
Answer to Review by Referee #1

Summary:

The manuscript presents a new approach to handling inflation during Ensemble Kalman filtering, specifically
developed for state and parameter estimation in the unsaturated zone. The authors suggests to calculate a
dynamic inflation factor that is estimated with a separate Kalman filter within the main EnKF. Apart from
theoretical development, the authors also show a test case with good performance.

General comment:

I much enjoyed reading the manuscript, which provides an important contribution to the community. The
manuscript is well written and well structured, although I think some things should be a bit clearer explained
(which is addressed below).

Reply: We thank the reviewer for the constructive comments and suggestions. We have revised our
manuscript taking them into account. The di↵erence pdf is attached and also includes the corrections
based on the comments of referee #2. We reference (page, line) to this di↵erence pdf.

Specific comments
Derivations (page 5-6): I find the derivations of the internal Kalman filter sometimes tricky to follow.
Primarily I am a bit confused with the second part of eq. 13, which should come from mean inflated forcast
vector (Hu-overbar-f-inf ), where the mean of the inflated vector u in turn is the same as the non-inflated
mean u-vector (since the inflation, if I get it right, does not alter the mean). Therefore I am not 100% clear
on how the lambdas come into the equation (although the equation itself makes sense). Perhaps it would be
a good idea to add a more detailed version of the full derivation process in an appendix, where also smaller
steps can be shown without creating a too long and tedious paper.

Reply: We improved the description for Eq. 13. We incorporated it directly in the text. It now reads (page
5, line 29 – page 6, line 3):

“The measurement error covariance matrix R� of d� can be calculated based on the error covariance
matrices of d and Huf

inf,

(R�)ij =
���(R)ij +

�
HPf

infH
T
�
ij

��� , (13)

where the inflated forecast error covariance matrix Pf
inf can be calculated from the inflation vector and the

forecast error covariance matrix by combining Eq. (9) (with vector lambda and entrywise multiplication)

and Eq. (3): Pf
inf = Pf � [

p
�f
p
�f

T
]. The entrywise product is denoted by � and the entrywise square root

of � by
p
�.”

We also added an appendix, which shows the derivation of the Jacobian (Eq. 15) in detail (page 14, line
30 – page 15, line 8): “We briefly show the derivation of the Jacobian matrix H� for the inflation (Eq. 15).
Again, the entrywise product is denoted by � and the entrywise square root of � by

p
�:
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Damping factor: as the authors states in the introduction (page 2, line 31), damping factors are often
used instead of inflation, e.g. in lack of better ideas, since it is a rather ad-hoc method. However, despite
of now having an advanced and seemingly well-functioning inflation method, the authors still apply a rather
strong damping factor to the parameter updates and lambda updates (page 8). Is this still needed?
Reply: We agree that the damping factor should not be used to replace an inflation. This can also be seen
in the case without inflation, where only a damping factor is used. However, we do consider the damping
factor to be useful to alleviate issues of nonlinear relations between measurements and augmented state
components, when the dynamics is slow compared to the frequency of measurements. This is typically the
case for the parameters: their dynamics is assumed to be constant and their relation to the measurements
is often nonlinear. Here, the damping factor can improve the estimation, by reducing the linearized analysis
corrections. We see the advantage of the damping factor in this reduced adjustment speed of the parameters.
Therefore, we think it is good to show that the inflation method works in combination with a damping factor.
We added a comment in the manuscript (page 8, lines 9–10): “The damping factor of 0.3 is applied to the
parameters to alleviate issues of nonlinear relations between observations and parameters.”

Inflation factor uncertainty tuning: The authors points out that a higher value is needed for a good
performance. The question that arises is whether one can also set it too high (all within reason of course),
or if e.g. 1 would, in general, be good enough? Or/similarly, can the authors stress cases where a small
inflation factor uncertainty could be clearly beneficial? A short discussion (if possible with some more general
recommendation) would clearly increase the transition for other users to use the authors method! (the current
discussion discusses more the impact of too low numbers)
Reply: Thank you for pointing this out. Indeed, the value can be chosen too large. The method is limited
through the transfer of the linearization in the analysis and additionally through the linearization in the
calculation of the Jacobian. Too larger uncertainties of the inflation factor lead to an increasing step size in
each analysis step. This can lead to potentially too large inflations. In our case an uncertainty of �� = 2
worked well, while a factor of �� = 4 lead to an overinflation of the indicator parameter ⌧ . However, assigning



an uncertainty of 4 to lambda, which typically ranges between the values 1 and 2, seems a little too large.
We extended the discussion accordingly (page 13, lines 16–19):

“Too large uncertainties of the inflation (in our test case �� = 4), where the uncertainty is larger than
the typical range for the values of lambda, can also lead to overinflation of weakly correlated parameters.
Reasons for this can be the linearizations in the analysis and the calculation of the Jacobian (Eq. 14). This
limits the adjustment speed of the inflation.”

In this context: We accidentally reported the uncertainty of �2
� = 0.5 for the test case with slow inflation.

However the standard deviation �� was set to this value. We corrected this throughout the manuscript.

In figure 3c one sees an ensemble member with Ksat values around -7, which is clearly far away from the
truth and something like an outlier. To me it looks as if the inflation is maintaining this position, as in the
corresponding figure with less inflation (figure 4) it is slowly reduced, and with no inflation it is removed
(although the full ensemble moves towards it, rather). In a parameter estimation problem, would this really
be a wanted behavior? A related question is whether the application of the inflation factor on the parameters
or on the states are more influential, hence, if you need really need both (especially in combination with
damping)? Reason for asking is, partly, that in Figure 5 we can see a drifting o↵ of the Ksat already before
the rain event which is not visible in Figure 3c, despite the inflation of the parameter in is roughly 1 here.
However, a rather substantial inflation is applied to the states (figure 1) during this time, suggesting that
there are also e↵ects of state inflation on the parameter estimation.
Reply: Initially the low value is generated through the random realizations of the Gaussian initial distri-
bution for the parameter. Multiplicative inflations increase the distance of each ensemble member to the
mean with the inflation factor. Therefore, this outlier also experiences the strongest inflation, which would
need to be adjusted in the analysis. However, in this specific case, this ensemble member corresponds to
larger values for the Miller scaling factors at both measurement locations. They e↵ectively increase the
hydraulic conductivity and compensate the too small value partially. To remove such outliers faster for
example parameters could be intermixed.

We do see the application of the inflation to states and parameters necessary. The state inflation
is necessary, to faster adjust the state towards the measurements. This improves the best guess of the
states and consequently decreases the influence of the model errors on the parameters. The inflation in the
parameters is required to compensate too small uncertainties from model errors, as seen in the example.
The di↵erences in the parameter estimation can be explained as well. The saturated hydraulic conductivity
drifts away from the true value due to the initially unrepresented heterogeneity. Through the inflation of
the Miller scaling factor at the depth of 9.5 cm in the beginning, the Miller scaling factor is adjusted faster
towards the true heterogeneity and decreases this e↵ect. In the case without inflation, it does not reach the
true value until the rain event and the e↵ect on the saturated hydraulic conductivity remains longer. We
changed the description of this case slightly to (page 11, line 7– page 12, line 2): “Again, K0 moves further
away from the true value due to the unrepresented heterogeneity and comes closer to the true value during
the infiltration event. However, since the Miller scaling factor is not inflated in the beginning, it is adjusted
slower. Consequently, the K0 is corrected longer in the wrong direction. The uncertainty eventually becomes
too small and in the end the mean is more than 5 standard deviations away from the true value, since the
uncertainty cannot be increased any more.”

