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Benchmarking the predictive capability of hydrological models for river flow and 

flood peak predictions across a large sample of catchments in Great Britain 

 
Response to minor revisions – 23rd August 2019 5 

We thank the editor for finding these additional minor corrections, summarised in the table below: 

  

Description of editor comment Page Change made in response 

Update response to reviewer 3, comment 19 16 We have updated the response to refer to Figure 4.  

Add a brief comment saying that figure 4 

shows how the ensemble outperforms the 

single models according to all criteria.  

28 We have added the sentence, “. This shows that the ensemble of 

all four hydrological model structures outperformed each 

individual model structure for all performance metrics.” 

Update figure number in caption text.  51 We have updated the figure numbers.  

 
Response to minor revisions – 8th August 2019 

We thank the editor and reviewer 2 for their further comments. These were regarding 1) changes to the reply letter clarifying 10 

where we have addressed specific comments, 2) validating the statement that ‘the ensemble of model structures produced 

better results overall than any single model’, and 3) improvements to the supplementary information document. Changes we 

have made to respond to these comments are summarised in the table below:  

 

Description of comment Changes made following comment 

Editor requested changes to the reply letter to clarify where 

we have addressed specific comments. 

Clarifications have been made in some replies to reviewer 2 

and reviewer 3. These can be seen highlighted in red on 

pages 8, 9, 13 and 17 of this document.  

Editor requested a reference to actual results in response to 

Ref #3, comment 19. “we found that the ensemble of model 

structures produced better results overall than any single 

model” – can you validate that statement from your figures?”  

We have moved figure S1, showing the distribution of model 

performance across all catchments, from the supplementary 

information into the main text and modified it to also include 

the model ensemble (see new Figure 4). This clearly shows 

the ensemble outperforms each model structure. Text in the 
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results section has been modified to include this new figure, 

and the new figure numbers.  

Ref #2 suggests improvements for supplementary 

information: “I recommend that the authors i) clarify what 

the variables correspond to (e.g. what is DPSBAR?), ii) 

reduce the number of Supplementary Figures (there are 13 

of them currently), possibly by describing the most relevant 

results in the text without showing the associated Figures, 

iii) revise and condense the text (it is currently quite casual), 

iv) possibly mention that future research will rely on a wider 

range on catchment attributes and will explore model 

performance in a more systematic way.” 

i) Figure captions in supplementary information have been 

extended to define all variables.  

ii) We have removed 6 plots from the supplementary 

information.  

iii) Text in the supplementary information has been revised 

and condensed as can be seen from the tracked changes.  

iv) We decided to not include this in the supplementary 

information. 

Editor advised carefully checking the revised version of the 

manuscript before the next submission.  

A few small changes have been made to the manuscript. 

These include removal of a repetitive sentence in section 1.2, 

minor grammatical/spelling corrections in section 1.3 and 

rephrasing the sentence ‘a considerable proportion of river 

discharges throughout the Anglian region are abstracted’ to 

‘the South-East has some of the highest population densities 

in the UK and human influences can significantly impact 

flows in this region’ in section 5.1.  

 

General response to reviewers – June 2019 

 
We thank the reviewers for taking the time to read the manuscript, and for their thorough and insightful comments. Their 

suggestions have helped us to ensure our results are more useful to the modelling community.   5 

 

The main comments from the reviewers were regarding (1) the use of Nash-Sutcliffe Efficiency to evaluate model performance, 

(2) making data more easily accessible, (3) synthesis of the introduction and discussion sections, and (4) plotting of additional 

catchment attributes and human influences on river flows.   

 10 

In response to these reviewer comments, we have re-analysed the model output with consideration of additional performance 

metrics. We have supplied a complete set of outputs via a DOI. We have produced additional plots of factors affecting runoff 
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across Great Britain, highlighting where streamflow is impacted by snowmelt and human influences in Figures 1 and 2. We 

have considered additional catchment attributes in supplementary information. The manuscript has also been revised, to 

synthesize the introduction and discussion, and to discuss the new metrics and factors affecting runoff plots in the methods 

and results sections.  

 5 

Detailed responses to all reviewer comments are provided in bold below. We have also inserted the review comments as 

comments next to the relevant tracked changes in the manuscript.  

 

Rosie Lane, June 2019 

Response to reviewer 1 (Thibault Mathevet) 10 

We thank Thibault Mathevet for taking the time to review our manuscript, and for his helpful comments. Our responses to 

each comment are outlined in bold below.  

 

I carefully read the paper by Lane et al.. This paper appeared to be particularly clear, well written and easy to follow. Scope 

and objectives are stated clearly, the presentation of results is rather straightforward. As you probably know it, I appreciate 15 

this kind of study on a large sample of watersheds. I am very happy to know that such a large sample exists for GB. Studies 

on large sample give generality and robustness to the results. This paper gives insights on the general hydrology of GB and 

predictive capabilities of 4 simple rainfall-runoff models. I really appreciated §4 and §5, particularly analyses linked to the 

seasonality (fig 4), BFI (fig 5, 6), and water balance closure (fig 7). Thanks to this large sample of watersheds in GB with a 

variety of hydrologic/ hydrogeologic functioning (even in the same country), these results appear to be robusts, with a general 20 

interest. The link between BFI (main underground processes) and model structure agility is really interesting. 

Response: We thank Thibault Mathevet for taking the time to thoroughly review our manuscript, and for his positive 

comments.  

 

Main comments: 25 

 

Evaluation of model performance and selection of model :  

Authors decided to use the classical Nash-Sutcliffe efficiency (NSE) index to evaluate model performances (and select 

behavioural models, NSE > 0.5). NSE index is famous and widely used in Rainfall-Runoff modeling. Even if the perfect 

efficiency index do not exists, this index is also known to have some drawbacks (Schaefli and Gupta, 2007, among many 30 

references). Gupta et al. (2009) introduced the Kling-Gupta efficiency index that allows to explicitly account for bias (mean 

and variability) and correlation, in the evaluation of model performances. Given the ambition of this paper, I would recommand 
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the authors to consider in their analyses the Kling-Gupta efficiency index, or at least to decompose their results in terms of 

correlation and mean bias. 

Response: The NSE index was chosen for this analysis as it is so widely used and easy to interpret. Given our focus on 

floods, it is also a good choice as it emphasizes the fit to peaks more than KGE which focuses on balancing the 

contribution of the bias and correlation. However, we agree that there are drawbacks to only using the NSE index and 5 

so following this comment, we have provided additional analysis looking at the correlation, variance and bias. This can 

be seen in Figures 5 and 9. 

 

Poor performances on floods : 

Authors found that the different models had poor performances on floods, which is generally the case when classical modeling 10 

schemes are used to optimise or select parameter sets. I appreciate the simple way authors evaluate models on flood values, 

however I would add a figure to explain the two metrics. One of the main drawback of the NSE (and linear regression as well) 

is that the standard deviation of the simulated time-series is biased and underestimated, i.e. flood underestimated and drought 

overestimated. Among other arguments, this drawback partly explain why flood values are underestimated. I would add at 

least a comment on the fact that this statement is dependent on the behavioural model selection metrics in §5.4. If authors 15 

update their paper using KGE to select their behavioural models, they might revise (a bit) their findings on model performances 

for floods. 

Response: Thank you for pointing this out. In response to this comment, we have clarified the explanation of flood 

metrics. We selected NSE as it emphasizes the fit to peaks, whilst KGE is more general, but we acknowledge that it has 

drawbacks and no global performance measure is useful in all situations, especially when looking at extremes. We 20 

therefore decided to keep using NSE, but added a comment in the discussion on how behavioural model selection 

metrics influence estimation of flood values.  

 

Focus on droughts ? : 

Given the ambition of this paper, I think that this paper would also benefit from a focus on droughts. Hence, analyses on 25 

droughts could be complementary to analyses on relative model performances (among the 4 tested structures), since droughts 

might also be driven by BFI in GB ? The link with groundwater flows could also be shown, if a focus on droughts is done. 

Authors could use the same metrics as for floods. It could be better to use the 10 days or 30 days annual minimal value, instead 

of the annual minimal value, which could be highly impacted and uncertain. 

Response: We agree that focusing on droughts could be an interesting question in itself, however we feel that it is out 30 

of scope for this paper. We are aiming to give a general overview of the capability of models, with a focus on high flows. 

Drought and very low flows is a more complex problem to address, and more likely to be influenced by human impacts 

in managed catchments. We therefore think adding this would be too much for one paper. We plan further research 
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which better incorporates human influences on low flow river totals and thus will make such an assessment more 

fruitful.  

