
Dear Editor, 

We provided the replies to the comments as follows, with referring to the probable changes in the 

revised manuscript. In addition to the changes from reviewers’ comments, we removed Figures 1 

and 10. Moreover, we removed Figures 8 and 9 and table 6 (comparing to the Budyko curves), 

because we evaluated our results through the Budyko framework, as suggested by Stephen Good. 

Accordingly, any explanations in the text related to these figures and table were also removed. 

These changes are shown in the manuscript by track changes.  

 

Reviewer 1 (Stephen Good): 

 

General Assessment 

 

Comment 1: 

This modeling and analysis are conducted in a satisfactory manner. However, it is hard to see how 

yet one more model that estimates evapotranspiration subcomponents moves us closer to a better 

understanding of these fluxes. 

 

Reaction: 

Our aim is not to provide yet another LSM that partitions evaporation. Our aim is to show with a 

simple analytical model that the Budyko framework can be explained. For this we use the 

reasoning of the Gerrits model that recognizes the characteristic time scales of the different 

evaporation processes (i.e. interception daily and transpiration monthly). We revised the Gerrits 

model in such way that it was possible to apply it at the global scale. As suggested by the 

reviewer, we clarified this better and related the results of the model to the Budyko 

framework for a better understanding the partitioning of evaporation into transpiration and 

interception. For this paper, we changed the introduction for better explanation of our aim. 

Moreover, we provided Figures 7, 8 and 9 in the revised manuscript for better understanding of 

the evaporation partitioning through the Budyko framework.  

 

Comment 2: 

The introduction and a paragraph in the discussion relate this model to the Budyko framework. 

One possible way forward for the authors is evaluating how trends in flux components relate the 

energy and water limitations outlined by the Budyko framework, since this is the stated motivation 

of this model. This could move the paper beyond how it is currently presented as another land 

surface model applied using remote sensing observations. For example, see Figure 11 of Miralles’s 

2016 HESS paper for casting total evaporative fluxes in this context. Also relevant is the study of 

Good (Nature Ecology & Evolution 2018) which used a Budyko approach to examine how to 

partition evaporative fluxes. In revising the paper, I suggest the authors work to find how this 

approach helps us understand the different surface to atmosphere water flux pathways better. 



Reaction: 

We thank the reviewer for this valuable suggestion. We agree that our aim was not clearly 

defined and also misleading in that sense. As suggested by the reviewer, we evaluated the 

relation between evaporation fluxes and energy/water limitation in Budyko framework as 

provided by Miralles et al. (2016) and Good et al. (2017). As mentioned in reaction to comment 

1, we provided Figures 7, 8 and 9 in the revised manuscript for each land cover, and for the 

evaporation fluxes (Ei and Et and Etot), separately, to discuss how our model can be related to the 

Budyko framework. 

 

Comment 3: 

Most critically, I find the language in this paper to be grandiose and predicated on a poorly based 

argument. As is written in the abstract and introduction, the authors suggest that others have 

“tried to improve the Budyko framework by including more physics and catchment 

characteristics… However this often resulted in additional parameters, which are unknown or 

difficult to determine.” This statement, and others like it in this paper, is inappropriate for two 

reasons: (1) other approaches have used fairly easy to measure characteristics and (2) because the 

authors proceed to do exactly what they claim shouldn’t be done by fitting “difficult” to determine 

parameters to optimize their results. For point (1) for instance, the approach of Porporato is 

explicitly physically based as is it dependent on the ratio soil water storage to mean rainfall depth 

which is a measurable quantity. Furthermore, both of these quantities are used in the analysis 

presented here. For reason (2), the ‘b’ parameter of this analysis, among others, is clearly stated by 

the authors (P5L15) to have been calibrated to produce the best results. This is very similar to the 

Li (WRR 2013) paper wherein the Budyko curve parameters were fit to vegetation cover. The 

authors use of language such as “tried” (P2L18) seems to imply these other authors were 

unsuccessful, which may not be true. In my opinion, this submitted paper is quite similar to these 

other efforts in that it has extended the Budyko framework with new parameters they have fitted 

based on physical processes. Here, the most important parameters dictating the transpiration 

component are when transpiration becomes downregulated, and how much maximal transpiration 

can be. Equation 17 needs more elaboration and justification, as does the parameterization of Sb as 

50% of S_u,max. How were these values selected and what is the consequence of other using other 

values here. How much do these choices, and other values such as the ‘b’ parameter, influence 

model outcomes. 

 

Reaction: 

Yes, you are right that we also have some calibration parameters. Thus, we rephrased 

our text. Nonetheless, we think that we use a slightly different approach for these calibration 

parameters and other model parameters as well. Although others indeed also use ‘measurable 

parameters’, which could be tested in some case studies, some of these input values are not 

available at the global scale such as for example the soil water storage. For example, carry over 

parameter (A) was available for 10 locations in Gerrits et al. (2009), but at global scale we did 

not have such data, so we proposed A=b*Su,max, and we need to calibrate the “b” parameter to 

link A to a measurable variable. About the Sb as 50% of Su,max, we mentioned in the text that in this 

study we assumed Sb to be 50% of Su,max, as this value is commonly used for many crops, referred 



to (Allen et al. 1998). However, we provided a sensitivity analysis in the revised which shows that 

the model is not sensitive to this parameter for none of the land covers. 

 

Specific Comments: 

 

Comment 4: 

P1L11: The 1/(1+f(phi)) is not the base of all Budyko curves. Budyko, himself used a hyperbolic 

tangent as an example. What do the lower and upper case f’s represent? 

 

Reaction: 

As mentioned by Arora (2002), evaporation ratio (E/P) is a function of the aridity index (Φ) and 

Bowen ratio (γ) (
𝐸

𝑃
=

∅

1+𝛾
). Arora interpreted the equation as follows: 

 “As a region becomes dry and is characterized by high potential evaporation, low precipitation 

and evapotranspiration, and high sensible heat fluxes then Φ→1, γ→1 and E/P tends towards 

unity implying little runoff. the other hand, as a region becomes wet and is characterized by low 

values of aridity index (Φ) and Bowen ratio (γ) then E/P < 1 and runoff occurs. Since Bowen 

ratio (γ) is also a function of available energy and precipitation (and thus a function of Φ) 

evaporation ratio may be expressed as a function of aridity index alone.” 

It leads to equation 1 in our paper. Thus, in equation 1, f and F are both mathematical functions, 

showing that E/P is a function of the aridity (Φ). F(Φ) can have many forms (exponential, 

hyperbolic tangent, etc.) as summarized in Table 1. 

 

Comment 5: 

P2L33: This paper estimates available soil water capacity, not the actual soil water itself. Also, I 

wouldn’t call these ‘data’ but modeled estimates. 

 

Reaction: 

Gao et al. (2014) presented a new method where the available soil water is derived from time 

series of rainfall and potential evaporation, plus a long-term runoff coefficient. We agree that 

knowing soil moisture storage change is important for the Budyko framework, but we use a method 

whereby we work around it by using plant available water. The method of Gao et al. (2014) 

provides plant available water (which is often linked to soil water capacity). In our paper we used 

it as Su,max. We rephrased it in the manuscript to explain it more preciously.  

Moreover, “data” refers to rainfall, potential evaporation and runoff coefficient which is used by 

Gao et al. (2014) to estimate the available soil water. However, we changed “data” into “input 

time series”.  

 



Comment 6: 

P3L16: Evaporation from ‘non-superficial’ soil moisture 

 

Reaction: 

Thanks. We added this. 

 

Comment 7: 

P4L11: Do you mean daily, not yearly, average. 

 

Reaction: 

Yes, daily average during the year. We corrected it in the text. 

 

Comment 8: 

P5L14: I think you should also place these eqn in table 2 for consistency: A = b*S_u,max as well as 

Sb = 0.5*S_u,max 

 

Reaction: 

Ok, these equations moved to table 2 (equations 8 and 18, in the revised manuscript). 

 

Comment 9: 

P5L36: Reword here. As is stated above and in eq17, you do not hold Dt,m constant? Which is it? 

 

Reaction: 

We keep Dt,m constant during the year (like Di,d), but equation 17 shows that we calculated it as a 

function of the average yearly LAI. For water-constrained areas this is not a problem, because 

there Et,m is determined by the LHS of the min-function (A + B(Pm - Ei,m)) as can be seen in 

Equation 7. For energy-constrained areas our assumption can be problematic. However, in those 

areas often temperature and radiation follow a sinusoidal pattern without complex double 

seasonality as e.g., occurs in the ITCZ. This implies that the overestimation of Et,m in winter will 

be compensated (on the annual time scale) by the underestimation in summer time. 

 

Comment 10: 

P5L38: Do you have a justification or citation for this statement? 

 

Reaction: 

Please see our response to comment 9. 



Comment 11: 

P7L17: No observations where used here. Only comparisons of the Gerrits model against other 

models. 

 

Reaction: 

It is a general sentence for Taylor diagram, not only for our model. But to make it clear, we 

changed "This diagram can provide a concise..." into 'A Taylor diagram can provide a concise..." 

 

Comment 12: 

P8L42: There are many bare soil estimates (See the review by Kool 2014 Agg and Forest Met, for 

example). 

 

Reaction: 

We meant that there is hardly any data on the forest floor interception storage capacity (Smax). 

We did not intend to refer to bare soil evaporation. 

 

Comment 13: 

F2: Because of the size of these figures, and the large range of values, it becomes hard to discern 

differences. Why not plot the absolute value of E flux in panel A, and then the differences in panels 

B, C, and D. Consider this approach in later figures as well 

 

Reaction: 

Thanks for your suggestion. We did it before, but the single pixel outliers may blow up the entire 

figure what was also not a good way of showing the differences. That's why we moved towards 

the Taylor diagrams. Moreover, we also wanted to show the original data. 

 

Comment 14: 

F3: Units for the RMSE, here and onward. 

