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Abstract. Sediment transport activities in periglacial environments are controlled by microclimate conditions (i.e., air and 

ground temperatures, throughfall), which are highly affected by vegetation cover. Thus, there is the possibility that forest 

harvesting, the most dramatic change to vegetation cover in mountain areas, may severely impact sediment transport activities 

in periglacial areas (i.e., soil creep, dry ravel). In this study, we investigated changes in sediment transport activities following 15 

forest harvesting in steep artificial forests located in a humid periglacial area of the Southern Japanese Alps. In the Southern 

Japanese Alps, rainfall is abundant in summer and autumn, and winter air temperatures frequently rise above and fall below 0 

degrees. Our monitoring by time lapse cameras revealed that gravitational transport processes (e.g., frost creep and dry ravel) 

dominate during the freeze-thaw season, while rainfall-induced processes (surface erosion and soil creep) occur during heavy 

rainfall seasons. Canopy removal by forest harvesting increased the winter diurnal ground surface temperature range from 2.7 20 

to 15.9 ºC. Forest harvesting also increased diurnal range of net radiation and ground temperature, and decreased the duration 

of snow cover. Such changes in the microclimate conditions altered the type of winter soil creep from frost creep to diurnal 

needle-ice creep. Winter creep velocity of ground surface sediment in the harvested site (> 2 mm day-1 on the days with frost 

heave) was significantly higher than that in the non-harvested site (generally < 1 mm day-1). Meanwhile, sediment flux on the 

hillslopes, as observed by sediment traps, decreased in the harvested site. Branches of harvested trees left on the hillslopes 25 

captured sediment moving downslope. In addition, the growth of understories after harvesting possibly reduced surface erosion. 

Consequently, removal of the forest canopy by forest harvesting directly impacts the microclimate conditions (i.e., diurnal 

range of ground temperature and net radiation, duration of snow cover) and increases frequency and velocity of periglacial soil 

creep, while sediment flux on hillslopes is decreased by branches left on the hillslopes and recovery of understories. The impact 

of forest harvesting on sediment transport activity is seasonally variable in humid periglacial areas, because microclimate 30 

conditions relevant to both freeze-thaw processes and precipitation-induced processes control sediment transport. 
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1 Introduction 

Sediment transport activities in the periglacial environment are controlled by a hillslopes microclimate conditions (i.e., air 

and ground temperatures, throughfall), which are highly affected by vegetation cover (Matsuoka, 2001; Boelhouwers et al., 

2000; Harris et al., 2008b; Ueno et al., 2015). Thus, there is the possibility that forest harvesting, the most dramatic change to 

vegetation cover in mountain areas (Imaizumi et al., 2012; Goetz et al., 2015), may severely impact sediment transport 5 

activities in periglacial areas (i.e., soil creep, dry ravel). Knowledge of the effects of forest harvesting on sediment transport 

activities is needed to develop better mitigation measures for preventing sediment disasters.  

Previous studies emphasized that vegetation cover, especially a forest canopy, controls microclimate conditions on mountain 

hillslopes. Tree crowns intercept precipitation (Xiao et al., 2000; Fan et al., 2014) and also control net radiation and ground 

surface temperature (Ueno et al., 2010; Ueno et al., 2015). Sediment transport triggers, such as changes in soil moisture, 10 

generation of overland flow, and freeze-thaw of ground water, are affected by these microclimate conditions (Wainwright et 

al., 2000; Gray et al., 2002; Ueno et al., 2015). Therefore, removal of the canopy by forest harvesting alters sediment transport 

opportunities via changes to the microclimate conditions.   

Sediment transport activity is also controlled physically by forest components (e.g., understory, tree roots, and woody debris). 

The understory reduces kinetic energy of raindrops that splash soil particles, reducing surface erosion (Fukuyama et al., 2010; 15 

Nanko et al., 2015). Tree roots reinforce slope stability, reducing the frequency of shallow landslides and debris flows 

(Imaizumi et al., 2008; Goetz et al., 2015). Woody debris captures sediment traveling on hillslopes (Hartanto et al., 2003; 

Imaizumi et al., 2017). Because forest harvesting dramatically changes these components, sediment transport likely changes 

after forest harvesting.  

Mountain hillslopes are generally formed by a combination of various types of sediment transport processes (Roberts and 20 

Church, 1986; Benda, 1990; Imaizumi et al., 2017). However, the majority of studies on the relationship between vegetation 

condition and sediment transport activities have focused on a single sediment transport process (Miyata et al., 2009; Borrelli 

et al., 2015; Goetz et al., 2015). Sediment transport processes triggered by rainfall, such as surface erosion and landslides, are 

active in areas with abundant rainfall (Miyata et al., 2009; Fiorucci et al., 2011), while those triggered by freeze-thaw are active 

in cold environments (Matsuoka, 2001; Boelhouwers et al., 2000; Boelhouwers et al., 2003; Harris et al., 2008b). In humid 25 

periglacial areas, both rainfall and freeze-thaw activities highly affect sediment transport processes (Imaizumi et al., 2015, 

2017). Therefore, the effect of forest harvesting on sediment transport activities possibly changes seasonally, depending on the 

trigger mechanism and the predominant type of sediment transport.  

The Southern Japanese Alps is characterized as being a humid periglacial area because of abundant annual precipitation 

(>2500 mm) and frequent winter freeze-thaw cycles, especially in mid elevation mountain ranges (e.g., 1000 to 2000 30 

m)(Imaizumi et al., 2006; Imaizumi et al., 2017). Gravitational sediment transport processes (e.g., soil creep and dry ravel), 

which have been poorly studied in relation to vegetation change, are more important sediment transport processes than surface 

wash because of the steep terrain (Imaizumi et al., 2017). Over 80% of the Southern Japanese Alps consists of cold temperate 
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natural forests and conifer artificial forests. Social demand for forest harvesting has been increasing in Japan as artificial forests, 

which were vigorously replanted in 1960’ and 1970’, have matured and become a recyclable and domestically producible 

resource. Ueno et al. (2015) showed that the type of winter solifluction changes from frost creep to needle-ice creep following 

forest harvesting in the Southern Japanese Alps, because of changes in the net radiation and ground temperature. However, 

their interpretation of the sediment transport process is limited to winter frost heave and solifluction on a micro scale (e.g., < 5 