If I get it right, the inflation is applied before the analysis. Wouldn’t this, at least in principle, risk altering
the sought correlations between states and parameters, (especially since the inflation is applied to both and
the system at hand is nonlinear)? Is this an issue that one should keep in mind or is it, in the opinion of
the authors, likely negligible?
Reply: Yes, the inflation is applied before the analysis. However, this does not change the correlations in
the forecast ensemble. It only changes the variances. The covariances are adjusted so that the correlations



are kept. Since model errors should be included in the forecast, before the analysis, we apply the inflation
there.

Technical Stu↵

Page 4, line 10: reformulate, reads funny
Reply: We changed the line to (page 4, lines 10–11): “Based on the measurements, the Kalman gain updates
the forecast ensemble to the analysis ensemble:”

All figures: the inflated ensemble is almost invisible (I didn’t realize until the third read-through that there
were also light blue lines), change the color to something better/darker!
Reply: We made the ensemble members darker.



Answer to Review by Referee #2

General remarks

This is a well written paper that can be of interest for the hydrological modeling community using data
assimilation. It presents the development and application of an adaptive inflation method specifically designed
to counteract filter inbreeding in soil hydrology, when increasing the ensemble size is too computationally
expensive. The method is applied and proved to work well in a small synthetic test case.
I used to think that inflation methods are not a good way to improve the ensemble Kalman filter, because
in principle they are numerical tricks that, in my opinion, depart from the correct theory. When filter
inbreeding occurs, the only mathematically consistent way to prevent it would be to increase the ensemble
size, thus approaching the limit of an infinite ensemble for which the EnKF is demonstrated to converge to the
Kalman filter. However, I recognize that in some cases this is not practically feasible and in this specific case
I like the idea of an adaptive inflation factor that is estimated based on the di↵erence between measurements
and mean forecast state, i.e., based on physical considerations and that can give useful insights about the
dynamics in the unsaturated zone.

Reply: We thank the reviewer for the constructive comments and suggestions. We have revised our
manuscript taking them into account. The di↵erence pdf is attached and also includes the corrections
based on the comments of referee #1. We reference (page, line) to this di↵erence pdf.

We agree that inflation methods depart from the correct theory. To emphasize this we added (page 4,
line 24) “heuristic” when introducing the multiplicative inflation.

Other than relatively minor edits and comments, reported below, I think there is one main flaw in this paper:
the method is demonstrated only in a fairly simple synthetic test case and it does not provide insights on
possible issues in more realistic applications. I think an additional test case would make the paper more
interesting and its conclusions more robust. The Authors themselves claim that the method has already
been tested in a real-world application taken from Bauser et al. (2016): I strongly recommend that such an
application be added to this paper and its results discussed in details.

Reply: In the real world application described in Bauser et al. (2016), the EnKF is used to estimate the
water content state, soil hydraulic parameters, Miller scaling factors and the upper boundary condition for a
1D representation of a soil profile at the Grenzhof test site close to Heidelberg, Germany, based on 11 TDR
probes providing water content measurements. To account for uncertainties an assessment of all uncertainties
for the specific situation is performed. In a three stage approach (improving the prior, standard EnKF, and
closed-eye EnKF) the key uncertainties for this specific situation are reduced, except for an intermittent
violation of the local equilibrium assumption in the Richards equation. These times were excluded from the
parameter estimation to not incorporate the model error during this time into the parameters. Therefore the
forecast during this time has larger errors and in this specific application especially the state inflation during
the closed-eye period is important. Figure AC1 shows the inflation of the water content state in with the new
inflation method. The main advantage of the new inflation in this case, is that (due to the fast adjustment)
the inflation is mainly performed during the closed-eye period only and not continued afterwards.

Including this application into the paper, would increase the length of the paper considerably and require
detailed explanations unrelated to the inflation method itself. However, we did not see any conceptually new
insights from this application. Therefore, we do not want to include it in the paper, to keep it as concise as
possible.
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Figure AC1: Inflation factor � in the first layer during the last iteration of the
standard EnKF and closed-eye EnKF. The covariance inflation increases the
inflation factor around a measurement location when the deviations due to the
infiltration reach the corresponding TDR. The deviations and consequently the
inflation are stronger for the closed-eye EnKF, as the preferential flow is not
incorporated into the parameters.

Specific comments

Page 2, line 7: Another relevant reference is Botto et al. (2018)“Multi-source data assimilation for physically-
based hydrological modeling of an experimental hillslop”, still under discussion in HESS but already fully
citable.
Reply: We completely agree. Botto et al. (2018) must be citet. We became aware of the publication after
submission of this manuscript. We included it in the introduction (page 2, line 7 and page 2, line 34).

Page 3, Eq. 3: Strictly speaking, this is a scaled covariance matrix. The real one should be estimated dividing
this by (N-1). Same for the matrix R in Eq. 4.
Reply: Yes, we agree. However, we would like to follow the notation by Evensen (1994) and Burgers et
al. (1998), where the overline generally denotes the expectation value. (We added this on page 3, line 28:
“. . . , where the overline denotes the expectation value and uf

k is the ensemble mean”.) For the measurement



error covariance matrix given in Eq. (4) we actually do not use the matrix calculated from the ensemble of
measurement errors, but use the exact diagonal matrix with the measurement uncertainties. Therefore we
prefer the more general expression.

Page 5, lines 5-6: This statement requires an appropriate reference. Does it refer to a previous study by the
same research group?
Reply: To our knowledge there exists no study about the inflation method by Anderson (2009) applied to
parameters. We are also not aware of an application of the method for parameter estimation in hydrology.
Because of that, it is not our goal to perform an in depth analysis of the method. We cannot exclude that it
might be possible to use the method, but in our tests, we could see possible over-inflation. Therefore we do
not give a general statement in the paper but only state our experience (“However, we experienced possible
over-inflation in parameters . . . ”). We would prefer to not work this out in the paper.

Below, we show results obtained with the inflation method by Anderson (2009) to support our statement.
Like our proposed inflation, the inflation by Anderson (2009) can be used with a constant uncertainty ��.
The values are only roughly related to the values in our method though. Figures AC2, AC3 and AC4 show
the results for di↵erent choices of ��. They are all analogous to Fig. 3 in the manuscript. We also kept the
same limits for the range of the axis for a better comparison.

Figure AC2 shows results for �� = 1. Although the estimates for the mean values are excellent, the
inflation is very strong. Especially the Miller scaling factor at 9.5 cm depth is inflated heavily and the good
result is not guaranteed. This can be seen in Fig. AC3 (�� = 0.5), where the inflation factor is adjusted
slower. It still leads to very strong inflations for the Miller scaling factor at 9.5 cm depth and leads to wrong
values in the hydraulic conductivity. Reducing the adjustment speed further (Fig. AC4, �� = 0.3) leads
to similar problems as in our inflation method: an overinflation of weakly correlated parameters for slow
adjustment speeds.
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Figure AC2: Analogous to Figure 3, but with inflation method by Anderson
(2009) and �� = 1.
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Figure AC3: Analogous to Figure 3, but with inflation method by Anderson
(2009) and �� = 0.5.
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Figure AC4: Analogous to Figure 3, but with inflation method by Anderson
(2009) and �� = 0.3.