 

Reaction: 

We used normalized RMSE in these figures as shown in the following equation, so it has no unit. 

NRMSE =
RMSE

𝑋𝑂
̅̅̅̅

 
(1)  

In this equation, NRMSE is normalized RMSE and 𝑋𝑂
̅̅̅̅  is the average of observation values (here 

the values estimated by Gerrits’ model).  
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Reviewer 2: 1 

 2 

Comment 1: 3 

Equation (3b): E = Ei + Et. Since Ei includes soil evaporation, I would suggest to interpret this as 4 
ET = E +T where E is evaporation and T is transpiration. 5 

 6 

Reaction: 7 

As suggested by Savenije (2004) and based on the definition of total evaporation provided by 8 

Shuttleworth (1993), we call the sum of interception (Ei), soil evaporation (Es), transpiration (Et), 9 

and evaporation from water bodies (Eo) as “evaporation” (E). Thus, we did not apply the term of 10 

“evapotranspiration” (ET), because we agree that they “are very different in terms of time scale, 11 

time of occurrence, physical characteristics, climatic feedback and isotope composition” as 12 

explained in Savenije (2004). 13 

 14 

Comment 2: 15 

Page 3 Line 21: Does Et have the same definition as the Es defined in Line 16? 16 

 17 

Reaction: 18 

Yes, as mentioned in reaction to comment 1, Et is transpiration which is evaporation from the 19 

soil moisture connected to the root zone, because that's where the trees get their water from. 20 

 21 

Comment 3: 22 

Page 4 Lines 28-30: whys accounting for n is rarely necessary? Maybe it is better to explain it 23 
briefly here. 24 

 25 

Reaction: 26 

Miralles et al. (2010) and Pearce and Rowe (1981) both mentioned that accounting for n is rarely 27 

necessary. Pearce and Rowe (1981) mentioned that "In many climates, however, such 28 

adjustments will not be necessary, or small enough that they can be neglected”. In our 29 

interpretation this is because the number or times the interception storage can be filled and 30 

completely emptied is limited once we assume a drying time of ca. 4 hours, which is common. 31 

For 12 hours of day light, it means that n can be maximal 3 times. However, the chance that you 32 

have 4 storms every 4 hours, with a drying period of 4 hours, is rather small for most climates. We 33 

added this explanation in the revised manuscript. 34 

 35 

Comment 4: 36 

Page 5 Line 36: If the inter-annual variability of the Dt,m has any impact on the results? 37 



8 
 
 

Reaction: 1 

We explained in the manuscript (page 5, line 36-38) that taking a constant value for Dt,m can be 2 

problematic in energy-constrained areas. For water-constrained areas this is not a problem, 3 

because there Et,m is determined by the LHS of the min-function (A + B(Pm - Ei,m)) as can be 4 

seen in Equation 7. For energy-constrained areas our assumption can be problematic. However, 5 

in those areas often temperature and radiation follow a sinusoidal pattern without complex 6 

double seasonality as e.g., occurs in the ITCZ. This implies that the overestimation of Et,m in 7 

winter will be compensated (on the annual time scale) by the underestimation in summer time. 8 

In addition, Gerrits et al. (2009) provided a sensitivity analysis on the effect of different Dt,m on 9 

total evaporation. Their results showed that total evaporation is sensitive to Dt,m only once the 10 

annual rainfall exceed ±1000 mm/y. However, a sensitivity analysis conducted for clarifying this 11 

issue for some parameters and variables (Figure 10 in the revised manuscript). 12 

 13 

Comment 5: 14 

Page 5 Lines 37-37: “But in those relatively wet areas transpiration is underestimated in summer, 15 
but overestimated in winter, which will cancel out on the annual scale.” Delete the first “But”? 16 

 17 

Reaction: 18 

Thanks, it was done in the revised manuscript. 19 

 20 

Comment 6: 21 

Page 7 Line 32: year-1 22 

 23 

Reaction: 24 

Thanks, it was corrected in the revised manuscript. 25 

 26 

Comment 7: 27 

Page 8 Lines 2-3: Is there any analysis in this study to demonstrate that the precipitation is the 28 
major factor that caused the different results from different models? 29 

 30 

Reaction: 31 

By providing a sensitivity analysis in the revised manuscript, we showed how the model is 32 

sensitive to number of rain days and rain months. Moreover, the results of sensitivity analysis 33 

conducted by Gerrits et al. (2009) shows that the results are significantly sensitive to change in 34 

nr,d. We revised the manuscript as follows: 35 

“Different precipitation products applied in the models are likely the reason for the differences. As 36 

found by Gerrits et al. (2009), the sensitivity of the model to the number of rain days and rain 37 

months especially for the higher rates of precipitation can be a probable reason for poor 38 
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performance of a model especially for the forests with the highest amount of precipitation. In 1 

Section “Sensitivity analysis” we will elaborate on the sensitivity of these parameters on the global 2 

scale.” 3 

 4 

Comment 8: 5 

Page 9 Lines 27-32: The global transpiration ratio estimated by Gerrits’ model is larger than nearly 6 
all of the other studies listed, is there any reason? 7 

 8 

Reaction: 9 

Our transpiration ratio estimate is indeed in the higher range compared to other models/studies, 10 

however, the transpiration ratio estimated by Miralles et al. (2011) is higher than our model 11 

(80% in comparison to 71%). Moreover, our estimation is close to that of Sutanto (2015) (69%) 12 

and Good et al. (2015) (65%). Coenders-Gerrits et al. (2014) also found that based on the model 13 

of Jasechko et al. (2013) transpiration ratio changes between 35% and 80%, which is in line with 14 

our current findings. We added this information in the revised manuscript. 15 

 16 

Comment 9: 17 

Page 10 Lines 27-29: Since the constant value of 0.935 mm in Equation 10 could be underestimated 18 
for the forest floor interception, then what value is advised for the forest floor? 19 

 20 

Reaction: 21 

Forest floor evaporation can be modeled for each region based on its characteristics (e.g., Wang-22 

Erlandsson et al. (2014)). Or typical values on Smax for the forest floor can be found in Table 22.1 23 

of Gerrits and Savenije (2011). For example, in the UK for Pine (Pinus sylvestris), it is 0.6-1.7 24 

mm (Walsh and Voigt, 1977), in Australia for Eucalyptus, it is 1.7 mm (Putuhena and Cordery, 25 

1996) and in Luxembourg for Beech (Fagus sylvatica), it is 1-2.8 mm (Gerrits et al., 2010). 26 

 27 

References 28 
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Abstract 9 

Evaporation is a very important flux in the hydrological cycle and links the water and energy 10 
balance of a catchment. The Budyko framework is often used to provide a first order estimate of 11 

evaporation, since it is a simple model where only rainfall and potential evaporation is required as 12 
input. Many researchers have tried to improved the Budyko framework by including more physics 13 
and catchment characteristics into the original equation. However, this often resulted in additional 14 

parameters, which are unknown or difficult to determine. In this paper we present an improvement 15 
of the previously presented Gerrits’ model (“Analytical derivation of the Budyko curve based on 16 

rainfall characteristics and a simple evaporation model” in Gerrits et al, 2009 WRR), whereby total 17 
evaporation is calculated on the basis of simple interception and transpiration thresholds in 18 
combination with measurable parameters like rainfall dynamics and storage availability from 19 

remotely sensed data sources. While Gerrits’ model was previously investigated for 10 catchments 20 

with different climate conditions and some parameters were assumed to be constant, in this study 21 
we applied the model on the global scale and fed with remotely sensed input data. The output of 22 
the model has been compared to two complex land-surface models STEAM and GLEAM, as well 23 

as the database of Landflux-EVAL. Our results show that total evaporation estimated by Gerrits’ 24 
model is in good agreement with Landflux-EVAL, STEAM and GLEAM. Results also show that 25 

Gerrits’ model underestimates interception in comparison to STEAM and overestimates it in 26 
comparison to GLEAM, while for transpiration the opposite is found. Errors in interception can 27 
partly be explained by differences in the interception definition that successively introduce errors 28 

in the calculation of transpiration. Relating Comparing to the Budyko framework, the model 29 
showed a good reasonable performance for total evaporation estimation. Our results also found a 30 

unimodal distribution of 
𝐸𝑡

𝑃
, indicating that both increasing and decreasing aridity will result in 31 

decline in the fraction of precipitation transpired by plants for growth and metabolism.  32 

 33 

Keywords: Budyko curves, interception, transpiration, remote sensing, evaporation 34 
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Introduction 1 

Budyko curves are used as a first order estimate of annual evaporation as a function of annual 2 
precipitation and potential evaporation. If the available energy is sufficient to evaporate the 3 
available moisture, annual evaporation can approach annual precipitation (water-limited 4 
situation). If the available energy is not sufficient, annual evaporation can approach potential 5 
evaporation (energy-limited situation). Using the water balance and the energy balance and by 6 

applying the definition of the aridity index and Bowen ratio, the Budyko framework can be 7 
described as (Arora, 2002): 8 

 
𝐸𝑎

𝑃𝑎
=

∅

1+𝑓(∅)
= 𝐹(∅)  (1)  

with 𝐸𝑎 annual evaporation [L/T], 𝑃𝑎 annual precipitation [L/T], 
𝐸𝑎

𝑃𝑎
 the evaporation ratio [-], and 9 

∅ the aridity index which is defined as the potential evaporation divided by annual precipitation [-10 
]. Equation 1 is the base of a All Budyko curves, which are developed by different researchers 11 
(Table 1), have a similar pattern as equation 1.   12 

The equations shown in Table 1 assume that the evaporation ratio is determined by climate only 13 

and do not take into account the effect of other controls on the water balance. Therefore, some 14 
researchers incorporated more physics into the Budyko framework. For example Milly (1994, 15 
1993) investigated the root zone storage as an important secondary control on the water balance. 16 