1 m2).  Post-harvesting sediment transport processes during heavy rainfall events (generally from June to October), which are 

also an important climatic characteristic in this area (Imaizumi et. al., 2006; Imaizumi et al., 2017), should be assessed to 

evaluate the overall impact of forest management. Additionally, the effect of changes in the ground surface conditions after 

forest harvesting (e.g., residual branches of harvested trees, growth of understories) on sediment transport processes has not 

been understood sufficiently. 10 

The aim of this study is to clarify the impacts of forest harvesting on microclimate conditions and sediment transport 

processes throughout the year in a humid periglacial area. We studied seasonal changes in the impact of forest harvesting on 

microclimate conditions (i.e., radiation, ground temperature, throughfall, freeze-thaw of ground water) and sediment transport 

(i.e., soil creep, dry ravel, surface erosion) by intensive and comprehensive monitoring of harvested and non-harvested forests 

in the Southern Japanese Alps. 15 

2 Study site 

The study site was set in Ikawa University Forest, University of Tsukuba, located on the southern side of the Southern 

Japanese Alps, central Japan (Fig. 1). The geology consists of alternating sandstone and shale layers covered by brown forest 

soil and podzol. Annual precipitation is high (an annual average of 2800 mm from 1993 to 2002; Imaizumi et al., 2010) because 

the area lies in the East Asia Summer Monsoon region. Heavy rainfall events (daily rainfall >100 mm day-1) mainly occur in 20 

the summer months (June to October) due to the activities of the Baiyu front and typhoons. Radiative cooling in the morning 

is significant in winter, as skies are clear for long periods (Ueno et al., 2015). Winter snowfall occurs sporadically in high-

elevation areas from December to March due to passing extratropical cyclones that account for about 15% of the total annual 

precipitation, but plays an important role in changing the ground surface condition via snow cover (Ueno et al., 2015). Surface 

air temperatures frequently rise above and fall below 0 degrees during the winter, even at around 1200 a.s.l. (Ueno et al., 2015; 25 

Imaizumi et al., 2017).  

The study site was 1.5 ha and faced west at 1180–1310 m a.s.l. in the University Forest (Fig. 1). Japanese cypress (evergreen 

needle leaf) trees were planted over the study site in 1975. Annual herbaceous plants (e.g., Leucosceptrum and fern) covered 

0 to 20 % of the ground surface before forest harvesting (Fig. 1c). A 0.87-ha area in the upper part of the study area, called 

clear-cut (CC) site in this study, was harvested during March–September 2012 (Ueno et al., 2015). Logging was conducted by 30 

skyline yarding to avoid damaging the slope surface by dragging logs. After clear-cutting, branches of harvested trees were 

piled up in lines parallel to the contour lines with spacings of 5 to 10 m (Fig. 1b). This work aimed to prepare the environment 
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for revegetation and is common in Japan. After clear-cutting, Japanese cypress trees were replanted in spring 2013. Herbaceous 

plants (e.g., Japanese knotweed, artemisia, brambles, and thistle) covered more than 90% of the ground by July 2013 (Fig. 1d). 

No forest management was conducted in the lower part of the study site, which is called the non-cutting (NC) site. We tried to 

select a control site, NC, with as similar tree and topographic conditions as possible, however, the slope gradient at site CC 

(35–45°) was slightly greater than that at site NC (30–40°, Table 1). 5 

We set up three monitoring plots corresponding to the small-scale topography in the CC site (CCR, CCS, and CCV at ridge, 

straight, and valley shaped cross-sectional topographies, respectively) and two monitoring plots in the NC site (NCR and NCS 

at ridge and straight shaped cross-sectional topographies, respectively (Fig. 1, Table 1). The contributing area of plots at ridge 

shaped slopes (CCR and NCR) were smallest in size while the valley shaped slope (CCV) was the largest in size. Grain size 

at plot CCV was clearly larger than at the other plots due to the accumulation of boulders transported as rockfall and dry ravel 10 

from the upper slopes (Fig. 2). 

 
Figure 1: Topographic map and photographs showing observation sites in the Ikawa University Forest. (a) Topographic map of the 
study site. (b) Photograph of site CC after forest harvesting (May 13, 2013). Branches of harvested trees were piled up in lines 
parallel to the contour lines. (c) Photograph of plot CCS before forest harvesting (August 26, 2011). The synthetic sheet at the lower 15 
end is the sediment trap. A radiometer was attached to the horizontal metal pipe extending from a white vertical pole in the right 
side of the image. (d) Photograph of plot CCS after forest harvesting (September 26, 2013), taken from the same location as Fig. 1c. 
(e) Photograph of plot NCR (May 14, 2015). (f) Location of the Ikawa University Forest within Japan. 
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Table 2: Setting of monitoring plots. 

Plot Cross-sectional 
topography 

Slope gradienta 
(degree) 

Contributing 
area (m2) 

CCR ridge 43  7 
CCS straight 43 28 
CCV valley 40 70 
NCR ridge 34  6 
NCS straight 38 40 

a slope gradient measured 10 m upslope from sediment traps 

3 Methodology 

3.1 Microclimate and freezing-thawing condition 

Preliminary observations of the microclimate, including throughfall and ground surface temperature, were carried out in 5 

both the CC and NC sites in the period June 2011 to March 2012, before forest harvesting (periods 1 to 11 in Table 2). During 

the harvesting period (periods 12 to 14), observations were continued in site NC and suspended in site CC. After forest 

harvesting, intensive monitoring of radiation budget, snow depth, and ground temperature was conducted in the periods 

January 28 to May 27, 2013 and December 2, 2013 to March 24, 2014 in both sites (Tables 2, 3).   

Rainfall at both sites (CC and NC) was observed using tipping bucket rain gauges (0.2 mm for one tip) without a heating 10 

system. Rainfall monitoring in site NC was suspended for several months due to troubles with the monitoring system (bad 

electrical connections, choking of the rain gauge by leaf fall, troubles with the data logger) in the summers of 2013 and 2014. 

