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Abstract 11 

Evaporation is a crucial flux in the hydrological cycle and links the water and energy balance of 12 
a catchment. The Budyko framework is often used to provide a first order estimate of 13 
evaporation, as it is a straightforward model with only rainfall and potential evaporation as 14 

required input. Many researchers have improved the Budyko framework by including more 15 
physics and catchment characteristics into the original equation. However, the parameterization 16 

of these improved Budyko models is not so straightforward, data demanding, and requires local 17 
knowledge that is difficult to obtain at the global scale. In this paper we present an improvement 18 
of the previously presented Gerrits’ model (“Analytical derivation of the Budyko curve based on 19 

rainfall characteristics and a simple evaporation model” in Gerrits et al, 2009 WRR), whereby 20 

total evaporation is calculated on the basis of simple interception and transpiration thresholds in 21 
combination with measurable parameters like rainfall dynamics and storage availability from 22 
remotely sensed data sources. While Gerrits’ model was previously investigated for 10 23 

catchments with different climate conditions and where some parameters were assumed to be 24 
constant, in this study we applied the model at the global scale and fed the model with remotely 25 

sensed input data. The output of the model has been compared to two complex land-surface 26 
models, STEAM and GLEAM, as well as the database of Landflux-EVAL. Our results show that 27 
total evaporation estimated by Gerrits’ model is in good agreement with Landflux-EVAL, 28 

STEAM and GLEAM. The results also show that Gerrits’ model underestimates interception in 29 
comparison to STEAM and overestimates it in comparison to GLEAM, whereas the opposite is 30 

found for transpiration. Errors in interception can partly be explained by differences in the 31 
definition of interception that successively introduce errors in the calculation of transpiration. 32 

Relating to the Budyko framework, the model shows a reasonable performance for the 33 
estimation of total evaporation. The results also found a unimodal distribution of the 34 

transpiration to precipitation fraction (
𝐸𝑡

𝑃
), indicating that both increasing and decreasing aridity 35 

will result in a decline in the fraction of transpired rainfall by plants for growth and metabolism.  36 

 37 
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Budyko curves are used as a first order estimate of annual evaporation in terms of annual 1 
precipitation and potential evaporation. If the available energy is sufficient to evaporate the 2 
available moisture, annual evaporation can approach annual precipitation (water-limited 3 

situation). If the available energy is not sufficient, annual evaporation can approach potential 4 
evaporation (energy-limited situation). Using the water balance and the energy balance and by 5 
applying the definition of the aridity index and Bowen ratio, the Budyko framework can be 6 
described as (Arora, 2002): 7 

 
𝐸𝑎

𝑃𝑎
=

∅

1+𝑓(∅)
= 𝐹(∅)  (1)  

with 𝐸𝑎 annual evaporation [L/T], 𝑃𝑎 annual precipitation [L/T], 
𝐸𝑎

𝑃𝑎
 the evaporation ratio [-], and 8 

∅ the aridity index, which is defined as the potential evaporation divided by annual precipitation 9 
[-]. All Budyko curves, developed by different researchers (Table 1), have a similar pattern as 10 
Eq. (1).   11 

The equations shown in Table 1 assume that the evaporation ratio is determined by climate only 12 

and do not take into account the effect of other controls on the water balance. Therefore, some 13 
researchers incorporated more physics into the Budyko framework. For example, Milly (1994, 14 
1993) investigated the root zone storage as an essential secondary control on the water balance. 15 

Choudhury (1999) used net radiation and a calibration factor in the Budyko curves. Zhang et al. 16 
(2004, 2001) tried to add a plant-available water coefficient, Porporato et al. (2004) took into 17 

account the maximum storage capacity, Yang et al. (2006, 2008) incorporated a catchment 18 
parameter, and Donohue et al. (2007) tried to consider vegetation dynamics. The inclusion of 19 
these physics and catchments characteristics improved the performance of the Budyko curves 20 

locally; however, it made them less applicable for the global scale, since the parameterisation is 21 
data demanding and requires local knowledge, which is not always available. Therefore, in this 22 

study, we aim to show that the Budyko framework can also be explained with a simple analytical 23 
model that is less depending on local data that is difficult to obtain at the global scale. 24 

Accordingly, we use the reasoning of the model of Gerrits et al. (2009) (hereafter Gerrits’ 25 
model) that recognizes the characteristic time scales of the different evaporation processes (i.e. 26 
interception at daily scale and transpiration at monthly scale). Despite the fact that Gerrits et al. 27 

(2009) aimed to develop an analytical model that is physically based and only uses measurable 28 
parameters, some of the required input values are not available at the global scale (e.g., carry 29 

over parameter (𝐴), interception storage capacity (𝑆𝑚𝑎𝑥), and plant available water (𝑆𝑢,𝑚𝑎𝑥)). 30 

Now with the current developments in remotely sensed data, new opportunities have arisen to 31 
overcome this data limitation. Therefore, in this study, we propose relations between the missing 32 

input parameters and remotely sensed data products, so the Gerrits’ model can be tested at the 33 
global scale. 34 

One of the input parameters is soil moisture storage. Recently, many studies (e.g., Chen et al., 35 
2013; Donohue et al., 2010; Istanbulluoglu et al., 2012; Milly and Dunne, 2002; Wang, 2012; 36 
Zhang et al., 2008) found that soil moisture storage change is a critical component in modelling 37 
the interannual water balance. Including soil water information into the Budyko framework was 38 
often difficult, because this information is not widely available. However, Gao et al. (2014) 39 
presented a new method where the available soil water (which is often linked to soil water 40 
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capacity) is derived from time series of rainfall and potential evaporation, plus a long-term 1 
runoff coefficient. These input time series can be obtained locally (e.g., de Boer-Euser et al. 2 
(2016)), but can also be derived from remotely sensed data as shown by Wang-Erlandsson et al. 3 

(2016), allowing us to apply the method at the global scale and incorporate it in the Gerrits’ 4 
model.  5 

Next to using the method of Gao et al (2014) to globally estimate the maximum soil water 6 

storage (𝑆𝑢,𝑚𝑎𝑥), we also tested a method to derive the interception storage capacity (𝑆𝑚𝑎𝑥) from 7 

remotely sensed data. These two parameters are required to make a first order estimate of total 8 
evaporation, and to partition this into interception evaporation and transpiration as well. The 9 
outcome is compared to more complex land-surface-atmosphere models. Furthermore, the model 10 
results will be related to the Budyko framework for a better understanding of the partitioning of 11 

evaporation into transpiration and interception.   12 

2. Methodology 13 

Total evaporation (𝐸) may be partitioned as follows (Shuttleworth, 1993): 14 

𝐸 = 𝐸𝑖 + 𝐸𝑡 + 𝐸𝑜 + 𝐸𝑠  (2)  

in which 𝐸𝑖 is interception evaporation, 𝐸𝑡 is transpiration, 𝐸𝑜 is evaporation from water bodies 15 

and 𝐸𝑠 is evaporation from the soil, all with dimension [LT-1]. In this definition, interception is 16 
the amount of evaporation from any wet surface including canopy, understory, forest floor, and 17 

the top layer of the soil. Soil evaporation is defined as evaporation of the moisture in the soil that 18 
is connected to the root zone (de Groen and Savenije, 2006) and therefore is different from 19 

evaporation of the top layer of the soil (several millimeters of soil depth, which is here 20 
considered as part of the interception evaporation). Hence interception evaporation is the fast 21 

feedback of moisture to the atmosphere within a day from the rainfall event and soil evaporation 22 
is evaporation from the non-superficial soil constrained by soil moisture storage in the root zone. 23 

