Supplement for

Using the Maximum Entropy Production approach to integrate energy budget modeling in a hydrological model

Audrey Maheu¹, Islem Hajji², François Anctil², Daniel F. Nadeau², René Therrien³

¹Département des sciences naturelles, Université du Québec en Outaouais, Ripon, J0V 1V0, Canada ²Département de génie civil et de génie des eaux, Université Laval ³Département de géologie et de génie géologique, Université Laval

Correspondence to: Audrey Maheu (audrey.maheu@uqo.ca)

Contents of this file

Figures S1 to S3 Table S1

Introduction

Figures S1 to S3 supplement the manuscript by providing time series of observed and modelled soil moisture at multiple depths, rather than a single one, as presented in the manuscript. There is one figure per study site (S1: US-Wkg, S2: US-Ton and S3: US-WBW).

Table S1 provides the equation of performance metrics (RMSE, NSE, BE, R², PBIAS) using to compare simulated and observed values.

Figure S1. Time series of observed and modelled soil moisture at a depth of a) 5 cm, b) 15 cm and c) 30 cm at US-Wkg (climate: semiarid, vegetation: grassland).

Figure S2. Time series of observed and modelled soil moisture at a depth of a) 0 cm, b) 20 cm and c) 50 cm at US-Ton (climate: Mediterranean, vegetation: woody savanna).

Figure S3. Time series of observed and modelled soil moisture at a depth of a) 5 cm, b) 20 cm and c) 60 cm at US-WBW (climate: temperate, vegetation: deciduous broadleaf forest).

Table S1. Equation of performance metrics to compare observed and simulated values.

metric	equation
root mean square error	$RMSE = \left[\frac{1}{N} \sum_{t=1}^{N} \left[x_{sim}(t) - x_{obs}(t)\right]^2\right]$
Nash-Sutcliffe efficiency (NSE)	NSE = 1 - $\begin{bmatrix} \frac{N}{t=1} [x_{sim}(t) - x_{obs}(t)]^2 \\ \frac{N}{t=1} [x_{obs}(t) - x_{obs}]^2 \end{bmatrix}$
normalized benchmark efficiency (BE)	$BE = 1 - \left[\frac{\sum_{t=1}^{N} [x_{sim}(t) - x_{obs}(t)]^{2}}{\sum_{t=1}^{N} [x_{obs}(t) - x_{bench}(t)]^{2}}\right]$
coefficient of determination (R ²)	$R^{2} = \frac{\frac{1}{N} \sum_{t=1}^{N} \left[\left(x_{obs}(t) - x_{obs} \right) \left(x_{sim}(t) - x_{obs} \right) \right]}{\left[\frac{N \sum_{t=1}^{N} x_{obs}^{2} - \left[\sum_{t=1}^{N} x_{obs}(t) \right]^{2}}{N(N-1)} \sqrt{\frac{N \sum_{t=1}^{N} x_{sim}^{2} - \left[\sum_{t=1}^{N} x_{sim}(t) \right]^{2}}{N(N-1)}} \right]}$
percent bias (PBIAS)	PBIAS = $\frac{\frac{N}{t=1} \left[x_{sim}(t) - x_{obs}(t) \right]}{\frac{N}{t=1} \left[x_{obs}(t) \right]} * 100$

where $x_{obs}(t)$ is the observed value at time step t, $x_{obs}(t)$ is the simulated value, \bar{x}_{obs} is the mean observed value over the simulation period of length N, x_{bench} is the benchmark model, in this case the interannual mean of observed values for each calendar day.