In addition, there were some other short intermissions (duration of < 1 month) in both sites due to mechanical troubles. In this 

study, rainfall data for both sites for the periods without monitoring intermissions were used to interpret the differences in 

throughfall between harvested and non-harvested areas. Gross rainfall was monitored at 1-minute intervals at site MU (1060 15 

m a.s.l.), located 1 km south west of the study site. 

To evaluate the precise radiation budget at the surface, four radiation components were measured using radiometers, which 

were attached to a horizontal metal pipe 2.0 m above the ground (Fig. 1c). The ground surface temperature was estimated from 

upward longwave radiation using the Stefan–Boltzmann law. The ground surface temperature was also observed by 

temperature data loggers, which were covered by small cobbles to prevent being directly hit by solar insolation, as a backup 20 

to the radiometers. Because the temperature measured by temperature data loggers has a lower spatial representation than the 

upward longwave radiometers, temperatures estimated from upward longwave radiation were preferentially used in our 

analysis. The ground surface temperature in the period without radiometer data was estimated by substituting temperature from 

temperature loggers into the regression equations obtained from periods when radiometer data was available. Ground 

temperatures at 0.05, 0.15, and 0.30 m depths were monitored by thermocouples. Snow depth was observed by ultrasonic 25 

sensors, which were installed on poles at heights of about 1.7 m and measured the distance between the snow surface (ground 

surface in snow-free periods) and the sensors. Air temperature was observed by thermo-hygrographs. 



6 
 

 

 

Table 2: Observation periods of sediment traps (periods 1 to 27) and operation periods of other monitoring devices. R, TLC, and 
RG indicates radiometers, time lapse cameras, and rain gauges, respectively. Monitoring of sediment traps in site CC was suspended 
during the harvesting period. Monitoring periods of ultrasonic sensors for snow depth, thermocouples, and extensometers were the 5 
same as that of radiometers.  

Periods Start date End date Duration 
(day) Season 

Other monitoring device 

R TLC 
(CC) 

TLC 
(NC) 

RG 
(CC) 

RG 
(NC) 

1 Jun. 22, 2011 Jul. 5, 2011 13 Rainfall     O 
2 Jul. 5, 2011 Aug. 23, 2011 49 Rainfall     O 
3 Aug. 23, 2011 Oct. 7, 2011 37 Rainfall    O  
4 Oct. 7, 2011 Nov. 4, 2011 36 Rainfall    O O 
5 Nov. 4, 2011 Nov. 25, 2011 21 Rainfall     O 
6 Nov. 25, 2011 Dec. 13, 2011 18 FT    O O 
7 Dec. 13, 2011 Jan. 24, 2012 42 FT    O O 
8 Jan. 24, 2012 Feb. 2, 2012  9 FT O   O O 
9 Feb. 2, 2012 Feb. 20, 2012 18 FT O   O O 
10 Feb. 20, 2012 Mar. 6, 2012 15 FT O   O O 

11 Mar. 6, 2012 May 8, 2012 63 FT and 
Rainfall O   O O 

12 May 8, 2012 Aug. 10, 2012 94 Rainfall Harvesting period O 
13 Aug. 10, 2012 Sep. 25, 2012 46 Rainfall Harvesting period  
14 Sep. 25, 2012 Oct. 2, 2012  7 Rainfall Harvesting period  
15 Oct. 2, 2012 Nov. 19, 2012 48 Rainfall      
16 Nov. 19, 2012 Dec. 27, 2012 38 FT O O O O O 
17 Dec. 27, 2012 Jan. 28, 2013 32 FT O O O O O 
18 Jan. 28, 2013 Mar. 4, 2013 35 FT O O O O O 
19 Mar. 4, 2013 Mar. 21, 2013 17 Rainfall O O O O O 
20*2 Mar. 21, 2013 May 27, 2013 67 Rainfall  O O O O 
21 May 27, 2013 Aug. 20, 2013 85 Rainfall  O  O O 
22 Aug. 20, 2013 Nov. 12, 2013 84 Rainfall    O  
23 Nov. 12, 2013 Jan. 17, 2014 66 FT  O  O O 
24 Jan. 17, 2014 Apr. 4, 2014 77 FT  O  O O 
25 Apr. 4, 2014 Jul. 29, 2014 116 Rainfall    O O 
26 Jul. 29, 2014 Nov. 11, 2014 105 Rainfall   O O  
27 Nov. 11, 2014 May 25, 2015 195 FT    O  

 

 

 

 10 
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Table 3: List of monitoring devices 

Monitoring item Devices Model (manufacturer) Interval 
(minute) Accuracy Location 

Rainfall Tipping bucket 
rain gauges 

Rain collector II (Davis 
instruments) 1 4% CC, NC (Fig. 1) 

Four radiation 
components Net Radiometers CNR 4 (Kipp & Zonen Co.) 10 4% CCS, NCS 

Air temperature Thermo-
hygrographs 

Hobo Pro v2 U23(Onset 
Co.) 10 0.2 oC CCS, NCS 

Ground surface 
temperature 

Temperature data 
loggers TidbiT v2 (Onset Co.) 10 0.2oC All plots 

Ground 
temperature Thermocouples - 10 1 oC CCR, NCR 

Snow depth Ultrasonic sensors U-GAGE T30UXUB 
(Banner Engineering Corp.) 10 0.25% CCR, NCR 

Frost heave Extensometers DT-100A (Kyo-WA Co.) 60 0.5% CCR, NCR 
Frost heave, Soil 
creep Time lapse camera GardenWatchCam (Brinno) 10 - CCR, NCR 

 

3.2 Frost heave and soil creep velocity 5 

The occurrence of frost heave was detected by extensometers and TLCs. The main body of the extensometer was fixed to a 

metal beam located 0.4 m above the ground surface. At the lower end of the extensometer, a detection part extended down and 

was attached to the ground surface. The output voltage was converted to displacement (along a line running perpendicular to 

the ground surface) using a calibration formula specific to each sensor. The biases caused by temperature changes in the non-

freezing periods were corrected for using air temperature monitored at both sites. However, a maximum bias, due to changes 10 

in the air temperature, of 5.0 mm remained in site CC following correction equations as a result of large diurnal changes in air 

temperature.  