 

Minor comments : 

In §1.1 : authors discuss the benefits of national scale hydrological modelling. Another benefits could be the production of 5 

parameter libraries, which could be used for regional studies or model calibration on poorly gauged to ungauged basins or 

engineering studies. Authors can make references to papers on this subject (Perrin et al., 2008 ; Rojas-Serna et al., 2016 ; or 

some other works by Seibert). 

Response: Thank you for this idea, we have referred to parameter libraries in the introduction, and have added tables 

of best parameter sets made available through a DOI. 10 

 

In §5.1 : authors did not use a snow accumulation and melt routine in their modeling framework. Very simple snow routine 

are available, in the spirit of the simple models proposed in FUSE. The CemaNeige routine could be a good candidate to 

improve model simulations on the few catchments where it’s necessary. Depending on the  proportion of snow impacted 

catchments, using a snow routine would improve model performances and the paper, as it could give answers to some 15 

hypotheses of the paper.  

Valéry, A., Andréassian, V., Perrin, C., 2014. ‘As simple as possible but not simpler’: What is useful in a temperature-based 

snow-accounting routine? Part 1 – Comparison of six snow accounting routines on 380 catchments, Journal of Hydrology, 

517(0): 1166-1175. 

Response: Thank you for this comment, but we do not think it would be feasible to run all simulations again with a 20 

snow routine. We originally decided not to use a snow routine as only a relatively few catchments were snow impacted. 

To check this, we have calculated snow fractions for all catchments, as the sum of the rainfall on days when daily mean 

temperature is less than 0 degrees Celsius divided by the total sum of the rainfall for the whole time period. This 

confirms that only a small proportion of catchments are snow impacted (13 catchments out of the 1127 have a snow 

fraction of more than 10%, and no catchments have a snow fraction of more than 17%). We have plotted these snow 25 

fractions in Figure 1, demonstrating that only a small proportion of catchments are impacted by snow. As the concept 

of the paper is focused on benchmarking the capability of these lumped models, and not model development, we feel 

that addition of a snow routine is out of scope.  

 

In §5.3 : authors discuss about groundwater flows between catchments, with losses or gain of waters. This problem is not new 30 

and some conceptual modelisation could be found in the literature since one or two decades. In a natural context, authors could 

make a reference to Le Moine at al. (2007, 2008) papers about groundwater flows and water balance closure. The existence of 

such groundwater flows in permeable geological context (chalk, limestones and/or karstic systems, etc.) was one of the 
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reasons of the development of a groundwater exchange function within the GR model family. The use of this function should 

be motivated by (hydrogeologic) evidences of such groundwater flows (in order to avoid "overfitting" of the water balance, 

i.e. fudge factor), but might be useful in catchments where water balance is difficult to close, such as the one influenced by 

chalk aquifers in southeast england. 

Response: Thank you for highlighting these interesting and very relevant papers. We have added this into the 5 

discussion. However we have not yet done a comprehensive analyses of gaining and losing streams in the UK aquifer 

systems. This is indeed research that our group is currently conducting in more detail (separate PhD on improving 

ground water representation in models). Certainly from our preliminary analyses it is very difficult to attribute these 

losses and gains, and especially for lumped catchment model behaviours where the spatial partitioning needed might 

be too abstract to incorporate in the model outputs. 10 

 

Last comments : 

P4, l22 : I would also make a reference to Perrin et al. 2001 here 

Response: We agree this is a relevant paper, it has been added.  

 15 

P7, l20 : mistake with O (mean of observed discharge) 

Response: Thank you for noticing this, it has been corrected.  

 

P10, l22 : values instead of vales 

Response: This has been corrected.  20 

 

P17, l8 : for catchments, repeated 2 times 

Response: The repetition has been removed.  

 

In §2, I would give an estimation of the proportion of watersheds where snowmelt processes are observable (solid precipitation 25 

>20% of total precipitation ?) 

Response: We agree that this would be useful and have added a map of snow fractions to figure 2 which we refer to in 

section 2. 

 

Table 1 is not cited within §2 30 

Response: Thank you for spotting this, we have now added the citation: “The catchments cover all regions and include 

a wide variety of catchment characteristics including topography, geology and climate (see Table 1).” 
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In §3.3, the +/- 13% concerning streamflow uncertainties for flood should be a bit more explained. To which probability range 

this uncertainty refers ? Is it one or two standard deviation (or something else) ? 

Response: The +/-13% represents the 95th percentile range of the discharge uncertainty bounds and was chosen as a 

representative discharge uncertainty for annual maximum flows from a  national analysis of discharge uncertainties 

(Coxon et al, 2015).  We have better clarified this, with the text now reading “This observed error value was selected 5 

following previous research on quantifying discharge uncertainty at 500 UK gauging stations for high flows, and 

represents the average 95th percentile range of the discharge uncertainty bounds for high flows (Coxon et al., 2015; 

Mcmillan et al., 2012).”  

 

In Figure 2, I would put the number of free parameters to calibrate. 10 

Response: The following has been added to the figure caption “TOPMODEL and ARNO/VIC have 10 parameters, 

PRMS has 11 parameters and SACRAMENTO has 12 parameters. ”.   

Response to reviewer 2 (Anonymous) 

Comment 1: This study compares four structures from the framework FUSE in 1100 UK catchments. This is, in itself, a 

significant achievement. The authors highlight which structures perform best in different regions (Results Section) and then 15 

discuss more generally why models fail and which improvements would be necessary to improve performance (Discussions 

Section). I think that, ultimately, the goal of such model intercomparison is to provide guidance on i) model selection (i.e., can 

specific models/modules be recommended based on basin attributes?) and ii) model development (i.e., are there specific 

process parameterisations that are currently missing, but are needed to improve the simulations?). In my view, the latter point 

is addressed quite well (although I suggest restructuring the text to makes these results stand out more, and to go beyond FUSE 20 

structures by discussing modelling decisions more generally) but the former point could be addressed in a more systematic 

and comprehensive way. Overall, I consider that, after revisions, this paper has the potential to become a timely and welcome 

addition to the literature. 

Response: We thank reviewer 2 for these helpful comments, and for taking the time to review our manuscript.  

 25 

Major comments: 

Comment 2: Model intercomparison vs. benchmarking: Since the authors use the term “benchmarking”  in the title and 

throughout the manuscript, I encourage them to clarify in the introduction what differentiates model benchmarking from model 

intercomparison. As the authors compare FUSE structures with each other, isn’t their study rather a model  intercomparison? 

Do the authors mean that their runs can be used as benchmark by future studies, as suggested on P12L12? Please clarify. 30 

Response: We have included clarification of this in the introduction, including more explanation on how the 

performance of simple hydrological models can be used as a benchmark and making it clear that our results can be 
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used as a benchmark. We used the term ‘benchmark’ to highlight that these results can be used as an indicator of the 

ability of lumped models, which future studies may use when evaluating the performance of other models (that are 

perhaps more complex or include additional processes). For example, our results would inform a modeller that gaining 

an NSE of 0.7 in SE England is a good achievement, whereas gaining the same score in west Wales is not an achievement 

as most models can easily gain higher NSE scores for these catchments. The use of simple models as benchmarks has 5 

been advocated in previous studies, for example Seibert et al., (2018).  

Seibert, J., Vis, M. J., Lewis, E., & Meerveld, H. J. (2018). Upper and lower benchmarks in hydrological modelling. 

Hydrological Processes. 

 

Comment 3: Model evaluation using NSE: Since the authors aim to better understand “where and why these simple models 10 

may fail” the choice of NSE is somewhat surprising, since NSE is a measure of overall performance, which provides limited 

insights into the reasons for high or low performance. Although an evaluation based on hydrological signatures would have 

enabled a more process-based diagnostic of model failures, I am not requiring this, since it would imply significant additional 

analyses. However, if the authors stick to NSE (or use KGE), I suggest that they use benchmarks (as suggested by Seibert et 

al., 2018) to account for the fact that high NSE/KGE values can be relatively easy to reach depending on the catchment and 15 

the season. I believe this would enable a more fair and enlightening assessment of the hydrological models across the 

catchments. 

Response: We originally selected NSE as it is a widely used and easy to interpret measure of performance. However, 

we agree that in order to better understand model failures we need to consider additional measures of performance. 

Therefore, we have also presented correlation, variance and mean bias, as called for by the first reviewer, to support 20 

the seasonal analysis of model performance that we have already carried out. These additional results can be seen in 

Figs 5 and 9, and the associated text. As our focus is on reasons for model failures, we feel that these additional 

decomposed metrics will be more informative than the use of benchmarks.  

