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Abstract. Storage-discharge (S-Q) relations are widely used to derive watershed properties and predict streamflow 

responses. These relations are often obtained using different recession analysis methods, which vary in recession period 

identification criteria and Q vs. −dQ/dt fitting scheme. Although previous studies have indicated that different recession 

analysis methods can result in significantly different S-Q relations, several challenges remain regarding the evaluation of 

relative effectiveness of these methods in obtaining the characteristic S-Q relation. Here we demonstrated these challenges 15 

and presented a new “control setup” based experimental approach to compare four recession analysis methods. Results 

indicated that irregular binning and event-based methods show superior performance at obtaining the characteristic S-Q 

relation and reconstructing streamflow, while lower envelope method performs the worst. Notably, accuracy of the methods 

is influenced by the extent of scatter in the ln(−dQ/dt) vs. ln(Q) plot. In addition, the derived S-Q relation was very sensitive 

to the criteria used for identifying recession periods. These results raise a warning sign against indiscriminate application of 20 

recession analysis methods and derived S-Q relations for watershed characterizations or hydrologic simulations. Thorough 

evaluation of representativeness of the derived S-Q relation should be performed before it is used for hydrologic analysis. 
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1 Introduction 

Storage-discharge (S-Q) relations are used to understand and predict hydrologic responses [Bart and Hope, 2014; Biswal and 

Marani, 2010; Ceola et al., 2010; Harman and Sivapalan, 2009; Kirchner, 2009; Palmroth et al., 2010; Rupp and Selker, 

2006b; Teuling et al., 2010; Wang, 2011] and to characterize watershed properties such as drainable porosity, soil 

conductivity and aquifer thickness [Brutsaert and Nieber, 1977; Brutsaert and Lopez, 1998; Stoelzle et al., 2013; Szilagyi, 5 

2003; Szilagyi et al., 2007]. These relations are often derived by identifying a relation between stream discharge, Q, and its 

time derivative, −dQ/dt, during recession periods of the hydrograph when evapotranspiration and rapid flow contributions 

(e.g., surface and subsurface flows) to the discharge are negligible, and streamflow is primarily determined by the catchment 

storage [Brutsaert and Nieber, 1977]. The relation between −dQ/dt and Q has been derived using a multitude of recession 

analysis methods [Basso et al., 2015; Biswal and Marani, 2010; Brutsaert and Nieber, 1977; Kirchner, 2009; Shaw and 10 

Riha, 2012; Stoelzle et al., 2013; Szilagyi et al., 2007; Teuling et al., 2010; Vogel and Kroll, 1992], which primarily differ in 

the procedures used to:  

(a) identify streamflow recession periods when rapid flow and evapotranspiration contributions to the streamflow 

are minimal. The time it takes for groundwater flow to be dominant in the streamflow after a precipitation event depends on 

watershed properties. Hence, it is challenging to select a time interval beyond which contributions of rapid flow and 15 

evapotranspiration to the recession hydrograph are negligible, particularly when such an analysis is done based on climate 

and streamflow data alone. Previous studies have used thresholds ranging from one to 10 days after rainfall events [Bart and 

Hope, 2014; Brutsaert and Nieber, 1977; Brutsaert and Lopez, 1998; Malvicini et al., 2005; Mendoza et al., 2003; Rupp et 

al., 2004; Szilagyi and Parlange, 1998; Troch et al., 1993; Van Dijk, 2010; Vogel and Kroll, 1992; Zecharias and Brutsaert, 

1988].  20 

(b) fit a regression line through the scatter points in ln(−dQ/dt) vs. ln(Q) plot. For example, Brutsaert and Nieber 

[1977], Rupp et al. [2009] and Palmroth et al. [2010] fitted a straight line through the lower envelope of the scatter plot, as 

the lowest −dQ/dt for a given Q is likely determined only by groundwater flow with minimal influence from overland flow, 

evapotranspiration, interflow or channel storage. In contrast, Vogel and Kroll [1992], Kirchner [2009], Ceola et al. [2010], 

Teuling et al. [2010], Ajami et al. [2011], Staudinger et al. [2011], and Stoelzle et al. [2013] fitted a regression line through 25 

all the scatter points. Biswal and Marani [2010], Shaw and Riha [2012], Mutzner et al., [2013], Shaw et al. [2013], Bart and 

Hope [2014], Biswal and Marani [2014], Biswal and Kumar [2014], and Basso et al. [2015] on the other hand derived a 

separate regression line for each recession event using only the points from that event.  

Different recession analysis methods yield different S-Q relations, consequently affecting derived hydrologic 

variables [Basso et al., 2015; Ceola et al., 2010; Chen and Krajewski, 2016; Dralle et al., 2017; Stoelzle et al., 2013]. Even 30 

when using the same method, the derived hydrologic variables may still vary to a great extent with small changes in 

aforementioned procedures [Szilagyi et al., 2007]. However, this has largely been overlooked in majority of previous studies 

where a single recession analysis method was generally used to derive the S-Q relation and the derived relation was used as 
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is for subsequent hydrologic analysis without any evaluation of its validity or representativeness. The problem is partly 

attributable to the lack of fine temporal resolution (e.g., daily) watershed-wide storage data that can be used to directly 

validate the derived S-Q relation.  

To circumvent this problem, some studies used an indirect technique to compare the performances of different 

methods. This indirect technique involved using the derived S-Q relation within a modeling framework to generate 5 

hydrologic variables that may be validated against the observed data. For example, Ceola et al. [2010] used four different 

methods within an analytical model proposed by Botter et al. [2009] to generate probability density functions (PDFs) of 

streamflow and compared the simulated PDFs against those obtained from observations. Their results showed that a binning 

method, similar to the one proposed by Kirchner [2009], provided the best parameters which described S-Q relations in five 

out of 14 considered watersheds. Using the same analytical model, Basso et al. [2015] compared three different methods for 10 

estimating the cumulative probability of daily high flows, and suggested that −dQ/dt and Q relation obtained from individual 

recession events outperformed the other two methods in 31 out of 43 cases.  

While both Ceola et al. [2010] and Basso et al. [2015] compared the ability of recession analysis methods to 

estimate PDFs and flow duration curves (FDCs), their studies evaluated the derived S-Q relations and the analytical 

framework in unison. It is not clear if the comparison between methods will still be valid when the assumptions used in the 15 

analytical model are no longer valid. For instance, the analytical model proposed by Botter et al. [2009] relied on the 

assumption that subsurface/groundwater flow is the dominant contribution to streamflow and its suitability is limited to 

watersheds with “absence of extensive impermeable surfaces”. However, as shown in Chen et al. [2015], annual surface 

flow contributions to streamflow can exceed 40%, even when less than 10% of the watershed area is urban. Also, the two 

studies did not address the influence of procedure used to identify the recession period on representativeness of derived S-Q 20 

relations. Furthermore, their focus was limited to comparing different methods’ ability to generate streamflow PDFs. It is 

still not known how the choice of a recession analysis method may influence the accuracy with which streamflow time series 

are estimated.  