Page 6, lines 18-19: This is a potentially important issue that is worth of further investigation. Why not
repeating the analyses with one or two di↵erent values of the seed to actually show this sensitivity?
Reply: Di↵erent behavior, because of the seed can be indeed an important issue. In this case it e↵ects
the behavior of the EnKF itself. The inflation method remains consistent with this behavior. Therefore,
we do not want to include further seeds into the manuscript to keep it as concise as possible. We make
our statement more clear and change it to (page 6, lines 21–23): “Due to a small ensemble size, the results
vary depending on the seed of the random numbers. This however, is related to di↵erent performance of
the EnKF itself. In simulations (results are not shown), we found that the behavior of the inflation remains
consistent.”

Figure AC5 shows the parameter estimation (analogous to Fig. 3 in the manuscript) for such a di↵erent
seed. Especially the initial ensemble influences the correlations and consequently the corrections in the
beginning. In this case, the Miller scaling factor at 19.5 cm has stronger correlations and is already corrected
towards the true value. This leads to improved parameters at the beginning of the rain event. Therefore the
inflation is larger in the beginning and smaller during the rain event.
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Figure AC5: Analogous to Figure 3, but with di↵erent seed.



Page 7, lines 4-8: Please add appropriate reference and explain exactly how the spatial variability is taken
into account. Is the parameter ⇠ a function of space?
Reply: Yes, it is. We added the Reference (Miller and Miller, 1956) and extended the explanation (page
7, lines 7–14) to “We additionally consider small scale heterogeneity through Miller scaling. It assumes
geometrical similarity. With this the microscopic geometry of the pore space at a macroscopic position is
parameterized by a single length scale ⇠ and the macroscopic heterogeneity field can be generated with a
single scalar field of this length scale. Miller and Miller (1956) showed that the hydraulic functions scale
with this parameter according to

K(✓) = K⇤(✓) · ⇠2 , (22)

hm(✓) = h⇤
m(✓) · 1

⇠
, (23)

where the functions K(✓) and hm(✓) are defined at a reference point ⇤ with Miller scaling parameter ⇠ = 1
and from there are projected to all locations.”

We additionally changed the explanation how the Miller scaling is included in the augmented state to
(page 7, lines 22–24): “We reduce the description of the heterogeneity to these two parameters. The full
function of the scaling factors is calculated by linearly interpolating between the measurement positions and
constantly extrapolating to the boundaries.”

Page 10, lines 2-3: This statement is not clear. Can you please clarify, considering also the additional details
required in the previous point?
Reply: We extended the explanation to (page 8, lines 30–33): “This is due to the chosen interpolation of
the Miller scaling factors. Through the interpolation between the measurement locations and extrapolation
to the boundaries changes, the dynamics changes at the measurement locations. During the infiltration
the dynamics is mainly influenced by the water content above and the correlations to these locations are
stronger.”

Page 11, lines 28-30: As suggested above, this should be significantly expanded as a new section of the paper,
where to show how the method works in a real-world application.
Reply: Since the application to the real world case did not show any new conceptual insights, we did not
include a new section here. Our goal is to keep the paper as concise as possible.

Page 13, lines 8-12: Why would one want to use a multiplicative parameter in the boundary conditions?
Maybe use a di↵erent example to illustrate this point.
Reply: We see the boundary condition as a good example, where correlations could drop very rapidly.
Di↵erent estimations of the boundary condition were included for example in Bauser et al. (2016) or Jaumann
and Roth (2017). We agree that a multiplicative factor to the boundary condition is a very specific example.
Therefore we generalize the statement to (page 13, lines 20–21): “An example could be a parameter only
acting on an infiltration boundary condition.”

Page 13, lines 13-20: Similar to the previous one, also this paragraph is not very clear. Please rephrase and
give practical examples of errors that can and cannot be represented with the augmented state.
Reply: We rewrote the paragraph to (page 14, lines 3–15): “The method is in principle capable of compen-
sating unrepresented model errors. However, it relies on correlations calculated from the forecast ensemble of
the augmented state. If parameters have correlations to measurement locations with underestimated forecast
uncertainties, the inflation will keep increasing the parameter spread until the forecast uncertainties are in-
creased su�ciently. Therefore the correlations have to contain useful information. This means that inflating



the parameters based on their correlations to measurement locations has to increase the forecast spread at
these measurement locations. If the parameters have an insu�cient influence on the state uncertainty an
over-inflation of the parameters can occur. An example are measurements with underestimated measurement
uncertainties and short time between measurements compared to the timescale of the dynamics. Then the
parameters are not able to increase the state uncertainty in the short forecast time between measurements
and the forecast dynamics is not able to represent the measurement noise. If such errors occur intermit-
tently, e.g., the closed-eye period as proposed by Bauser et al. (2016) could be used to bridge these times.
A rather heuristic solution could be a decay of the inflation factor towards values of 1, as already proposed
by Anderson (2009).”

Page 14, line 11: Please see previous point.
Reply: We changed the sentence (analogous to the explanation above) to (page 14, lines 26–27): “The
method requires that the correlations from in the forecast ensemble contain useful information for the infla-
tion.”



Inflation Method for Ensemble Kalman Filter in Soil Hydrology
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Abstract. The ensemble Kalman filter (EnKF) is a popular data assimilation method in soil hydrology. In this context, it

is used to estimate states and parameters simultaneously. Due to unrepresented model errors and a limited ensemble size,

state and parameter uncertainties can become too small during assimilation. Inflation methods are capable of increasing state

uncertainties, but typically struggle with soil hydrologic applications. We propose a multiplicative inflation method specifically

designed for the needs in soil hydrology. It employs a Kalman filter within the EnKF to estimate inflation factors based on5

the difference between measurements and mean forecast state within the EnKF. We demonstrate its capabilities on a small

soil hydrologic test case. The method is capable of adjusting inflation factors to spatiotemporally varying model errors. It

successfully transfers the inflation to parameters in the augmented state, which leads to an improved estimation.

1 Introduction

Data assimilation combines information from models and measurements into an optimal estimate of a geophysical field of10

interest (Reichle, 2008). It has applications in all branches of the geosciences, with weather forecasting as the driving force

behind many recent advances (van Leeuwen et al., 2015). The advantage of data assimilation methods (in contrast to e.g.

inverse modeling) is the possibility to consider model errors, which are characteristic for geophysical systems.

The ensemble Kalman filter (EnKF) (Evensen, 1994; Burgers et al., 1998) is a popular data assimilation method due to its

simple conceptional formulation and ease of implementation (Evensen, 2003). It is an extension of the Kalman filter (Kalman,15

1960) for nonlinear models.