Time lapse cameras (TLCs) were set 0.2 m above the ground after forest harvesting (in November 2012), and photographed 

the ground surface around the extensometers in the daytime. Temporal changes in the ground surface level were interpreted 

by image analyses using scales placed on the ground surface. Frost heave values observed by the extensometers were generally 15 

lower than those from the camera images because of penetration of the head of the detection part into the loose ground surface. 

Therefore, we converted the displacement values recorded by the extensometers to actual displacement by applying the 

calculated relationship between the displacement recorded by the extensometers and that from the camera images. Velocity of 

the ground surface sediment in the slope direction associated with the soil creep was estimated by comparing the location of 

at least three pebbles on the ground surface in images. In site CC, images in the period June 23 to December 1, 2012, and after 20 

March 5 could not be used for analysis of frost heave and soil creep, because the ground surface sediment was completely 
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covered by living and dead grasses. Data at site NC is not available in the period May 11 to July 29, 2014, due to TLC 

mechanical trouble and loss of data due to a crash of the digital storage. Because of limitations in the resolution of camera 

images (about 1 to 1.5 mm/pixel in the study area), we were only able to identify frost heave and soil creep with a displacement 

of > 1–2 mm. 

3.3 Sediment flux 5 

  Sediment traps were installed at all five monitoring plots to record the sediment flux by ground surface and near-surface 

processes, such as soil creep, dry ravel, rockfall, and surface erosion. The locations of all sediment traps in site CC were over 

5 m away from branches piled up by the forestry operation, because sediment flux just below the piled branches was likely to 

be lower than the surroundings. Vertical wire meshes (1.75 m wide) were secured on the hillslope using steel bars (Figs. 1c, 

3). Synthetic sheets were placed on the upslope side of the wire mesh and adjacent to the ground surface to facilitate capture 10 

of finer sediments (e.g., sand and silt), as well as to distinguish between residual soil and sediment transported from the upper 

slopes. The sides of the synthetic sheets adjacent to the ground surface were closed to prevent removal of fine sediment in the 

trap by rainfall and surface water (Fig. 3). Since the synthetic sheets were fixed on the ground surface, sediment traps observed 

sediment flux on the ground surface, rather than soil creep in the subsoil (>0.05 m in depth).  

Sediment stored in the traps was collected 27 times between July 5, 2011 and May 25, 2015 (Table 2). Sampling intervals 15 

varied from 7 to 195 days, and generally we attempted to capture the major periods of potential seasonal differences (i.e., 

periods of the seasonal rainfall front, typhoon seasons, and extreme periods of freezing and thawing) that would affect the type 

of sediment transport. We classified the 27 sampling periods into rainfall seasons (basically from April to November) and 

freeze-thaw seasons (basically from December to March) in order to investigate seasonal differences in the sediment transport 

characteristics (Table 2). While sediment traps aimed to observe sediment flux over a hillslope scale and can be affected by 20 

the amount and spatial distribution of branches left in the harvested area, TLCs aimed to monitor soil creep within small scale 

target areas (< 1 m2). Sediment larger than 30 mm stored by the traps was weighed in the field using a spring balance. Sediment 

smaller than 30 mm were taken to the laboratory. After drying in a drying oven at a temperature of 105ºC for about eight hours, 

large organic materials (>4 mm) were removed by hand. Then, grain-size distribution was analysed using sieves with mesh 

sizes of 4, 8, and 16 mm. In this study, sediment flux was calculated from the weight of the sediment captured by traps divided 25 

by the width of traps (1.75 m) and sampling intervals. Because the topography (i.e., contributing area, slope gradient) and grain 

size, which potentially affects sediment flux, was different between site CC and NC, the impact of forest harvesting cannot be 

evaluated by comparing the sediment flux between the two sites. Furthermore, the effect of such differences in the site 

conditions cannot be simply removed via division of the sediment flux by the contributing area and other topographic indexes 

because of the spatial discontinuity and complexity of the hydrological processes (Cerdan et al., 2008; Gomi et al., 2008). 30 

Therefore, we evaluated the impact of forest harvesting on the sediment flux by comparing the before and after harvesting 

results in each site. 
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Figure 2: Grain size distribution of the ground surface sediment around monitoring plots. 

 
Figure 3: Illustration of sediment traps. 

4 Results 5 

4.1 Microclimate and freeze-thaw conditions 

   Clear changes in the winter microclimate conditions, including ground surface temperature, net radiation, and snow depth, 

following forest harvesting were monitored in site CC (Figs 4, 5). Before forest harvesting, ground surface temperature at CC 
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in the middle of winter (January and February) was lower than that at NC due to the higher elevation and westerly slope 

orientation (Fig. 4). Diurnal range in the ground surface temperature at NC after the harvesting period did not differ clearly 

from that before the harvesting period (e.g., 1.6 and 1.0 ºC, respectively), while the diurnal range at CC after the harvesting 

period was notably higher than that before the harvesting period (average 15.9 and 2.7 ºC, respectively, Fig. 4). In site CC, 

changes in the ground surface temperature at 7:00 and 14:00 following forest harvesting were -2.4 and +10.8 ºC, respectively 5 

(Fig. 4). Net radiation in site CC is lower than that in site NC in the morning; monthly average of the net radiation at 6:00 in 

February 2013 at CC and NC were 2.6 and 33.2 W m-2, respectively (Fig. 5b). In contrast, net radiation of CC in the day time 

(e.g., monthly average of 266.4 W m-2 at 13:00 in February 2013) was notably higher than that of NC (monthly average of 

14.7 W m-2 at 13:00 in February 2013; Fig. 5b).  

   Snow depth and snow cover duration were also different between sites CC and NC. Snow depth in site CC, where the forest 10 

canopy which had previously intercepted snow was removed by forest harvesting, was higher than that in NC following heavy 

snow fall events (e.g., 0.28 and 0.15 m in CC and NC on January 15, 2013, respectively, Fig. 5a). Meanwhile, duration of the 

snow cover in site CC was shorter than in NC because snow depth decreased at a higher rate in site CC than in site NC. 