Building on the aforementioned inter-comparison studies, here we assessed the performance of four recession 

analysis methods for deriving the S-Q relation. Specifically, we assessed the influence of the methodology used to identify 25 

recession periods dominated by groundwater flow and to fit a regression line through the ln(−dQ/dt) vs. ln(Q) scatter on the 

accuracy of the derived S-Q relations. Accuracy of these derived S-Q relations was evaluated through direct comparison of 

parameters in the S-Q relation, provided the characteristic S-Q relation of the watershed was known. Otherwise, accuracy 

was evaluated based on the subsequently reconstructed streamflow time series and its PDFs. The comparisons were 

performed over 45 watersheds, using two years long meteorological and streamflow data. Analysis periods were chosen to 30 

ensure identical data length across the study sites. Considering the pace of urban land cover expansion in southeastern U.S 

[Homer et al., 2015], the two years period also indirectly guaranteed that watershed properties such as land use and land 

cover would have not changed appreciably over the analysis period.  
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The study is organized as follows. Section 2 presents the descriptions of the study sites, workflow of the four 

recession analysis methods and the strategy we used to evaluate methods’ performance. Section 3 describes the performance 

of each method using both observed and synthetic data. Section 4 summarizes the results and takeaways from this study. 

2 Methodology 

We employed four methods with different strategies to identify groundwater flow dominated recession periods and to fit 5 

regression lines: (1) “Lower envelope method (LEM)” by Brutsaert and Nieber [1977], (2) “Central tendency method 

(CTM)” by Vogel and Kroll [1992], (3) “Irregular binning method (IBM)” by Kirchner [2009] and (4) “Event-based method 

(EBM)” by Basso et al. [2015]. The chosen methods broadly span the majority of recession analysis methodologies used in 

literature. Details of the study areas are presented in Section 2.1. Criteria used to identify groundwater flow dominated 

recession periods and strategies to fit regression lines to ln(−dQ/dt) vs. ln(Q) scatterplots are outlined in Section 2.2. 10 

Methodologies for evaluating the accuracy of the derived S-Q relations are presented in Section 2.3, whereas Section 2.4 

describes the metrics used to evaluate methods’ performances. 

2.1 Study sites and data 

Forty-five rain-dominated watersheds (Table 1) from seven southeastern U.S. states were selected for analysis. All the 

watersheds have drainage areas less than 25 km2 and are drained by perennial streams. Climatology in all 45 watersheds is 15 

humid [Kottek et al., 2006] (average annual precipitation ranging from 641 mm to 1787 mm and runoff ratio ranging from 

0.16 to 0.96). Daily streamflow data are available from the U.S. Geological Survey for the period 2011-2015. The fraction of 

missing values in the streamflow data for each year was less than 1%. Climate data (e.g., hourly precipitation, air 

temperature, solar radiation, wind speed, and relative humidity) for these watersheds were obtained from Phase 2 dataset of 

the North American Land Data Assimilation System (NLDAS-2) [Xia et al., 2012]. Potential evapotranspiration (PET) was 20 

calculated based on FAO-Penman-Monteith equation [Allen et al., 1998]. 

2.2 Recession analysis methods 

Recession analysis methods aim to estimate the relation between catchment water storage S and river discharge Q based on 

recession flow data. Considering mass conservation, the water budget equation at the basin scale can be written as: 

QETP
dt

dS
       (1) 25 

where P is precipitation and ET is evapotranspiration. Assuming g(Q) = dQ/dS as a sensitivity function which describes the 

magnitude of change in discharge per unit change in storage, Eq. (1) can be re-written as 
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1
 or ))(( QETPQg

dt

dQ
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Considering periods with negligible P and ET, the equation reduces to 

QQg
dt

dQ
 )(                                                        (3) 

For watersheds where S-Q relation follows a power-law form, i.e., S=Q, the equation can be re-written in logarithmic 

scale as 5 

)ln()2()ln(ln Q
dt

dQ
 







                                         (4) 

This indicates that a plot between ln(−dQ/dt) vs. ln(Q), for periods with negligible P and ET, can be used to estimate  and  

parameters. The following subsections detail the procedures used for estimating coefficients  and  in the four selected 

recession analysis methods. −dQ/dt and Q in all four methods were obtained using −dQ/dt=(Qt −Qt-1)/t and Q=(Qt +Qt-1)/2 

respectively, where t is a constant value (t = 1 day) unless stated otherwise. The calculations were all performed at daily 10 

time interval, same as the temporal resolution of the streamflow data. 

2.2.1 Lower envelop method (LEM) 

This method was first proposed by Brutsaert and Nieber [1977] and later adopted and modified by Brutsaert and Lopez 

[1998], Rupp and Selker [2006b], Brutsaert and Sugita [2008], Palmroth et al. [2010], Wang and Cai [2010] and Wang 

[2011]. Streamflow data beginning from 5 days after any rainfall event were recorded as a recession period. The relation 15 

between S and Q was then obtained by fitting a least-squares regression line through the lower envelope of the ln(−dQ/dt) 

vs. ln(Q) scatter. When the magnitude of streamflow change is smaller than the precision of the stream gauge, the derived 

lower envelope of ln(−dQ/dt) vs. ln(Q) could be an artifact [Rupp and Selker, 2006a]. Therefore, we followed Palmroth et 

al. [2010] and adopted a “scaled-t ” method to obtain −dQ/dt , where instead of using a constant t, a varying t was used. 

t was calculated at each observation point based on the following criteria: if QQQ tttt   001.0  for t =1 day, then t 20 

was kept at the current value, otherwise, t was gradually increased until QQQ tttt   001.0 . Here Q was the average 

streamflow magnitude of the entire streamflow time series. Once all −dQ/dt and Q points for the recession period were 

obtained and plotted in the log-log axis, the lower envelope of the recession plot was identified through the following 

process based on Palmroth et al. [2010]: data were divided into six ln(Q) bins and a “low value” of ln(−dQ/dt) was 

calculated for each bin. The “low value” was the mean ln(−dQ/dt) of all points that fall below c times the standard deviation 25 

from the mean of that bin. Although c = 2 was used by Palmroth et al. [2010], we found that the lower envelope method 

performed better for c = 0.5 for the selected watersheds (see Fig. S1 and Table S1 in Supplementary Materials). Hence, c = 
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0.5 was selected for analysis in this study. The “low values” of ln(−dQ/dt) for the six bins were then regressed against the 

mean of ln(Q) in each bin using linear least-squares fitting to obtain  and . 