In hydrology, the EnKF was used for soil moisture estimation from satellite data (e.g. Reichle et al., 2002; Crow and

Van Loon, 2006) or from local measurements (e.g. De Lannoy et al., 2007, 2009; Camporese et al., 2009). However, the largest

uncertainties in hydrology are associated with soil hydraulic material properties. They can neither be measured directly, nor

can they be transferred from the lab to the field, and are typically parameterized. Thus, including material properties into the20

estimation can be crucial in hydrology. Liu and Gupta (2007) called for an integrated assimilation framework including not

only states but parameters, and even model structure.

The joint estimation of states and parameters in data assimilation might be one possibility to reduce the influence of model

errors on parameter estimation (Liu et al., 2012). Such a joint estimation in the EnKF with an augmented state was already

demonstrated by Anderson (2001) for an atmospheric model. In hydrology Vrugt et al. (2005) combined an EnKF and the25

1



shuffled complex evolution Metropolis algorithm, while Moradkhani et al. (2005) used a dual EnKF approach to estimate

states and parameters for a rainfall-runoff model. The joint assimilation of states and parameters in an augmented state was

successfully performed for example in groundwater research (e.g. Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach,

2008; Kurtz et al., 2012, 2014; Erdal and Cirpka, 2016), but also in soil hydrology for land surface models (e.g. Bateni

and Entekhabi, 2012; Han et al., 2014; Zhang et al., 2017) and on smaller scales based on the Richards equation (e.g. Li5

and Ren, 2011; Wu and Margulis, 2011, 2013; Song et al., 2014; Erdal et al., 2014, 2015; Shi et al., 2015; Bauser et al.,

2016)
:::::::::::::::
(Botto et al., 2018).

Due to unrepresented model errors and due to a limited ensemble size, the EnKF underestimates model errors, which can

lead to filter inbreeding. Systematic model errors are common for example in land surface models (Vereecken et al., 2015).

Additionally, in soil hydrology spatially and temporally varying model errors occur due to un- or ill-represented processes10

like preferential flow or hysteresis. Underestimated errors cause an insufficient ensemble spread in the augmented state. This

is especially severe for parameters, which are typically not changed through a forward propagation and consequently cannot

increase their uncertainty again. Due to the convergent dynamics in soil hydrology, the uncertainty in the state depends strongly

on the parameter spread and becomes too small as well.

Covariance inflation can counteract filter inbreeding. Different methods have been proposed: (i) Additive inflation, which15

adds a model error after the forward propagation. This method is especially useful if prior knowledge about the model error

exists. In atmospheric sciences additive inflation has been successfully applied by e.g. using reanalysis of historical weather

prediction errors (Whitaker et al., 2008). (ii) Relaxation methods, which relax the analysis back to a prior perturbation or

spread, have been proposed with tuning parameters (Zhang et al., 2004; Whitaker and Hamill, 2012) or based on deviations to

measurements (Ying and Zhang, 2015). (iii) Multiplicative covariance inflation, which inflates the complete state with a scalar20

factor, where the inflation factor is either chosen manually (Anderson and Anderson, 1999) or is estimated based on deviations

from measurements (e.g. Wang and Bishop, 2003; Anderson, 2007; Li et al., 2009). This method has been further extended to

inflate each state component individually (Anderson, 2009).

All these inflation methods are developed in an atmospheric sciences context. Their transfer to soil hydrology is limited,

due to the spatiotemporally varying model errors and the typically employed augmented state. For groundwater research,25

Kurtz et al. (2012) reported improved results by employing the inflation method by Anderson (2007), and Kurtz et al. (2014)

used the constant inflation by Anderson and Anderson (1999). In soil hydrology, however, adjusted methods have been used:

For example Han et al. (2014) and Zhang et al. (2017) apply a special case of the inflation method by Whitaker and Hamill

(2012) and keep the parameter spread constant to ensure a sufficient ensemble spread. Bauser et al. (2016) used the method by

Anderson (2009), but adjusted the inflation of parameters.30

Alternatively, no inflation method is reported (e.g. Li and Ren, 2011; Shi et al., 2015), but instead a damping factor (Hen-

dricks Franssen and Kinzelbach, 2008), which can alleviate the issue, is employed. This is done by e.g. Wu and Margulis

(2011); Song et al. (2014); Erdal et al. (2014); Brandhorst et al. (2017)
::::::::::::::::
; Botto et al. (2018), where Erdal et al. (2014) and

Brandhorst et al. (2017) combined this method with additive inflation.
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In this paper, we propose a novel multiplicative inflation method, specifically designed for the needs in the soil hydrology

community. The inflation method can vary rapidly in space and time to cope with the typically varying model errors and it

is capable of a transfer of the inflation in the state to the parameters in the augmented state. The remainder of this paper is

organized as follows: Sect. 2 describes (i) the EnKF, (ii) our proposed inflation method and (iii) a soil hydrologic test case.

Section 3 shows the results of our method applied to the test case, followed by discussion and conclusion in Sect. 4 and 5.5

2 Method

2.1 Ensemble Kalman Filter

The EnKF (Evensen, 1994; Burgers et al., 1998) is the Monte Carlo extension of the Kalman filter (Kalman, 1960) for nonlinear

models and assumes unbiased Gaussian error distributions to combine model and measurement information. The filter is a

sequential method and alternates between a forecast step and an analysis step. The forecast propagates a state including its10

uncertainty forward in time. The analysis combines uncertain model information with uncertain measurements at this time into

an optimal estimate of the state. These two steps are now explained in more detail.

The forecast propagates an ensemble of states 'n forward from time k� 1 to time k with a model M ,

'f,n
k = M('a,n

k�1) +�n , (1)

where the superscripts f and a denote forecast and analysis respectively, while n denotes the ensemble members with n =15

1, ...,N . The uncertainty in the state is directly represented through the ensemble 'a,n
k�1 and then propagated nonlinearly with

the model. Unrepresented model errors can be added through the unbiased Gaussian process noise �. This is also called additive

inflation. However, the details of the model error are typically unknown and thus not represented adequately. The propagated

uncertainties are directly represented through the new forecast ensemble 'f,n
k .

The state can be extended by e.g. model parameters � to an augmented state u = [',�]. This requires a forecast for each20

augmented state component. Parameters are typically assumed to be constant in time:

�f,n
k = �a,n

k�1 . (2)

The forecast of the state 'f,n
k now also depends on the corresponding parameter set �a,n

k�1. This way, uncertainties in the

parameters are propagated as well and can be reduced jointly in the analysis.