 

Comment 4: Relevance for the broad hydrological modelling community: A challenge here is to provide guidance for model 25 

selection, which is also relevant for modellers not using FUSE. Overall, the most interesting question is not really which FUSE 

model performs best, but why. I encourage the authors to discuss and highlight specific model elements that  contribute to 

poor/good simulations, rather than focussing FUSE models themselves (e.g., TOPMODEL or PRMS). For instance, the fact 

that ARNO-VIC performs particularly well in high-BFI catchments is only an intermediary result, which is mostly relevant to 

FUSE users. The reasons why this is the case (e.g., last paragraph of Section 5.2), on the other hand, are relevant to a much 30 

wider group. I suggest a stronger emphasis on modelling decisions, as opposed to FUSE models, in particular in the most 

critical parts of the manuscripts (abstract and conclusions). 

Response: We agree that highlighting specific model elements that contribute to poor/good simulations would be of 

great use to the broad hydrological modelling community. Where possible, we have tried to outline modelling decisions 
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that may cause differences in the results. However, it is difficult to distinguish which model elements are causing 

good/poor model performance, as the model structures differ in multiple aspects, and further analysis would be 

required to fully explore which modelling decisions are contributing to good/poor simulations. We have however added 

an extra table (Table 3) explaining which modelling decisions were applied for each FUSE model, highlighting the 

different model elements. 5 

 

Comment 5: Which process parameterisation are missing to capture the range of hydrological behaviours across the UK? The 

authors identify catchments in which the four model structures perform poorly, and reflect on characteristics of these 

catchments to which the poor performance can be attributed (e.g., chalk, snow, high human impacts). I suggest that the authors 

dedicate a subsection in the Discussion Section to these findings, which are relevant for both model development and selection. 10 

Can they formulate hypotheses on why annual maximum flows are underestimated, which could be tested by future studies? 

Response: We have dedicated a section of the discussion to “Identifying missing process parameterisations” in response 

to this comment. As suggested by the first reviewer, the choice of NSE could result in underestimation of flood peaks, 

and we have therefore commented in the discussion on how our choice of metrics could be a factor leading to the 

underestimation of flood values. 15 

 

Comment 6: How critical is the selection of model structure? There are cases of great equifinality (i.e., high NSE for all 

structures, mostly for humid catchments). As mentioned above, a high NSE is not a guarantee that the model structure is 

adapted, but as long as this is recognised (and this could be clearer throughout the manuscript), I think it is fine for this study. 

But in other (more interesting) catchments, some model structures clearly outperform other structures, and there, model choice 20 

is critical. I think this should be stressed more prominently, since these are cases in which the inadequacy of the model structure 

cannot be overcome by parameter tuning. Given the general tendency of using the same model structure across very diverse 

environments (as discussed e.g. by Addor and Melsen, 2019), I think this is an important result, which could be underscored 

more. A related question is: which catchment characteristics explain these large NSE differences between model structures? 

Response: We explored the importance of model structure selection in figures 4, 7, 8, 10 and 11, with figure 7 looking 25 

at catchment characteristics which were related to differences between the model structures. However, we agree that 

the question of how critical the selection of model structure is for different catchments was not well addressed in the 

manuscript. Therefore, we have clarified the discussion of this on page 15 lines 19-32. 

 

This leads me to a set of comments related to the use of catchment attributes to explain model performance.  30 

Comment 7: Just like hydrological behaviour, model performance is not determined by a single catchment characteristic, but 

rather, by the interaction of multiple catchment characteristics. So, firstly, would it be possible to consider a wider range of 

catchment attributes? So far, the authors employ the BFI, annual rainfall, the wetness index and the runoff coefficient, but 

many more attributes could be used to describe each catchment (e.g., Beck et al., 2015). I encourage the authors to add other 
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attributes, which they might have computed for other studies or retrieved from the UK hydrometric register, which they 

mention in Table 1, in order to describe the landscape in a more complete fashion (indicators of human interventions would 

also be useful, see below).   

Comment 8: And secondly, I think it would be beneficial to better account for the interactions between these attributes. The 

authors combine several attributes in Figure 7 to explain model performance, which I find particularly interesting. Maybe that 5 

the analyses they will perform when revising this study will lead to more figures of this type, and enable a more systematic 

analysis of the interactions between these predictors (perhaps using regression trees, see Poncelet et al., 2017). This is critical 

to go from describing where models fail and to explaining why they fail. 

Response: We selected the attributes of BFI, annual rainfall, wetness index and runoff coefficient as they were observed 

to have the largest impact on model performance. In response to reviewer comments, we have created additional plots 10 

of snow fraction, and factors affecting runoff on catchments across GB which are given in Figures 1 and 2. We do not 

want to add many more figures into the manuscript as we feel that this may detract from the main messages of the 

paper, but have added additional plots looking at interactions between attributes as supplementary information. Also 

we believe the current analyses are in keeping with the abstract nature of lumped modelling systems where a greater 

range of catchment attributes might only be loosely related to the structure and parameterisation of the model design. 15 

We aim to explore these issues with more spatially orientated modelling approaches in future publications. 

 

Comment 9: Anthropogenic activities are repeatedly mentioned to explain poor model performance (e.g., P12L29, P14L16, 

P15L3). This is indeed plausible, but if qualitative or maybe quantitative indicators of the extent of human interventions could 

be included, so that their impacts on streamflow and model performance could be demonstrated or maybe even quantified, it 20 

would strengthen the study. 

Response: We agree that this is required to strengthen comments made regarding reasons for model failures. We have 

information on factors affecting runoff for all catchments in the hydrometric register. However, this only gives an 

indicator of which factors may affect runoff, and not to what extent, and therefore we decided not to include it in the 

original manuscript. In response to reviewer comments, we have added plots of factors affecting runoff in Figure 1. 25 

 

Minor comments: 

Comment 10: I find the introduction too long. It attempts to cover too much material, and hence ends up being too general and 

its different parts are not very well connected. I suggest that the authors focus on what is really necessary to introduce their 

study, transfer parts of the text to the rest of the paper (e.g. the methods), and delete the rest. 30 

Response: We agree. We have shortened the introduction, by combining and shortening sections on large sample and 

national hydrology, and condensing the introduction of modelling uncertainties by moving sentences to the methods 

section or deleting where appropriate. 
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Comment 11: Outlook: it might good to mention that, although this study focusses on four FUSE models, it is possible build 

additional FUSE model to transition progressively from one model to the next, and establish which modelling decisions 

contribute most to the differences in the simulations. 

Response:  The following has been added, “The framework allows the user to select different combinations of modelling 

decisions, starting with four parent models based on the structures of widely used hydrological models, and allowing 5 

the user to combine these decisions to create over 1200 different model structures”. 

 

Comment 12: Data availability: “This study provides a useful benchmark of the performance and associated uncertainties of 

four commonly used lumped model structures across GB, for future model developments and model types to be compared 

against”. I agree. But then, I think that instead of saying that “All model outputs from this study are available  upon request 10 

from the lead author”, the authors should make the runs available online, and provide the doi, before the paper is published. 

This is expected by AGU journals, and I think it is good practice in order to avoid data loss. 

Response: We completely agree with this, and have provided a DOI for the data. 

 

 15 

Other suggested changes: 

 

Title: the field is “large-sample hydrology”, but here it should be “large sample” 

Response: Thank you, this has been changed to “over 1000 catchments” as it is more informative than “large sample”.  

 20 

P1L15: add “and support model selection” 

Response: This has been added.  

 

P2L13: such as 

Response: Thank you for spotting this, this sentence has now been re-phrased.  25 

 

P2L29: impacted by what? 

Response: We have clarified and re-written the sentence to say “These have great benefits, as applying a consistent 

methodology across a large area enables comparison between places and identification of areas that may be at most 

risk of future hydrological hazards. “ 30 

 

P4L12-17: this belongs to Data and Methods 

Response: These sentences have been moved to the data and methods section.  
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P4L20: I suggest removing “(i.e. the number of storage components)” as it an arbitrary measure of complexity. 

Response: This has been removed.  

 

P5L22: discharge 

Response: This is referring to all the catchment data – we refer to discharge specific data at a later point in the methods 5 

section.   

 

P6L5: please define “sufficient” 

Response: This was explained in the following sentence. We have re-arranged these sentences to make this clearer, now 

saying “Of these, 1013 had sufficient information (defined as more than 10 years of available discharge data during the 10 

model evaluation period) available to include in this analysis.” 

 

P7L2: I suggest mentioning here that none of these four models includes a snow Routine 

Response: We have added this, “They all close the water balance, have a gamma routing function and include the same 

processes, for example none of the models have a snow routine or vegetation module.” 15 

P7L4: please define “dynamically different” and what makes them “equally plausible” 

Response: By “dynamically different” we meant that the models all represent the landscape in a different way, and 

have quite different and distinct structures as shown in figure 3. By “equally plausible” we are referring to the fact that 

we have no reason to expect one structure to behave better than the others, as all model structures are equally complete 

in terms of processes and all based on widely applied model structures. We have clarified this in the text by saying, 20 

“this leads us to believe that the model structures are dynamically different, as they are representing hydrological 

processes in different ways, yet as all are based on widely used hydrological models they are equally plausible and we 

have no a priori expectations that one model should outperform the others “. 