Like Gerrits et al. (2009), we assume that evaporation from soil moisture is negligible (or can be 24 
combined with interception evaporation). Evaporation from water bodies is used for inland open 25 
water, where interception evaporation and transpiration is zero. As a result, Eq. (2) becomes: 26 

𝐸 = 𝐸𝑜 

𝐸 = 𝐸𝑖 + 𝐸𝑡 

for water bodies 

for land surface 

(3a) 

(3b) 

where 𝐸𝑖 is direct feedback from short term moisture storage on vegetation, ground, and top 27 

layer, and 𝐸𝑡 is evaporation from soil moisture storage in the root zone.  28 

For modelling evaporation, it is important to consider that interception and transpiration have 29 
different time scales (i.e. the stock divided by the evaporative flux) (Blyth and Harding, 2011). 30 
With a stock of a few millimeters and the evaporative flux of a few millimeters per day, 31 

interception has a time scale in the order of one day (Dolman and Gregory, 1992; Gerrits et al., 32 
2007, 2009; Savenije, 2004; Scott et al., 1995). In the case of transpiration, the stock amounts to 33 
tens to hundreds of millimeteres and the evaporative flux to a few millimeters per day (Baird and 34 
Wilby, 1999), resulting in a time scale in the order of month(s) (Gerrits et al., 2009). In Gerrits’ 35 
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model, it is successively assumed that interception and transpiration can be modelled as 1 
threshold processes at the daily and monthly time scale, respectively. Rainfall characteristics are 2 
successively used to temporally upscale from daily to monthly, and from monthly to annual. A 3 

full description of the derivation and assumptions can be found in Gerrits et al. (2009). Here, we 4 
only summarize the relevant equations (Table 2) and not the complete derivation. Since we now 5 
test the model at the global scale, we do show how we estimated the required model parameters 6 
and the inputs used. 7 

2.1. Interception 8 

Gerrits’ model considers evaporation from interception as a threshold process at the daily time 9 

scale (Eq. (4), Table 2). Daily interception (𝐸𝑖,𝑑), then, is upscaled to monthly interception (𝐸𝑖,𝑚, 10 

Eq. (5), Table 2) by considering the frequency distribution of rainfall on a rain day (𝛽-parameter) 11 

and subsequently to annual interception (𝐸𝑖,𝑎, Eq. (6), Table 2) by considering the frequency 12 

distribution of rainfall in a rain month (𝜅𝑚-parameter) (see de Groen and Savenije (2006), 13 
Gerrits et al. (2009)). A rain day is defined as a day with more than 0.1 mm day-1 of rain and a 14 
rain month is a month with more than 2 mm month-1 of rain.  15 

While Gerrits et al. (2009) assumed a constant interception threshold (𝐷𝑖,𝑑 = 5 mm day-1) for the 16 

studied locations, we here use a globally variable value based on the Leaf Area Index (LAI) from 17 

remote sensing data. The interception threshold (𝐷𝑖,𝑑) is a daily average during the year and is 18 

either limited by the daily interception storage capacity 𝑆𝑚𝑎𝑥 (mm day-1) or by the daily potential 19 

evaporation (Eq. (9), Table 2) and thus not seasonally variable. We can assume this because for 20 

most locations 𝑆𝑚𝑎𝑥 is smaller than 𝐸𝑝,𝑑 even if we consider a daily varying potential 21 

evaporation. Additionally, 𝑆𝑚𝑎𝑥 (based on LAI) could also be changed seasonally, however 22 

many studies show that the storage capacity is not changing significantly between the leafed and 23 

leafless period (e.g., Leyton et al., 1967; Dolman, 1987; Rutter et al., 1975). Especially, once 24 

interception is defined in a broad sense that it includes all evaporation from the canopy, 25 

understory, forest floor, and the top layer of the soil: leaves that are dropped from the canopy 26 

remain their interception capacity as they are on the forest floor in the leafless period. 27 

Furthermore, Gerrits et al (2010) showed with a Rutter-like model that interception is more 28 

sensitive to the rainfall pattern than by the storage capacity. This was confirmed by Miralles et 29 

al. (2010). Hence, in interception modelling, the value of the storage capacity is of minor 30 

concern, and its seasonality is incorporated in the temporal rainfall patterns.  31 

The daily interception storage capacity should be seen as the maximum interception capacity 32 

within one day, including the (partly) emptying and filling of the storage between events per day, 33 

thus 𝑆𝑚𝑎𝑥 = 𝑛 ∙ 𝐶𝑚𝑎𝑥, where 𝐶𝑚𝑎𝑥 [L] is the interception storage capacity specific for a land 34 

cover type. If there is only one rain event per day (𝑛 = 1 day-1) (Gerrits et al., 2010), 𝑆𝑚𝑎𝑥 [LT-1] 35 

equals 𝐶𝑚𝑎𝑥 [L], as is often found in the literature. Despite proposing modifications for storms, 36 

which last more than one day (Pearce and Rowe, 1981), and multiple storms per rain day 37 

(Mulder, 1985), Miralles et al. (2010) and Pearce and Rowe (1981) both mentioned that 38 

accounting for n is rarely necessary. Pearce and Rowe (1981) mentioned that "In many climates, 39 

however, such adjustments will not be necessary, or small enough that they can be neglected”. In 40 
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our interpretation, this is because the number of times the interception storage can be filled and 1 

completely emptied is limited once we assume a drying time of a couple of hours (e.g., 4), which 2 

is common (Wang-Erlandsson et al., 2014). 3 

For 𝑛 = 1, the interception storage capacity can be estimated from Von Hoyningen-Huene 4 

(1981), which is obtained for a series of crops based on the leaf area index (LAI) (de Jong and 5 
Jetten, 2007) (Eq. (10), Table 2). Since the storage capacity of the forest floor is not directly 6 
related to LAI, it could be said that the 0.935 mm in Eq. (10) is sort of the storage capacity of the 7 
forest floor. Since this equation was developed for crops, it is likely that it underestimates 8 
interception by forests with a denser understory and forest floor interception capacity. 9 

2.2. Transpiration 10 

Transpiration is considered as a threshold process at the monthly time scale (𝐸𝑡,𝑚 (mm month-1), 11 