Assuming unbiased Gaussian distributions, the ensemble of augmented states is characterized through the forecast error25

covariance matrix Pf,

Pf
k =

h
uf,n
k �uf

k

ih
uf,n
k �uf

k

iT
, (3)

where the ensemble mean uf
k denotes the best guess

::::::
overline

:::::::
denotes

:::
the

::::::::::
expectation

::::
value

::::
and

:::
uf
k :

is
:::
the

::::::::
ensemble

:::::
mean.
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The analysis combines model and measurement information based on the Gaussian error assumption. The measurement

error covariance matrix R of the measurements d is defined analogously as

Rk = [✏nk ] [✏nk ]

T , (4)

where ✏ is the measurement error. The measurements are linked to the state through the linear measurement operator H, which

maps from the state space to the measurement space:5

dk = Hkutrue,k + ✏k . (5)

The Kalman gain K weighs the forecast error covariance matrix with the measurement error covariance matrix and maps

from the measurement space back to the state space, based on the covariances in the forecast error covariance matrix:

Kk = Pf
kH

T
k

⇥
HkP

f
kH

T
k +Rk

⇤�1
. (6)

The Kalman gain is used to update
:::::
Based

::
on

::::
the

::::::::::::
measurements,

:::
the

:::::::
Kalman

::::
gain

:::::::
updates the forecast ensemble based on10

the measurements to the analysis ensemble:

ua,n
k = uf,n

k +Kk

h
dk + ✏nk �Hku

f,n
k

i
. (7)

This update to the ensemble ua,n
k minimizes the analysis error covariance Pa

k, which fulfills

Pa
k = [I�KkHk]P

f
k , (8)

for infinite ensemble sizes.15

Through spurious correlations and non-Gaussian distributions, Pa
k will become too small, which can lead to filter inbreeding

and ultimately filter divergence (e.g. Hamill et al., 2001). This is intensified, if the model error required in Eq. (1) is unknown.

A common way to alleviate this issue in hydrology is the use of a damping factor � 2 [0,1] (Hendricks Franssen and Kinzel-

bach, 2008), which is multiplied to the correction vector in Eq. (7) and consequently lessens the uncertainty reduction. The

damping factor can be extended to a vector � (and an entrywise multiplication) to treat augmented state components differently20

(Wu and Margulis, 2011). Typically, parameters are multiplied with a smaller factor than the state. However, the damping factor

can only alleviate and not completely prevent the inbreeding problem.

2.2 Multiplicative inflation for soil hydrology

Multiplicative inflation is another
:::::::
heuristic way to avoid filter inbreeding. Anderson and Anderson (1999) proposed to increase

the distance of each ensemble member to the ensemble mean by multiplying this distance by
p
� for the inflation factor �� 1:25

uf,n
inf =

p
�
⇣
uf,n �uf

⌘
+uf . (9)
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This inflation factor is applied to the complete augmented state and has to be adjusted to the specific problem. By construction, it

does not alter the mean value: uf
inf = uf. A temporally varying inflation factor can be estimated by comparing uncertainties with

the distance of measurement and forecast (e.g. Wang and Bishop, 2003; Anderson, 2007; Li et al., 2009). A spatiotemporally

adaptive inflation has been achieved by estimating a vector � for the complete augmented state (Anderson, 2009). The author

uses the correlation between measurements and augmented state dimensions and asks the question: How much inflation is5

required in each dimension to explain the observed differences to the measurements? Anderson (2009) showed that this works

excellently for the actual state. However, we experienced possible over-inflation in parameters (which do not have any dynamics

to compensate for this), which can lead to filter collapses.

We propose a more conservative inflation method and ask the question: How much of the required change of the inflation

are we allowed to transfer to the state dimensions based on the correlation information? This can be achieved by applying a10

Kalman filter for the inflation within the EnKF.

In this Kalman filter, the inflation vector is treated as the state variable. As for parameters, we choose a constant model for

the forecast in time:

�f
k = �a

k�1 . (10)

For convenience we will drop the time subscript k in the following. Furthermore, we will use the same symbols as for the15

EnKF, but denote them with the subscript �. We approximate the forecast error covariance matrix for lambda, Pf
�, based on

the covariance matrix of the augmented state in the EnKF, Pf, as the normalized absolute correlation matrix of the augmented

state ensemble. The matrix component ij is determined as

�
Pf

�

�
ij

= �2
�

���
�
Pf�

ij

���
h�
Pf�

ii

�
Pf�

jj

i� 1
2
, (11)

where �2
� :::
�� denotes the uncertainty of the inflation factors. It is a tuning parameter that is kept constant over time and is20

assigned to all state dimensions. It influences how fast the inflation factors are adjusted. This follows the idea by Anderson

(2007, 2009) to avoid a closure problem, where the inflation estimation would require its own inflation. Instead, the uncertainty

is kept constant. Furthermore, only the absolute value of the correlation is considered, since the inflation is based on differences

between measurement and model, but ignores their direction. Note, that this presumes that the correlations of the model state

can be transferred to the inflation. In the presence of unknown model errors this assumption may or may not be correct.25

However, the estimation at measurement locations will remain meaningful in any case.

For the analysis, the distance d� between mean forecast and measurement is used as measurement for �:

d� =

���d�Huf
inf

��� . (12)

The measurement error covariance matrix R� of d� can be calculated based on the error covariance matrices of d and Huf
inf,

(R�)ij =

�����(R)ij +

✓
HPf�

p
�f
p
�f

T
f
inf
:
HT

◆

ij

����� , (13)30

5



where the current inflation �f is already considered.
::::::
inflated

:::::::
forecast

:::::
error

:::::::::
covariance

::::::
matrix

::::
Pf

inf :::
can

::
be

:::::::::
calculated

:::::
from

:::
the

:::::::
inflation

:::::
vector

:::
and

:::
the

:::::::
forecast

::::
error

:::::::::
covariance

::::::
matrix

::
by

:::::::::
combining

:::
Eq.

:::
(9)

::::
(with

::::::
vector

::::::
lambda

:::
and

::::::::
entrywise

:::::::::::::
multiplication)

:::
and

:::
Eq.

:::
(3):

:::::::::::::::::::::
Pf

inf = Pf � [

p
�f
p
�f

T
].
:
The entrywise product is denoted by � and the entrywise square root of � by

p
�.

The expected distance between measurement and mean forecast based on the current inflation is
⇣
h�(�f

)

⌘

i
= [(R�)ii]

1
2 , (13)5

which combines the uncertainties of d and Huf
inf. To be able to determine the Kalman gain, we first calculate the Jacobian

matrix H� of partial derivatives of h� with respect to �:

(H�)ij =

@

@
⇣
�f
⌘

j

⇣
h�(�f

)

⌘

i
, (14)

=


2

h
(�f

)j

i 1
2
⇣
h�(�f

)

⌘

i

��1X

m

(H)ij (H)im

�
Pf�

jm

h⇣
�f
⌘

m

i 1
2
. (15)

With this approximated measurement operator H�, the Kalman gain K� and the analysis state �a are obtained as10

K� = Pf
�H

T
�

⇥
H�P

f
�H

T
� +R�

⇤�1
, (16)

�a
= �f

+K�

h
d� �h�(�f

)

i
. (17)

Note, that the matrices Pf
� and R� can possibly become indefinite, due to the absolute value in Eq. (11) and Eq. (13). Con-

sequently, the inverse in Eq. (16) could become unfeasible. However, we never encountered such a case. In a situation with

uncorrelated measurements, the issue can be resolved by reducing �2
� ::
��:just for that single time step.15

With this Kalman filter, the inflation vector is updated at each time step based on the difference of the mean forecast to

the measurements. Following Anderson (2007), we additionally prohibit a deflation by constraining the inflation values to

(�)i � 1.

2.3 Model

We test the proposed inflation method on a small hydrologic test case. We constructed it specifically to require a strong inflation.20

This makes it possible to explore features of the inflation in detail on a rather short timescale. Due to a small ensemble size,

the results will also vary depending on the seed of the random numbers.
::::
This

:::::::
however,

::
is
::::::
related

::
to
::::::::
different

::::::::::
performance

:::
of

::
the

::::::
EnKF

:::::
itself.