 

P8L13: please be more explicit about how this 13 25 

Response: This has been further explained with the text now reading, “This observed error value was selected following 

previous research on quantifying discharge uncertainty at 500 UK gauging stations for high flows, and represents the 

average 95th percentile range of the discharge uncertainty bounds for high flows.” 

 

P9L21: saying “snowmelt module” implies that accumulation is simulated but melt is not, use “snow module” instead. 30 

Response: We agree, and have changed “snowmelt module” to “snow module.” 
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Response to reviewer 3 (Anonymous) 

This paper provides a detailed investigation into the performance of four lumped conceptual  models over large number of 

catchments in the UK. It demonstrates some very interesting findings, such as the fact that all four models have very similar 

performance on a catchment-by-catchment basis, and that only one of the models is deemed suitable for catchments with very 5 

high BFI. This paper is generally well written, set out and easy to follow, and the graphics provided assist the reader well in 

the interpretation of the results, I particularly like Figures 5 and 7. The discussion section should be synthesised as it feels 

repetitive of the results  section. Overall, I feel that the motivations of the research, and the implications of the results are not 

very well reasoned. The authors need to think a bit more carefully about how others may make use of these results, and in 

particular, should publish the model performance scores as supplementary information (see my comments below). 10 

Response: We would like to thank the reviewer for taking the time to read the paper in depth, and for their constructive 

comments.  

 

Comment 1. You’ve “benchmarked” performance, but you haven’t provided these benchmarks.  If I were to now go and 

simulate a UK catchment, I still cannot easily compare my results with yours to see if I have a better model. For you to have 15 

achieved your aims, I would expect a supplementary table of the best scores the models achieved in each catchment, and the 

parameter values that produced them. 

Response: We completely agree with this, and the results can now be accessed through a DOI.  

 

Comment 2. Section 3.2 – why NSE? 20 

Response: We originally selected NSE as it is a widely used and easy to interpret measure of performance. However, 

as noted by the other reviewers, in order to better understand model failures we will consider additional metrics. 

Therefore, we have also presented correlation and mean bias (see figures 5,9 and the associated text).   

 

Comment 3. Section 3.2 – “results are stored for a number of additional metrics not reported here”. Stored where? Why would 25 

I care about this if you haven’t made them available to me? I suggest you summarise these additional metrics in supplementary 

information. This may also address the issue of only reporting on NSE here. 

Response: We have removed this sentence from the methods and included additional metrics in the results which will 

also be provided thorough the DOI.  

 30 

Comment 4. Your statement in the abstract L23 that NSE scores of 0.72-0.78 were achieved for all catchments is misleading. 

How useful a measure is the “median maximum NSE for all the catchments”? It’s pretty cryptic. There are catchments in E 
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Scotland, and Anglian region that are showing pink/red for all 4 models, so NSE must be <0.5. Having got to page 9 I now see 

what you meant, but it isn’t clearly stated. The sentences on P12 L16-17 are a better summary of the performances across 

catchments. Same issue on P16 L 32. 

Response: Thank you for pointing out that this is not clear. We have replaced the statement in abstract L23 with “Our 

results show that simple, lumped hydrological models were able to produce adequate simulations across most of Great 5 

Britain, with each model producing simulations exceeding 0.5 Nash Sutcliffe efficiency over at least 80% of 

catchments.” 

 

Comment 5. Catchment characteristics and climate – do all FUSE models maintain the water balance? Can you comment on 

the existence of models that don’t (e.g. GR4J), and how those may overcome such problems? What are the implications of 10 

maintaining vs not maintaining water balance in conceptual lumped models? Are the four models you’ve chosen actually quite 

similar to each other? I think you need to make more of this somehow. 

Response: Yes, all the FUSE models used in this study maintain the water balance, and we have clarified this in the 

methods section. To address these questions we have added a paragraph in the discussion on how models that do not 

maintain the water balance have been used to improve modelling in groundwater dominated regions. In response to 15 

reviewer 1, this includes discussion of papers by Le Moine at al. (2007, 2008) about groundwater flows and water 

balance closure. 

 

Comment 6. P8 L23 – only a 1 year warm up period? This is not sufficient for many GW dominated 

catchments in the SE. 20 

Response: Thank you for this advice. We initially selected 1 year, as it is often considered sufficient for simple, lumped 

models such as the FUSE models. However, following this comment we carried out additional analysis of the simulated 

flows and found that whilst 1 year is a long enough warmup period for many catchments, it did not appear sufficient 

for some of the catchments in the SE as suggested. We will have increased the warmup period to 5 years, re-analysed 

the data and re-made all the figures to reflect this.  25 

 

Comment 7. P6 L6 – 2 years of data was your criteria for catchment selection, this doesn’t seem sufficient to me 

Response: We originally aimed to keep as many catchments as possible for the analysis. However, you are correct that 

2 years of data is not long for model evaluation. We have now added a tougher criterion for catchment selection, of 

more than 10 years of available discharge data during the model evaluation period. The figures have been re-made to 30 

reflect this.   

 

Comment 8. Reading through your discussion seems very repetitive of the results chapter. Can these be better synthesised, to 

reduce the discussion section? 
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16. Your discussion is longer than the rest of the paper put together! 

Response: We have reduced the length of the discussion section, and re-structured the old sections 5.1-5.3 to reduce 

repetition.   

 

Comment 9. P2 L32 “a national scale model” – you’re talking about applying a catchment model nationally. Can this be 5 

classified a national scale model? 

Response: In this section we were aiming to discuss the importance of national scale modelling more generally, 

suggesting that our work could be informative for evaluation of a national scale model. We were not saying that our 

application of a catchment model across GB was a national scale model.  

 10 

Comment 10. P3 L16 - “Secondly, evaluating more complex hydrological models relative to benchmark performance of simple 

models ensures that the relative difficulty of simulating different catchments is implicitly considered (Seibert et al., 2018).” I 

don’t think I understand what you’re saying here. 

Response: This has been re-phrased and further explained to make the meaning clearer. It now reads “Secondly, 

lumped hydrological models provide a good benchmark for evaluating more complex models, as they give an indication 15 

of what it is possible to achieve for a specific catchment and the available data (Seibert et al., 2018). This can help us 

identify whether a model is performing well in a catchment relative to how it should be expected to perform for the 

particulars of that catchment. For example, if a modeller gains an efficiency score of 0.7 for their model in a specific 

catchment, it is subjective whether this is a good or poor performance. However, if lumped, conceptual models tend to 

have efficiency scores of around 0.9 for that catchment then the modeller knows that their model is performing poorly 20 

relative to what is possible.” 

 

Comment 11. P10 L22-24 – “For very low values of the ARNO-VIC ‘b’ exponent (AXV_BEXP) as seen for high BFI vales 

in Fig. 6 for behavioural model distributions means that only at very high, near full upper storage levels is any larger extent of 

saturated areas predicted” – I don’t follow this sentence either. 25 

Response: This has been re-phrased.   

 

Comment 12. P8 L3 - Can you explain conditional probabilities in more detail? 

Response: We have extended this paragraph, now saying “Conditional probabilities were assigned to each behavioural 

parameter set based on their behavioural Efficiency score, and these were normalised to sum to 1. This meant that the 30 

simulations which scored the highest efficiency value had larger conditional probabilities, and simulations which had 

efficiency values just above 0.5 would have very low conditional probabilities. For each daily timestep, a 5th, 50th and 

95th simulated discharge bound was produced from these conditional probabilities, for each catchment and model 

structure individually as described in Beven and Freer (2001). This meant that simulations with a higher efficiency 
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score were given a higher weighting when producing the discharge bounds.” Simply the behavioural weights 

(probabilities) assigned to each model are conditional on the choices made in the modelling exercise, here dependent 

on the sample design, the choice of parameter ranges, the model performance metric, and hence conditional. 

 

Comment 13. P11 L 23 – “the top row of plots” – there is only one plot in Fig 8! 5 

Response: Thank you for noticing that! We had originally displayed figures 8 and 9 as a single plot. This has been 

corrected. 

  

Comment 14. P12 L 7-8 “However, variations between years are less apparent when looking at 25th and 75th percentiles in 

Fig. 8.” We can’t distinguish variation between years from Fig 8? 10 

Response: Again, thank you for noticing this, it has been corrected to point to the right figure.  

