Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-71-RC2, 2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License.

HESSD

Interactive comment

Interactive comment on "Direct or indirect recharge on groundwater in the middle-latitude desert of Otindag, China?" by Bing-Qi Zhu and Xiao-Zong Ren

Anonymous Referee #2

Received and published: 6 June 2018

Groundwater availability in arid and semi-arid regions is one of the key issues in hydrogeology and is becoming even more important because of the expected climate changes. Within this context, the contribution by Zhu and Ren provides an interesting analysis on the possible recharge supporting the availability of significant groundwater resources in the Otindag desert, north-eastern China. The analyses have been carried out using hydrogeochemical tracers and isotopic measurements on water samples collected from groundwater, surficial (river, lake, and spring) waters, and precipitation water, as well as in-situ records of temperature, pH, conductivity, and TDS concentration. The various steps implemented by the authors to reject possible hypotheses on the groundwater origin (e.g., water flowing from another nearby arid area, precipitation,

Printer-friendly version

Discussion paper

paleo-water resources) are presented in detail and discussed. Zhu and Ren concludes that, based on the available evidences, the groundwater resources in this region are recharged by the leakage through the bed on incise rivers bounding the desert to the east and conveying downward the waters originated from the precipitation on Daxinganling Ranges. Hence, an "indirect" recharge is the main mechanism supporting the water availability in the study arid lands.

Two are the main weaknesses of this ms: 1) the chemical/isotopic investigations seem not supported by a (at least minimum) knowledge of the hydrogeological setting. This is likely one of the reasons why the analyses carried out by the authors are mainly able to exclude recharge mechanisms, but not definitely explain from where this water is originated. The last part of Section 5.5 provides a list of speculative mechanisms (lines 614-652): how the Xilamulun river can recharge the Dali lake when Fig. 15 shows that the bed of the former is less elevated than that of the latter? What support the "speculation" about the "flash floods" in the southern portion of the desert? How you only "theoretically estimate" the isotopic firm of the precipitation on the Yinshan Ranges? 2) the contribution is over-long. The introduction addresses the topic with a too-wide perspective, concepts are repeated, with verbose descriptions. There are also too many figures that can be fruitfully combined. The English form must be improved too.

Moreover, the location of the study area is unclear: Fig 1a is obscure, the various portions of the desert are not provided in the maps shown in Figs. 1b and 2, a large part of the toponymy cited in the text is not added to the maps.

Because of this, the ms need a major revision.

Interactive comment on Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-71, 2018.

HESSD

Interactive comment

Printer-friendly version

Discussion paper