::
In

::::::::::
simulations

::::::
(results

:::
are

:::
not

:::::::
shown),

:::
we

:::::
found

:::
that

:::
the

::::::::
behavior

::
of

:::
the

:::::::
inflation

:::::::
remains

:::::::::
consistent.

The Richards equation describes the change of volumetric soil water content ✓ (–) in a continuous porous medium,

@✓

@t
�r · [K(✓) [rhm(✓)� 1]] = 0 , (18)25

where K (L T�1) is the isotropic conductivity and hm (L) is the matric head. Both are related to the water content. This relation

is typically described through parameterized material properties. We choose the Mualem–van Genuchten parameterization
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(Mualem, 1976; van Genuchten, 1980),

K(⇥) = K0⇥
⌧


1�

h
1�⇥

n/[n�1]
i1�1/n

�2
, (19)

hm(⇥) =

1

↵

h
⇥

�n/[n�1] � 1

i1/n
, (20)

with the saturation ⇥ (–),

⇥ :=

✓� ✓r

✓s � ✓r
. (21)5

The parameterization is described by a set of six parameters: ✓s (–), ✓r (–), ↵ (L�1), n (–), K0 (L T�1) and ⌧ (–).

We additionally consider small scale heterogeneity through Miller scaling. It assumes geometrical similarityand scales the

material properties at each location according to ,
:
.
::::
With

::::
this

:::
the

::::::::::
microscopic

:::::::::
geometry

::
of

:::
the

::::
pore

:::::
space

::
at
::

a
:::::::::::
macroscopic

::::::
position

::
is
::::::::::::
parameterized

::
by

::
a

:::::
single

:::::
length

::::
scale

::
⇠
:::
and

:::
the

::::::::::
macroscopic

::::::::::::
heterogeneity

::::
field

:::
can

::
be

::::::::
generated

::::
with

::
a

:::::
single

:::::
scalar

::::
field

::
of

:::
this

::::::
length

:::::
scale.

::::::::::::::::::::::::::
Miller and Miller (1956) showed

::::
that

:::
the

::::::::
hydraulic

::::::::
functions

::::
scale

::::
with

::::
this

::::::::
parameter

:::::::::
according

::
to10

K(✓) = K⇤
(✓) · ⇠2 , (22)

hm(✓) = h⇤
m(✓) · 1

⇠
, (23)

where
:::
the

::::::::
functions

:::::
K(✓)

:::
and

::::::
hm(✓)

:::
are

:::::::
defined

::
at

:
a
::::::::
reference

:::::
point ⇤ denotes the reference material properties and ⇠ (–) is

the spatially varying
:::
with

:
Miller scaling parameter

::::
⇠ = 1

::::
and

::::
from

:::::
there

:::
are

:::::::
projected

:::
to

::
all

::::::::
locations.

For the test, we choose a one-dimensional case with a depth of 50 cm for a time of 6 days. We set a groundwater table as15

the lower boundary condition throughout the whole time and start from equilibrium conditions. The upper boundary condition

is no flux, except for a rain event with 2.0·10-7
[m s�1

] during the fourth day. As observations we choose two water content

measurements at a depth of 9.5 cm and 19.5 cm as they would be available from time domain reflectometry (TDR). We set the

measurement uncertainty to a standard deviation of 0.007 (e.g. Jaumann and Roth, 2017).

As material we choose sandy loam from Carsel and Parrish (1988): ✓s = 0.41, ✓r = 0.065, ↵ = �7.5 m�1, n = 1.89,20

K0 = 1.23·10-5 m s�1 and ⌧ = 0.5. For the Miller scaling we choose ⇠1 = 0.32 at the upper measurement position and ⇠2 = 3.2

at the lower measurement position. The scaling factors are linearly interpolated
::
We

::::::
reduce

:::
the

:::::::::
description

::
of

:::
the

::::::::::::
heterogeneity

::
to

::::
these

:::
two

::::::::::
parameters.

::::
The

:::
full

:::::::
function

::
of

:::
the

::::::
scaling

::::::
factors

::
is

::::::::
calculated

:::
by

::::::
linearly

:::::::::::
interpolating between the measurement

positions and constantly extrapolated
:::::::::::
extrapolating to the boundaries.

The forward simulations are performed using MuPhi (Ippisch et al., 2006) with a spatial resolution of 1 cm. This corresponds25

to a state with 50 dimensions.

To test the inflation method, we perform a perfect model experiment. With the EnKF we estimate the water content state

and four parameters (⇠1, ⇠2, K0 and ⌧ ) through the augmented state u = [✓, log10(⇠1), log10(⇠2), log10(K0),⌧ ]. We choose to

include the logarithm of ⇠1, ⇠2 and K0, because we expect a more linear relation to the water content state, than for the actual

parameters. For the water content state, we use the correct initial condition as the mean with an uncertainty of 0.005. The30

uncertainty is spatially correlated using the fifth-order piecewise rational function by Gaspari and Cohn (1999) with the length-

scale c = 5 cm. As initial guess for the parameters, we start with unknown heterogeneity log10(⇠1) = log10(⇠2) = 0.0± 0.25,
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corresponding to two standard deviations away from the true values of log10(⇠1) = �0.5 and log10(⇠2) = 0.5. For the saturated

hydraulic conductivity, we choose a too small value of log10(K0) = �5.5± 0.5, K0 in (m s�1), which is about one standard

deviation away from the true value of log10(K0) = �4.9. For the tortuosity ⌧ = 0.5± 0.5 we start from the true value.

Through the unrepresented heterogeneity, we can mimic a model error, leading to a bias towards smaller values for the

estimation of K0 during times without dynamics, which may necessitate inflation. The parameter ⌧ is expected to have a5

smaller influence, since the uncertainty is chosen small and it is already at the true value. This way it can act as an indicator

parameter for the inflation as it does not require inflation.

The EnKF is set up with a total of 25 ensemble members and a damping vector of � = [1.0, 0.3, 0.3, 0.3, 0.3], which we also

apply to the inflation.
:::
The

:::::::
damping

:::::
factor

:::
of

:::
0.3

::
is

::::::
applied

::
to

:::
the

:::::::::
parameters

::
to

::::::::
alleviate

:::::
issues

::
of

::::::::
nonlinear

::::::::
relations

:::::::
between

::::::::::
observations

:::
and

::::::::::
parameters.

:
For the uncertainty of the inflation factors we choose �2

� =

::::
�� = 1.0.10

3 Results

We estimate the water content state together with the four parameters ⇠1, ⇠2, K0 and ⌧ with the EnKF as described in Sect. 2.3.

The development of the water content at the two measurement locations at a depth of 9.5 cm and 19.5 cm is shown together

with the inflation factor at these locations in Fig. 1. The inflation factor is applied to the forecast ensemble before the analysis.

The standard deviation of the inflated ensemble should describe the distance of the estimated mean to the synthetic truth. Note,15

that the inflation factor is not based on this distance and relies on the noisy measurements. Therefore, it is only an indicator.

During the first three days without any dynamics, the uncertainty for the upper measurement is slightly underestimated,

while the uncertainty in the lower measurement is slightly overestimated. This leads to an inflation factor of basically 1 for

the lower measurement (factors smaller than 1 are not allowed), while the inflation factor for the upper measurement is larger.