 

Comment 15. Please provide more sensible y axis labels for fig 8 and 9, e.g. “AMAX discharge score”, and “AMAX percentage 

overlap” respectively. Multiply Fig 9 y axis by 100 to make it an actual percentage value, as you have referred to it as such in 

the text. 15 

Response: We agree with this comment and have changed the figure.  

 

Comment 17. P13 L 3 – you’ve made no reference to anthropogenic influences in Scotland. This statements seems a bit 

throwaway. 

Response: We have removed this sentence.  20 

 

Comment 18. P13 L9 – it is not just the Thames basin that is affected by abstractions! A lot of Anglian region is VERY heavily 

influenced. 

Response: we have changed this sentence to “a considerable proportion of river discharges throughout the Anglian 

region are abstracted.”  25 

 

Comment 19. P13 L12 “we found that the ensemble of model structures produced better results overall than any single model” 

– can you validate that statement from your figures? 

Response: This can not be directly validated in a specific figure, but it can be seen across the figures, especially looking 

at  Figure 7, where we see that no single model produces good results for all catchments. This can be validated from 30 

the additional Figure 4, which directly compares the performance of all model structures and the ensemble.  

 

Comment 20. P13 L15 – “The ensemble of model structures was able to take advantage of this” - this seems to be a 

contradictory argument to the previous statement that the models all have similar performance to each other on a catchment 
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by catchment basis. I think you need to tease these two arguments out better somehow. E.g. in some situations the choice of a 

different model can yield better results (e.g. high baseflow), but in other situations, none of the models can do well (e.g. 

abstractions). What are the implications of this?  

Response: We have clarified these arguments in the discussion, see page 15, lines 19-33 in the revised manuscript.  

 5 

Comment 21. P17 L 11-14 “We also evaluated model predictive capability for high flows, as good model performance in 

replicating the hydrograph, assessed using Nash-Sutcliffe efficiency, does not necessarily mean models are performing well 

for other hydrological signatures. We found that the FUSE models tended to underestimate peak flows, and there were 

variations in model ability between years with models performing particularly poorly for extremely wet years.” – so what? 

What are the potential implications? 10 

Response: We have added discussion about the implications for flood modelling and forecasting, see section 5.3, page 

16 lines 15-16 in the revised manuscript.  

 

Typos and grammar: 

1. P2 L27 – CAMELS and MOPEX datasets (what are they datasets of?) 15 

Response: This sentence has been clarified -  “the CAMELS or MOPEX hydrometeorological and catchment attribute 

datasets.” 

 

3. P5 L22 - remove “Environment Agency”, a catchment is a catchment, the EA don’t own the catchments, even if they do 

own the gauges! 20 

Response: “Environment Agency” has been removed.  

 

4. Amend “Rainfall is highest in the West and North of GB and lowest in the East and South varying from a minimum of 

500mm to a maximum of 4496mm per year (see Fig. 1)” to “On average, rainfall is highest in the north and west of GB, and 

lowest in the south and east, with GB totals varying from a minimum of 500mm to a maximum of 4496mm per year (see Fig. 25 

1). 

Response: Thank you for the suggestion, this sentence has been amended.  

 

2. P5 L14 - “these” should be “those” 

5. P6 L1 - remove the “of” after “South-East” 30 

6. P6 L12 – they are the “UK Met Office” not the “UK Meteorological Office”. 

7. P6 L14 and L20 – replace “laid” with “lay” 

8. L6 L21 and elsewhere – “data” is plural, and should be followed by “were” instead of “was” 

9. P8 L15 – “observational uncertainty certainty bounds” huh?? Can you not just remove the word certainty here? 
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10. P9 L15 – you haven’t introduced the abbreviation “SAC” 

11. P10 L5 – I’d call that northeast Scotland, not central Scotland 

12. P11 L29 – “behavioural model” should be “behavioural models” 

13. P13 L7 – do you mean model “structures”? 

14. P16 L17 – “we also shown how” 5 

15. P16 L19 – refer to Fig 6 

Response: Thank you for spotting these typos and grammatical errors, we have corrected these in the manuscript.  

 

16. P16/17 – “The performance of the four models was similar, and all models showed similar spatial patterns of performance, 

and there was no single model that outperformed the others across all catchment characteristics and for both daily flows and 10 

peak flows.” – and, and, and 

Response: This sentence has been improved to “The performance of the four models was similar, with all models 

showing similar spatial patterns of performance, and no single model  outperforming the others across all catchment 

characteristics for both daily flows and peak flows.” 

 15 

17. P17 L8 – “we found models performed poorly for catchments for catchments with unaccounted losses” 

Response: we have removed the repetition.  

 

HESS REVIEW CHECKLIST 

1. Does the paper address relevant scientific questions within the scope of HESS? Yes 20 

2. Does the paper present novel concepts, ideas, tools, or data? Yes 

3. Are substantial conclusions reached? Nearly, the wider implications, and utility of 

the research need to be better considered 

4. Are the scientific methods and assumptions valid and clearly outlined? Yes 

5. Are the results sufficient to support the interpretations and conclusions? Yes 25 

6. Is the description of experiments and calculations sufficiently complete and precise 

to allow their reproduction by fellow scientists (traceability of results)? Yes 

7. Do the authors give proper credit to related work and clearly indicate their own 

new/original contribution? Yes 

8. Does the title clearly reflect the contents of the paper? Yes 30 

9. Does the abstract provide a concise and complete summary? Yes 

10. Is the overall presentation well-structured and clear? Yes 

11. Is the language fluent and precise? Yes 

12. Are mathematical formulae, symbols, abbreviations, and units correctly defined 
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and used? Yes 

13. Should any parts of the paper (text, formulae, figures, tables) be clarified, reduced, 

combined, or eliminated? Yes, the discussion should be reduced 

14. Are the number and quality of references appropriate? Yes 

15. Is the amount and quality of supplementary material appropriate? No 5 

Response: Thank you for this largely positive summary checklist. We have addressed points 3 and 13 through our 

changes to the discussion section, and point 15 by making our output data available through a DOI. 
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Benchmarking the predictive capability of hydrological models for 

river flow and flood peak predictions across over 1000 catchments in 
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Abstract. Benchmarking model performance across large samples of catchments is useful to guide model selection and  future 

model development. Given uncertainties in the observational data we use to drive and evaluate hydrological models, and 15 

uncertainties in the structure and parameterisation of models we use to produce hydrological simulations and predictions, it is 

essential that model evaluation is undertaken within an uncertainty analysis framework. Here, we benchmark the capability of 

several lumped hydrological models across Great Britain, by focusing on daily flow and peak flow simulation. Four 

hydrological model structures from the Framework for Understanding Structural Errors (FUSE) were applied to over 1000 

catchments in England, Wales and Scotland. Model performance was then evaluated using standard performance metrics for 20 

daily flows, and novel performance metrics for peak flows considering parameter uncertainty.  

Our results show that lumped hydrological models were able to produce adequate simulations across most of Great Britain, 

with each model producing simulations exceeding 0.5 Nash Sutcliffe efficiency for at least 80% of catchments. All four models 

showed a similar spatial pattern of performance, producing better simulations in the wetter catchments to the west, and poor 

model performance in Scotland and southeast England. Poor model performance was often linked to the catchment water 25 

balance, with models unable to capture the catchment hydrology where the water balance did not close. Overall, performance 

was similar between model structures, but different models performed better for different catchment characteristics  and 

metrics, as well as for assessing daily or peak flows, leading to the ensemble of model structures outperforming any single 

structure thus demonstrating the value of using multi-model structures across a large sample of different catchment behaviours.  