Eq. (7), Table 2) and successively is upscaled to annual transpiration (𝐸𝑡,𝑎 (mm year-1), Eq. (8), 12 

Table 2) by considering the frequency distribution of the net monthly rainfall (𝑃𝑛,𝑚 = 𝑃𝑚 − 𝐸𝑖,𝑚) 13 

expressed with the parameter 𝜅𝑛. To estimate the monthly and annual transpiration, two 14 

parameters 𝐴 and 𝐵 are required.  𝐴 is the initial soil moisture or carryover value (mm month-1) 15 

and 𝐵 is dimensionless and described as Eq. (15), where the dimensionless 𝛾 is obtained by Eq. 16 
(16). 17 

Gerrits et al. (2009) assumed a constant carry over value (𝐴) and used 𝐴 = 0, 5, 15, 20 mm 18 
month-1, depending on the location, to determine annual transpiration. Moreover, they 19 

considered 𝛾 to be constant (𝛾 = 0.5). In the current study, we determined these two parameters 20 

based on the maximum root zone storage capacity (𝑆𝑢,𝑚𝑎𝑥). In Eq. (17) ∆𝑡𝑚 equals 1 month and 21 

𝑆𝑏 is estimated by 𝑎𝑆𝑢,𝑚𝑎𝑥 (Eq. (18) in table 2), where 𝑎 is 0.5-0.8 (de Groen, 2002; 22 

Shuttleworth, 1993). In this study, we assumed 𝑎 to be  0.5 as this value is commonly used for 23 

many crops (Allen et al., 1998). Furthermore, we assumed that the monthly carry over 𝐴 could 24 

be estimated by Eq. (18) and in this study, we assumed 𝑏 = 0.2 which gave the best global 25 

results for all land classes. In the sensitivity analysis both the sensitivity of 𝑎 and 𝑏 towards total 26 

evaporation will be investigated. To estimate 𝐴 and 𝛾, it is important to have a reliable database 27 

of 𝑆𝑢,𝑚𝑎𝑥. For this purpose, we used the global estimation of 𝑆𝑢,𝑚𝑎𝑥 from Wang-Erlandsson et 28 

al. (2016). 𝑆𝑢,𝑚𝑎𝑥 is derived by the mass balance method using satellite based precipitation and 29 

evaporation (Wang-Erlandsson et al., 2016). Wang-Erlandsson et al. (2016) estimated the root 30 
zone storage capacity from the maximum soil moisture deficit, as the integral of the outgoing 31 

flux (i.e. evaporation which is the sum of transpiration, evaporation, interception, soil moisture 32 
evaporation, and open water evaporation) minus the incoming flux (i.e. precipitation and 33 
irrigation). In their study, the root zone storage capacity was defined as the total amount of water 34 

that plants can store to survive droughts. Note that this recent method (Gao et al., 2014) to 35 

estimate 𝑆𝑢,𝑚𝑎𝑥 does not require soil information, but only uses climatic data. It is assumed that 36 

ecosystems adjust their storage capacity to climatic demands irrespective of the soil properties. 37 
Under wet conditions, Gao’s method appeared to perform better than soil-based methods. For 38 
(semi-)arid climates the difference between this method and soil-based methods appear to be 39 
small (de Boer-Euser et al., 2016).  40 
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Furthermore, Gerrits et al. (2009) estimated the average monthly transpiration threshold (𝐷𝑡,𝑚) 1 

as 
𝐸𝑝−𝐸𝑖,𝑎

𝑛𝑎
 (where na= number of months per year), which assumes that if there is little 2 

interception, plants can transpire at the same rate as a well-watered reference grass as calculated 3 
with the Penman-Monteith equation (University of East Anglia Climatic Research Unit , 2014). 4 

In reality, most plants encounter more resistance (crop resistance) than grass, hence we used Eq. 5 

(17), Table 2 (Fredlund et al., 2012) to convert potential evaporation of reference grass (𝐸𝑝) to 6 

potential transpiration of a certain crop depending on the LAI (i.e. the transpiration threshold 7 

𝐷𝑡,𝑚 [mm month-1]). Furthermore, similar to the daily interception threshold, we took a constant 8 

𝐷𝑡,𝑚, which can be problematic in energy-constrained areas. However, in those areas often 9 

temperature and radiation follow a sinusoidal pattern without complex double seasonality as e.g., 10 

occurs in the ITCZ. This implies that the overestimation of 𝐸𝑡,𝑚 in winter will be compensated 11 

(on the annual time scale) by the underestimation in summer time. By means of a sensitivity 12 

analysis the effect of a constant 𝐷𝑡,𝑚 will be investigated. 13 

3. Data 14 

For precipitation, we used the AgMERRA product from AgMIP climate forcing dataset (Ruane 15 

et al., 2015), which has a daily time scale and a spatial resolution of 0.25°×0.25°. The spatial 16 
coverage of AgMERRA is globally for the years 1980-2010. The AgMERRA product is 17 
available on the NASA Goddard Institute for Space Studies website 18 

(http://data.giss.nasa.gov/impacts/agmipcf/agmerra/). 19 

Potential evaporation data (calculated by FAO-Penman–Monteith equation (Allen et al., 1998)) 20 

were taken from Center for Environmental Data Archival website 21 
(http://catalogue.ceda.ac.uk/uuid/4a6d071383976a5fb24b5b42e28cf28f), produced by the 22 

Climatic Research Unit (CRU) at the University of East Anglia (University of East Anglia 23 
Climatic Research Unit, 2014). These data are at the monthly time scale over the period 1901-24 
2013 and has a spatial resolution of 0.5°×0.5°. We used the data of 1980-2010 in consistent with 25 

precipitation dataset. 26 

LAI data were obtained from Vegetation Remote Sensing & Climate Research 27 
(http://sites.bu.edu/cliveg/datacodes/) (Zhu et al., 2013). The spatial resolution of the data sets is 28 
1/12 degree, with 15-day composites (2 per month) for the period July 1981 to December 2011. 29 

The data of 𝑆𝑢,𝑚𝑎𝑥 is prepared data by Wang-Erlandsson et al. (2016) and is based on the 30 

satellite-based precipitation and evaporation with 0.5°×0.5° resolution over the period 2003-31 

2013. They used the USGS Climate Hazards Group InfraRed Precipitation with Stations 32 

(CHIRPS) precipitation data at 0.05 (Funk et al., 2014) and the ensemble mean of three datasets 33 
of evaporation including CSIRO MODIS Reflectance Scaling EvapoTranspiration (CMRSET) at 34 

0.05 (Guerschman et al., 2009), the Operational Simplified Surface Energy Balance (SSEBop) 35 

at 30 (Senay et al., 2013) and MODIS evapotranspiration (MOD16) at 0.05 (Mu et al., 2011). 36 
They calculated potential evaporation using the Penman-Monteith equation (Monteith, 1965).  37 