However, due to correlations between the measurement locations a stronger inflation to fully explain the difference to the truth20

is prevented.

The deviation from the synthetic truth is induced through the initial guess of no heterogeneity and can also be seen in the

systematic deviation of the inflated mean (which is equal to the forecast mean) from the analysis mean. When the infiltration

front reaches the measurements, the deviations from the truth, underestimation of the uncertainty, and inflation factors increase

rapidly. All of them are more pronounced for the upper measurement location. After the main peak, the differences and also25

the inflation factors decrease rapidly again.

The inflation factor for the state is shown in Fig. 2. It shows the strong increase of the inflation factor during the infiltration

and its fast decrease afterwards. The inflation is strongest at the measurement location at a depth of 9.5 cm. The inflation

factor is transferred to the other state locations through the correlations, which decrease with distance. Directly below the

measurement locations the inflation factors are increased less than above. This is due to the chosen interpolation of the Miller30

scaling factor, which reduces the correlations from
::::::
factors.

::::::::
Through

::
the

:::::::::::
interpolation

:::::::
between

:::
the

::::::::::::
measurement

:::::::
locations

::::
and

:::::::::::
extrapolation

::
to

:::
the

:::::::::
boundaries

::::::::
changes, the

::::::::
dynamics

:::::::
changes

::
at

:::
the

:
measurement locationsto these state locations .

:::::::
During

::
the

:::::::::
infiltration

:::
the

::::::::
dynamics

::
is

::::::
mainly

:::::::::
influenced

::
by

:::
the

:::::
water

::::::
content

:::::
above

::::
and

::
the

::::::::::
correlations

::
to

:::::
these

:::::::
locations

:::
are

:::::::
stronger.
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(a) Measurement at 9.5 cm depth
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(b) Measurement at 19.5 cm depth
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Figure 1. Water content estimation at the two measurement locations. The standard deviation of the inflated ensemble should be able to

explain the differences between the inflated mean and the synthetic truth. The inflation factor is increased, when the ensemble uncertainty is

too small.

The development of the Miller scaling factors ⇠1 and ⇠2 at the two measurement positions (9.5 cm and 19.5 cm depth) is

shown in Fig. 3(a) and 3(b) together with the estimated inflation factor for these parameters. Both initial conditions assume

no heterogeneity and start at log10(⇠1) = log10(⇠2) = 0.0± 0.25, corresponding to two standard deviations away from the

true value. At the upper location the true value of log10(⇠1) = �0.5 corresponds to a finer material. Consequently, the water

content drops, as seen in Fig. 1, leading to a strong correlation with the scaling factor, and log10(⇠1) is adjusted rapidly to lower5
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Figure 2. Inflation factor for the water content state. The inflation is strongest at the upper measurement location during the infiltration, when

the uncertainty is underestimated the most. The inflation factor is transferred to the other measurement locations through the correlations in

the Kalman gain. The used interpolation of Miller scaling factors impacts these correlations and leads to the smaller inflation directly below

the measurement locations.

values. Accordingly, the inflation factor is increased quickly in the beginning and then reduced back to 1 when the estimation

of log10(⇠1) reaches and eventually underestimates the true value. The underestimation of the scaling factor corresponds to a

too fine material, which leads to slower changes in the water content state and therefore smaller correlations. The scaling factor

is corrected during the rain event on the fourth day, which also leads to an inflation.

The initial guess for the scaling factor for the depth of 19.5 cm underestimates the scaling factor, which corresponds to a5

too fine material. Again, the correlations are small. The value increases slowly during the dry period in the beginning, but is

inflated and adjusted strongly during the rain event.

The saturated hydraulic conductivity K0 (Fig. 3(c)) was chosen to start a little more than one standard deviation below the

true value. Due to the unrepresented heterogeneity in the beginning, the value decreases even further. The inflation remains

very small due to correlations to both measurement locations. However, as soon as the infiltration event reaches the first10

measurement location, the value is corrected towards the true value. At the same time, the inflation factor is increased due to

the too small uncertainty. After the rain event the inflation factor drops rapidly back to one. The hydraulic conductivity remains

below the true value. Another rain event would be required to improve the estimation further.

The tortuosity ⌧ (Fig. 3(d)) also influences the hydraulic conductivity function, but has in this case much smaller impact and

consequently smaller correlations to the measurements than K0. We use it as an indicator parameter and start at the true value.15

During the infiltration event the value is changed due to its correlation. The corresponding inflation factor is increased as well,

but remains small enough and drops back to 1 quickly enough to not cause any over-inflation of the parameter.

To emphasize the need of a fast adapting inflation factor, we reduce the uncertainty of the inflation factors to �2
� =

::::
�� = 0.5

to slow down their adjustment. The results are summarized in Fig. 4. The inflation of the water content state (Fig. 4(a)) shows,

10
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Figure 3. Development of Miller scaling factors ⇠1 and ⇠2, saturated hydraulic conductivity K0 and tortuosity ⌧ together with their corre-

sponding inflation factors during estimation with the EnKF.

that the inflation factor does not reach as high values as before (see Fig. 2). To compensate for this, the inflation acts over a

longer period of time. The same effect is also observed in the inflation of the parameters (Fig. 4(b) and (c)). This leads to a

smaller inflation during the rain event and consequently a too small uncertainty. At later times, when the cause of the error is

not active any more, the correlations to measurement locations are reduced leading to a slower reduction of the inflation in the

parameters. In the indicator parameter ⌧ the beginning of an over-inflation can be seen towards later times. This necessitates a5

more rapid inflation when correlations are used to update inflation information.

The results for the parameters K0 and ⌧ of a run without inflation (and only damping) are shown in Fig. 5. Again, K0 moves

further away from the true vale
:::::
value due to the unrepresented heterogeneity and comes closer to the true value during the

infiltration event. However, due to the wrong direction
::::
since

:::
the

::::::
Miller

::::::
scaling

::::::
factor

::
is

:::
not

::::::
inflated

:
in the beginning, the

:
it

:
is
::::::::
adjusted

::::::
slower.

::::::::::::
Consequently,

:::
the

:::
K0::

is
::::::::
corrected

::::::
longer

::
in

:::
the

::::::
wrong

::::::::
direction.

::::
The uncertainty eventually becomes too10
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Figure 4. Development of the inflation factor for the water content state and saturated hydraulic conductivity K0 and tortuosity ⌧ together

with their corresponding inflation factors for an estimation with a reduced inflation factor uncertainty of �2
� =

::::
�� = 0.5.

small and in the end the mean is over
::::
more

::::
than 5 standard deviations away from the true value

:
,
::::
since

:::
the

::::::::::
uncertainty

::::::
cannot

::
be

::::::::
increased

:::
any

:::::
more.

As a side note: We have additionally tested the inflation method by reanalyzing the real-world application by Bauser et al.

(2016), where measurements from 11 TDR probes were assimilated with an EnKF. There, the inflation method confirmed the

behavior observed in the small synthetic case presented in this paper.5

4 Discussion

The proposed inflation method uses a Kalman filter to estimate inflation factors within the EnKF. It is based on the difference

between measurements and mean forecast state. It transfers correlations from the forecast of the augmented state to the inflation.