Choudhury (1999) used net radiation and a calibration factor in Budyko curves. Zhang et al. (2004, 17 
2001) tried to add a plant-available water coefficient, Porporato et al. (2004) took into account the 18 

maximum storage capacity, Yang et al. (2006, 2008) incorporated a catchment parameter, and 19 

Donohue et al. (2007) tried to consider vegetation dynamics. Although the incorporation of these 20 

additional processes improved the model performance, the main difficulty with these approaches 21 
is the determination of the parameter values. In practice, they are therefore often used as calibration 22 

parameters. The model of Gerrits et al. (2009) aimed to develop an analytical model (hereafter 23 
Gerrits’ model) that is physically based and only uses measurable parameters, some of the required 24 

input values are not available at the global scale. For example, carry over parameter (𝐴), 25 

interception storage capacity (𝑆𝑚𝑎𝑥), and plant available water (𝑆𝑢,𝑚𝑎𝑥), were available for the 10 26 

case study locations in Gerrits et al. (2009), but at the global scale such data was not available. 27 

They tested the model output (i.e., interception evaporation, transpiration, and total evaporation) 28 
on a couple of locations in the world, where the parameters could be determined, but not at the 29 
global scale due to data limitations. However, Now with the current developments in remotely 30 
sensed data, new opportunities have arisen to overcome this data limitation. In this study we aim 31 

to find relations between the missing input parameters and remotely sensed data products, so the 32 
Gerrits’ model can be tested at the global scale. 33 

One of those input parameters is the soil moisture storage. Recently, many studies (e.g., Chen et 34 
al., 2013; Donohue et al., 2010; Istanbulluoglu et al., 2012; Milly and Dunne, 2002; Wang, 2012; 35 
Zhang et al., 2008) found that soil moisture storage change is a critical component in modelling 36 

the interannual water balance. Including soil water information into the Budyko framework was 37 
often difficult, because this information is not widely available. However, Gao et al. (2014) 38 
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presented a new method where the available soil water (which is often linked to soil water 1 
capacity) is derived from time series of rainfall and potential evaporation, plus a long-term runoff 2 
coefficient. These input time series This data can be obtainedderived locally (e.g., de Boer-Euser 3 

et al. (2016)), but can also be derived from remotely sensed data as shown by Wang-Erlandsson 4 
et al. (2016), which allows us to apply the method at the global scale and incorporate it in the 5 
Gerrits’ model.  6 

While Gerrits’ model was only tested for 10 locations with different climatic conditions, the aim 7 
of this study is to test Gerrits’ model at the global scale. We used remotely sensed data to estimate 8 
parameters, which were considered constant in Gerrits’ model. These parameters are the maximum 9 
soil moisture storage by the method of Gao et al (2014) and the Next to using the method of Gao 10 

et al (2014) to globally estimate the maximum soil water storage (𝑆𝑢,𝑚𝑎𝑥), we also tested a method 11 

to derive the interception storage capacity (𝑆𝑚𝑎𝑥) from remotely sensed data. These two 12 
parameters are required to make a first order estimate of total evaporation, and to partition this into 13 
interception evaporation and transpiration as well. The outcome is compared to more complex 14 

land-surface-atmosphere models as well as to the Budyko curves of Table 1. Furthermore, the 15 

results of the model will be related to the Budyko framework for a better understanding of the 16 
partitioning of evaporation into transpiration and interception.   17 

Methodology 18 

Total evaporation (𝐸) may be partitioned as follows (Shuttleworth, 1993): 19 

𝐸 = 𝐸𝑖 + 𝐸𝑡 + 𝐸𝑜 + 𝐸𝑠  (2)  

in which 𝐸𝑖 is interception evaporation, 𝐸𝑡 is transpiration, 𝐸𝑜 is evaporation from water bodies 20 

and 𝐸𝑠 is evaporation from the soil, all with dimensions [LT-1]. In this definition, interception is 21 
the amount of evaporation from any wet surface including canopy, understory, forest floor, and 22 
the top layer of the soil. Soil evaporation is defined as evaporation of the moisture in the soil that 23 

is connected to the root zone (de Groen and Savenije, 2006) and therefore is different from 24 
evaporation of the top layer of the soil (several millimeters of soil depth, which is here considered 25 

as part of the interception evaporation). Hence interception evaporation is the fast feedback of 26 
moisture to the atmosphere within a day from the rainfall event and soil evaporation is evaporation 27 
from the non-superficial soil constrained by soil moisture storage in the root zone. Like Gerrits et 28 

al. (2009), we assume that evaporation from soil moisture is negligible (or can be combined with 29 
interception evaporation). Evaporation from water bodies is used for inland open water, where 30 
interception evaporation and transpiration is zero. As a result, Equation 2 becomes: 31 

𝐸 = 𝐸𝑜 

𝐸 = 𝐸𝑖 + 𝐸𝑡 

for water bodies 

for land surface 

(3a) 

(3b) 

where 𝐸𝑖 is direct feedback from short term moisture storage on vegetation, ground, and top layer, 32 

and 𝐸𝑡 is evaporation from soil moisture storage in the root zone.  33 

For modelling evaporation, it is important to consider that interception and transpiration have 34 
different time scales (i.e. the stock divided by the evaporative flux) (Blyth and Harding, 2011). 35 
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With a stock of a few millimetres and the evaporative flux of a few millimetres per day, 1 
interception has a time scale in the order of one day (Dolman and Gregory, 1992; Gerrits et al., 2 
2009, 2007; Savenije, 2004; Scott et al., 1995). In the case of transpiration, the stock amounts to 3 

tens to hundreds of millimetres and the evaporative flux to a few millimetres per day (Baird and 4 
Wilby, 1999), resulting in a time scale in the order of month(s) (Gerrits et al., 2009). In Gerrits’ 5 
model it is successively assumed that interception and transpiration can be modelled as threshold 6 
processes at the daily and monthly time scale, respectively. Rainfall characteristics are 7 
successively used to temporally upscale from daily to monthly, and from monthly to annual. A full 8 

description of the derivation and assumptions can be found in Gerrits et al. (2009). Here, we only 9 
summarize the relevant equations (Table 2) and not the complete derivation. Since we now test 10 
the model at the global scale, we do show how we estimated the required model parameters and 11 
the inputs used. 12 

Interception 13 

Gerrits’ model considers evaporation from interception as a threshold process at daily time scale 14 

(Equation 4, Table 2). Daily interception (𝐸𝑖,𝑑), then, is upscaled to monthly interception (𝐸𝑖,𝑚, 15 

Equation 5, Table 2) by considering the frequency distribution of rainfall on a rain day (𝛽-16 

parameter) and subsequently to annual interception (𝐸𝑖,𝑎, Equation 6, Table 2) by considering the 17 

frequency distribution of rainfall in a rain month (𝜅𝑚-parameter) (see de Groen and Savenije 18 
(2006), Gerrits et al. (2009)). A rain day is defined as a day with more than 0.1 mm day-1 of rain 19 
and a rain month is a month with more than 2 mm month-1 of rain.  20 

While Gerrits et al. (2009) assumed a constant interception threshold (𝐷𝑖,𝑑 = 5 mm day-1) for the 21 

studied locations, we here use a globally variable value based on remote sensing data. The 22 

interception threshold (𝐷𝑖,𝑑) is a daily average during the year yearly average and is either limited 23 

by the daily interception storage capacity 𝑆𝑚𝑎𝑥 (mm day-1) or by the daily potential evaporation 24 

(Equation 9, Table 2) and thus not seasonally variable. We can assume this, because for most 25 

locations 𝑆𝑚𝑎𝑥 is smaller than 𝐸𝑝,𝑑 even if we consider a daily varying potential evaporation. 26 

Additionally, 𝑆𝑚𝑎𝑥 (based on LAI) could also be changed seasonally, however many studies show 27 

that the storage capacity is not changing significantly between the leafed and leafless period (e.g., 28 

Leyton et al., 1967; Dolman, 1987; Rutter et al., 1975). Especially, once interception is defined in 29 

a broad sense that it includes all evaporation from the canopy, understory, forest floor, and the top 30 

layer of the soil: leaves that are dropped from the canopy remain their interception capacity as they 31 

are on the forest floor in the leafless period. Furthermore, Gerrits et al (2010) showed with a Rutter-32 

like model that interception is more influenced by the rainfall pattern than by the storage capacity, 33 

which was also found by Miralles et al. (2010). Hence, in interception modelling, the value of the 34 

storage capacity is of minor concern, and seasonality is incorporated in the temporal rainfall 35 

patterns.  36 

The daily interception storage capacity should be seen as the maximum interception capacity 37 

within one day, including the (partly) emptying and filling of the storage between events per day, 38 

thus 𝑆𝑚𝑎𝑥 = 𝑛 ∙ 𝐶𝑚𝑎𝑥, where 𝐶𝑚𝑎𝑥 [L] is the interception storage capacity of land cover. If there 39 

is only one rain event per day (𝑛 = 1 day-1) (Gerrits et al., 2010), 𝑆𝑚𝑎𝑥 [LT-1] equals 𝐶𝑚𝑎𝑥 [L], as 40 
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is often found in literature. Despite proposing modifications for storms, which last more than one 1 

day (Pearce and Rowe, 1981), and multiple storms per rain day (Mulder, 1985), accounting for n 2 

is rarely necessary (Miralles et al., 2010). Miralles et al. (2010) and Pearce and Rowe (1981) both 3 

mentioned that accounting for n is rarely necessary. Pearce and Rowe (1981) mentioned that "In 4 

many climates, however, such adjustments will not be necessary, or small enough that they can be 5 

neglected”. In our interpretation this is because the number of times the interception storage can 6 

be filled and completely emptied is limited once we assume a drying time of a couple of hours 7 