This research evaluates what conceptual lumped models can achieve as a performance benchmark, as well as providing 30 

interesting insights into where and why these simple models may fail. The large number of river catchments included in this 

study makes it an appropriate benchmark for any future developments of a national model of Great Britain. 
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1 Introduction 

Lumped and semi-distributed hydrological models, applied singularly or within nested sub-catchment networks, are used for 

a wide range of applications. These include water resources planning, flood/drought impact assessment, comparative analyses 

of catchment and model behaviour, regionalisation studies, simulations at ungauged locations, process based analyses, and 

climate or land-use change impact studies (see for example Coxon et al., 2014; Formetta et al., 2017; Melsen et al., 2018; 5 

Parajka et al., 2007; Perrin et al., 2008; Poncelet et al., 2017; Rojas-Serna et al., 2016; Salavati et al., 2015; van Werkhoven et 

al., 2008). However, model skill varies between catchments due to differing catchment characteristics such as climate, land 

use and topography. Evaluating where models perform well/poorly and the reasons for these variations in model performance, 

can provide a benchmark of model performance to help us better interpret modelling results across large samples of catchments 

(Newman et al., 2017) and lead to more targeted model improvements through synthesising those interpretations. 10 

1.1 Large sample hydrology 

Large-sample hydrological studies, also known as comparative hydrology, test hydrological models on many catchments of 

varying characteristics (Gupta et al., 2014; Sivapalan, 2009; Wagener et al., 2010). Evaluating model performance across a 

large sample of catchments can lead to improved understanding of hydrological processes and teach us a lot about hydrological 

models, for example, the appropriateness of model structures for different types of catchment characteristics (i.e. Van Esse et 15 

al., 2013; Kollat et al. 2012), emergent properties and spatial patterns, key processes that we should be improving and 

identification of areas where models are unable to produce satisfactory results (e.g. Newman et al., 2015; Pechlivanidis and 

Arheimer, 2015). This can guide model selection, and also teach us about appropriate model parameter values for different 

catchment characteristics, with the production of parameter libraries which can be used for parameter calibration in ungauged 

basins, and increase robustness of calibration in poorly gauged basins (Perrin et al., 2008; Rojas-Serna et al., 2016).        20 

At the same time, regional-continental scale hydrological modelling studies are increasingly needed, to address large-scale 

challenges such as managing water supply, water scarcity and flood risk under climate change, and to inform large-scale policy 

decisions such as the European Union’s Water Framework Directive (European Parliament, 2000). National-scale hydrological 

modelling studies using a consistent methodology across large areas are increasingly applied (Coxon et al., 2018; Van Esse et 

al., 2013b; Højberg et al., 2013a, 2013b; McMillan et al., 2016; Veijalainen et al., 2010; Velazquez et al., 2010) facilitated by 25 

increasing computing power and the availability of open source large datasets such as the CAMELS or MOPEX 

hydrometeorological and catchment attribute datasets in the USA (Addor et al., 2017; Duan et al., 2006). These have great 

benefits, as applying a consistent methodology across a large area enables comparison between places and identification of 

areas that may be at most risk of future hydrological hazards. However, the range of catchment characteristics and hydrological 

processes across national scales pose a great challenge to the implementation and evaluation of a national-scale model (Lee et 30 

al., 2006), and we therefore need large-scale evaluations of model capability to identify which processes are important and 

which model structure(s) are most appropriate.   
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1.2 Benchmarking hydrological models 

Model skill varies between places, and it is therefore important for a modeller to understand the relative model skill for their 

study region, and how that relates to their core objectives. A single model structure will vary in its ability to produce good 

flow time-series across different environments and time-periods (McMillan et al., 2016), expressed sometimes as model agility 

(Newman et al., 2017). One way to evaluate this relative model skill is by comparing the model performance to a benchmark, 5 

which is an indicator of what it is possible to achieve in a catchment given the data available (Seibert, 2001). This helps a 

modeller make a more objective decision on whether their model is performing well. Examples of benchmarks that models 

can be evaluated against include climatology, mean observed discharge, or the performance of a simple, lumped hydrological 

model for the same conditions (Pappenberger et al., 2015; Schaefli and Gupta, 2007; Seibert, 2001; Seibert et al., 2018). 

The creation of a national benchmark series of performance of simple, lumped models can therefore be useful for a variety of 10 

reasons. Firstly, a benchmark series of lumped model performance is a useful baseline upon which more complex or highly 

distributed modelling attempts can be evaluated (Newman et al., 2015). This would ensure that future model developments are 

improving upon our current capability therefore justifying additional model complexity. Secondly, lumped hydrological 

models provide a good benchmark for evaluating more complex models, as they give an indication of what it is possible to 

achieve for a specific catchment and the available data (Seibert et al., 2018). This can help us identify whether a model is 15 

performing well in a catchment relative to how it should be expected to perform for the particulars of that catchment.  For 

example, if a modeller, using more complex modelling approaches, gains an efficiency score of 0.7 for their model in a specific 

catchment, there is some subjectivity whether this is a good or poor performance depending on the modelling objective. 

However, if lumped, conceptual models already applied at the same catchment tend to have efficiency scores of around 0.9 for 

that catchment then the modeller knows that their model is performing poorly relative to what is possible. Thirdly, national 20 

benchmarks are useful for users of models as they can highlight areas where models have more or less skill, and where model 

results should be treated with caution.  

1.3 Assessing Uncertainty 

Hydrological model output is always uncertain, due to uncertainties in the observational data used to drive and evaluate the 

models, boundary conditions, uncertainties in selection of model parameters and in the choice of a model structure (Beven and 25 

Freer, 2001). There is a large and rapidly growing body of literature on uncertainty estimation in hydrological modelling, with 

many techniques emerging to assess the impact of different sources of uncertainty on model output, as summarised in Beven 

(2009). Despite this, uncertainty estimation is not yet routine practice in comparative or large-sample hydrology and few 

nationwide hydrological modelling studies have included uncertainty estimation, tending to look more at regionalization of 

parameters, multi-objective calibration techniques, or the use of flow signatures in model evaluation (i.e. Donnelly et al., 2016; 30 

Kollat et al., 2012; Oudin et al., 2008; Parajka et al., 2007b). 
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Parameter uncertainty is often evaluated through calibrating models within an uncertainty evaluation framework (e.g. GLUE, 

(Beven and Binley, 1992) or ParaSol (van Griensven and Meixner, 2006)). Whilst many studies have explored parameter 

uncertainty, it is less common to evaluate the additional impact of model structural uncertainty on hydrological model output  

(Butts et al., 2004). Model structures can differ in their choice of processes to include, process parameterisations, model spatial 

and temporal resolution and model complexity. Studies attempting to address model structural uncertainty often apply multiple 5 

hydrological model structures and compare the differences in output (Ambroise et al., 1996; Perrin et al., 2001; Vansteenkiste 

et al., 2014; Velázquez et al., 2013), and in climate impact studies (i.e. Bosshard et al., 2013; Karlsson et al., 2016; Samuel et 

al., 2012). These studies have found that the choice of hydrological model structure can strongly affect the model output, and 

therefore hydrological model structural uncertainty is an important component of the overall uncertainty in hydrological 

modelling and cannot be ignored.  10 

Flexible model frameworks are a useful tool for exploring the impact of model structural uncertainty in a controlled way, and 

for identifying the different aspects of a model structure which are most influential to the model output. These flexible 

modelling frameworks allow a modeller to build many different model structures using combinations of generic model 

components (Fenicia et al., 2011). For example, the Modular Modelling System (MMS) of Leavesley et al., (1996) allows the 

modeller to combine different sub-models and the Framework for Understanding Structural Errors (FUSE), developed by 15 

Clark et al., (2008),  combines process representations from four commonly used hydrological models to create over 1000 

unique model structures. 

1.4 Study Scope and Objectives 

The main objective of this study is to comprehensively benchmark performance of an ensemble of lumped hydrological model 

structures across Great Britain, focusing on daily flow and peak flow simulation. This is the first evaluation of hydrological 20 

model ability across a large sample of British catchments whilst considering model structural and parameter uncertainty. This 

will be useful both as a benchmark of model performance against which other models can be evaluated and improved upon in 

Great Britain, and as a large-sample study which can provide general insights into the influence of catchment characteristics 

and selected model structure and parameterisation on model performance. 

The specific research questions we investigate are:  25 

1. How well do simple, lumped hydrological model structures perform across Great Britain, when assessed over annual 

and seasonal time scales via standard performance metrics? 

2. Are there advantages in using an ensemble of model structures over any single model, and so are there any emergent 

patterns/characteristics in which a given structure and/or behavioural parameter set outperforms others? 

3. What is the influence of certain catchment characteristics on model performance? 30 

4. What is the predictive capability of those identified as behavioural models for then predicting annual maximum flows 

when applied in a parameter uncertainty framework?   
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To address these questions, we have applied the four core conceptual hydrological models from the FUSE hydrological 

framework to 1013 British catchments, within an uncertainty analysis framework. Model performance and predictive capability 

have been evaluated at each catchment, providing a national overview of hydrological modelling capability for simpler lumped 

conceptualisations over Great Britain. 

2 Data and Catchment Selection 5 

2.1 Catchment Data 

This study was national in scope, using a large data set of 1013 catchments distributed across Great Britain (GB). The 

catchments cover all regions and include a wide variety of catchment characteristics including topography, geology and climate 

(see Table 1Table 1), and include both natural and human impacted catchments (see Figure 1Figure 1). 