2.2.2 Central tendency method (CTM) 

This method was first used in Vogel and Kroll [1992] to estimate regional low-flow statistics and later used in Ceola et al. 

[2010]. Recession periods dominated by groundwater flow were identified as periods starting from the time points when a 3-5 

day moving average of Q begins to decrease and ending when it begins to increase. In the original method, only recession 

periods that were longer than 10 days and with 17.0  tt QQ at each time step of the recession were selected. However, due to 

the high frequency of precipitation in the southeastern U.S., the minimum length of 10 days for recession periods excluded 

almost all recession events in the selected watersheds. Hence, we modified the criterion and considered all recession periods 

with duration of three or more days. Periods with streamflow smaller than the 5th percentile were excluded from the analysis, 10 

in order to remove points possibly affected by measurement error. A similar exclusion was performed in Vogel and Kroll 

[1992] and Palmroth et al. [2010]. The parameters  and  were then obtained by fitting a line through all the ln(−dQ/dt) vs. 

ln(Q) data points using a linear least-squares method. 

2.2.3 Irregular binning method (IBM) 

This method was first developed by Kirchner [2009] and subsequently used in a number of studies including Ceola et al. 15 

[2010], Teuling et al. [2010], Ajami et al. [2011] and Staudinger et al. [2011]. Here, recession periods dominated by 

groundwater flow were identified as intervals when precipitation and evapotranspiration fluxes were small compared to 

discharge. In Kirchner [2009], recession periods were identified using hourly records. Since here we worked with daily data, 

recession periods were assumed to start two days after a rainfall event following Basso et al. [2015]. Only periods with 

potential evapotranspiration less than 25th percentile were selected. ln(−dQ/dt) vs. ln(Q) data points were first divided into 20 

100 bins equally spaced along the ln(Q) axis. Starting from this minimum bin size and the maximum value of Q, the bin size 

was increased locally and additional data points were included until the standard error in −dQ/dt became lower or equal to 

the mean of −dQ/dt in that bin. Once the bins were determined, the average values of −dQ/dt and Q for each bin were 

calculated. Using linear least-squares regression weighted by the reciprocal of the square of the standard errors of that bin,  

and  parameters were obtained through fitting ln(−dQ/dt) vs. ln(Q) data. This approach weighs high Q values more and 25 

limits the influence of low Q values on the regression, as low Q values are more likely to have measurement errors caused by 

instruments’ precision and stage-discharge relations [Rupp and Selker, 2006a]. 

2.2.4 Event-based method (EBM) 

The event-based method used here is based on the implementation in Basso et al. [2015]. Here, recession periods were 

identified as intervals beginning two days after precipitation events until the start of the next storm and with continuous 30 
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decrease in streamflow for at least five days. A linear least-squares regression was then fitted through (ln(−dQ/dt), ln(Q)) 

data pairs for each individual recession event to estimate e.  was estimated as the median of e values from all the 

recession events. By keeping e constant and equal to , e was then estimated using linear least-squares regression for each 

recession event.  was estimated by evaluating the median of the re-calculated e for all the recession events [Bart and 

Hope, 2014; Basso et al., 2015].  5 

The recession periods and regression lines derived using the four aforementioned methods are illustrated in Fig. 1 

for watershed 9 (Table 1). 

2.3 Evaluating recession analysis methods 

The four recession analysis methods were evaluated based on their capability to capture the characteristic S-Q relation. In 

this regard, g(Q) was derived from the recession hydrograph using Eqs. (3) and (4), which can be rearranged as  10 

)ln(
/

ln))(ln( 21 Qcc
Q

dtdQ
Qg 







 
       (5)  

where c1 = −ln() and c2 = 1−. Note that c1 and c2+1 are intercept and slope of the regression line fitted through −dQ/dt 

vs. Q scatter in log-log scale, respectively. The derived g(Q) from different recession analysis methods could then be 

compared with the “true” value to evaluate the accuracy of each method. However, the “true” g(Q) or the “true” S-Q relation 

is generally unknown for real watersheds due to lack of daily watershed-wide storage data. Hence, we performed an indirect 15 

evaluation based on the accuracy of reconstructed streamflow using the derived S-Q relation (Fig. 2a). Streamflow 

reconstruction was performed using the strategy detailed in Kirchner [2009], based on which Eq. (2) was rewritten as  












 1)(

))(ln(

Q

ETP
Qg

dt

Qd
       (6) 

Reconstructed streamflow was then obtained using the following equation 

t
Q

ETP
QgQQ

t

tt
tttt 











 1)()ln()ln(      (7) 20 

where ET was computed as ET=·PET and  was a constant evaluated based on =(P−Q)/PET for the entire simulation 

period. As the change in Q may lag behind the change in P and S due to infiltration and transport processes in the subsurface, 

we calculated the cross correlation between P and dQ/dt to identify the lag time [Kirchner, 2009]. This lag time was then 

applied to P and ET time series when using Eq. (7). Readers are referred to paragraphs 40 and 41 of Kirchner [2009] to 

know more about the details of the lagging procedure. We used ode15s function in MatlabTM 2015b to solve the first order 25 

differential equation in Eq. (7). It is to be noted that reconstructed streamflow time series obtained using Eq. (7) is expected 

to be inaccurate (/accurate) if g(Q) estimated from a recession analysis method based on Eq. (5) has errors (/is error free). An 

accurate reconstructed streamflow would indicate that g(Q) function, and hence the S-Q relation, was accurately captured. 
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The streamflow reconstruction strategy presented above was based on the assumption that streamflow depends 

solely on catchment storage, and catchment storage can be represented as a single storage element [Kirchner, 2009]. 

However, these assumptions may not be valid in the studied watersheds. In addition, the accuracy of reconstructed 

streamflows may be biased by errors in measurements of meteorological forcings and streamflows, errors introduced by 

mapping inputs across scales, and by the approximation involved in the calculation of ET. To circumvent the challenges 5 

posed by these assumptions and approximations, recession analysis methods were also evaluated using a “control 

experiment” setup (Fig. 2b). Here, synthetic streamflow time series (Qsyn) was generated for each watershed based on the 

following equation  

t
Q

ETP
QgQQ

tsyn

tt
synsyntsynttsyn 













 1

)(
)()ln()ln(

 

              (8)  

where P, ET and gsyn(Qsyn) were predefined. Theoretically, any P, ET and gsyn(Qsyn) may be used. To make Qsyn more 10 

realistic, gsyn(Qsyn) was set equal to the derived g(Q) from observation data, i.e., gsyn(Qsyn)=g(Q). Meanwhile, observed P data 

from each watershed was used, while ET time series was set equal to ·PET. Since the observed ln(−dQ/dt) vs. ln(Q) plot 

always shows a scatter or spread around the “true” g(Q) (e.g., Fig. 1), we also considered a g(Qsyn_) function with a 

Gaussian white noise, i.e., g(Qsyn_)=gsyn(Qsyn)+. Chi-square goodness-of-fit tests at 5% significance level confirmed that  

exhibited a normalized Gaussian distribution in 37 out of 45 watersheds. Magnitude of this Gaussian white noise 15 

qualitatively captured the scatter or the magnitude of uncertainties in the ln(−dQ/dt) vs. ln(Q) plot (shown in row 3 of Fig. 