4. Model comparison and evaluation 38 

http://data.giss.nasa.gov/impacts/agmipcf/agmerra/
http://catalogue.ceda.ac.uk/uuid/4a6d071383976a5fb24b5b42e28cf28f
http://sites.bu.edu/cliveg/datacodes/
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The model performance was evaluated by comparing our results at the global scale to global 1 
evaporation estimates from other studies. Most available products only provide total evaporation 2 
estimates and do not distinguish between interception and transpiration. Therefore, we chose to 3 

compare our interception and transpiration results to two land surface models: The Global Land 4 
Evaporation Amsterdam Model (GLEAM) (v3.0a) database (Martens et al., 2017; Miralles et al., 5 
2011a) and Simple Terrestrial Evaporation to Atmosphere Model (STEAM) (Wang-Erlandsson 6 
et al., 2014, Wang-Erlandsson et al., 2016). GLEAM estimates different fluxes of evaporation 7 
including transpiration, interception, bare soil evaporation, snow sublimation, and open water 8 

evaporation. STEAM, on the other hand, estimates the different components of evaporation 9 
including transpiration, vegetation interception, floor interception, soil moisture evaporation, and 10 
open water evaporation. Thus for the comparison of interception, we used the sum of the canopy 11 
and floor interception and soil evaporation from STEAM and canopy interception and bare soil 12 

evaporation from GLEAM. Furthermore, STEAM includes an irrigation module (Wang-13 
Erlandsson et al., 2014), while Miralles et al. (2011) mentioned that they did not include 14 
irrigation in GLEAM, but the assimilation of the soil moisture from satellite data would account 15 

for it as soil moisture adjusted to seasonal dynamics of any region. The total evaporation was 16 

also compared to LandFlux-EVAL products (Mueller et al., 2013). GLEAM database 17 
(www.gleam.eu) is available for 1980-2014 with a resolution of 0.25°×0.25° and STEAM model 18 
was performed for 2003-2013 with a resolution of 1.5°×1.5°. LandFlux-EVAL data 19 

(https://data.iac.ethz.ch/landflux/) is available for 1989-2005. We compared Gerrits’ model to 20 
other products based on the land cover to judge the performance of the model for different types 21 

of land cover. The global land cover map (Channan et al., 2014; Friedl et al., 2010) was obtained 22 
from http://glcf.umd.edu/data/lc/. We used root mean square error (RMSE) (Eq. 20), mean bias 23 
error (MBE) (Eq. 21) and relative error (RE) (Eq. 22) to evaluate the results. 24 

RMSE = √
∑ (𝑥𝑖𝐺 − 𝑥𝑖𝑀)2𝑛

𝑖=1

𝑛
 

 (20)  

MBE =
∑ (𝑥𝑖𝐺 − 𝑥𝑖𝑀)𝑛

𝑖=1

𝑛
 

 (21)  

RE =
𝑥̅𝐺 − 𝑥̅𝑀

𝑥̅𝐺
× 100 

 (22)  

In these equations, 𝑥𝑖𝑀 is evaporation of the benchmark models to which Gerrits’ model is 25 

compared for pixel 𝑖, 𝑥𝑖𝐺  is evaporation from Gerrits’ model for pixel 𝑖, 𝑥̅𝐺  is the average 26 

evaporation of Gerrits’ model, 𝑥̅𝑀 is the average evaporation of the benchmark models and 𝑛 is 27 
the number of pixels of the evaporation map. Negative MBE and RE show the Gerrits’ model 28 
underestimates evaporation and vice versa. As the spatial resolution of the products is different, 29 
we regridded all the products to the coarsest resolution (1.5°×1.5°) for the comparison. 30 
Furthermore, the comparisons were shown for each land cover using the Taylor diagram (Taylor, 31 
2001). A Taylor diagram can provide a concise statistical summary of how the models are 32 

comparable to the reference data (observation or given model) in terms of their correlation, 33 
RMSE, and the ratio of their variances. In this paper, the reference data is Gerrits’ model. Since 34 
the different models for different land cover types have been used in this study, which have 35 
different numerical values, the results are normalized by the reference data. It should be noted 36 
that the standard deviation of the reference data is normalized by itself and, therefore, it is 37 

http://www.gleam.eu/
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plotted at unit distance from the origin along the horizontal axis (Taylor, 2001). According to the 1 
Taylor diagram, when the points are close to reference data (‘Ref’ in Figures 2, 4 and 6), it 2 
shows that the RMSE is less and the correlation is higher and therefore, the models are in more 3 

reasonable agreement.    4 

5. Results and discussion 5 

5.1. Total evaporation comparison 6 

Figure 1 shows the mean annual evaporation from Gerrits’ model, Landflux-EVAL, STEAM and 7 
GLEAM data sets. In general, the spatial distribution of evaporation simulated by Gerrits’ model 8 

is similar to that of the benchmark models. Figure 1a demonstrates that, as expected, the highest 9 

annual evaporation (sum of interception evaporation and transpiration) occurs in tropical 10 

evergreen broadleaf forests and the lowest rate occurs in the barren and sparsely vegetated desert 11 
regions. Total evaporation varies between almost zero in arid regions to more than 1500 mm 12 
year-1 in the tropics.  13 

As can be seen in Figure 1 there exist also large differences between STEAM, GLEAM, and 14 
Landflux-EVAL. Different precipitation products used in the models are likely the reason for the 15 

differences. As found by Gerrits et al. (2009), the model sensitivity to the number of rain days 16 
and rain months especially for the higher rates of precipitation can be a probable reason for the 17 

poor performance of a model especially for the forests with the highest amount of precipitation. 18 
In Sect. 5.5 we will elaborate on the sensitivity of these parameters on the global scale. 19 

The contribution of mean annual evaporation per land cover type from Gerrits’ model and other 20 
products, as well as RMSE, MBE and RE are shown in Table 3. Globally, mean annual 21 
evaporation estimated (for the overlapped pixels with 1.5°×1.5° resolution) by Gerrits’ model, 22 

Landflux-EVAL, STEAM and GLEAM are 443, 469, 475 and 462 mm year-1, respectively. Our 23 
results are comparable to those of Haddeland et al. (2011), where the simulated global terrestrial 24 

evaporation ranges between 415 and 586 mm year-1 for the period 1985–1999. Generally, 25 
Gerrits’ model overestimates evaporation for most land cover types in comparison to Landflux-26 
EVAL and GLEAM and underestimates in comparison to STEAM (see also MBE and RE). 27 

Since the number of pixels covered by each land use is different, RMSE, MBE, and RE cannot 28 
be comparable between land cover types. RMSE, MBE, and RE for each land cover type show 29 

that, generally, Gerrits’ model is in a better agreement with Landflux and GLEAM than 30 
STEAM. The Taylor diagram for total evaporation, as estimated by Gerrits’ model in 31 

comparison to Landflux-EVAL, STEAM and GLEAM for all data (No. 1 in Fig. 2) and for each 32 
land cover type (No.2 to No.11 in Fig. 2), also indicates that Gerrits’ model is in better 33 
agreement with Landflux-EVAL and GLEAM than STEAM model, especially for evergreen 34 
broadleaf forest, shrublands, savannas, and croplands (see also Table 3).  35 