Large diurnal changes in the ground temperature in CC (Fig. 4) resulted in a high frequency of freeze-thaw cycles at the 

ground surface (54 times in the period January 1, 2013 to February 28, 2013, Fig. 5c). In the same period, thirteen diurnal 15 

freeze-thaw cycles were observed at a depth of 0.05 m, whereas just three cycles were observed at a depth of 0.15 m (Figs. 6b, 

6c). Ground temperature did not drop below 0 ºC at 0.30 m depth. In contrast, freeze-thaw cycles at the ground surface and 

0.05 m depth in site NC were characterized by a low frequency (11 times at ground surface in the period January 1, 2013 to 

February 28, 2013) and long duration (longer than a week, Figs. 6b, 6d). Ground temperature at a depth of 0.30 m in site NC 

was also below 0 ºC for several days during the long periods of snow cover (Figs. 5a, 6d). Thus, forest harvesting changed 20 

deep seasonal freeze-thaw in the conifer artificial forest (depth of >0.15 m) to shallow diurnal freeze-thaw (depth <0.05 m) 

(Fig. 6). The diurnal freeze-thaw cycle frequently occurred in site CC until the end of April. In comparison, ground temperature 

seldom fell below 0 degrees in site NC in April (Fig. 7c). 

In the seasons without freeze-thaw activities (rainfall seasons), changes in the microclimate conditions following forest 

harvesting were evident in the throughfall amount (Fig. 8). Differences in the hourly rainfall intensity between sites CC and 25 

NC was not clear before forest harvesting (Fig. 8a), while the rainfall intensity in CC was 0 to 3 mm hr-1 higher than that in 

NC after forest harvesting (Fig. 8b). The duration ratio for which throughfall in CC exceeded that in NC was increased from 

0.50 to 0.62 by the forest harvesting. 
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Figure 4: Average ground surface temperature before and after harvesting at site CC (CCS) and NC (NCS). (a) Before clear cutting 
in the period January 1, 2012 to February 29, 2012. (b) After clear cutting in the period January 1, 2013 to February 28, 2013. 

  
Figure 5: Comparison of microclimate conditions between sites CC and NC in winter (January 1 to February 28, 2013). (a) Snow 5 
depth measured by ultrasonic sensors at sites CC (CCR) and NC (NCR). (b) Net radiation measured by net radiometers in sites CC 
(CCS) and NC (NCS). (c) Ground surface temperature (GST) in sites CC (CCS) and NC (NCS).  
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Figure 6: Frost heave and soil creep activities in winter (January 1 to February 28, 2013). (a) Rainfall intensity at site MU. (b) 
Ground surface temperature (GST) in sites CC (CCS) and NC (NCS). (c) Ground temperature in CC (CCR) measured by 
thermocouples. (d) Ground temperature in NC (NCR) measured by thermocouples. Monitoring of the ground temperature at 5 cm 5 
depth was interrupted by a defect of the thermocouple from February 4 onwards. (e) Changes in the ground surface level measured 
by extensometers at CC (CCR) and NC (NCR). (f) Velocity of ground surface sediment along slope direction obtained from TLC 
images.  
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Figure 7: Comparison of microclimate conditions and sediment transport activities between sites CC and NC in spring (March 15 
to May 15, 2013). (a) Hourly rainfall intensity at site MU. (b) Ground surface temperature in sites CC (CCS) and NC (NCS). (c) 
Timing of frost heave in CCR monitored by TLC. Uplifting of the ground surface was not observed at NC in this period. (d) Velocity 
of ground surface sediment by soil creep in CC (plot CCR) and NC (plot NCR) obtained from TLC images. 5 
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Figure 8: Comparison of the hourly rainfall intensity between sites NC and CC. (a) Comparison before forest harvesting (August 25 
to September 2 and November 4 to November 30, 2012). The rainfall monitoring was disrupted by damage to the rain gauge 
associated with a typhoon (September 2 to October 7) and by a malfunction of the data logger (October 7 to November 3). (b) 
Comparison after forest harvesting (April 4 to July 3, 2012). The range where rainfall intensity at CC is 0 to 3 mm hr-1 higher than 
at NC is shaded. 5 

4.2 Frost heave and soil creep 

In winter, ground surface level changes frequently due to frost heave in site CC, except for during periods of snow cover, 

while frost heave in site NC has a longer cycle (Fig. 6e). Uplifting period of the ground surface in site NC roughly corresponded 

to the freezing period of the subsoil (i.e., 0.05 m depth). Velocity of the ground surface sediment by soil creep observed by a 

TLC in site CC was generally high (>2 mm day-1) on the days with frost heave (Figs. 6e, 6f), and was significantly higher than 10 

in site NC (generally <1 mm day-1). 

In site CC, frost heave was less frequent in early spring (March), with almost no frost heave occurring in late spring (late 

April to March; Fig. 7). Frost heave in this period was only monitored by the TLC, as frost heave height in March was lower 

than the bias of extensometers (≤ 5 mm). No changes in the ground surface level were identified in site NC. Displacement of 

ground surface sediment in site CC still occurred frequently until the end of April. High velocity (> 2 mm day-1) was not only 15 

observed on frost-heave days but also on other days, including those with no precipitation. Velocity of the ground surface 
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sediment in site NC during the spring periods (e.g., average 0.08 in the period March 15 to May 15, 2013) was much lower 

than in site CC (e.g., average 0.80 in the same period, Fig. 7). 

During the rainfall seasons, sediment transport was triggered by rainfall in both CC and NC (Fig. 9). Both sites showed a 

similar trend of high velocity of the ground surface sediment (> 2 mm day-1) on days with heavy rainfall events (Fig. 9). The 

rainfall threshold for such high velocities was roughly given by a maximum hourly rainfall intensity of > 5 mm h-1 and a total 5 

rainfall depth of > 40 mm for both sites, although there is some uncertainty because of one plot exceeding the threshold with 

a creep velocity of < 2 mm day-1 (Fig. 10). 