1). Two levels of noise magnitudes were considered in the g(Qsyn_) function: level 1 noise (1) had the same mean but half 

the standard deviation of the observed, while level 2 noise (2) had the same mean and standard deviation as that in the 

observation data. By individually substituting gsyn(Qsyn) with g(Qsyn_1) and g(Qsyn_2) in Eq. (8), we generated synthetic 

streamflows Qsyn_1 and Qsyn_2, respectively. Recession analysis methods were applied to the two synthetic streamflow time 20 

series to extract sensitivity functions g(Qsyn_1) and g(Qsyn_2). Performance of each method was then evaluated using both 

direct and indirect approaches (Fig. 2). In the direct approach, methods were evaluated based on their capability to extract 

the “true” sensitivity function. In other words, g(Qsyn_1) and g(Qsyn_2) derived from each recession analysis method were 

compared with gsyn(Qsyn). In the indirect approach, performance of each method was evaluated based on how well the 

reconstructed streamflow, obtained by individually substituting g(Q) with g(Qsyn_1) and g(Qsyn_2) in Eq. (7), compared with 25 

Qsyn. 

2.4 Quantifying and comparing the performances of recession analysis methods 

In the indirect approach for evaluating different recession analysis methods, we quantified the accuracy of four reconstructed 

variables, namely streamflow time series, its PDF for the entire length of the series, and the high flow and low flow PDFs. 

High flow was defined as the streamflow magnitude higher than the 80th percentile, while low flow was defined as the 30 
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streamflow lower than the 20th percentile. A weighted coefficient of determination, wr2, metric was used to quantify 

difference between variables derived from the base and reconstructed series. Observed streamflow was the base streamflow 

series for real watersheds (Fig. 2a), whereas Qsyn was the base streamflow for analyses on synthetic streamflow series (Fig. 

2b). wr2 was chosen as it can quantify both the dispersion and systematical bias of the reconstructed variables. In contrast, r2 

ignores the latter information, i.e., if the reconstructed variables were systematically over- or under- estimated, r2 would still 5 

be high [Krause et al., 2005]. wr2 was calculated based on: 









 )1|(|||

)1|(|||
1

22

bb

bb
rwr       (9) 
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
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1

2

1

2

12

)()(

))((
                         (10) 

B and R were the base and reconstructed streamflows, b was the slope parameter of the linear least-squares fitted regression 10 

between B and R. wr2 nearer to 1 indicated a good fit. For each watershed, wr2 was evaluated for each method and for all 

four reconstructed variables. wr2 evaluation for high and low flow PDFs involved identifying periods in the base series 

during which the streamflow magnitude was over 80th or under 20th percentile, respectively. For these identified high and 

low flow periods, we generated corresponding PDFs with 100 equal sized bins for both the base and reconstructed series. 

The range of Q in both base and reconstructed PDFs were set identical, with minimum and maximum magnitude 15 

encompassing the full range of Q among the two series. wr2 performance was then evaluated based on comparisons between 

the base and reconstructed PDFs for the identified periods. An average value of wr2 among all watersheds was then 

calculated for each method. Since average wr2 of a method may get biased by its exceptionally good/bad performance in just 

a few watersheds, we also evaluated the performance of each method by computing total ranks of wr2 for the different 

reconstructed variables (Table 2). In this regard, wr2 was sorted in descending order to rank the methods. For example, to 20 

identify the best performing method in terms of its ability to reconstruct the streamflow, the method that had the largest wr2 

was ranked 1 and the one with the lowest wr2 was ranked 4 for a given watershed. Total rank or the sum of rankings of each 

method from all the watersheds was then calculated, and the method with the least total rank was regarded as the best 

method for that reconstruction variable. To validate the robustness of analysis, in addition to wr2, other metrics such as the 

Nash-Sutcliffe efficiency (NSE), the logarithm Nash-Sutcliffe efficiency (logNSE), the Root Mean Square Error (RMSE), 25 

and the coefficient of determination (R2) were also evaluated (see Table S2 in Supplementary Materials).  

For synthetic streamflow, we also performed direct evaluation of the accuracy of derived S-Q relations. This was 

accomplished through the comparison of intercept and slope of the derived sensitivity functions g(Qsyn_1) and g(Qsyn_2) with 

that of gsyn(Qsyn) (Fig. 2b). 
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3 Results and discussions 

3.1 Evaluating performance of recession analysis methods based on observed streamflow data  

As discussed in Section 2.3, performance evaluation based on observed data could only be obtained using an indirect 

approach. Here the reconstructed streamflows were compared with the observed data. Following the steps presented in Fig. 

2a, a total of 180 (45 watersheds  4 recession analysis methods) streamflow time series were reconstructed based on the 5 

derived g(Q) from the four methods. g(Q) functions estimated by the four methods exhibit significant differences (Fig. 3), 

with c2 estimated by CTM exhibiting a narrower range than that obtained from IBM and EBM. In addition, EBM tends to 

generate the largest c1 and c2 for the g(Q) function. Significant differences among c1 and c2 values obtained from the four 

recession analysis methods highlight the role of selected methods on the derived g(Q) function, and hence the S-Q relation. 