On average, rainfall is highest in the north and west of GB, and lowest in the south and east, with GB totals varying from a 10 

minimum of 500mm to a maximum of 4496mm per year (see Figure 2Figure 2). There is also seasonal variation with the 

highest monthly rainfall totals generally occurring during the winter months and the lowest totals occurring in the summer 

months. This pattern is enhanced by seasonal variations in temperature with evaporation losses concentrated in the summer 

months from April – September. Besides climatic conditions, river flow patterns are also heavily influenced by groundwater 

contributions. Figure 1 shows the major aquifers in GB. In catchments overlying the Chalk outcrop in the South-East, flow is 15 

groundwater-dominated with a predominantly seasonal hydrograph that responds less quickly to rainfall events. Land use and 

human modifications to river flows also significantly impact river flows, with river flows heavily modified in the South-East 

and Midland regions of England due to high population densities (Figure 1Figure 1). Most catchments have very little or no 

snowfall in an average year, but there are some upland catchments in northern England and northeast Scotland where up to 

15% of the annual precipitation falls as snow (Figure 2Figure 2).  20 

Catchments were selected from the National River Flow Archive (Centre for Ecology and Hydrology, 2016) based upon the 

quality and availability of rainfall, potential evapotranspiration (PET) and river discharge data over the period 1988-2008. The 

full NRFA dataset contains records for 1463 catchments across GB. Of these, 1013 had sufficient information (defined as more 

than 10 years of available discharge data during the model evaluation period of 1993-2008) available to include in this analysis.   

2.2 Observational Data 25 

Twenty-one years of daily rainfall and PET data covering the period 01/01/1988 to 31/12/2008 were used as hydrological 

model input. Rainfall timeseries were derived from the Centre for Ecology and Hydrology Gridded Estimates of Areal Rainfall, 

CEH-GEAR (Tanguy et al., 2014). This is a 1km2 gridded product giving daily estimates of rainfall for Great Britain (Keller 

et al., 2015). It is based upon the national database of rain gauge observations collated by the UK Met Office, with the natural 

neighbour interpolation methodology used to convert the point data to a gridded product (Keller et al., 2015).  30 
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The Climate Hydrology and Ecology research Support System Potential Evapotranspiration (CHESS-PE) dataset was used to 

estimate daily PET for each catchment. The CHESS-PE dataset is a 1km2 gridded product for Great Britain, providing daily 

PET time-series (Robinson et al., 2015a). PET estimates were produced using the Penman-Monteith equation, calculated using 

meteorological variables from the CHESS-met dataset (Robinson et al., 2015b). Catchment areal daily precipitation and PET 

time series were produced for each catchment by averaging values of all grid squares that lay within the catchment boundaries 5 

for each of the 1013 catchments. 

Observed discharge data were used to evaluate model performance. Gauged daily flow data from the National River Flow 

Archive (NRFA) were used for all catchments where available (Centre for Ecology and Hydrology, 2016). 

3 Methodology 

3.1 Hydrological Modelling 10 

The Framework for Understanding Structural Errors (FUSE) modelling framework was used to provide four alternative 

hydrological model structures. This framework was selected as it enables comparison between hydrological models with 

varying structural components (Clark et al., 2008) and the computational efficiency of these relatively simple hydrological 

models enabled modelling to be carried out across a large number of catchments within an uncertainty analysis framework.  

The framework allows the user to select different combinations of modelling decisions, starting with four parent models based 15 

on the structures of widely used hydrological models, and allowing the user to combine these decisions to create over 1000 

different model structures.   

For this study, only the four parent models from the FUSE framework were selected due to the computational requirements of 

running the models across such as large number of catchments, and that the core models should provide the core differences 

of models compared to all the possible variants. These models are based on four widely used hydrological models; 20 

TOPMODEL (Beven and Kirkby, 1979), the Variable Infiltration Capacity (ARNO/VIC) model (Liang et al., 1994; Todini, 

1996), the Precipitation-Runoff Modelling System (PRMS) (Leavesley et al., 1983) and the Sacramento model (Burnash et al., 

1974). The models are all lumped, conceptual models of similar complexity and all run at a daily timestep within the FUSE 

framework. They all close the water balance, have a gamma routing function and include the same processes, for example 

none of the models have a snow routine or vegetation module. However, the structures of these models differ through the 25 

architecture of the upper and lower soil layers and parameterizations for simulation of evaporation, surface runoff, percolat ion 

from the upper to lower layer, interflow and baseflow (Clark et al., 2008), as shown in Figure 3Figure 3 and Table 3Table 3. 

This leads us to believe that the model structures are dynamically different, as they are representing hydrological processes in 

different ways, yet as all are based on widely used hydrological models they are equally plausible and we have no a priori 

expectations that one model should outperform the others (Clark et al., 2008).  30 

The models were run within a Monte-Carlo simulation framework. There are 23 adjustable parameters within the FUSE 

framework, as shown in Table 2. Each of these was assigned upper and lower bounds based upon feasible parameter ranges 
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and behavioural ranges identified in previous research (Clark et al., 2008; Coxon et al., 2014). Monte-Carlo sampling was then 

used to generate 10,000 parameter sets within these given bounds. Therefore, for each of the 1013 catchments, the four 

hydrological model structures were each run using the 10,000 possible parameter sets over the 21 year period 1988-2008, 

resulting in >40 million simulations being carried out. 

3.2 Evaluation of Model Performance 5 

The objective of this study was to evaluate the model’s ability to reproduce observed catchment behaviour with a focus on 

assessing the strengths and weaknesses of each model in different catchments. Given the large number of catchments evaluated, 

it was not possible to evaluate model performance against a large range of objective functions with this paper, here we aim to 

benchmark behaviour to metrics that capture different aspects of model performance. Consequently, we chose to evaluate the 

o v e r a l l  performance of the hydrological models through the widely used Nash-Sutcliffe Efficiency Index (Nash and 10 

Sutcliffe, 1970) which is an easy to interpret measure of model performance that is often used in studies interested in high 

flows as it emphasizes fit to peaks. To further diagnose the reasons for model good/poor performance, the simulation with the 

highest efficiency value was then analysed further using the decomposed metrics of bias, error in the standard deviation and 

correlation.  

All metrics were calculated for the period 1993-2008, with the first 5 simulation years being used as a model warm-up period.  15 

The Nash-Sutcliffe efficiency index was calculated for each individual simulation using: 

𝑬 = 𝟏 −
∑(𝑶𝒊−𝑺𝒊)𝟐

∑(𝑶𝒊−�̅�)𝟐
           (1) 

where 𝑂𝑖  refers to the observed discharge at each timestep, 𝑆𝑖 refers to the simulated discharge at each timestep and 𝑂 is the 

mean of the observed discharge values. This results in values of 𝐸 between 1 (perfect fit) and −∞, where a value of zero means 

that the model simulation has the same skill as using the mean of the observed discharges.   20 

To gain insights into model agility and time varying model performance during different times of the year, we also assess 

differences in seasonal performance by splitting the observed and simulated discharge into March-May (Spring), June-August 

(Summer), September-November (Autumn) and December-February (Winter). Seasonal Nash-Sutcliffe Efficiency values were 

then re-calculated for all the catchments, using only data extracted for that season. This allowed us to see if there were any 

seasonal patterns in model performance, for example during periods of higher or lower general flow conditions.  25 

The Nash-Sutcliffe efficiency can be decomposed into three distinct components; the correlation, bias and a measure of the 

error in predicting the standard deviation of flows (Gupta et al., 2009). Understanding how the models perform for these 

different components can help us diagnose why models are producing good/poor simulations. We therefore calculated these 

simpler metrics, for the simulations of each model gaining the highest efficiency values. The relative bias was calculated using: 

△ 𝝁 =  
𝝁𝒔−𝝁𝒐

𝝁𝒐
           (2) 30 
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where 𝜇𝑠 and 𝜇𝑜 refer to the mean of the simulated and observed annual cycle. Using this equation, an unbiased model would 

score 0 (a perfect score), and a model that underestimated or overestimated the mean annual flow would score a negative or 

positive value respectively. A value of +/- 1 would indicate an overestimation/underestimation of flow by 100%.   

The relative difference in standard deviation was calculated using: 

△ 𝝈 =  
𝝈𝒔−𝝈𝒐

𝝈𝒐
           (3) 5 

where 𝜎𝑠 and 𝜎𝑜 represent the standard deviation of the simulated and observed mean annual cycle. Again, a value of zero 

indicates a perfect score with no error, and positive/negative values indicate an overestimation/underestimation of the 

amplitude of the mean annual cycle respectively.  

The correlation was calculated using Pearson’s correlation coefficient. A value of 1 indicates a perfect correlation between the 

observed and simulated flows, whilst a value of 0 indicates no correlation. This indicates model skill in capturing both timing 10 

and shape of the hydrograph.  