5.2. Annual interception comparison  36 

While Wang-Erlandsson et al. (2014; 2016) estimated canopy interception, floor interception, 37 

and soil evaporation separately, in the current study we assumed that these three components of 38 
evaporation can be lumped as interception evaporation. Figure 3 shows the mean annual 39 
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evaporation from interception at the global scale as estimated by Gerrits’ model, STEAM, and 1 
GLEAM. In this figure, interception from STEAM is calculated by the sum of canopy 2 
interception, floor interception, and soil evaporation. Furthermore, interception from GLEAM is 3 

calculated as the sum of canopy interception and bare soil evaporation (GLEAM does not 4 
estimate floor interception). In general, the spatial distribution of Gerrits’ simulated interception 5 
is partly similar to that of STEAM and GLEAM. In the tropics, with high amounts of annual 6 
precipitation and high storage capacities due to the dense vegetation (evergreen broadleaf forests 7 
and savannas), annual interception shows the highest values. Table 4 shows the average 8 

interception, RMSE, MBE and RE per land cover type. This table indicates that Gerrits’ model 9 
underestimates interception in comparison to STEAM for all land cover types. Table 4 also 10 
shows that, in comparison to GLEAM, Gerrits’ model overestimates interception for all land 11 
cover types, because in GLEAM floor interception has not been taken into account. Figure 4 also 12 

shows that Gerrits’ model is in better agreement with STEAM (especially for grasslands and 13 
mixed forest) than GLEAM. The reason for an underestimated interception in comparison to 14 
STEAM could be the role of the understory. LAI does not account for understory, therefore 15 

maybe 𝑆𝑚𝑎𝑥 should be larger than modeled with Eq. (10). However, there is almost no data 16 
available to estimate the interception storage capacity of the forest floor at the global scale. 17 

5.3. Annual transpiration comparison 18 

Figure 5 illustrates the mean annual transpiration as estimated by Gerrits’ model, STEAM, and 19 
GLEAM. The spatial distribution is similar to the results of STEAM and GLEAM. Mean annual 20 

transpiration varies between 0 mm year-1 for arid areas in the north of Africa (Sahara) to more 21 
than 1000 mm year-1 in the tropics in South America. The results show that the highest annual 22 

transpiration occurs in evergreen broadleaf forests with the highest amount of precipitation and 23 
dense vegetation (see also Table 5). Figure 5c shows that GLEAM, in comparison to Gerrits’ 24 

model, overestimates the transpiration in some regions and especially in the tropics in South 25 
America and Central Africa. Figure 5b also shows that STEAM is different from Gerrits’ model 26 

over some regions like India, western China, and North America as well as in the tropics. Table 27 
5 (MBE and RE) also indicates that Gerrits’ model underestimates transpiration in comparison to 28 
GLEAM and overestimates in comparison to STEAM. The Taylor diagram (Fig. 6) shows that 29 

the global annual transpiration of Gerrits’ model is closer to that of GLEAM than STEAM. 30 
Representing that the Gerrits’ model is in a more reasonable agreement to GLEAM for 31 
transpiration estimation.  32 

Moreover, global transpiration ratio as estimated by Gerrits’ model is 71% which is comparable 33 

to the ratio as estimated by other studies (e.g., 80% (Miralles et al., 2011b), 69% (Sutanto, 2015), 34 

65% (Good et al., 2015), 62% (Maxwell and Condon, 2016), 62% (Lian et al., 2018), 61% 35 

(Schlesinger and Jasechko, 2014), 57% (Wei et al., 2017), 52% (Choudhury and Digirolamo, 36 

1998), 48% (Dirmeyer et al., 2006) and 41% (Lawrence et al., 2007)). Additionally, Coenders-37 

Gerrits et al. (2014) found that based on the model of Jasechko et al. (2013) the transpiration 38 

ratio changes between 35% and 80%, which is in line with our current findings.  39 

5.4. Analyzing the results through Budyko framework 40 
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We evaluated the relation between the evaporation fluxes and the energy/water limitation in the 1 
Budyko framework as provided by Miralles et al. (2016) and Good et al. (2017) to see how our 2 
model can be related to the Budyko framework and how the energy and water limitations can be 3 

interpreted by our model. Figure 7 shows the density plot of 
𝐸

𝑃
 versus 

𝐸𝑝

𝑃
 within the Budyko 4 

framework. For calculating 
𝐸

𝑃
 and 

𝐸𝑝

𝑃
 for all models, precipitation and potential evaporation data 5 

are the same as used in this study. This figure indicates that, while Gerrits’ model does not 6 
perform well in comparison to STEAM and GLEAM, it follows the framework in a reasonable 7 
manner. Furthermore, the results are comparable to the results of Miralles et al. (2016) (see Fig. 8 
11 in their paper). The partition of evaporation related to the land cover within the Budyko 9 
framework is presented in Figure 8. According to this figure, interception, as estimated by 10 

Gerrits’ model, is closer to that of GLEAM rather than STEAM, but transpiration is close to both 11 

models. For mean annual total evaporation, Gerrits’ model is more similar to GLEAM than 12 

STEAM for all land covers except for grasslands and shrublands. Moreover, the distribution of 
𝐸𝑡

𝑃
 13 

is comparable to that of Good et al. (2017) (Figure 1.a in their paper). Their results showed a 14 

unimodal 
𝐸𝑡

𝑃
 distribution indicating that both increasing and decreasing aridity will result in a 15 

decline in the fraction of transpired rainfall by plants for growth and metabolism. This 16 

distribution is also seen in Figure 9, where the plot is provided based on the average of 
𝐸

𝑃
 for each 17 

aridity index (
𝐸𝑝

𝑃
). This figure is also comparable to Figure 1.c in Good et al. (2017)’s paper. 18 

5.5. Sensitivity analysis 19 

In our sensitivity analysis we investigated the sensitivity of the three parameters that are related 20 

to transpiration (constants 𝑎 and 𝑏, and threshold 𝐷𝑡,𝑚), and the effect of the number of rain days 21 

and rain months on the total evaporation calculation. All parameters were in- and decreased by 22 