Similar conclusion regarding the influence of recession analysis methods on the parameters of S-Q relation was also drawn 10 

by Stoelzle et al. [2013], Chen and Krajewski [2016], and Dralle et al. [2017]. Notably, the differences in c1 and c2 across 

the four methods may also impact hydrologic analysis and characterizations. This is clear from Fig. 4, which shows marked 

difference in the ranges of wr2 for reconstructed streamflow magnitude (wr2(Q)) obtained using different recession analysis 

methods. The median, 25th and 75th percentile, as well as the maximum of wr2(Q) were largest for IBM and smallest for 

LEM.  15 

Notably, wr2(Q) was observed to be smaller than 0.5 for most of the watersheds from all four methods. Only in a 

few cases wr2(Q) was higher than 0.5, and all these cases used IBM or EBM for streamflow reconstructions (Fig. 4). Even for 

the best performing method (i.e., IBM), which had the largest wr2(Q) among the four methods, only 5 out of 45 watersheds 

displayed wr2(Q) > 0.5. The result indicates that derived S-Q relations from either of the four methods are not guaranteed to 

yield accurate streamflow using Eq. (7). As a corollary, estimation of other closely coupled water budget components such 20 

as evapotranspiration or precipitation using Eq. (7) is not guaranteed to be accurate as well. Unsatisfactory performance of 

the four methods for reconstructing the streamflow can be due to: (a) insufficient accuracy of the methods for capturing the 

true g(Q) and hence the S-Q relation; (b) violation of assumptions inherent in Eq. (7), such as the assumption that streamflow 

depends solely on catchment storage, and catchment storage can be represented as a single storage element [Kirchner, 2009]; 

(c) errors in measurements of meteorological forcings and streamflows; (d) errors introduced by mapping input data across 25 

different spatial scales; and (e) the approximation involved in the calculation of ET. This means that evaluation of recession 

analysis methods based on Eq. (7) or for that matter using any other model that uses similar assumptions and 

approximations, may be unreliable. In light of this, here we also evaluated the performance of recession analysis methods in 

a control setup which ensured that aforementioned assumptions and approximations have negligible impacts. 
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3.2 Evaluating performance of recession analysis methods based on a control experiment setup  

As discussed in Section 2.3, performance evaluation based on synthetic data was obtained using both direct and indirect 

approaches. In the direct approach, differences in estimates of c1 and c2 of g(Qsyn_1) (Figs. 5 (a) and (b)) were evaluated with 

respect to their true value, i.e., c1 and c2 of gsyn(Qsyn), for a total of 180 (45 watersheds  4 recession analysis methods) cases. 

LEM tended to underpredict both the intercept and slope of gsyn(Qsyn) function compared to other methods, while CTM 5 

tended to overpredict the intercept but underpredict the slope of the gsyn(Qsyn) function. The intercept and slope estimated by 

IBM and EBM were pretty close to the true value. However, error in the estimated slope by these methods can be greater than 

2 for some watersheds, which indicates that the derived S-Q relation is significantly different from the true characteristic of 

the system. The result raises doubt about the accuracy of the derived S-Q relations in previous studies where validation of the 

derived S-Q relation was missing. Similar evaluations were also performed for estimates of c1 and c2 of g(Qsyn_2) (see 10 

Section 2.3 for more details). Figs. 5 (c) and (d) again show that LEM underpredicted intercept and slope of the gsyn(Qsyn) 

function compared to other methods, while CTM overpredicted intercept and underpredicted slope. The intercept and slope 

estimated by IBM and EBM were again very close to the true values. These results show that across a range of noise 

magnitudes (or degree of spread in ln(−dQ/dt) vs. ln(Q) plot), LEM consistently underpredicts the intercept and slope than 

the true value, while CTM consistently overpredicts the intercept and underpredicts the slope. Also, IBM and EBM perform 15 

better at extracting the S-Q relation from the noisy streamflow time series.  

Indirect evaluation of the four methods, which involved comparison of reconstructed streamflows to Qsyn, further 

corroborate these findings. For example, total ranks and average wr2 based on indirect evaluation (see Synthetic data: Section 

3.2 Level 1 noise and Level 2 noise in Table 2) showed that IBM and EBM were the top two performing methods with the 

smallest total ranks. The average wr2
 obtained from IBM and EBM were actually very close to each other and much better 20 

than those obtained from LEM and CTM. Notably, the relative performances of the four methods showed similar trend 

irrespective of the reconstruction variable (e.g., Q, pdfQ, pdfHQ, pdfLQ) used for evaluation. However, this was not true 

when the indirect evaluation was conducted using real streamflow data. For instance, Observed data: Section 3.1 in Table 2 

shows that when the relative performance of LEM and EBM was evaluated based on their total ranks in pdfQ, pdfHQ, and 

pdfLQ, LEM performed better than EBM. However, when the evaluation was based on their total ranks in Q, LEM performed 25 

worse than IBM. This indicates that evaluation of the relative performance of different methods can get affected by errors in 

the input data and violation of assumptions inherent in the model (e.g., Eq. (7)) used for reconstruction of streamflow.  

 It is to be noted that the variances in the estimated intercepts and slopes from all methods were smaller for level 1 

noise, and the increase in the noise led to a decrease in performance for these methods as indicated by smaller interquartile 

ranges and closer to zero median values in Figs. 5 (a) and (b) than in Figs. 5 (c) and (d). This reveals that fitting methods 30 

used to derive the characteristic sensitivity function, gsyn(Qsyn), are susceptible to noise in the data. Range of errors in the 

estimated intercepts and slopes by LEM and CTM methods were very close to each other and were much larger than IBM and 

EBM methods under low noise levels. The range became much larger for LEM than other methods under high noise levels. 
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This was partly because LEM used the lowest portion of −dQ/dt vs. Q scatter, which can be “unduly influenced by the 

stochastic scatter in −dQ/dt when Q is small” [Kirchner, 2009]. Even though the performance of all four methods generally 

worsened with increase in the standard deviation of the noise, reduction in the performance of IBM and EBM to noise was 

smaller than that for LEM and CTM methods. For example, 75th percentile of wr2(Q) for IBM and EBM registers negligible 

decrease from level 1 to level 2 noise, while the median decreased by only around 0.05 (Fig. 6). In contrast, the 75th 5 

percentile of wr2(Q) for LEM and CTM were 0.5 and 0.8 under level 1 noise and it reduced to 0.32 and 0.43 under level 2 

noise. The median of wr2(Q) also decreased by a larger amount than for IBM and EBM. This implies that IBM and EBM are 

relatively robust under higher noise. Notably, performances of all the methods with noisy synthetic data were much better 

than that in the observation data, which confirmed that the unsatisfactory reconstructions of streamflow time series were 

indeed largely contributed by the approximations and assumptions inherent in Eq. (6). Cases with negligible errors in c1 and 10 

c2 were found to have wr2 close to 1, thus confirming that indirect evaluation of S-Q relation based on reconstructed 

streamflow from Eqs. (6) and (7) can indeed be performed, as long as the inherent assumptions of the equations are satisfied 

in the studied watersheds.  

