is in principle capable of compensating unrepresented model errors. However, it relies on correlations cal-
culated from the forecast ensemble of the augmented state. If parameters have correlations to measurement locations with
underestimated forecast uncertainties, the inflation will keep increasing the parameter spread until the forecast uncertainties
are increased sufficiently. Therefore the correlations have to contain useful information. This means that inflating the parame-
ters based on their correlations to measurement locations has to increase the forecast spread at these measurement locations. If
the parameters have an insufficient influence on the state uncertainty an over-inflation of the parameters can occur. An exam-
ple are measurements with underestimated measurement uncertainties and short time between measurements compared to the
timescale of the dynamics. Then the parameters are not able to increase the state uncertainty in the short forecast time between
measurements and the forecast dynamics is not able represent the measurement noise. If such errors occur intermittently, e.g.,
the closed-eye period as proposed by Bauser et al. (2016) could be used to bridge these times. A rather heuristic solution could

be a decay of the inflation factor towards values of 1, as already proposed by Anderson (2009).

5 Conclusions

In this work we propose a novel spatiotemporally adaptive inflation method, specifically designed for soil hydrology, which
nevertheless is expected to work in similar systems as well. The inflation method is based on a Kalman filter acting within the
EnKF. The method is capable of rapid adjustments of inflation factors, treating each augmented state dimension individually.
This rapid adjustment is required due to temporally varying model errors, as they can appear through violation of the local
equilibrium assumption of the Richards equation, hysteresis, or unrepresented heterogeneity.

We demonstrate the use of our inflation method in combination with a damping factor on a small hydrologic example. We
choose heterogeneity as a possible model error, but allow the heterogeneity to be estimated along with the soil hydrologic
parameters K and 7 of the Mualem—van Genuchten parameterization. Our proposed inflation method proved to be stable
in combination with parameter estimation. The performance of the estimation improved and parameter uncertainty remained
consistent. The method requires that the correlations from in the forecast ensemble contain useful information for the inflation.
However, we demonstrate that it even works for only weakly correlated parameters. We expect the inflation method to generally

improve data assimilation with the EnKF and to thus lead to better state and parameter estimations in soil hydrology.

Appendix A: Jacobian in the inflation method

We briefly show the derivation of the Jacobian matrix H ), for the inflation (Eq. 14). Again, the entrywise product is denoted

by o and the entrywise square root of X by v/A:
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