10%. The analysis shows that the model is not too sensitive to parameter 𝑎, where a ±10% 23 

change in 𝑎 leads to a minor ±0.4% change in 
𝐸

𝑃
 (See Fig. 10.a). Thus, the model is insensitive to 24 

changes in parameter 𝑎. Similar results were found for parameter b, where a ±10% change in 𝑏 25 

resulted only in a ±3.5% change in 
𝐸

𝑃
 (Fig. 10.b). Moreover, a ±10% change in both 𝑛𝑟,𝑑 and 26 

𝑛𝑟,𝑚leads to a ±2.2 change in 
𝐸

𝑃
 (Fig. 10.c and 10.d). The most sensitive parameter is 𝐷𝑡,𝑚, where 27 

a ±10% change in 𝐷𝑡,𝑚 resulted in a ±4% change in 
𝐸

𝑃
 (Fig. 10.e). In conclusion, 𝐷𝑡,𝑚 and 𝑏 are 28 

the most sensitive parameters for the estimation of  
𝐸

𝑃
; however, it seems that the sensitivity is not 29 

that much different per land class. Except for grasslands and shrublands, which may arise from 30 
the underestimation of interception in Gerrits’ model for short vegetation. This underestimation 31 

is obtained because the relation between 𝑆𝑚𝑎𝑥 and LAI might not be valid for short vegetation. 32 
This also might be due to the wide range of gridded points belong to grasslands and shrublands 33 

as shown by the density plot of 
𝐸

𝑃
 versus 

𝐸𝑝

𝑃
 in Figure 11.  34 

6. Conclusion 35 
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In the current study, we revised and applied a simple evaporation model proposed by Gerrits et 1 
al. (2009) at the global scale. Instead of locally calibrated model parameters we now only used 2 
parameters derived from remotely sensed data. Furthermore, we implemented in the Gerrits’ 3 

model a new definition of the root zone storage capacity from Gao et al (2014).  4 

Comparing our results for total evaporation to Landflux-EVAL estimates, shows that Gerrits’ 5 
model is in good agreement with Landflux-EVAL. The highest mean annual evaporation rates 6 

are found in evergreen broadleaf forests (1367 mm year-1), deciduous broadleaf forests (796 mm 7 
year-1) and savannas (695 mm year-1) and the lowest ones are found in shrublands (203 mm year-8 
1) and grasslands (275 mm year-1). Generally, Gerrits’ model overestimates in comparison to 9 
Landflux-EVAL and GLEAM and underestimates in comparison to STEAM.  10 

Gerrits’ model underestimates interception in comparison to STEAM for all land covers. On the 11 
other hand, the model overestimates interception in comparison to GLEAM, since GLEAM does 12 

not include floor interception. Although we tried to correct for the different definitions of 13 
interception, the results may be biased. The relatively worse performance in forests ecosystems 14 
could be explained by the effect of the understory. This is not taken into account in Gerrits’ 15 

model, while the understory can also intercept water. We could say that the constant value of 16 
0.935 mm in Eq. (10) reflects the forest floor interception storage capacity, but since this number 17 

was derived for crops, it is likely an underestimation. Therefore, a better estimation of 𝑆𝑚𝑎𝑥 to 18 
account for forest floor interception is recommended.  19 

Estimated transpiration by Gerrits’ model is in reasonable agreement with GLEAM and 20 

STEAM. Gerrits’ model underestimates transpiration in comparison to GLEAM (RE=-4%) and 21 

overestimates in comparison to STEAM (RE=+12%). The scatter plots showed that, in 22 

comparison to GLEAM and STEAM, Gerrits’ model performs well for all land cover types. 23 
Moreover, the transpiration ratio corresponded well in comparison to those of GLEAM and 24 

STEAM. The results also showed that the global transpiration ratio estimated by Gerrits’ model 25 
(71%) is approximately comparable to the other studies.   26 

Our results are also related to the Budyko framework and we found similar to Good et al. (2017) 27 

that the distribution of 
𝐸𝑡

𝑃
 is unimodal, indicating that both increasing and decreasing aridity will 28 

result in decline in the fraction of transpired precipitation by plants for growth and metabolism.  29 

By comparing all products, we found that, in general, there are considerable differences between 30 
STEAM, GLEAM, and Landflux-EVAL. The most convincing reason for this discrepancy lies in 31 

the different products for precipitation (and other global data sets), which have been used for the 32 
different models. The Gerrits’ model is sensitive to the number of rain days and months 33 
especially for the higher rates of precipitation. Nonetheless, our sensitivity analysis of 34 

parameters 𝑎 and 𝑏 and 𝑛𝑟,𝑑, 𝑛𝑟,𝑚 and 𝐷𝑡,𝑚 shows that 𝐷𝑡,𝑚 and 𝑏 are the most sensitive 35 

parameters for the estimation of  
𝐸

𝑃
.  36 

Generally, it should be mentioned that the underlying reasoning of the Gerrits’ model is to 37 
recognize the characteristic time scales of the different evaporation processes (i.e. interception 38 
daily and transpiration monthly). In Gerrits et al. (2009) (and in the current paper as well), this 39 
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has been done by taking yearly averages for the interception (𝐷𝑖,𝑑, mm day-1) and transpiration 1 

threshold (𝐷𝑡,𝑚, mm month-1) in combination with the temporal distribution functions for daily 2 

and monthly (net) rainfall. Hence, the seasonality is incorporated in the temporal rainfall 3 
patterns, and not in the evaporation thresholds. This is a limitation of the currently used approach 4 
and could be the focus of a new study by investigating how seasonal fluctuating thresholds 5 

(based on LAI and/or a simple cosine function) would affect the results. This could be a 6 
significant methodological improvement of the Gerrits’ model, but will have mathematical 7 
implications on the analytical model derivation. It will improve the monthly evaporation 8 
estimates, but we expect that the consequences at the annual time scale (which is the focus of the 9 
current paper) will be less severe. The strength of the Gerrits’ model is that, in comparison to 10 

other models, it is very simple and in spite of its simplicity, the Gerrits’ model performs quite 11 
well.  12 
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Table 1- Budyko equations developed by different researchers. 1 

Equation Reference 
𝐸𝑎

𝑃𝑎
= 1 − exp (−∅) 

Schreiber [1904] 

𝐸𝑎

𝑃𝑎
= ∅tanh (

1

∅
) 

Ol’dekop [1911] 

𝐸𝑎

𝑃𝑎
=

1

√0.9 + (
1
∅

)2

 
Turc [1954] 

𝐸𝑎

𝑃𝑎
=

1

√1 + (
1
∅

)2

 
Pike [1964] 

𝐸𝑎

𝑃𝑎
= [∅ tanh (

1

∅
) (1 − exp (−∅))]1/2 

Budyko [1974] 

 2 



Table 2- Summary of the interception and transpiration equations of Gerrits’ model (Gerrits et al., 2009)  1 
Equation Equation 

number 
Description 

𝐸𝑖,𝑑 = min (𝐷𝑖,𝑑, 𝑃𝑑) (4) 𝐸𝑖,𝑑: daily interception (mm day-1),  𝑃𝑑: daily precipitation (mm day-1), 𝐷𝑖,𝑑: the daily interception threshold (mm day-1) 

𝐸𝑖,𝑚 = 𝑃𝑚(1 − exp (−∅𝑖,𝑚)) (5) 𝐸𝑖,𝑚: monthly interception (mm month-1), 𝑃𝑚: monthly rainfall (mm month-1), ∅𝑖,𝑚: a sort of aridity index for interception at monthly scale 