 

 
Figure 9: Velocity of ground surface sediment during rainfall seasons. (a) Velocity at site CC (CCR) in the period May 27 to June 10 
23, 2013. (b) Velocity in site NC (NCR) in the period August 1 to August 31, 2014. Periods in Fig. 9a and 9b are different, because 
we could not successfully obtain velocity of the ground surface sediment both in CC and NC during the same heavy rainfall event 

 
Figure 10: Comparison between total rainfall depth and maximum hourly rainfall during rainfall events with and without clear 
displacement of ground surface sediment (velocity of <2 and ≥2 mm day-1, respectively). Rainfall was monitored at MU. Shaded area 15 
indicates total rainfall depth of > 40 mm and hourly rainfall intensity of > 5 mm h-1. 
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4.3 Sediment flux 

Sediment flux before forest harvesting was spatially variable between monitoring plots (Fig. 11, Table 4). During the 

monitoring period, sediment flux at plot CCV, where sediment from surrounding slopes accumulates due to its large 

contributing area (Table 1), was notably higher than that at the other monitoring plots (Table 4). Differences in the sediment 

flux were not clear between straight and ridge shaped slopes, despite the contributing area of plots at straight slopes being 5 

larger than those at ridge shaped slopes. Sediment flux in CC was slightly higher than that in NC when we compare plots with 

the same shape, potentially because of the higher slope gradient (Table 1). Sediment flux in the winter (Nov. 25, 2011 to March 

6, 2012) was clearly higher than that in the rainfall seasons (June 22 to November 24, 2011) at three plots (CCR, CCV, NCR; 

Table 4). In addition, if two exceptionally large boulders (> 1 kg), which occupied 50.0 % of the sediment flux in the rainfall 

season were excluded, then sediment flux in the winter at NCS (11.1 kg m-1 day-1) was higher than that in the rainfall season 10 

(8.9 kg m-1 day-1). Coarse sediment (>16 mm) occupied a large portion of the sediment flux in both rainfall and freeze-thaw 

seasons at all observation plots except at CCR during rainfall seasons (Fig. 12). Sediment flux of coarse sediment (>16 mm) 

in freeze-thaw seasons was higher than that in rainfall seasons at all plots (Fig. 12). In contrast, sediment flux of fine sediment 

(<4 mm) during rainfall seasons was higher than in freeze-thaw seasons at all plots in CC before forest harvesting (Figs. 12a–

12f) and at all plots in NC (Figs. 12g–12j).  15 

Sediment flux in site CC after the 2012 forest harvesting was lower than that before the harvesting both during rainfall and 

freeze-thaw seasons (Fig. 11, Table 4). Decreases in the sediment flux of all grain size classes were identified (Figs. 12a–12f). 

In contrast, changes in the sediment flux before and after the harvesting period were not clear in site NC (Fig. 11, Table 4). 

The sediment flux of fine sediment during rainfall seasons was lower than that in freeze-thaw seasons at all of the plots in site 

CC after forest harvesting, despite the sediment flux of fine sediment being higher during rainfall seasons than freeze-thaw 20 

seasons before harvesting (Figs. 12g–12j). 

Sediment weight in the artificial forest (in CC before the forest harvesting, and in NC) captured by sediment traps does not 

have a clear relationship with total rainfall depth or maximum daily rainfall in the sampling period of sediment traps, except 

for CCS (Figs. 13, 14, Table 5). Sediment weight after the harvesting in CC does not have a clear relationship with the rainfall 

factors either. In site CC, sediment weight after harvesting is less than that before harvesting, when compared with periods of 25 

similar rainfall depth and intensity (Fig. 13). 

  



17 
 

 
Figure 11: Temporal changes in the sediment flux: (a) plot CCR, (b) CCS, (c) CCV, (d) NCR, and (e) NCS. Numbers in (e) indicate 
sampling periods listed in Table 1. 

Table 4: Comparison of average sediment flux in rainfall and freeze-thaw (FT) seasons before and after forest harvesting. Values in 
parentheses at plot NCS were calculated by excluding the weight of two exceptionally large boulders with weights of > 1 kg.  5 

Plots 
Sediment flux (x 10-3 kg m-1 day-1) 

C/A D/B Before clearcutting  After clearcutting 
Rainfall season 

(A) 
FT season 

(B)  Rainfall season 
(C) 

FT season 
(D) 

CCR   12.1  35.5  3.6 12.1 0.29 0.34 
CCS   21.8  14.4  1.1  6.0 0.05 0.42 
CCV 418.1 753.9  5.4 20.1 0.01 0.03 
NCR   2.5  14.5  3.2 12.3 1.26 0.85 
NCS  17.8 

 (8.9)  11.1  3.1 11.1 0.17 
(0.34) 1.01 

 

0

0.05

0.10

0.15
(a) CCR

J. M. S. J. M. S. J. M. S. J.S.
20122011 2013 2014

n. d.

0

0.05

0.10
(b) CCS

n. d.

0

1

2
(c) CCV

n. d.

2015

0

(d) NCR

0

0.05

0.10
(e) NCSFreezing-thawing periods

Se
di

m
en

t f
lu

x 
(k

g 
m

-1
 d

ay
-1

)

M.

Period

5
10 15 20 25

Harvesting
period



18 
 

 
Figure 12: Average sediment flux of each grain size class in harvested area (site CC). (a) Sediment flux at plot CCR in rainfall 
periods. (b) Sediment flux at plot CCS in rainfall periods. (c)Sediment flux at plot CCV in rainfall periods. (d) Sediment flux at plot 
CCR in freeze-thaw periods. (e) Sediment flux at plot CCS in freeze-thaw periods. (f) Sediment flux at plot CCV in freeze-thaw 
periods. (g) Sediment flux at plot NCR in rainfall periods. (h) Sediment flux at plot NCS in rainfall periods. (i) Sediment flux at plot 5 
NCR in freeze-thaw periods. (j) Sediment flux at plot NCS in freeze-thaw periods. 
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Figure 13: Comparison between rainfall factors and sediment weight captured by sediment traps during rainfall seasons in the 
harvested area. (a) Total rainfall and sediment weight at plot CCR. (b) Total rainfall and sediment weight at plot CCS. (c) Total 
rainfall and sediment weight at plot CCV. (d) Maximum daily rainfall and sediment weight at plot CCR. (e) Maximum daily rainfall 
and sediment weight at plot CCS. (f) Maximum daily rainfall and sediment weight at plot CCV. 5 
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Figure 14: Comparison between rainfall factors and sediment weight captured by sediment traps during rainfall seasons in the non-
harvested area. (a) Total rainfall and sediment weight at plot NCR. (b) Total rainfall and sediment weight at plot NCS. (c) Maximum 
daily rainfall and sediment weight at plot NCR. (d) Maximum daily rainfall and sediment weight at plot NCS. 