 Overall, the results for estimation of streamflow PDFs were better than those for the flow time series (Table 2). wr2 

values for streamflow PDFs, wr2(pdfQ), were larger than 0.8 in 198 out of 360 simulations. In contrast, only 139 out of 360 15 

simulations had wr2(Q) > 0.8. The result indicates that streamflow PDFs can be better reconstructed using the derived S-Q 

relations. Notably, a good estimation of PDF does not guarantee a good estimation of streamflow time series as the 

autocorrelation structure in the PDFs has been effectively removed [Vogel and Fennessey, 1994]. For some watersheds, 

wr2(pdfQ) was acceptable even when wr2(Q) was small. For example, for level 1 noise, wr2(Q) was only 0.19 for watershed 

2 but wr2(pdfQ) was around 0.75. This highlights the need to carefully interpret studies that evaluate recession analysis 20 

methods based only on their efficacy to model PDFs or FDC. Just because PDF or FDC reconstructions are good does not 

mean that the derived S-Q relation is accurate. In fact, the same can be said about evaluation based on high flows as well, as 

they are also well captured by all four methods (Table 2).  

 Performance of recession analysis methods for reconstructing Q and pdfQ exhibit significant differences because 

the two variables focus on different properties of the hydrologic data. Larger wr2(Q) indicate that both the timing of increase 25 

and decrease of Q as well as its magnitude are well captured. In contrast, larger wr2(pdfQ) only confirms that the frequency 

distribution of Q is well captured. For cases when a recession analysis method is not able to capture the recession rate of the 

hydrograph, wr2(Q) can get severely affected. However, for such cases, variations in event peaks may still get captured as 

they are strongly dependent on the variations in event precipitation magnitude, thus resulting in large wr2(pdfQ). This also 

explains why high flows and its PDF were, in general, better captured by all four methods, than low flows (Table 2). For 30 

example, the wr2 associated with high flow PDFs, wr2(pdfHQ), were larger than 0.8 in 220 out of 360 simulations. In 

contrast, only 16 out of the 360 simulations displayed wr2 of the low flow PDFs, wr2(pdfLQ), to be higher than 0.8. 

Significantly poor performance of wr2(pdfLQ) is also partially due to the recurrence of zero values in the reconstructed 
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streamflow time series, because of overestimation of recession rates. These results highlight that high flows and its PDFs can 

be more accurately reconstructed than low flows, using the derived S-Q relations.  

The evaluations based on the four reconstruction variables were performed not only using the wr2, but also using 

other metrics such as the Nash-Sutcliffe efficiency (NSE), the logarithm Nash-Sutcliffe efficiency (logNSE), the Root Mean 

Square Error (RMSE), and the coefficient of determination (R2) (see Table S2 in Supplementary Materials). The relative 5 

rankings of the different methods remained almost the same, with IBM and EBM generally performing better than LEM and 

CTM. 

3.3 Is the relative performance of methods sensitive to alternative recession period extraction criteria?  

The last section evaluated the performance of different recession analysis methods based on standard criteria (Table 3) used 

for identification of recession periods. As noted in Section 2.2, the criteria used to identify recession periods such as number 10 

of days after a precipitation event, length of continuous recession period, and streamflow magnitude lower than a threshold, 

vary between different methods and from one study to another. It was not known how the selection of these criteria may 

affect the accuracy of different methods, and if the conclusions drawn in Section 3.2 will be still valid when other recession 

period extraction criteria were used. Here we considered a range of values for six criteria used to identify recession periods 

(Table 3). The selected range conservatively encompassed the values reported in literature. For all four recession analysis 15 

methods, the two extremes of each criteria were considered. Since three criteria are relevant to each of the four methods 

(Table 3), this translated to a total of 23 criteria permutations for each method. So a total of 1440 (45 watersheds  4 

recession analysis methods  8 criteria combinations for each method = 1440) streamflow reconstructions were performed 

for each noise level.  

 Results in Table 2 (see Synthetic data: Section 3.3) indicate that overall, IBM method performed the best across the 20 

45 watersheds, with EBM method coming in second. In contrast to the previous results (in Sections 3.1 and 3.2) where CTM 

method performed significantly worse than IBM and EBM methods, here the performance of CTM was closer to EBM. If 

methods are ranked based on how often they feature in the top 5 in terms of their performance for a given watershed (Table 

4), IBM and EBM methods again registered as the two best performing methods. These results highlight that these two 

methods perform better than others more often in capturing both the variations and magnitude of streamflows. Furthermore, 25 

the results highlight the importance of identifying the best fitting scheme used to regress through ln(−dQ/dt) vs. ln(Q) scatter 

and the criteria used to extract the recession periods, before any further hydrological analysis. Otherwise, a high performing 

method such as IBM might yield worse result than an often low performing method such as LEM, if optimal criteria are not 

chosen. For the considered criteria ranges, the best criteria combination for each method based on the lowest total rank of 

wr2 over all 45 watersheds is shown in Table 3. The result shows that IBM and LEM performed the best when a larger 30 

streamflow threshold and longer interval since the precipitation event was used to extract the recession period. Selection of a 

larger streamflow threshold reduces the influence of noise existent at low flows. Longer interval since precipitation event 
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reduces the potential contaminating effect of surface flow contribution on discharge. In contrast, the best criteria set for EBM 

was obtained for a smaller streamflow threshold and a shorter interval since precipitation event. This was because EBM uses 

individual recession events to derive parameters. Very few recession events are identified when higher streamflow threshold 

and longer interval since precipitation event thresholds are used, thus impacting the robustness of parameters. As the 

performance of EBM is most favorably influenced by length of time points used to identify an individual event, the criteria 5 

set that leads to this yields the best result. Performance of LEM was adversely impacted when the data points that were 

farther away from the mean (−dQ/dt) for a given Q were used in regression fitting. It is to be noted that for some watersheds, 

the best performance obtained using the optimal combinations of recession analysis method and criteria thresholds may still 

be poor (Fig. 7). For example, for watersheds 2, 17, 37 and 43, wr2 for Q under level 1 noise was only 0.34, 0.30, 0.33 and 

0.34 respectively, indicating that there are cases when none of the methods can capture the streamflow response time series 10 

well enough using S-Q relations derived from recession analysis methods. 

4 Summary and conclusions 

A total of 3510 streamflow simulations using both real and synthetic data sets were conducted to evaluate four recession 

analysis methods in terms of their performance to extract the S-Q relation and to reconstruct the streamflow time series and 

its PDFs. Based on the discussion, experiment design, results, and analyses, the following may be noted: 15 

1. Our results corroborate earlier findings (e.g., Basso et al., [2015]; Ceola et al., [2010]; Chen and Krajewski, [2016]; 

Dralle et al., [2017]; Stoelzle et al., [2013]) that the choice of the recession analysis method and the scheme used to 

identify recession periods heavily affects the derived S-Q relation. We further show that the difference between S-Q 

relations derived from different methods are large enough to appreciably affect the streamflow response obtained 

using it. The result raises a warning sign against application of recession analysis methods for watershed 20 

characterizations or flux estimations unless a thorough evaluation of the representativeness of the derived S-Q 

relation can be established for the specific watershed. 