Consequently, the performance will be limited if model errors are structurally not represented in the forecast error covariance

12
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Figure 5. Development of saturated hydraulic conductivity K0 and tortuosity ⌧ for an estimation without inflation.

matrix. The estimation of the inflation factors with a Kalman Filter is, like the EnKF itself, based on a linearized analysis. The

use of a damping factor can alleviate issues with estimating nonlinear dependent parameters. To keep the inflation consistent

with the analysis in the EnKF, we apply the same damping factor for both.

We designed a small synthetic hydrologic test case for the inflation. This test case mimics a model error through initially

unrepresented heterogeneity. We designed the test case so that a strong temporally varying inflation is necessary, as it can occur5

with real data. We choose a short time so that the details of the behavior of the method can be explored. The method showed

that it is capable of inflating states and parameters. The inflation is adjusted fast and differentiates between parameters with

strong and not so strong correlations. No over-inflation of weakly correlated parameters occurred. In this specific test case the

estimation with inflation is far superior to an estimation without inflation.

The fast adjustment speed of the inflation factor is important because of the fast changing model errors and correlations to10

parameters. The adjustment speed is determined by the uncertainty of the inflation factor. This uncertainty is set to a constant

value and has to be adjusted. For all our cases a value of �2
� =

::::
�� = 1 was sufficient, but larger values were possible too. The

need for such a fast adjustment is shown by estimating the same case with a reduced uncertainty of �2
� =

::::
�� = 0.5, which

leads to a slower adaptation of the inflation factor. This leads to smaller inflation factors, which is compensated by maintaining

them for a longer period of time. In this test case this leads to inflation at times after the infiltration front has passed the15

measurements already and the model error is small again. This can cause over-inflation of weakly correlated parameters.
:::
Too

::::
large

:::::::::::
uncertainties

::
of

:::
the

:::::::
inflation

:::
(in

:::
our

:::
test

::::
case

:::::
�� =

::
4),

::::::
where

::
the

::::::::::
uncertainty

::
is

:::::
larger

::::
than

:::
the

::::::
typical

::::
range

:::
for

:::
the

::::::
values

::
of

:::::::
lambda,

:::
can

::::
also

::::
lead

::
to
:::::::::::

overinflation
:::
of

::::::
weakly

:::::::::
correlated

::::::::::
parameters.

:::::::
Reasons

:::
for

::::
this

:::
can

:::
be

:::
the

:::::::::::
linearizations

:::
in

:::
the

::::::
analysis

::::
and

:::
the

:::::::::
calculation

::
of

:::
the

::::::::
Jacobian

::::
(Eq.

:::
14).

::::
This

:::::
limits

:::
the

::::::::::
adjustment

:::::
speed

::
of

:::
the

:::::::
inflation.

:

Fast dropping correlations between measurements and parameters are a limit for the method. An example could be a20

multiplicative parameter only acting on the
::
an

:
infiltration boundary condition. After the infiltration is over, correlations to

this parameter would drop to zero and the inflation factor for this parameter will not be changed any more. If the inflation

13



factor is not equal to 1 at this time, the parameter spread will keep increasing. In such a case, when there is no correlation, the

parameter should be excluded from the estimation and consequently also from the inflation.

The method is in principle capable of compensating unrepresented model errors. However, this is limited to errors that can

be represented with the
:
it

:::::
relies

::
on

::::::::::
correlations

:::::::::
calculated

:::::
from

:::
the

:::::::
forecast

::::::::
ensemble

::
of

:::
the

:
augmented state. If parameters

are estimated along with the augmented state and have correlations to measurement locations with consistently underestimated5

forecast uncertainties, the inflation will keep increasing the parameter spread until the forecast uncertainties are increased

sufficiently. This is the case when the
::::::::
Therefore

:::
the

::::::::::
correlations

::::
have

::
to

::::::
contain

::::::
useful

::::::::::
information.

::::
This

::::::
means

::::
that

:::::::
inflating

::
the

::::::::::
parameters

:::::
based

::
on

:::::
their

::::::::::
correlations

::
to

:::::::::::
measurement

::::::::
locations

:::
has

::
to

:::::::
increase

:::
the

:::::::
forecast

::::::
spread

::
at

:::::
these

:::::::::::
measurement

::::::::
locations.

::
If

::
the

:
parameters have an insufficient influence on the state uncertainty

::
an

:::::::::::
over-inflation

::
of

:::
the

:::::::::
parameters

:::
can

:::::
occur.

An example are
::::::::::::
measurements

:::::
with underestimated measurement uncertainties , when the dynamics is

:::
and

:::::
short

::::
time

:::::::
between10

:::::::::::
measurements

:::::::::
compared

::
to

:::
the

::::::::
timescale

:::
of

:::
the

:::::::::
dynamics.

::::
Then

:::
the

::::::::::
parameters

:::
are

:
not able to follow the

::::::
increase

:::
the

:::::
state

:::::::::
uncertainty

::
in

:::
the

:::::
short

::::::
forecast

::::
time

::::::::
between

::::::::::::
measurements

:::
and

:::
the

:::::::
forecast

::::::::
dynamics

::
is

:::
not

::::
able

::::::::
represent

:::
the measurement

noise. If such errors occur intermittently, e.g., the closed-eye period as proposed by Bauser et al. (2016) could be used to bridge

these times. A rather heuristic solution could be a decay of the inflation factor towards values of 1, as already proposed by

Anderson (2009).15

5 Conclusions

In this work we propose a novel spatiotemporally adaptive inflation method, specifically designed for soil hydrology, which

nevertheless is expected to work in similar systems as well. The inflation method is based on a Kalman filter acting within the

EnKF. The method is capable of rapid adjustments of inflation factors, treating each augmented state dimension individually.

This rapid adjustment is required due to temporally varying model errors, as they can appear through violation of the local20

equilibrium assumption of the Richards equation, hysteresis, or unrepresented heterogeneity.

We demonstrate the use of our inflation method in combination with a damping factor on a small hydrologic example. We

choose heterogeneity as a possible model error, but allow the heterogeneity to be estimated along with the soil hydrologic

parameters K0 and ⌧ of the Mualem–van Genuchten parameterization. Our proposed inflation method proved to be stable

in combination with parameter estimation. The performance of the estimation improved and parameter uncertainty remained25

consistent. The method requires , that model errors can be represented through the augmented state
:::
that

::
the

::::::::::
correlations

:::::
from

::
in

::
the

:::::::
forecast

::::::::
ensemble

:::::::
contain

:::::
useful

::::::::::
information

:::
for

::
the

::::::::
inflation. However, we demonstrate that it even works for only weakly

correlated parameters. We expect the inflation method to generally improve data assimilation with the EnKF and to thus lead

to better state and parameter estimations in soil hydrology.

Appendix A:
::::::::
Jacobian

::
in

:::
the

:::::::
inflation

:::::::
method30
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:::
We

:::::
briefly

:::::
show

:::
the

:::::::::
derivation

::
of

:::
the

::::::::
Jacobian

:::::
matrix

::::
H�:::

for
:::
the

:::::::
inflation

::::
(Eq.

::::
14).

::::::
Again,
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entrywise
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