 

 5 

 

Table 5: R-squared and p values of linear regressions between sediment weight captured by sediment traps and rainfall factors in 
rainfall seasons. 

Plot 

Before harvesting  After harvesting 
Total rainfall 

(mm) 
 Maximum daily 

Rainfall (mm/day) 
 Total rainfall 

(mm) 
 Maximum daily 

rainfall (mm/day) 
R2 P  R2 P  R2 P  R2 P 

CCR 0.20 0.45  0.60 0.13  0.03 0.75  0.34 0.23 
CCS 0.80 0.04  0.93 0.01  0.14 0.46  0.38 0.19 
CCV 0.24 0.40  0.64 0.10  0.08 0.59  0.27 0.29 
NCR 0.17 0.49  0.12 0.58  0.12 0.47  0.01 0.83 
NCS 0.53 0.16  0.42 0.24  0.16 0.41  0.04 0.67 

5 Discussion 

5.1 Sediment transport characteristics in steep artificial conifer forest 10 

Sediment transport processes in conifer artificial forests located in humid periglacial areas can be characterized as being 

active both in freeze-thaw and rainfall seasons (Fig. 11). Sediment flux in freeze-thaw seasons exceeded that in rainfall seasons, 

indicating the importance of the periglacial processes in a humid periglacial area. Long frost heave cycles (> 1 week) and thick 

freezing layers (0.15–0.30 m deep in some periods) during winter indicate that frost creep occurs in artificial conifer forest NC 

(Figs. 6d, 6e), while diurnal frost heave and needle ice creep dominate in the deciduous broadleaf forest located in the Ikawa 15 

University forest, despite both being in the same elevation zone (Imaizumi et al., 2017). Therefore, the type of periglacial 

sediment transport process differs depending on the dominant tree species.  

In rainfall seasons, although the timing of soil creep agrees with that of strong rainfall events (Figs. 9, 10), rainfall factors 

did not have a clear relationship with sediment transport rate (Figs. 13, 14). In addition, the periods with the highest sediment 

flux differed between the plots (Fig. 11). These are likely to be affected by episodic sediment supply, such as small slope 20 

failure and the release of sediment from woody debris (e.g., Kirchner et al., 2001; Imaizumi et al., 2015). In addition, some 

sediment transport processes (e.g., dry ravel and rockfall) are triggered not only by rainfall, but also by other mechanisms (e.g., 

decrease in cohesion by evaporation of soil moisture, wind, and disturbance by animals) (Verity and Anderson, 1990; Gabet, 

2003), further obscuring the relationship between rainfall factors and sediment transport activities. 
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The ratio of coarse sediment (>16 mm) to all sediment captured by sediment traps was significantly higher than the ratio of 

coarse sediment in the ground surface sediment (Figs. 2, 12), implying that coarse sediment was selectively transported on the 

hillslope. Because the travel distance of coarse sediment as rockfall and dry ravel is longer than that of fine sediment (Dorren, 

2003; Haas et al., 2012), the selective transport of coarse sediment indicates the high activity of rockfall and dry ravel. This 

agrees with findings in previous studies that rockfall and dry ravel are active on slopes with a similar or steeper slope gradient 5 

than the angle of repose, as is the case with our monitoring site (Gabet, 2003; Lamb et al., 2011). The ratio of fine sediment, 

which is selectively transported by overland flow (Heng et al., 2011; Zhao et al., 2014), in the entire sediment flux was less 

than its ratio in the ground surface sediment (Figs. 2, 12). Therefore, surface erosion is less important than gravitational 

sediment transport in the steep Ikawa University Forest.  

As reported in previous studies (Roering et al., 2007; Imaizumi et al., 2017), sediment flux was spatially different depending 10 

on the slope shape (Fig. 11). Sediment flux on the valley shaped slope, which had the largest contributing area, was higher 

than the straight and ridge shaped slopes of site CC before forest harvesting (Fig. 11). The contributing area may affect rapid 

sediment transport with long travel distances (i.e., dry ravel and rock fall) rather than slow sediment transport (i.e., soil creep), 

which can be explained by local freezing and transport conditions that are unrelated to the size of the contributing area (Higashi 

and Corte, 1971; Matsuoka, 1998).  15 

5.2 Impact of forest harvesting on microclimate conditions 

Ground temperature was one of the microclimate conditions most affected by forest harvesting (Figs. 4, 5c). Increases in 

the amplitude of net radiation (Fig. 5b), due to increases in the downward shortwave radiation during daytime and the upward 

longwave radiation in the morning due to the removal of the tree crown (Ueno et al., 2015), likely increased the frequency of 

freeze-thaw cycles after forest harvesting (Fig. 5). Snow depth and duration of snow cover were also changed by forest 20 

harvesting (Fig. 5a). Snow depth after snowfall events in CC was higher than in NC, because of the loss of canopy interception. 

At the same time, duration of snow cover in CC was significantly shorter than NC because of the higher downward radiation 

to the snow surface and higher daytime temperatures (Fig. 5)(Ueno et al., 2015). Such a short duration of snow cover also 

facilitated diurnal changes in the ground temperature and increased the frequency of freeze-thaw cycles. Snow cover also 

affects soil moisture, which controls frost heave and soil creep activities (Meentemeyer and Zippin 1981; Matsuoka 2001; 25 

Boelhouwers et al., 2003; Blankinship et al., 2014). Daytime soil moisture was generally lower during snow free periods than 

snow covered periods due to evaporation caused by insolation (Blankinship et al., 2014). Other changes to the microclimate 

by forest harvesting is increases in the rainfall (throughfall) intensity (Fig. 8). The loss of canopy interception by forest 

harvesting may have increased throughfall in site CC (Xiao et al., 2000; Fan et al., 2014).   