2. Direct evaluation of representativeness of the derived S-Q relation in real settings is very difficult, in part due to the 

lack of fine temporal resolution (e.g., daily) watershed-wide storage data. While indirect approaches have been 

developed to compare the ability of recession analysis schemes to estimate streamflow PDFs and FDCs, these 25 

approaches are severely affected by (a) errors in the input data, and (b) the violation of assumptions inherent in the 

model, such as the assumption that streamflow depends solely on catchment storage and that the storage can be 

represented as a single storage element. Users are encouraged to perform indirect evaluation of derived S-Q 

relations only using models that appropriately account for contributions of overland flow, evapotranspiration and 

other dominant fluxes, in addition to that by groundwater storage, to streamflow. However, it is to be acknowledged 30 

that developing such a resolved but simple model is not trivial.  
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3. To circumvent the challenges posed by assumptions and approximations in the model and data, here we presented a 

new “control setup” based experiments for evaluation of recession analysis methods. The design assumed a priori 

knowledge of storage-discharge relation in a watershed, and precipitation and evapotranspiration in it. The approach 

allowed both direct and indirect evaluation of recession analyses methods.Our results showed that although no one 

method consistently performed better than the others for all watersheds, overall IBM and EBM showed better 5 

performance for obtaining the S-Q relation, while LEM performed the worst for most of the watersheds. This 

indicates that IBM and EBM may generally be preferred for recession analysis.  

4. As the criteria used to identify recession periods such as the number of days after a precipitation event, length of 

continuous recession period, and streamflow magnitude lower than a threshold, vary between different methods and 

from one study to another, it is logistically infeasible to perform analyses for all possible permutations of recession 10 

period extraction criteria and regression schemes. To explore the validity of our conclusions for a range of recession 

period extraction criteria, we expanded our analyses to include criteria sets that encompass the values used in 

majority of previous studies. Although the main conclusion regarding the performance of different methods were 

still largely true, our results also showed that a high performing recession analysis method (e.g., EBM and IBM) 

might yield a S-Q relation that is less accurate than a low performing method (e.g., LEM), if optimal criteria for 15 

recession period identification are not chosen. The study also identified the optimal criteria set for each method 

(Table 3). EBM performed the best when the minimum number of time points used to identify individual recession 

event was larger. Effectiveness of IBM was highest when a larger streamflow threshold and longer interval since the 

precipitation event was used to extract the recession period.  

5. Although the influence of the spread of the scatter in −dQ/dt vs. Q plot on parameters of S-Q relation has been 20 

shown [Chen and Krajewski, 2016], our results also show that the influences are large enough to significantly 

impact the accuracy of reconstructed streamflow and its PDFs. For watersheds with large noise in Q and −dQ/dt 

scatter, the derived S-Q relation from even the best performing methods (i.e., IBM and EBM), might still be 

uncertain. Notably, the degree of scatter seems to have more impact on LEM method than IBM and EBM methods. 

As watersheds where all recession events exhibit similar decay characteristics generally have smaller scatter in 25 

ln(−dQ/dt) vs. ln(Q), in these watersheds S-Q relations derived from all four methods are expected to be very 

similar. Future studies may attempt to relate statistical characteristics of the spread in ln(−dQ/dt) vs. ln(Q) to the 

performance of methods, which could allow selection of the best method based on Q data alone. 

6. Reconstructed streamflow time series using the derived S-Q relation generally captured the overall PDF of the base 

streamflow, even when the temporal distribution of streamflow magnitudes was not well captured. In general, 30 

reconstructed streamflow PDFs, especially high flow PDFs are less sensitive to the noise in Q and −dQ/dt scatter. 

This is primarily because the magnitudes of high flows are strongly determined by the intensity of precipitation 

events. So even in cases when a recession analysis method is not able to capture the decay rate of recession 
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hydrograph, high flow and its frequency distribution might still be captured. In contrast, low flows are influenced 

by a number of factors including errors in the S-Q relation, high flows and evapotranspiration rates. This indicates 

that although a recession analysis method is able to capture the PDF of streamflow, especially the high flow PDF, 

might not indicate that the derived S-Q relation is characteristic of the watershed. This also means that evaluation of 

recession analysis methods, based only on comparison of how well they can be used to reconstruct PDFs of the 5 

streamflow, especially the high flow PDFs, is not rigorous enough. The result also suggests that if the derived S-Q 

relation is to be used for estimation of streamflow PDFs, both IBM and EBM methods may be used to obtain 

accurate streamflow PDFs in most circumstances (Table 2).  

Aforementioned conclusions should be interpreted with caution, as they are true for the recession analysis method 

configurations used in this study. Future work may focus on performing the presented analysis in other hydroclimatic 10 

settings, and for a range of watershed properties, noise structures and magnitudes to further help test the applicability of 

aforementioned conclusions. 
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Table 1: Watersheds used for recession analyses 

Basin 
No. 

USGS Gauge No. Simulation years Area (km2) 
Basin 
No. 

USGS Gauge 
No. 

Simulation years Area (km2) 

1 0209722970 2011,2012 12.10 24 02334480 2011,2012 24.19 

2 02203863 2011,2012 22.35 25 02334578 2011,2014 13.05 

3 02207400 2011,2014 21.11 26 02334620 2011,2012 17.87 

4 02211375 2011,2012 10.62 27 02335350 2011,2012 23.02 

5 02218565 2011,2012 14.71 28 02378170 2011,2012 12.90 

6 02249007 2013,2015 9.84 29 02384540 2011,2014 21.34 

7 02264051 2013,2015 1.79 30 02391840 2011,2012 21.57 

8 02298492 2011,2014 15.67 31 02393377 2011,2014 9.32 

9 02298527 2013,2014 22.56 32 02479980 2012,2015 20.93 

10 02298530 2013,2014 17.07 33 02480002 2013,2014 21.29 

11 02299861 2011,2014 12.72 34 03207965 2014,2015 16.06 

12 02301738 2011,2013 7.51 35 03260100 2012,2014 10.44 

13 02301740 2013,2014 15.77 36 03284525 2013,2015 2.49 

14 02301745 2013,2014 5.18 37 03287590 2013,2014 10.49 

15 02301900 2011,2012 24.60 38 03289193 2012,2014 24.79 

16 02307668 2012,2013 9.51 39 03292474 2012,2014 15.54 

17 02307674 2011,2013 18.16 40 03292480 2013,2014 15.02 

18 02307780 2012,2014 3.24 41 03298135 2012,2014 14.17 

19 02308870 2013,2014 6.50 42 03301900 2012,2014 9.06 

20 02308935 2011,2012 6.60 43 03426470 2014,2015 19.79 

21 02309415 2012,2013 1.48 44 03491544 2012,2014 12.10 

22 02309421 2012,2013 8.81 45 02306500 2013,2014 19.24 

23 02309425 2012,2013 10.59 
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Table 2: Total ranks and Average wr2 of all watersheds using different recession analysis methods. Better performing methods 
will have lower Total rank and higher Average wr2 