𝐸𝑖,𝑎 = 𝑃𝑎(1 − 2∅𝑖𝑎𝐾0(2√∅𝑖,𝑎) − 2√∅𝑖,𝑎𝐾1(2√∅𝑖,𝑎)) (6) 𝐸𝑖,𝑎: annual interception (mm year-1), 𝑃𝑎: annual rainfall (mm year-1), ∅𝑖,𝑎: a sort of aridity index for interception at annual scale, 𝐾0 and 𝐾1: 

the Bessel function of the first and second order, respectively 

𝐸𝑡,𝑚 = min (𝐴 + 𝐵(𝑃𝑚 − 𝐸𝑖,𝑚), 𝐷𝑡,𝑚) (7) 𝐸𝑡,𝑚: monthly transpiration (mm month-1), 𝐴: carry-over parameter (mm month-1), 𝐷𝑡,𝑚: the transpiration threshold (mm month-1), 𝐵: slope of 

relation between monthly effective rainfall and monthly transpiration 

𝐴 = 𝑏𝑆𝑢,𝑚𝑎𝑥 (8) 𝑏: constant coefficient, 𝑆𝑢,𝑚𝑎𝑥: the maximum root zone storage capacity 

𝐸𝑡,𝑎 = 2𝐵𝑃𝑎 (∅𝑖,𝑎𝐾0(2√∅𝑖,𝑎) + √∅𝑖,𝑎𝐾1(2√∅𝑖,𝑎)) 

(
𝐴

𝜅𝑛𝐵
+ 1 − 𝑒𝑥𝑝 (−∅𝑡,𝑎) (

𝐴

𝜅𝑛𝐵
+ 1 + ∅𝑡,𝑎 −

∅𝑡,𝑎

𝐵
)) 

(9) 𝐸𝑡,𝑎: annual transpiration (mm year-1), ∅𝑡,𝑎: an aridity index  

𝐷𝑖,𝑑 = min (𝑆𝑚𝑎𝑥, 𝐸𝑝,𝑑) (10) 𝑆𝑚𝑎𝑥: the daily interception storage capacity  (mm day-1) 𝐸𝑝,𝑑: the daily potential evaporation, 𝐸𝑝,𝑎: annual potential evaporation (mm year-1) 

𝑆𝑚𝑎𝑥 ≈ 𝐶𝑚𝑎𝑥 = 0.935 + 0.498LAI − 0.00575LAI2 (11) LAI: Leaf Area Index derived from remote sensing images 

∅𝑖,𝑚 =
𝐷𝑖,𝑑

𝛽
 

(12) 𝛽: scaling factor 

𝛽 =
𝑃𝑚

E(𝑛𝑟,𝑑|𝑛𝑚)
 

(13) E(𝑛𝑟,𝑑|𝑛𝑚): the expected number of rain days per month, 𝑛𝑟,𝑑: the number of rain days per month, 𝑛𝑚: the number of days per month 

∅𝑖,𝑎 =
𝑛𝑟,𝑑𝐷𝑖,𝑑

𝜅𝑚

 
(14) 𝜅𝑚: scaling factor for monthly rainfall 

𝜅𝑚 =
𝑃𝑎

E(𝑛𝑟,𝑚|𝑛𝑎)
 

(15) E(𝑛𝑟,𝑚|𝑛𝑎): the expected number of rain months per year, 𝑛𝑟,𝑚: the number of rain months per year, 𝑛𝑎: the number of months per year 

𝐵 = 1 − 𝛾 + 𝛾exp (−
1

𝛾
) 

(16) 𝛾: time scale for transpiration 

𝛾 =
𝑆𝑏

𝐷𝑡,𝑚∆𝑡𝑚

 
(17) 𝑆𝑏: the moisture content below which transpiration is restricted (mm). 

𝑆𝑏 = 𝑎𝑆𝑢,𝑚𝑎𝑥 (18) 𝑎: constant coefficient 

𝐷𝑡,𝑚 = 0         𝑓𝑜𝑟  LAI < 0.1 

 

𝐷𝑡,𝑚 =
𝐸𝑝

𝑛𝑎

(−0.21 + 0.7LAI0.5)    𝑓𝑜𝑟   0.1 ≤ LAI < 2.7 

 

𝐷𝑡,𝑚 =
𝐸𝑝

𝑛𝑎

        𝑓𝑜𝑟  LAI ≥ 2.7 

(19) 
𝐸𝑝: annual potential evaporation (for open water) (mm year-1) 

∅𝑡,𝑎 =
𝐷𝑡,𝑚

𝜅𝑛

 
(20) 𝜅𝑛: scaling factor for monthly net rainfall 

𝜅𝑛 =
𝑃𝑛,𝑎

E(𝑛𝑛𝑟,𝑚|𝑛𝑎)
=

𝑃𝑎 − 𝐸𝑖,𝑎

E(𝑛𝑛𝑟,𝑚|𝑛𝑎)
 

(21) 𝑃𝑛,𝑎: annual net precipitation, E(𝑛𝑛𝑟,𝑚|𝑛𝑎): the expected number of net rain months per year 
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Table 3- Comparison of mean annual evaporation estimated by Gerrits’ model to Landflux-EVAL, STEAM and GLEAM through 

Average, RMSE, MBE and RE per land cover type. Negative MBE and RE show the Gerrits’ model underestimates evaporation and 

vice versa. Average, RMSE and MBE are in mm year-1 and RE is in %.   

Land cover 
area Gerrits  Landflux-EVAL  STEAM  GLEAM 

1000 km2 Avg.  Avg. RMSE MBE RE  Avg. RMSE MBE RE  Avg. RMSE MBE RE 

Evergreen needleleaf forest 5563 430  387  122 +43 +10  467 150 -37 -9  457 127 -27 -6 

Evergreen broadleaf forest 11778 1367  1177  266 +190 +14  1129  345 +238 +17  1244  225 +123 +9 

Deciduous needleleaf forest 2498 338  298  73 +40 +12  336  65 +2 +1  336  73 +1 0 

Deciduous broadleaf forest 1106 796  736  138 +61 +8  840  215 -44 -6  660  197 +136 +17 

Mixed forest 13470 563  487  136 +76 +13  545  137 +18 +3  527  131 +35 +6 

Shrublands1 29542 203  259  96 -57 -28  262  123 -59 -29  253  91 -51 -25 

Savannas2 18846 695  739  148 -44 -6  737  186 -42 -6  705  154 -10 -1 

Grasslands 21844 275  365 130 -91 -33  373  164 -98 -36  349  135 -75 -27 

Croplands 12417 488  535  124 -47 -10  583  209 -95 -20  486 118 +2 0 

Croplands and natural vegetation 

mosaic 
5782 687  696  157 -9 -1  702  175 -15 -2  663  158 +24 +3 

Global3 - 443  469 - - -6  475 - - -7  462 - - -4 
1including open and closed shrublands. 2including woody savannas and savannas. 3for overlapped pixels with 1.5°×1.5° resolution.
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Table 4- Comparison of interception estimated by Gerrits’ model to STEAM and GLEAM through Average, RMSE, MBE and RE 

per land cover type. Negative MBE and RE show the Gerrits’ model underestimates evaporation and vice versa. Average, RMSE and 

MBE are in mm year-1 and RE is in %.   