(e.g., 4), which is common (Wang-Erlandsson et al., 2014). 8 

For 𝑛 = 1, the interception storage capacity can be estimated from Von Hoyningen-Huene (1981), 9 
which is obtained for a series of crops based on the leaf area index (LAI) (de Jong and Jetten, 10 
2007) (Equation 10, Table 2). Since the storage capacity of the forest floor is not directly related 11 

to LAI, it could be said that the 0.935 mm in Equation 10 is sort of the storage capacity of the 12 
forest floor. Since this equation was developed for crops, it is likely that it underestimates 13 

interception by forests with a denser understory and forest floor interception capacity. 14 

Transpiration 15 

Transpiration is considered as a threshold process at the monthly time scale (𝐸𝑡,𝑚 (mm month-1), 16 

Equation 7, Table 2) and successively is upscaled to annual transpiration (𝐸𝑡,𝑎 (mm year-1), 17 

Equation 8, Table 2) by considering the frequency distribution of the net monthly rainfall (𝑃𝑛,𝑚 =18 

𝑃𝑚 − 𝐸𝑖,𝑚) expressed with the parameter 𝜅𝑛. To estimate the monthly and annual transpiration, 19 

two parameters 𝐴 and 𝐵 are required.  𝐴 is the initial soil moisture or carryover value (mm month-20 
1) and 𝐵 is dimensionless and described as Equation 15, where the dimensionless 𝛾 is obtained by 21 
Equation 16. 22 

Gerrits et al. (2009) assumed that the carry over value (𝐴) is constant and used 𝐴 = 0, 5, 15, 20, 23 
mm month-1 , depending on the location, to determine annual transpiration. Also they considered 24 

𝛾 to be constant (𝛾 = 0.5). In the current study, we determined these two parameters based on the 25 

maximum root zone storage capacity (𝑆𝑢,𝑚𝑎𝑥). In equation 17, ∆𝑡𝑚 = 1 month and 𝑆𝑏 can be 26 

assumed to be 50% to 80% of 𝑆𝑢,𝑚𝑎𝑥 estimated by 𝑎𝑆𝑢,𝑚𝑎𝑥 (equation 18 in table 2), where 𝑎 is 27 

0.5-0.8 (de Groen, 2002; Shuttleworth, 1993). In this study we assumed 𝑆𝑏 𝑎 to be 50% of 𝑆𝑢,𝑚𝑎𝑥  28 

0.5 as this value is commonly used for many crops (Allen et al., 1998). Furthermore, we assumed 29 

that the monthly carry over 𝐴 can be estimated as 𝑏𝑆𝑢,𝑚𝑎𝑥 by equation 8 and in this study we 30 

assumed 𝑏 = 0.2 which gave the best global results for all land classes. In the sensitivity analysis 31 

both the sensitivity of 𝑎 and 𝑏 towards total evaporation will be investigated. To estimate 𝐴 and 32 

𝛾, it is important to have a reliable database of 𝑆𝑢,𝑚𝑎𝑥. For this purpose, we used the global 33 

estimation of 𝑆𝑢,𝑚𝑎𝑥 from Wang-Erlandsson et al. (2016) (Fig. 1d). 𝑆𝑢,𝑚𝑎𝑥 is derived by the mass 34 

balance method using satellite based precipitation and evaporation (Wang-Erlandsson et al., 2016). 35 
Wang-Erlandsson et al. (2016) estimated the root zone storage capacity from the maximum soil 36 
moisture deficit, as the integral of the outgoing flux (i.e. evaporation which is sum of transpiration, 37 
evaporation, interception, soil moisture evaporation and open water evaporation) minus the 38 

incoming flux (i.e. precipitation and irrigation). In their study, the root zone storage capacity was 39 
defined as the total amount of water that plants can store to survive droughts. Note that this recent 40 
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method (Gao et al., 2014) to estimate 𝑆𝑢,𝑚𝑎𝑥 does not require soil information, but only uses 1 

climatic data. It is assumed that ecosystems adjust their storage capacity to climatic demands 2 
irrespective of the soil properties. Under wet conditions Gao’s method appeared to perform better. 3 
For (semi-)arid climates the difference between this method and soil-based methods appear to be 4 

small (de Boer-Euser et al., 2016).  5 

Furthermore, Gerrits et al. (2009) estimated the average monthly transpiration threshold (𝐷𝑡,𝑚) as 6 
𝐸𝑝−𝐸𝑖,𝑎

𝑛𝑎
 (where na= number of months per year), which assumes that if there is little interception, 7 

plants can transpire at the same rate as a well-watered reference grass as calculated with the 8 

Penman-Monteith equation (University of East Anglia Climatic Research Unit , 2014). In reality, 9 
most plants encounter more resistance (crop resistance) than grass, hence we used Equation 17, 10 

Table 2 (Fredlund et al., 2012) to convert potential evaporation of reference grass (𝐸𝑝) to potential 11 

transpiration of a certain crop depending on LAI (i.e. the transpiration threshold 𝐷𝑡,𝑚 [mm month-12 
1]). Furthermore, similar to the daily interception threshold, we took a constant 𝐷𝑡,𝑚, which can be 13 

problematic in energy-constrained areas. But in those relatively wet areas transpiration is 14 
underestimated in summer, but overestimated in winter, which will cancel out on the annual scale. 15 
However, in those areas often temperature and radiation follow a sinusoidal pattern without 16 

complex double seasonality as e.g., occurs in the ITCZ. This implies that the overestimation of 17 

𝐸𝑡,𝑚 in winter will be compensated (on the annual time scale) by the underestimation in summer 18 

time. By means of a sensitivity analysis the effect of a constant 𝐷𝑡,𝑚 will be investigated. 19 

Data 20 

For precipitation we used the AgMERRA product from AgMIP climate forcing dataset (Ruane et 21 

al., 2015), which has a daily time scale and a spatial resolution of 0.25°×0.25° (see Fig. 1a). The 22 
spatial coverage of AgMERRA is globally for the years 1980-2010. The AgMERRA product is 23 

available on the NASA Goddard Institute for Space Studies website 24 
(http://data.giss.nasa.gov/impacts/agmipcf/agmerra/). 25 

Potential evaporation (see Fig. 1b) data (calculated by FAO-Penman–Monteith equation (Allen et 26 
al., 1998)) were taken from Center for Environmental Data Archival website 27 

(http://catalogue.ceda.ac.uk/uuid/4a6d071383976a5fb24b5b42e28cf28f), produced by the 28 
Climatic Research Unit (CRU) at the University of East Anglia (University of East Anglia Climatic 29 
Research Unit, 2014). These data are at the monthly time scale over the period 1901-2013, and 30 

has a spatial resolution of 0.5°×0.5°. We used the data of 1980-2010 in consistent with 31 

precipitation dataset. 32 

LAI data (Fig. 1c) were obtained from Vegetation Remote Sensing & Climate Research 33 
(http://sites.bu.edu/cliveg/datacodes/) (Zhu et al., 2013). The spatial resolution of the data sets is 34 
1/12 degree, with 15-day composites (2 per month) for the period July 1981 to December 2011. 35 

The data of 𝑆𝑢,𝑚𝑎𝑥 (Fig. 1d) is prepared data by Wang-Erlandsson et al. (2016) and is based on the 36 

satellite based precipitation and evaporation with 0.5°×0.5° resolution over the period 2003-2013. 37 
They used the USGS Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS) 38 

http://data.giss.nasa.gov/impacts/agmipcf/agmerra/
http://catalogue.ceda.ac.uk/uuid/4a6d071383976a5fb24b5b42e28cf28f
http://sites.bu.edu/cliveg/datacodes/
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precipitation data at 0.05 (Funk et al., 2014) and the ensemble mean of three datasets of 1 
evaporation including CSIRO MODIS Reflectance Scaling EvapoTranspiration (CMRSET) at 2 

0.05 (Guerschman et al., 2009), the Operational Simplified Surface Energy Balance (SSEBop) at 3 

30 (Senay et al., 2013) and MODIS evapotranspiration (MOD16) at 0.05 (Mu et al., 2011). They 4 
calculated potential evaporation using Penman-Monteith equation (Monteith, 1965).  5 

Model comparison and evaluation 6 

The model performance was evaluated by comparing our results at the global scale to global 7 
evaporation estimates from other studies. Most available products only provide total evaporation 8 
estimates and do not distinguish between interception and transpiration. Therefore, we chose to 9 
compare our interception and transpiration results to two land surface models: The Global Land 10 

Evaporation Amsterdam Model (GLEAM) (v3.0a) database (Martens et al., 2017; Miralles et al., 11 
2011a) and Simple Terrestrial Evaporation to Atmosphere Model (STEAM) (Wang-Erlandsson et 12 
al., 2014, Wang-Erlandsson et al., 2016). GLEAM estimates different fluxes of evaporation 13 

including transpiration, interception, bare soil evaporation, snow sublimation and open water 14 

evaporation. STEAM, on the other hand, estimates the different components of evaporation 15 
including transpiration, vegetation interception, floor interception, soil moisture evaporation, and 16 
open water evaporation. Thus for the comparison of interception we used the sum of canopy and 17 

floor interception and soil evaporation from STEAM and canopy interception and bare soil 18 
evaporation from GLEAM. Furthermore, STEAM includes an irrigation module (Wang-19 

Erlandsson et al., 2014), while Miralles et al. (2011) mentioned that they did not include irrigation 20 
in GLEAM, but the assimilation of the soil moisture from satellite would account for it as soil 21 
moisture adjusted to seasonal dynamics of any region. The total evaporation was also compared 22 

to LandFlux-EVAL products (Mueller et al., 2013). GLEAM database (www.gleam.eu) is 23 

available for 1980-2014 with a resolution of 0.25°×0.25° and STEAM model was performed for 24 
2003-2013 with a resolution of 1.5°×1.5°. LandFlux-EVAL data 25 
(https://data.iac.ethz.ch/landflux/) is available for 1989-2005. We compared Gerrits’ model to 26 

other products based on the land cover to judge the performance of the model for different types 27 
of land cover. The global land cover map (Channan et al., 2014; Friedl et al., 2010) was obtained 28 

from http://glcf.umd.edu/data/lc/. Lastly, we also compared our results to the Budyko curves of 29 