  Reconstructed variables 

Observed data: Section 3.1 Total ranks Average wr2 

Method Q pdfQ pdfHQ pdfLQ Q pdfQ pdfHQ pdfLQ 

LEM 150 96 112 89 0.09 0.42 0.73 0.06 

CTM 121 148 130 154 0.18 0.32 0.71 0.05 

IBM 72 89 92 93 0.3 0.44 0.8 0.07 

EBM 107 117 116 114 0.26 0.4 0.76 0.06 

Synthetic data: Section 3.2 Total ranks (Level 1 noise) Average wr2 (Level 1 noise) 

Method Q pdfQ pdfHQ pdfLQ Q pdfQ pdfHQ pdfLQ 

LEM 162 157 150 150 0.3 0.58 0.7 0.05 

CTM 144 147 146 114 0.39 0.66 0.74 0.18 

IBM 70 75 74 95 0.82 0.9 0.9 0.29 

EBM 74 71 80 91 0.81 0.89 0.87 0.31 

  Total ranks (Level 2 noise) Average wr2 (Level 2 noise) 

Method Q pdfQ pdfHQ pdfLQ Q pdfQ pdfHQ pdfLQ 

LEM 154 155 150 149 0.17 0.47 0.63 0.08 

CTM 156 150 147 111 0.21 0.51 0.64 0.17 

IBM 70 74 78 97 0.72 0.86 0.87 0.27 

EBM 70 71 75 93 0.68 0.82 0.84 0.31 

Synthetic data: Section 3.3 Total ranks (Level 1 noise) Average wr2 (Level 1 noise) 

Method Q pdfQ pdfHQ pdfLQ Q pdfQ pdfHQ pdfLQ 

LEM 8648 8657 8209 7915 0.26 0.55 0.69 0.08 

CTM 5849 6402 6489 5910 0.58 0.75 0.79 0.18 

IBM 4262 3968 4002 4694 0.7 0.87 0.88 0.3 

EBM 5001 4733 5060 5241 0.63 0.8 0.82 0.26 

  Total ranks (Level 2 noise) Average wr2 (Level 2 noise) 

Method Q pdfQ pdfHQ pdfLQ Q pdfQ pdfHQ pdfLQ 

LEM 8452 8713 7919 7921 0.2 0.48 0.66 0.08 

CTM 6721 6789 6773 5862 0.4 0.64 0.72 0.17 

IBM 3646 3430 3781 4630 0.65 0.85 0.86 0.26 

EBM 4941 4828 5287 5347 0.52 0.74 0.77 0.21 
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Table 3: Standard criteria used in section 3.1 and 3.2, and corresponding ranges used in section 3.3 for recession period 
identification. The optimal criteria set for each method is identified by underlined and bolded numbers. 

Standard criteria LEM CTM IBM EBM 

# of days after precipitation 5 -- 2 2 

# of days after which moving average of 
streamflow begins to decrease 

-- 3 -- -- 

Maximum PET -- -- 25th percentile -- 

Minimum # of points in each recession period -- 3 -- 5 

Data points lower than a fraction of standard 
deviation 

0.5 σ -- -- -- 

Streamflow threshold 5th percentile 5th percentile 5th percentile 5th percentile 

Criteria ranges LEM CTM IBM EBM 

# of days after precipitation [1, 5] -- [1, 5] [1, 5] 

# of days after which moving average of 
streamflow begins to decrease 

-- [1, 5] -- -- 

Maximum PET -- -- 
[15th, 35th] 
percentile 

-- 

Minimum # of points in each recession period -- [2, 4] -- [3, 7] 

Data points lower than a fraction of standard 
deviation 

[0.1, 1] σ -- -- -- 

Streamflow threshold 
[5th, 10th] 
percentile 

[5th, 10th] 
percentile 

[5th, 10th] 
percentile 

[5th, 10th] 
percentile 

 

  

 5 

  

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-65
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 19 February 2018
c© Author(s) 2018. CC BY 4.0 License.



23 
 
 

Table 4: Number of occurrences of a method’s performance within top 5 for a given watershed, considered over all 45 watersheds.  

  Reconstructed variables 

 # of occurrence (Noise level 1) # of occurrence (Noise level 2) 

Method Q pdfQ pdfHQ pdfLQ Q pdfQ pdfHQ pdfLQ 

LEM 18 10 22 20 11 14 19 30 

CTM 45 35 32 44 44 31 30 18 

IBM 88 99 86 99 95 108 102 110 

EBM 74 81 85 62 75 72 74 67 
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Figure 1: Hydrograph and recession period identified by colored points using LEM, CTM, IBM and EBM methods for watershed 
10 (Row 1); Zoom-in of the hydrograph and recession period shown in Row 1 from day 651 to 680 (Row 2); fitted line through (-
dQ/dt) vs. Q scatter using the four recession analysis methods (Row 3). 
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Figure 2: Schematic flowchart of procedural steps detailed in Section 2 and implemented in Section 3 
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Figure 3: Parameters c1 and c2 of the g(Q) function for all 45 watersheds, as estimated by the four recession analysis methods. 
Colored boxplots span the interquartile range, whiskers extend to three times the interquartile range. Points that lie outside this 
range are marked as outliers (+) 
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Figure 4: Performance of the four recession analysis methods in reproducing streamflow time series (Q). Colored boxplots span 
the interquartile range, whiskers extend to three times the interquartile range. 
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Figure 5: Difference of estimated intercept and slope of g(Q) function from different methods with respect to the true values 
(identified using superscript “*”) for all the 45 watersheds with level 1 ((a) and (b)) and level 2 noise ((c) and (d)). Points that lie 
outside this range are marked as outliers (+).  
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Figure 6: Performance of the four recession analysis methods in reproducing streamflow time series (Q) in all the 45 watersheds 
with level 1 and level 2 noise. Colored boxplots span the interquartile range, whiskers extend to three times the interquartile range. 
Points that lie outside this range are marked as outliers (+). 
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Figure 7: Best performing methods for all 45 watersheds and four reconstruction variables under 2 noise levels. Colors indicate 
the magnitude of wr2 of reconstruction variables with respect to observed. 
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