Land cover 

Area Gerrits  STEAM  GLEAM 

1000 km2 Avg.  Avg. RMSE MBE RE 
 

 
Avg. RMSE MBE RE 

Evergreen needleleaf forest 5563 145  204 70 -58 -40  127 58 +18 +12 

Evergreen broadleaf forest 11778 452  499 120 -47 -10  340 130 +111 +25 

Deciduous needleleaf forest 2498 104  156 56 -53 -51  29 76 +74 +72 

Deciduous broadleaf forest 1106 179  299 145 -120 -67  80 117 +99 +55 

Mixed forest 13470 172  220 59 -48 -28  127 66 +45 +26 

Shrublands1 29542 69  116 63 -47 -68  64 64 +5 +7 

Savannas2 18846 162  246 107 -84 -52  107 79 +55 +34 

Grasslands 21844 76  146 83 -70 -93  97 58 -22 -29 

Croplands 12417 116  174 89 -58 -50  97 55 +19 +16 

Croplands and natural vegetation mosaic 5782 166  243 108 -77 -46  112 89 +54 +33 

Global3 - 128  183 - - -44  109 - - +15 
1including open and closed shrublands. 2including woody savannas and savannas. 3for overlapped pixels with 1.5°×1.5° resolution.
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Table 5- Comparison of transpiration estimated by Gerrits’ model to STEAM and GLEAM through Average, RMSE, MBE and RE 

per land cover type. Negative MBE and RE show the Gerrits’ model underestimates evaporation and vice versa. Average, RMSE and 

MBE are in mm year-1 and RE is in %.   

Land cover 

Area Gerrits  STEAM  GLEAM 

1000 km2 Avg.  Avg. RMSE MBE RE 
 

 
Avg. RMSE MBE RE 

Evergreen needleleaf forest 5563 284  222 122 +63 +22  259 100 +25 +9 

Evergreen broadleaf forest 11778 915  619 347 +296 +32  890 163 +25 +3 

Deciduous needleleaf forest 2498 234  177 82 +57 +24  261 71 -21 -12 

Deciduous broadleaf forest 1106 617  538 192 +79 +13  570 120 +47 +16 

Mixed forest 13470 390  305 147 +85 +22  363 114 +27 +7 

Shrublands1 29542 133  137 85 +4 +3  159 81 -26 -20 

Savannas2 18846 533  473 162 +59 +11  577 148 -44 -8 

Grasslands 21844 199  214 109 +15 +7  233 93 -34 -17 

Croplands 12417 372  393 131 -20 -5  371 90 +1 0 

Croplands and natural vegetation mosaic 5782 521  444 159 +77 +15  530 112 -10 -2 

Global3 - 315  276 - - +12  329 - - -4 
1including open and closed shrublands. 2including woody savannas and savannas. 3for overlapped pixels with 1.5°×1.5° resolution.



23 
 

 1 

Figure 1- Mean annual evaporation estimated by (a) Gerrits’ model, (b) Landflux-EVAL 2 

(Mueller et al., 2013), (c) STEAM (Wang-Erlandsson et al., 2014, Wang-Erlandsson et al., 2016) 3 

and (d) GLEAM (Martens et al., 2017; Miralles et al., 2011a).4 
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 1 

Figure 2- Taylor diagram for mean annual evaporation estimated by Gerrits’ model in 2 
comparison to Landflux-EVAL (green circles), STEAM (blue circles) and GLEAM (red circles) 3 
for all data (No. 1), Evergreen Needleleaf Forest (No.2), Evergreen broadleaf forest (No. 3), 4 
Deciduous needleleaf forest (No. 4), Deciduous broadleaf forest (No. 5), Mixed Forest (No. 6), 5 

Shrublands (No. 7), Savannas (No. 8), Grasslands (No. 9), Croplands (No. 10) and Croplands 6 
and natural vegetation mosaic (No. 11). 7 

  8 
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 1 

 2 

Figure 3- Simulated mean annual interception by (a) Gerrits’ model and (b) STEAM and (c) 3 
GLEAM. 4 
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 1 
Figure 4- Taylor diagram for mean annual interception estimated by Gerrits’ model in 2 
comparison to STEAM (blue circles) and GLEAM (red circles) for all data (No. 1), Evergreen 3 
Needleleaf Forest (No.2), Evergreen broadleaf forest (No. 3), Deciduous needleleaf forest (No. 4 

4), Deciduous broadleaf forest (No. 5), Mixed Forest (No. 6), Shrublands (No. 7), Savannas (No. 5 
8), Grasslands (No. 9), Croplands (No. 10) and Croplands and natural vegetation mosaic (No. 6 
11). 7 

  8 
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 1 
Figure 5- Simulated mean annual transpiration by (a) Gerrits’ model, (b) STEAM and (c) 2 
GLEAM.  3 
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 1 

Figure 6- Taylor diagram for mean annual transpiration estimated by Gerrits’ model in 2 

comparison to STEAM (blue circles) and GLEAM (red circles) for all data (No. 1), Evergreen 3 
Needleleaf Forest (No.2), Evergreen broadleaf forest (No. 3), Deciduous needleleaf forest (No. 4 
4), Deciduous broadleaf forest (No. 5), Mixed Forest (No. 6), Shrublands (No. 7), Savannas (No. 5 
8), Grasslands (No. 9), Croplands (No. 10) and Croplands and natural vegetation mosaic (No. 6 

11). 7 

  8 
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 1 

Figure 7- Density plot of 
𝐸

𝑃
 versus 

𝐸𝑝

𝑃
 for comparison between models within the Budyko 2 

framework. The legend shows the frequency of pixels. 3 
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 1 

Figure 8- Comparison of interception (a), transpiration (b) and total evaporation (c) between 2 

models for each land cover within the Budyko framework.3 
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 1 

Figure 9- The distribution of 
𝐸𝑖

𝑃
 and 

𝐸𝑝

𝑃
 with respect to aridity for each model. 2 

 3 
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 1 

Figure 10- Sensitivity analysis of the model to 10% changes in (a) parameter 𝑎 in Eq. (18), (b) 2 

parameter 𝑏 in Eq. (8), (c) number of rain days 𝑛𝑟,𝑑, (d) number of rain months 𝑛𝑚, and (e) 3 

transpiration threshold 𝐷𝑡,𝑚.4 
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 1 

Figure 11- Density plot of 
𝐸

𝑃
 versus 

𝐸𝑝

𝑃
 for each land cover. 2 