Schreiber, O’ldekop, Pike and Budyko (Table 1). We used root mean square error (RMSE) (Eq. 30 
20), mean bias error (MBE) (Eq. 21) and relative error (RE) (Eq. 22) to evaluate the results. 31 

RMSE = √
∑ (𝑥𝑖𝐺 − 𝑥𝑖𝑀)2𝑛

𝑖=1

𝑛
 

 (20)  

MBE =
∑ (𝑥𝑖𝐺 − 𝑥𝑖𝑀)𝑛

𝑖=1

𝑛
 

 (21)  

RE =
�̅�𝐺 − �̅�𝑀

�̅�𝐺
× 100 

 (22)  

In these equations, 𝑥𝑖𝑀 is evaporation of the benchmark models to which Gerrits’ model is 32 

compared for pixel 𝑖, 𝑥𝑖𝐺  is evaporation from Gerrits’ model for pixel 𝑖, �̅�𝐺  is the average 33 

evaporation of Gerrits’ model, �̅�𝑀 is the average evaporation of the benchmark models and 𝑛 is 34 

http://www.gleam.eu/
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the number of pixels of the evaporation map. Negative MBE and RE show the Gerrits’ model 1 
underestimates evaporation and vice versa. As the spatial resolution of the products is different, 2 
we regridded all the products to the coarsest resolution (1.5°×1.5°) for the comparison. 3 

Furthermore, the comparisons were shown for each land cover using the Taylor diagram (Taylor, 4 
2001). This A Taylor diagram can provide a concise statistical summary of how the models are 5 
comparable to the reference data (observation or given model) in terms of their correlation, RMSE, 6 
and the ratio of their variances. In this paper, the reference data is Gerrits’ model. Since the 7 
different models for different land cover types have been used in this study, which have different 8 

numerical values, the results are normalized by the reference data. It should be noted that the 9 
standard deviation of the reference data is normalized by itself and, therefore, it is plotted at unit 10 
distance from the origin along the horizontal axis (Taylor, 2001). According to the Taylor diagram, 11 
when the points are close to reference data (‘Ref’ in Figures 2, 4 and 63, 5, 7 and 9), it shows that 12 

the RMSE is less and the correlation is higher and therefore, the models are in a more reasonable 13 
agreement.    14 

Results and discussion 15 

Total evaporation comparison 16 

Figure 12 shows the mean annual evaporation from Gerrits’ model, Landflux-EVAL, STEAM and 17 
GLEAM data sets. In general, the spatial distribution of evaporation simulated by Gerrits’ model 18 
is similar to that of the benchmark models. Figure 2a 1a demonstrates that, as expected, the highest 19 

annual evaporation, which is the sum of interception evaporation and transpiration, occurs in 20 
tropical evergreen broadleaf forests and the lowest rate occurs in the barren and sparsely vegetated 21 

desert regions. Total evaporation varies between almost zero in arid regions to more than 1500 22 
mm year-1 in the tropics.  23 

As can be seen in Figure 12 there exist also large differences between STEAM, GLEAM and 24 

Landflux-EVAL. Different products of precipitation (and other global data bases) applied for the 25 
models is likely the reason. For example, the sensitivity of the model to the number of rain days 26 

and rain months especially for the higher rate of precipitation (Gerrits et al., 2009) can be a 27 
probable reason for poor performance of a model especially for evergreen forests with the highest 28 
amount of precipitation. Different precipitation products used in the models are likely the reason 29 
for the differences. As found by Gerrits et al. (2009), the sensitivity of the model to the number of 30 

rain days and rain months especially for the higher rates of precipitation can be a probable reason 31 
for poor performance of a model especially for the forests with the highest amount of precipitation. 32 

In Section “Sensitivity analysis” we will elaborate on the sensitivity of these parameters on the 33 
global scale. 34 

Mean annual evaporation contributions per land cover type from Gerrits’ model and other products 35 
as well as RMSE, MBE and RE are shown in Table 3. Globally, mean annual evaporation 36 

estimated (for the overlapped pixels with 1.5°×1.5° resolution) by Gerrits’ model, Landflux-37 
EVAL, STEAM and GLEAM are 443, 469, 475 and 462 mm year-1, respectively. Our results are 38 
comparable to those of Haddeland et al. (2011), where the simulated global terrestrial evaporation 39 
ranges between 415 and 586 mm year-1 for the period 1985–1999. Generally, Gerrits’ model 40 
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overestimates evaporation for most land cover types in comparison to Landflux-EVAL and 1 
GLEAM, and underestimates in comparison to STEAM (see also MBE and RE). Since the number 2 
of pixels covered by each land use is different, RMSE, MBE and RE cannot be comparable 3 

between land cover types. RMSE, MBE and RE for each land cover type show that, generally, 4 
Gerrits’ model is in a better agreement with Landflux and GLEAM than STEAM. The Taylor 5 
diagram for total evaporation estimated by Gerrits’ model in comparison to Landflux-EVAL, 6 
STEAM and GLEAM for all data (No. 1 in Fig. 32) and for each land cover type (No.2 to No.11 7 
in Fig. 32) also indicates that Gerrits’ model has a better agreement with Landflux-EVAL and 8 

GLEAM than STEAM model, especially for evergreen broadleaf forest, shrublands, savannas and 9 
croplands (see also Table 3).  10 

Annual interception comparison  11 

While Wang-Erlandsson et al. (2014; 2016) estimated canopy interception, floor interception and 12 

soil evaporation separately, in the current study we assumed that these three components of 13 
evaporation can be lumped as interception evaporation. Figure 4 3 shows the mean annual 14 
evaporation from interception at the global scale estimated by Gerrits’ model, STEAM and 15 

GLEAM. In this figure, interception from STEAM is calculated by the sum of canopy interception, 16 
floor interception and soil evaporation. Furthermore, interception from GLEAM is calculated as 17 
the sum of canopy interception and bare soil evaporation (GLEAM does not estimate floor 18 

interception). In general, the spatial distribution of Gerrits’ simulated interception is partly similar 19 
to that of STEAM and GLEAM. In the tropics, with high amounts of annual precipitation and high 20 

storage capacity due to the dense vegetation (evergreen broadleaf forests and savannas), annual 21 
interception shows the highest values. Table 4 shows the average of interception, RMSE, MBE 22 

and RE per land cover type. This table indicates that Gerrits’ model underestimates interception 23 
in comparison to STEAM for all land cover types. Table 4 also shows that, in comparison to 24 

GLEAM, Gerrits’ model overestimates interception for all land cover types, because in GLEAM 25 
floor interception has not been taken into account. Figure 5 4 also shows that Gerrits’ model is in 26 
better agreement with STEAM (especially for grasslands and mixed forest) than GLEAM. The 27 

reason for an underestimated interception in comparison to STEAM could be the role of the 28 

understory. LAI does not account for understory, therefore maybe 𝑆𝑚𝑎𝑥 should be larger than 29 
modeled with Equation 10. However, there is almost no data available to estimate the interception 30 
storage capacity of the forest floor at the global scale. 31 

We also compared our interception ratio 𝐸𝑖/𝐸 (Fig. 10) with some studies that looked after 32 
evaporation partitioning. Wang-Erlandsson defined interception in a slightly different way, hence 33 

we compared our calculated 𝐸𝑖/𝐸 with the sum of soil moisture evaporation ratio, vegetation 34 
interception ratio and floor interception ratio which are presented in Fig. 5.b, 5.c and 5.d in Wang-35 
Erlandsson et al. (2014), respectively. While the results of Wang-Erlandsson et al. (2014) showed 36 

that vegetation interception in arid regions with no vegetation cover is zero, soil moisture and floor 37 

interception show a considerable percentage of total evaporation. Our results also show that 
𝐸𝑖

𝐸
 in 38 

arid regions is close to 100%. Therefore, the interception ratio in this study is in a reasonable 39 
agreement with the results of Wang-Erlandsson et al. (2014). It is also comparable to the sum of 40 
bare soil evaporation and canopy interception from GLEAM (Martens et al., 2017). 41 



20 
 
 

Annual transpiration comparison 1 

Figure 6 5 illustrates the mean annual transpiration estimated by Gerrits’ model, STEAM and 2 
GLEAM. The spatial distribution is similar to the results of STEAM and GLEAM. Mean annual 3 
transpiration varies between zero mm year-1 for arid areas in the north of Africa (Sahara) to more 4 
than 1000 mm year-1 in the tropics in South America. The results show that the highest annual 5 
transpiration occurrs in evergreen broadleaf forests with the highest amount of precipitation and 6 

dense vegetation (see also Table 5). Figure 6c 5c shows that GLEAM, in comparison to Gerrits’ 7 
model, overestimates the transpiration in some regions especially in the tropics in South America 8 
and Central Africa. Figure 56b also shows that STEAM is different from Gerrits’ model over some 9 
regions like India, western China and North America as well as in the tropics. Table 5 (MBE and 10 
RE) also indicates that Gerrits’ model underestimates transpiration in comparison to GLEAM and 11 

overestimates in comparison to STEAM. The Taylor diagram (Fig. 67) shows global annual 12 
transpiration of Gerrits’ model is closer to that of GLEAM than STEAM, representing that the 13 

Gerrits’ model is in a more reasonable agreement with GLEAM for transpiration estimation.  14 

Similar to the interception ratio, we also compared our transpiration ratio 𝐸𝑡/𝐸 (Fig 10), and found 15 

that the results are in a reasonable agreement with STEAM (See Fig. 5.a, Wang-Erlandsson et al. 16 