5.3 Impact of forest harvesting on soil creep activity 30 

The impact of forest harvesting on soil creep activities monitored by TLCs was most evident in winter and spring, when 

freeze-thaw of the groundwater directly or indirectly triggered soil creep (Figs. 6, 7). In the winter, large diurnal changes in 
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ground temperature facilitated frequent frost heave in CC, resulting in the high velocity of soil creep seen (Fig. 6)(Ueno et al., 

2015). Forest harvesting changed the type of sediment transport from seasonal frost creep, which is common in seasonal freeze-

thaw areas with a thick freezing depth, to needle ice creep, which is observed in areas with shallow diurnal freeze-thaw activity 

(Fig. 13)(Boelhouwers, 1998; Matsuoka, 2001; Imaizumi et al., 2015).  

In site CC, soil creep velocity in early spring (from late March to April), when the frequency of freeze-thaw cycles had 5 

decreased, was still higher than that in NC (Fig. 7). High soil creep velocity just after freeze-thaw seasons was also observed 

in a natural deciduous forest in the Ikawa University forest, where diurnal freeze-thaw is active because of leaf fall in the 

winter season (Imaizumi et al., 2017). High soil creep velocity in early spring is likely due to the destruction of the soil structure 

caused by frequent freeze-thaw cycles in winter (Regüés and Gallart, 2004; Kværnø and Øygarden, 2006; McCool et al., 2013).  

In seasons without freeze-thaw cycles, soil creep was only identified during heavy rainfall events, excluding early spring 10 

(Figs. 8, 9). Although rainfall (throughfall) intensity in site CC was higher than that in site NC (Fig. 8), the difference in rainfall 

thresholds for high soil creep velocities (> 2 mm day-1) was not clear between the two sites (Fig. 10). The ratio of rainfall 

intercepted by forest canopies is low when the total rainfall depth and rainfall intensity is high (Xiao et al., 2000; Fan et al., 

2014). Such low interception rates during heavy rainfall events, when soil creep is active in the study site, obscures the impact 

of harvesting on the rainfall threshold for soil creep.   15 

5.4 Impact of forest harvesting on the sediment flux 

Winter sediment flux in site CC clearly decreased after forest harvesting in spite of the high soil creep velocity (Fig. 6 and 

Table 4). Previous studies emphasized that sediment transport activity and erosion rate in small plots are different from that 

on hillslope and catchment scales, because of the discontinuity of sediment transport on hillslopes (Moreno-de las Heras et al., 

2010; Sidle et al., 2017). Through field surveys in CC, we identified sediment captured by the branches of harvested trees, 20 

especially where branches were piled up by forestry operations. Previous studies also reported that litters and woody debris on 

the ground prevented sediment transport (Hartanto et al., 2003; Liu et al., 2017). Thereby, the interruption of sediment transport 

by branches resulted in differences in sediment transport activity between the micro and the hillslope scales, as monitored by 

TLCs and sediment traps, respectively. Decreases in the thickness of soil creep layers, which are affected by the thickness of 

the freezing layer (Matsuoka, 2001; Harris et al., 2008a), is also a potential factor affecting decreases in the sediment flux after 25 

harvesting. (Fig. 6). 

   Following forest harvesting, sediment flux decreased during rainfall periods in site CC, while differences in the sediment 

flux in NC before and after harvesting were not significant (Table 4). Decreases in the sediment flux of fine sediment, which 

is selectively transported by overland flow (Heng et al., 2011; Zhao et al., 2014), was clear during the rainfall seasons (Fig. 

12). In site CC, the percentage of ground covered by understories, which reduce the kinetic energy of raindrops splashing soil 30 

particles (Fukuyama et al., 2010; Nanko et al., 2015), changed from < 20% to > 90% within one year of forest harvesting (Fig. 

1). In addition, the forest canopy, which increases the size of raindrops thus increasing their kinetic energy (Nanko et al., 2015), 

was removed by forest harvesting. Therefore, decreases in the sediment flux during the rainfall seasons can occur after 
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harvesting due to decreases in surface erosion rates, together with the capture of sediment by branches and litters of harvested 

trees (Fig. 15). 

 
Figure 15: Difference in the hydrogeomorphic processes before and after forest harvesting on steep slopes in humid periglacial areas. 

6 Summary and conclusion 5 

The impact of forest harvesting on the hydrogeomorphic processes in humid periglacial environments was investigated by 

intensive and comprehensive field observation of microclimate conditions and sediment transport in the Southern Japanese 

Alps. Harvesting of artificial conifer forests clearly changed microclimate conditions and sediment transport activities during 
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the freeze-thaw season. Canopy removal increased the diurnal amplitude of net radiation and ground temperature, and also 

decreased the duration of snow cover. As a result, types of soil creep changed from long-lasting frost creep to daily and frequent 

needle-ice creep. The velocity of ground surface sediment during winter and spring in harvested areas was higher than non-

harvested areas due to high needle-ice creep activity. Sediment flux clearly decreased both in seasons with high freeze-thaw 

activity and seasons with heavy rainfall events. Branches of harvested trees interrupted continuous sediment transport on 5 

hillslopes. In addition, the growth of understories after forest harvesting reduced surface erosion by rain splash. 

Our study clarified that forest canopy removal by forest harvesting promoted sediment transport activity by changing 

microclimate conditions, such as increases in the diurnal range of ground temperature, shortening of snow cover period, and 

increases in throughfall. However, sediment transport activity was restrained due to the entrapment of sediment by branches 

of harvested trees and the growth of understories. While in warm-temperate zones and tropical zones an increase in throughfall 10 

and rain splash is a particularly important impact of harvesting on sediment transport activity, in humid periglacial 

environments it is the microclimate conditions relating to both freeze-thaw processes and rainfall-induced processes that 

control sediment transport activity. Consequently, the impact of the forest harvesting on sediment transport activity is 

seasonally variable in humid periglacial areas. Our study also showed that ground surface conditions after harvesting, which 

are variable depending on the forest management procedure, affects sediment transport activities. Therefore, climate and forest 15 

harvesting procedure need to be considered when evaluating the impact of harvesting on sediment transport activities. 
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