(2014)) and GLEAM (See Fig. 9.e, Martens et al. (2017)). Moreover, Gglobal transpiration ratio 17 

estimated by Gerrits’ model is 71% which is comparable to the ratio estimated by other studies 18 

(e.g. 80% (Miralles et al., 2011b), 69% (Sutanto, 2015),65% (Good et al., 2015), 62% (Maxwell 19 

and Condon, 2016), 62% (Lian et al., 2018), 61% (Schlesinger and Jasechko, 2014), 57% (Wei et 20 

al., 2017), 52% (Choudhury and Digirolamo, 1998), 48% (Dirmeyer et al., 2006) and 41% 21 

(Lawrence et al., 2007). Additionally, Coenders-Gerrits et al. (2014) found that based on the model 22 

of Jasechko et al. (2013) transpiration ratio changes between 35% and 80%, which is in line with 23 

our current findings.  24 

Analyzing the results through Budyko framework 25 

Figure 8 shows the mean annual evaporation derived from four non-parametric Budyko curves 26 
(Table 1) including Schreiber (1904), Ol’dekop (1911), Pike (1964) and Budyko (1974). The 27 

global mean annual evaporation estimated by Pike and Budyko are close (445 and 439 mm year-28 
1, respectively). Schreiber underestimates the mean annual evaporation in comparison to Ol’dekop, 29 

Pike and Budyko, especially in regions with a higher rate of evaporation. Table 6 shows the mean 30 
annual evaporation estimated by these four curves per land cover type in comparison to Gerrits’ 31 
model as well as RMSE, MBE and RE. The results show that mean annual evaporation of Gerrits’ 32 

model for forests is closer to that of Ol’dekop and for the other land classes it is closer to that of 33 
Budyko. Global mean annual evaporation is close to Pike where RE is almost zero. Taylor diagram 34 
(Fig. 9) shows that, in comparison to the Budyko curves, Gerrits’ model performs well for all land 35 
cover types except for Evergreen broadleaf and Deciduous needleleaf forest. Evergreen broadleaf 36 

forest shows a significant overestimation of evaporation by Gerrits’ model in comparison to 37 
Budyko curves. One of the reasons for these differences can be the used precipitation product as 38 
Gerrits et al. (2009) mentioned that the number of rain months per year, is the most sensitive 39 
parameter. Furthermore, as mentioned before in Section “Annual interception comparison", the 40 
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role of the understory, which has not been taken into account in 𝑆𝑚𝑎𝑥 equation, can be a source of 1 
error for the poor interception performance (and therefore total evaporation) in forests.  2 

We evaluated the relation between evaporation fluxes and energy/water limitation in the Budyko 3 
framework as provided by Miralles et al. (2016) and Good et al. (2017) to see how our model can 4 
be related to the Budyko framework and how the energy and water limitations can be interpreted 5 

by our model. Figure 7 shows the density plot of 
𝐸

𝑃
 versus 

𝐸𝑝

𝑃
 within the Budyko framework. For 6 

calculating 
𝐸

𝑃
 and 

𝐸𝑝

𝑃
 for all models, precipitation and potential evaporation data are the same as 7 

used in this study. This figure indicates that, while Gerrits’ model does not perform well in 8 
comparison to STEAM and GLEAM, it follows the framework in a reasonable manner. 9 
Furthermore, the results are comparable to the results of Miralles et al. (2016) (see Fig. 11 in their 10 

paper). The partition of evaporation related to the land cover within the Budyko framework is 11 
presented in Figure 8. According to this figure, interception as estimated by Gerrits’ model is 12 
closer to that of GLEAM rather than STEAM, but transpiration is close to both models. For mean 13 

annual total evaporation, Gerrits’ model is more similar to GLEAM than STEAM for all land 14 

covers except for grasslands and shrublands. Moreover, the distribution of 
𝐸𝑡

𝑃
 is comparable to that 15 

of Good et al. (2017) (Figure 1.a in their paper). Their results showed a unimodal 
𝐸𝑡

𝑃
 distribution 16 

indicating that both increasing and decreasing aridity will result in a decline in the fraction of 17 
precipitation transpired by plants for growth and metabolism. This distribution is also seen in 18 

Figure 9, where the plot is provided based on the average of 
𝐸

𝑃
 for each aridity index (

𝐸𝑝

𝑃
). This 19 

figure is also comparable to figure 1.c in Good et al. (2017)’s paper. 20 

Sensitivity analysis 21 

In our sensitivity analysis we investigated the sensitivity of the three parameters that are related to 22 

transpiration (constants 𝑎 and 𝑏, and threshold 𝐷𝑡,𝑚), and the effect of the number of rain days and 23 

rain months on the total evaporation calculation. All parameters were in- and decreased by 10%. 24 

The analysis shows that the model is not too sensitive to parameter 𝑎, where a ±10% change in 𝑎 25 

leads to a minor ∓0.4% change in 
𝐸

𝑃
 (See Fig. 10.a). Thus, the model is not sensitive to changes in 26 

parameter 𝑎. Similar results were found for parameter b, where a ±10% change in 𝑏 resulted only 27 

in a ±3.5% change in 
𝐸

𝑃
 (Fig. 10.b). Moreover, a ±10% change in both 𝑛𝑟,𝑑 and 𝑛𝑟,𝑚leads to a ±2.2 28 

change in 
𝐸

𝑃
 (Fig. 10.c and 10.d). The most sensitive parameter is 𝐷𝑡,𝑚, where a ±10% change in 29 

𝐷𝑡,𝑚 resulted in a ±4% change in 
𝐸

𝑃
 (Fig. 10.e). In conclusion, 𝐷𝑡,𝑚 and 𝑏 are the most sensitive 30 

parameters for the estimation of  
𝐸

𝑃
; however, it seems that the sensitivity is not that much different 31 

per land class, except for grasslands and shrublands, which may arise from the underestimation of 32 

interception in Gerrits’ model for short vegetation. This underestimation is obtained, because the 33 

relation between 𝑆𝑚𝑎𝑥 and LAI might not be valid for short vegetation. This also might be due to 34 
the wide range of gridded points belong to grasslands and shrublands as shown by density plot of 35 
𝐸

𝑃
 versus 

𝐸𝑝

𝑃
 in Figure 11.  36 
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Conclusion 1 

In the current study we revised and applied a simple evaporation model proposed by Gerrits et al. 2 
(2009) at the global scale. Instead of locally calibrated model parameters we now only used 3 
parameters derived from remotely sensed data. Furthermore, we implemented in the Gerrits’ 4 
model a new definition of the root zone storage capacity from Gao et al (2014).  5 

Comparing our results for total evaporation to Landflux-EVAL estimates show that Gerrits’ model 6 
is in good agreement with Landflux-EVAL. The highest mean annual evaporation rates are found 7 
in evergreen broadleaf forests (1367 mm year-1), deciduous broadleaf forests (796 mm year-1) and 8 
savannas (695 mm year-1) and the lowest ones are found in shrublands (203 mm year-1) and 9 

grasslands (275 mm year-1). Generally, Gerrits’ model overestimates in comparison to Landflux-10 

EVAL and GLEAM, and underestimates in comparison to STEAM.  11 

Gerrits’ model underestimates interception in comparison to STEAM for all land covers. On the 12 
other hand, the model overestimates interception in comparison to GLEAM, since GLEAM does 13 
not include floor interception. Although we tried to correct for the different definitions of 14 

interception, the results may be biased. The relatively worse performance in forests ecosystems 15 
could be explained by the effect of understory. This is not taken into account in Gerrits’ model, 16 

while the understory can also intercept water. We could say that the constant value of 0.935 mm 17 
in Equation 10 reflects the forest floor interception storage capacity, but since this number was 18 

derived for crops, it is likely an underestimation. Therefore, better estimation of 𝑆𝑚𝑎𝑥 to account 19 
for forest floor interception is recommended.  20 

Estimated transpiration by Gerrits’ model is in reasonable agreement with GLEAM and STEAM. 21 
Gerrits’ model underestimates transpiration in comparison to GLEAM (RE=-4%) and 22 
overestimates in comparison to STEAM (RE=+12%). The scatter plots showed that, in comparison 23 

to GLEAM and STEAM, Gerrits’ model performs well for all land cover types. Also the 24 
transpiration ratio corresponded well in comparison to those of GLEAM and STEAM. The results 25 

also showed that the global transpiration ratio estimated by Gerrits’ model (71%) is approximately 26 
comparable to the other studies.   27 

Comparing Gerrits’ model to some Budyko curves, shows that the model performed well, but in 28 
areas with few number of rain months, evaporation is not close to the Budyko curves of Schreiber, 29 
Ol’dekop, Pike and Budyko. This is likely caused by the fact that Gerrits’ model is rather sensitive 30 
to the number of rain days and rain months. 31 

Our results are also related to the Budyko framework and we found similar to Good et al. (2017) 32 

that the distribution of 
𝐸𝑡

𝑃
 is unimodal, indicating that both increasing and decreasing aridity will 33 

result in decline in the fraction of precipitation transpired by plants for growth and metabolism.  34 

By comparing all products, we found that, in general, there are large differences between STEAM, 35 

GLEAM and Landflux-EVAL. The most convincing reason for this discrepancy lies in the 36 
different products for precipitation (and other global data sets), which have been used for the 37 
different models. The Gerrits’ model is sensitive to the number of rain days and months especially 38 
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for the higher rates of precipitation. Nonetheless, our sensitivity analysis of parameters 𝑎 and 𝑏 1 

and 𝑛𝑟,𝑑, 𝑛𝑟,𝑚 and 𝐷𝑡,𝑚 shows that 𝐷𝑡,𝑚 and 𝑏 are the most sensitive parameters for the estimation 2 

of  
𝐸

𝑃
.  3 

Generally, it should be mentioned that the underlying reasoning of the Gerrits’ model is to 4 
recognize the characteristic time scales of the different evaporation processes (i.e. interception 5 

daily and transpiration monthly). In Gerrits et al. (2009) (and in the current paper as well), this has 6 

been done by taking yearly averages for the interception (𝐷𝑖,𝑑, mm day-1) and transpiration 7 

threshold (𝐷𝑡,𝑚, mm month-1) in combination with the temporal distribution functions for daily 8 

and monthly (net) rainfall. Hence, the seasonality is incorporated in the temporal rainfall patterns, 9 
and not in the evaporation thresholds. This is a limitation of the currently used approach and could 10 
be the focus of a new study by investigating how seasonal fluctuating thresholds (based on LAI 11 

and/or a simple cosine function) would affect the results. This could be a significant 12 
methodological improvement of the Gerrits’ model, but will have mathematical implications on 13 

the analytical model derivation. It will improve the monthly evaporation estimates, but we expect 14 
that the consequences at the annual time scale (which is the focus of the current paper) will be less 15 

severe. The strength of the Gerrits’ model is that, in comparison to other models, it is a very simple 16 
and in spite of its simplicity, the Gerrits’ model performs quite well.  17 
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Table 1- Budyko equations developed by different researchers. 1 

Equation Reference 
𝐸𝑎

𝑃𝑎
= 1 − exp (−∅) 

Schreiber [1904] 

𝐸𝑎

𝑃𝑎
= ∅tanh (

1

∅
) 

Ol’dekop [1911] 

𝐸𝑎

𝑃𝑎
=

1

√0.9 + (
1
∅

)2

 
Turc [1954] 

𝐸𝑎

𝑃𝑎
=

1

√1 + (
1
∅

)2

 
Pike [1964] 

𝐸𝑎

𝑃𝑎
= [∅ tanh (

1

∅
) (1 − exp (−∅))]1/2 

Budyko [1974] 

 2 



Table 2- Summary of the interception and transpiration equations of Gerrits’ model (Gerrits et al., 2009)  1 
Equation Equation 

number 
Description 

𝐸𝑖,𝑑 = min (𝐷𝑖,𝑑, 𝑃𝑑) (4) 𝐸𝑖,𝑑: daily interception (mm day-1),  𝑃𝑑: daily precipitation (mm day-1), 𝐷𝑖,𝑑: the daily interception threshold (mm day-1) 

𝐸𝑖,𝑚 = 𝑃𝑚(1 − exp (−∅𝑖,𝑚)) (5) 𝐸𝑖,𝑚: monthly interception (mm month-1), 𝑃𝑚: monthly rainfall (mm month-1), ∅𝑖,𝑚: a sort of aridity index for interception at monthly scale 

𝐸𝑖,𝑎 = 𝑃𝑎(1 − 2∅𝑖𝑎𝐾0(2√∅𝑖,𝑎) − 2√∅𝑖,𝑎𝐾1(2√∅𝑖,𝑎)) (6) 𝐸𝑖,𝑎: annual interception (mm year-1), 𝑃𝑎: annual rainfall (mm year-1), ∅𝑖,𝑎: a sort of aridity index for interception at annual scale, 𝐾0 and 𝐾1: 

the Bessel function of the first and second order, respectively 

𝐸𝑡,𝑚 = min (𝐴 + 𝐵(𝑃𝑚 − 𝐸𝑖,𝑚), 𝐷𝑡,𝑚) (7) 𝐸𝑡,𝑚: monthly transpiration (mm month-1), 𝐴: carry-over parameter (mm month-1), 𝐷𝑡,𝑚: the transpiration threshold (mm month-1), 𝐵: slope of 

relation between monthly effective rainfall and monthly transpiration 

𝐴 = 𝑏𝑆𝑢,𝑚𝑎𝑥 (8) 𝑏: constant coefficient, 𝑆𝑢,𝑚𝑎𝑥: the maximum root zone storage capacity 

𝐸𝑡,𝑎 = 2𝐵𝑃𝑎 (∅𝑖,𝑎𝐾0(2√∅𝑖,𝑎) + √∅𝑖,𝑎𝐾1(2√∅𝑖,𝑎)) 

(
𝐴

𝜅𝑛𝐵
+ 1 − 𝑒𝑥𝑝 (−∅𝑡,𝑎) (

𝐴

𝜅𝑛𝐵
+ 1 + ∅𝑡,𝑎 −

∅𝑡,𝑎

𝐵
)) 

(9) 𝐸𝑡,𝑎: annual transpiration (mm year-1), ∅𝑡,𝑎: an aridity index  

𝐷𝑖,𝑑 = min (𝑆𝑚𝑎𝑥, 𝐸𝑝,𝑑) (10) 𝑆𝑚𝑎𝑥: the daily interception storage capacity  (mm day-1) 𝐸𝑝,𝑑: the daily potential evaporation, 𝐸𝑝,𝑎: annual potential evaporation (mm year-1) 

𝑆𝑚𝑎𝑥 ≈ 𝐶𝑚𝑎𝑥 = 0.935 + 0.498LAI − 0.00575LAI2 (11) LAI: Leaf Area Index derived from remote sensing images 

∅𝑖,𝑚 =
𝐷𝑖,𝑑

𝛽
 

(12) 𝛽: scaling factor 

𝛽 =
𝑃𝑚

E(𝑛𝑟,𝑑|𝑛𝑚)
 

(13) E(𝑛𝑟,𝑑|𝑛𝑚): the expected number of rain days per month, 𝑛𝑟,𝑑: the number of rain days per month, 𝑛𝑚: the number of days per month 

∅𝑖,𝑎 =
𝑛𝑟,𝑑𝐷𝑖,𝑑

𝜅𝑚

 
(14) 𝜅𝑚: scaling factor for monthly rainfall 

𝜅𝑚 =
𝑃𝑎

E(𝑛𝑟,𝑚|𝑛𝑎)
 

(15) E(𝑛𝑟,𝑚|𝑛𝑎): the expected number of rain months per year, 𝑛𝑟,𝑚: the number of rain months per year, 𝑛𝑎: the number of months per year 

𝐵 = 1 − 𝛾 + 𝛾exp (−
1

𝛾
) 

(16) 𝛾: time scale for transpiration 

𝛾 =
𝑆𝑏

𝐷𝑡,𝑚∆𝑡𝑚

 
(17) 𝑆𝑏: the moisture content below which transpiration is restricted (mm). 

𝑆𝑏 = 𝑎𝑆𝑢,𝑚𝑎𝑥 (18) 𝑎: constant coefficient 

𝐷𝑡,𝑚 = 0         𝑓𝑜𝑟  LAI < 0.1 

 

𝐷𝑡,𝑚 =
𝐸𝑝

𝑛𝑎

(−0.21 + 0.7LAI0.5)    𝑓𝑜𝑟   0.1 ≤ LAI < 2.7 

 

𝐷𝑡,𝑚 =
𝐸𝑝

𝑛𝑎

        𝑓𝑜𝑟  LAI ≥ 2.7 

(19) 
𝐸𝑝: annual potential evaporation (for open water) (mm year-1) 

∅𝑡,𝑎 =
𝐷𝑡,𝑚

𝜅𝑛

 
(20) 𝜅𝑛: scaling factor for monthly net rainfall 

𝜅𝑛 =
𝑃𝑛,𝑎

E(𝑛𝑛𝑟,𝑚|𝑛𝑎)
=

𝑃𝑎 − 𝐸𝑖,𝑎

E(𝑛𝑛𝑟,𝑚|𝑛𝑎)
 

(21) 𝑃𝑛,𝑎: annual net precipitation, E(𝑛𝑛𝑟,𝑚|𝑛𝑎): the expected number of net rain months per year 

2 
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Table 3- Comparison of mean annual evaporation estimated by Gerrits’ model to Landflux-EVAL, STEAM and GLEAM through 

Average, RMSE, MBE and RE per land cover type. Negative MBE and RE show the Gerrits’ model underestimates evaporation and 

vice versa. Average, RMSE and MBE are in mm year-1 and RE is in %.   

Land cover 
area Gerrits  Landflux-EVAL  STEAM  GLEAM 

1000 km2 Avg.  Avg. RMSE MBE RE  Avg. RMSE MBE RE  Avg. RMSE MBE RE 

Evergreen needleleaf forest 5563 430  387  122 +43 +10  467 150 -37 -9  457 127 -27 -6 

Evergreen broadleaf forest 11778 1367  1177  266 +190 +14  1129  345 +238 +17  1244  225 +123 +9 

Deciduous needleleaf forest 2498 338  298  73 +40 +12  336  65 +2 +1  336  73 +1 0 

Deciduous broadleaf forest 1106 796  736  138 +61 +8  840  215 -44 -6  660  197 +136 +17 

Mixed forest 13470 563  487  136 +76 +13  545  137 +18 +3  527  131 +35 +6 

Shrublands1 29542 203  259  96 -57 -28  262  123 -59 -29  253  91 -51 -25 

Savannas2 18846 695  739  148 -44 -6  737  186 -42 -6  705  154 -10 -1 

Grasslands 21844 275  365 130 -91 -33  373  164 -98 -36  349  135 -75 -27 

Croplands 12417 488  535  124 -47 -10  583  209 -95 -20  486 118 +2 0 

Croplands and natural vegetation 

mosaic 
5782 687  696  157 -9 -1  702  175 -15 -2  663  158 +24 +3 

Global3 - 443  469 - - -6  475 - - -7  462 - - -4 
1including open and closed shrublands. 2including woody savannas and savannas. 3for overlapped pixels with 1.5°×1.5° resolution.
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Table 4- Comparison of interception estimated by Gerrits’ model to STEAM and GLEAM through Average, RMSE, MBE and RE per 

land cover type. Negative MBE and RE show the Gerrits’ model underestimates evaporation and vice versa. Average, RMSE and MBE 

are in mm year-1 and RE is in %.   

Land cover 

Area Gerrits  STEAM  GLEAM 

1000 km2 Avg.  Avg. RMSE MBE RE 
 

 
Avg. RMSE MBE RE 

Evergreen needleleaf forest 5563 145  204 70 -58 -40  127 58 +18 +12 

Evergreen broadleaf forest 11778 452  499 120 -47 -10  340 130 +111 +25 

Deciduous needleleaf forest 2498 104  156 56 -53 -51  29 76 +74 +72 

Deciduous broadleaf forest 1106 179  299 145 -120 -67  80 117 +99 +55 

Mixed forest 13470 172  220 59 -48 -28  127 66 +45 +26 

Shrublands1 29542 69  116 63 -47 -68  64 64 +5 +7 

Savannas2 18846 162  246 107 -84 -52  107 79 +55 +34 

Grasslands 21844 76  146 83 -70 -93  97 58 -22 -29 

Croplands 12417 116  174 89 -58 -50  97 55 +19 +16 

Croplands and natural vegetation mosaic 5782 166  243 108 -77 -46  112 89 +54 +33 

Global3 - 128  183 - - -44  109 - - +15 
1including open and closed shrublands. 2including woody savannas and savannas. 3for overlapped pixels with 1.5°×1.5° resolution.
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Table 5- Comparison of transpiration estimated by Gerrits’ model to STEAM and GLEAM through Average, RMSE, MBE and RE per 

land cover type. Negative MBE and RE show the Gerrits’ model underestimates evaporation and vice versa. Average, RMSE and MBE 

are in mm year-1 and RE is in %.   

Land cover 

Area Gerrits  STEAM  GLEAM 

1000 km2 Avg.  Avg. RMSE MBE RE 
 

 
Avg. RMSE MBE RE 

Evergreen needleleaf forest 5563 284  222 122 +63 +22  259 100 +25 +9 

Evergreen broadleaf forest 11778 915  619 347 +296 +32  890 163 +25 +3 

Deciduous needleleaf forest 2498 234  177 82 +57 +24  261 71 -21 -12 

Deciduous broadleaf forest 1106 617  538 192 +79 +13  570 120 +47 +16 

Mixed forest 13470 390  305 147 +85 +22  363 114 +27 +7 

Shrublands1 29542 133  137 85 +4 +3  159 81 -26 -20 

Savannas2 18846 533  473 162 +59 +11  577 148 -44 -8 

Grasslands 21844 199  214 109 +15 +7  233 93 -34 -17 

Croplands 12417 372  393 131 -20 -5  371 90 +1 0 

Croplands and natural vegetation mosaic 5782 521  444 159 +77 +15  530 112 -10 -2 

Global3 - 315  276 - - +12  329 - - -4 
1including open and closed shrublands. 2including woody savannas and savannas. 3for overlapped pixels with 1.5°×1.5° resolution.
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Table 6- Comparison of mean annual evaporation estimated by Gerrits’ model to Schreiber, Ol’dekop, Pike and Budyko through 

Average, RMSE, MBE and RE per land cover type. Negative MBE and RE show the Gerrits’ model underestimates evaporation and 

vice versa. Average, RMSE and MBE are in mm year-1 and RE is in %.   

Land cover 

area Gerrits  Schreiber  Ol’dekop  Pike  Budyko 

1000km2 Avg.  Avg. RMSE MBE RE  Avg. RMSE MBE RE  Avg. RMSE MBE RE  Avg. RMSE MBE RE 

Evergreen needleleaf 

forest 
5563 430  348 136 +82 +19  415 110 +14 +3  387 117 +43 +10  380 119 +50 +12 

Evergreen broadleaf 
forest 

11778 1367  876 526 +491 +36  1065 355 +301 +22  991 419 +375 +27  966 443 +401 +29 

Deciduous needleleaf 
forest 

2498 338  250 110 +87 +26  291 85 +47 +14  273 94 +64 +19  270 96 +68 +20 

Deciduous broadleaf 

forest 
1106 796  636 22 +161 +20  727 120 +69 +9  687 152 +109 +14  680 160 +117 +15 

Mixed forest 13470 563  420 185 +142 +25  506 134 +56 +10  470 150 +92 +16  461 156 +101 +18 

Shrublands1 29542 203  250 84 -48 -24  273 99 -71 -35  263 91 -60 -30  261 90 -59 -29 

Savannas2 18846 695  648 168 +47 +7  757 167 -62 -9  710 155 -15 -2  700 155 -5 -1 

Grasslands 21844 275  346 134 -71 -26  372 152 -98 -36  359 141 -85 -31  358 140 -84 -31 

Croplands 12417 488  502 154 -14 -3  566 181 -78 -16  538 164 -50 -10  533 162 -45 -9 

Croplands and natural 

vegetation mosaic 
5782 687  617 221 +69 +10  721 195 -35 -5  677 196 -10 -1  667 200 -20 -3 

Global3 - 443  410 - - +8  471 - - -6  445 - - 0  439 - - +1 

1including open and closed shrublands. 2including woody savannas and savannas. 3for overlapped pixels with 1.5°×1.5° resolution.
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 1 

Figure 1- Mean annual of the applied data in the current study: (a) Precipitation (Ruane et al., 2 

2015), (b) Potential evaporation (University of East Anglia Climatic Research Unit, 2014), (c) 3 

LAI (Zhu et al., 2013) and (d) Su,max (Wang-erlandsson et al., 2016).4 
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 1 

Figure 21- Mean annual evaporation estimated by (a) Gerrits’ model, (b) Landflux-EVAL, (c) 2 

STEAM and (d) GLEAM.3 
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 1 

Figure 32- Taylor diagram for mean annual evaporation estimated by Gerrits’ model in 2 
comparison to Landflux-EVAL (green circles), STEAM (blue circles) and GLEAM (red circles) 3 
for all data (No. 1), Evergreen Needleleaf Forest (No.2), Evergreen broadleaf forest (No. 3), 4 
Deciduous needleleaf forest (No. 4), Deciduous broadleaf forest (No. 5), Mixed Forest (No. 6), 5 

Shrublands (No. 7), Savannas (No. 8), Grasslands (No. 9), Croplands (No. 10) and Croplands and 6 
natural vegetation mosaic (No. 11). 7 

  8 
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 1 

 2 

Figure 43- Simulated mean annual interception by (a) Gerrits’ model and (b) STEAM and (c) 3 
GLEAM. 4 
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 1 
Figure 54- Taylor diagram for mean annual interception estimated by Gerrits’ model in 2 
comparison to STEAM (blue circles) and GLEAM (red circles) for all data (No. 1), Evergreen 3 
Needleleaf Forest (No.2), Evergreen broadleaf forest (No. 3), Deciduous needleleaf forest (No. 4), 4 

Deciduous broadleaf forest (No. 5), Mixed Forest (No. 6), Shrublands (No. 7), Savannas (No. 8), 5 
Grasslands (No. 9), Croplands (No. 10) and Croplands and natural vegetation mosaic (No. 11). 6 

  7 
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 1 
Figure 65- Simulated mean annual transpiration by (a) Gerrits’ model, (b) STEAM and (c) 2 
GLEAM.  3 
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 1 

Figure 76- Taylor diagram for mean annual transpiration estimated by Gerrits’ model in 2 

comparison to STEAM (blue circles) and GLEAM (red circles) for all data (No. 1), Evergreen 3 
Needleleaf Forest (No.2), Evergreen broadleaf forest (No. 3), Deciduous needleleaf forest (No. 4), 4 
Deciduous broadleaf forest (No. 5), Mixed Forest (No. 6), Shrublands (No. 7), Savannas (No. 8), 5 
Grasslands (No. 9), Croplands (No. 10) and Croplands and natural vegetation mosaic (No. 11). 6 

  7 
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 1 

Figure 8- Global evaporation (mm year-1) estimated by Budyko curves: (a) Schreiber (1904), (b) 2 

Ol’dekop (1911), (c) Pike (1964), and (d) Budyko (1974). 3 

  4 
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 1 
Figure 9- Taylor diagram for mean annual evaporation estimated by Gerrits’ model in 2 
comparison to Schreiber (1904) (green circles), Ol’dekop (1911) (blue circles), Pike (1964) (red 3 

circles), and Budyko (1974) (black circles) for all data (No. 1), Evergreen Needleleaf Forest 4 
(No.2), Evergreen broadleaf forest (No. 3), Deciduous needleleaf forest (No. 4), Deciduous 5 
broadleaf forest (No. 5), Mixed Forest (No. 6), Shrublands (No. 7), Savannas (No. 8), Grasslands 6 

(No. 9), Croplands (No. 10) and Croplands and natural vegetation mosaic (No. 11).7 
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 1 

Figure 10- (a) Interception and (b) Transpiration ratio as a percentage of mean annual evaporation 2 

(Gerrits’ model). 3 
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 1 

Figure 7- Density plot of 
𝐸

𝑃
 versus 

𝐸𝑝

𝑃
 for comparison between models within the Budyko 2 

framework. The legend shows the frequency of pixels. 3 
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 1 

Figure 8- Comparison of interception (a), transpiration (b) and total evaporation (c) between 2 

models for each land cover within the Budyko framework.3 
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 1 

Figure 9- The distribution of 
𝐸𝑖

𝑃
 and 

𝐸𝑝

𝑃
 with respect to aridity for each model. 2 

 3 
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 1 

Figure 10- Sensitivity analysis of the model to 10% changes in (a) parameter 𝑎 in equation 18 , 2 

(b) parameter 𝑏 in equation 8, (c) number of rain days 𝑛𝑟,𝑑, (d) number of rain months 𝑛𝑚, and 3 

(e) transpiration threshold 𝐷𝑡,𝑚.4 
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 1 

Figure 11- Density plot of 
𝐸

𝑃
 versus 

𝐸𝑝

𝑃
 for each land cover. 2 