 

3.3 Evaluation of Model Predictive Capability 

In order to evaluate model predictive capability, the widely applied Generalised Likelihood Uncertainty Estimation (GLUE) 

framework was used (Beven and Freer, 2001; Romanowicz and Beven, 2006). The GLUE framework is based on the 15 

equifinality concept, that there are many different model structures and parameter sets for a given model structure which result 

in acceptable model simulations of observed river flow (Beven and Freer, 2001). This methodology has been widely applied 

to explore parameter uncertainty within hydrological modelling (Freer et al., 1996; Gao et al., 2015; Jin et al., 2010; Shen et 

al., 2012) and includes approaches to directly deal with observational uncertainties in the quantification of model performance 

(Coxon et al., 2014; Freer et al., 2004; Krueger et al., 2010; Liu et al., 2009). For every catchment and model structure, an 20 

Efficiency score was calculated for each of the 10,000 Monte Carlo (MC) sampled parameter sets. Parameter sets with an 

efficiency score exceeding 0.5 were regarded as behavioural, therefore all other sampled parameter sets were rejected and so 

given a score of zero. Conditional probabilities were assigned to each behavioural parameter set based on their behavioural 

Efficiency score, and these were normalised to sum to 1. This meant that the simulations which scored the highest efficiency 

value had larger conditional probabilities, and simulations which had efficiency values just above 0.5 would have lower 25 

conditional probabilities. For each daily timestep, a 5th, 50th and 95th simulated discharge bound was produced from these 

conditional probabilities, for each catchment and model structure individually as described in Beven and Freer (2001).  This 

meant that simulations with a higher efficiency score were given a higher weighting when producing the discharge bounds. 

Predictive capability for an additional performance metric regarding annual maximum flows was then calculated from these 

behavioural simulations to test the model’s ability to predict peak flood flows over the 21 year period. Annual maximum flows 30 

were extracted from both the observed discharge time-series and the 5th, 50th and 95th percentile simulated behavioural 

discharge uncertainty bounds. Two metrics were then used to assess the predictive capability of the models to this objective.  
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The first metric aimed to assess the model’s ability to closely replicate the observed annual maximum flows, whilst considering 

the plausible range of observational uncertainties that may be associated with the observed discharge value. Observed 

uncertainty bounds of ±13% were applied to all observed AMAX discharges. This observed error value was selected following 

previous research on quantifying discharge uncertainty at 500 UK gauging stations for high flows, and represents the average 

95th percentile range of the discharge uncertainty bounds for high flows (Coxon et al., 2015; Mcmillan et al., 2012). The 5 

equations used to calculate the model skill relative to these observational uncertainty bounds are 

𝑬𝒚 =
|𝑶𝒚−𝑺𝒚|

𝑶𝒚×𝟎.𝟏𝟑
           (4) 

𝑬𝒎𝒆𝒂𝒏 =
∑ 𝑬𝒚

𝒏
𝒚=𝟏

𝒏
           (5) 

Where 𝐸𝑦 refers to skill for a particular year, 𝑦, 𝐸𝑚𝑒𝑎𝑛 refers to skill across all years, 𝑂 refers to observed AMAX 

discharge for a particular year and 𝑆 refers to the 50th percentile simulated AMAX discharge. This results in a score of 0 if 10 

the 50th percentile simulated AMAX is equal to observed AMAX discharge, a score of 1 if the simulated AMAX is at the 

limit of the observed error bounds and a score of 2 if it is twice the limit and so on in a similar approach to Liu et al., (2009) 

as a limits of acceptability performance score. A score was calculated for each of the 16 simulation years, excluding the first 

5 years as a model warm-up period, as shown in Eq. (4). A mean score was then calculated across all years for each 

catchment and model, as shown in Eq. (5).  15 

The second metric assessed how well the simulated AMAX uncertainty bounds (5th to 95th) overlapped observed AMAX 

uncertainty bounds to assess model skill given the range of predictive uncertainty. The range of overlap between the 

observed discharge uncertainty bounds and simulated bounds was first calculated for each year. This was normalised by the 

maximum range of the observed and simulated AMAX uncertainty bounds. The resulting value can be interpreted as the 

fraction of overlap versus the total uncertainty, whereby a value of 0 means the simulated AMAX bounds for a particular 20 

year do not overlap the observations at all, and a value of 1 means the simulated bounds perfectly overlap the observational 

uncertainties. Therefore, simulation bounds which overlap the observed AMAX uncertainty range due to having a very large 

uncertainty spread are penalised for this additional uncertainty width compared to the observed normalised uncertainty. 

4 Results 

4.1 National-scale Model Performance 25 

Our first objective was to assess how well simple, lumped hydrological model structures perform across Great Britain, assessed 

over annual time scales via standard performance metrics. The distributions of model performance across all catchments can 

be seen in Figure 4. This shows that the ensemble of all four hydrological model structures outperformed each individual 

model structure for all performance metrics. Using thean ensemble of all four hydrological models, 93% of catchments studied 
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produced a simulation with a Nash Sutcliffe Efficiency (NSE) value exceeding 0.5, and 75% of catchments exceeded a NSE 

value of 0.7. Maps showing the overall performance of each model structure, chosen using the maximum modelled NSE from 

the MC parameter samples, for catchments across Great Britain are given in Figure 5Figure 5. Maps showing the performance 

of each model structure for the other performance metrics are given in Figure 6Figure 6. 

Our NSE results (Figure 5Figures 4 and 5) show that there is a large range in model performance across Great Britain, with 5 

catchment maximum NSE scores ranging from 0.97 to <0. The overall performance of the four model structures was similar, 

with TOPMODEL, ARNO, PRMS and Sacramento producing simulations exceeding 0.5 NSE for 87%, 90%, 81% and 88% 

of catchments respectively. A similar spatial pattern of performance was also seen across all four model structures, with certain 

catchments resulting in poor or good simulations for all four model structures  Generally, there is an east/west divide in model 

performance, with models typically performing better in wetter western catchments compared to drier catchments in the east. 10 

Clusters of poorly performing catchments can be seen in the east of England around London and in central Scotland, where all 

models are failing to produce satisfactory simulations. There are also more localised catchments where all models are failing, 

such as in north Wales and northern England. Areas where all models are performing well include south Wales, southwest 

England and southwest Scotland.  

However, looking at the decomposed performance metrics in Figures 4 and 6, differences between the model structures emerge 15 

that cannot be seen from the overall NSE scores. Firstly, the models show different biases (top row of plots, Fig. 6). The 

SACRAMENTO model is generally balanced, whilst best scoring simulations tend to underpredict flows for TOPMODEL, 

and overpredict flows for ARNO/VIC and PRMS. Secondly, all models tend to underpredict the standard deviation of flows 

(middle row of plots, Fig.6), with TOPMODEL generally underpredicting the most, but PRMS stands out as overpredicting 

the standard deviation for many catchments in the southeast. Thirdly, the pattern of correlation is similar between the models, 20 

and closely matches the patterns seen for NSE. This is unsurprising, as the correlation term is given a high weighting when 

calculating NSE (Gupta et al., 2009). It is particularly interesting that whilst the models are all calibrated in the same way and 

are producing similar NSE scores, the decomposed metrics show clear differences between the best simulations produced using 

each structure,  

The decomposed metrics also help to identify which aspects of NSE are causing models to fail. Models have problems 25 

simulating the bias, standard deviation and correlation for catchments in southeast England (Fig. 6). The localised poorly 

performing catchments in north Wales are failing due to poor simulation of variance and correlation. Poor performance in 

northeast Scotland is due to poor correlation and underestimation of variance for all models. In central/northern Scotland all 

models except TOPMODEL overpredict bias, leading to TOPMODEL being the only model able to produce reasonable 

simulations for these catchments.  30 

Similarities in overall model performance could be partially due to the models all being run at the same spatial and temporal 

resolution, having a similar model architecture splitting the catchment into upper and lower stores, and including the same 

process representations (such as lack of a snow module). However, there are important differences between the models, which 

may be contributing to the differences seen in the decomposed metrics (Fig. 6). The architecture of the upper and lower model 
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layers differs, as can be seen in Figure 3Figure 3. TOPMODEL and ARNO/VIC have more parsimonious structures with only 

one store in each layer, while PRMS has a more complex upper layer which is split into multiple stores, and SACRAMENTO 

splits both upper and lower layers into multiple stores. The modelling equations governing water movement between stores 

also differ, as explained in Clark et al., (2008). The number of model parameters is also a difference between the models, as 

shown in Table 2, with TOPMODEL and ARNO/VIC having the least model parameters, with ten model parameters each, and 5 

the SACRAMENTO model having the most parameters with twelve. 

4.2 Seasonal Model Performance 

As part of our first objective, we also assessed how well models performed across GB when evaluated over seasonal time 

scales, with results given in Figure 7Figure 7. These maps show the best sampled seasonal NSE score for each catchment taken 

from any of the FUSE model variants. There is a clear seasonal pattern to model performance, with models generally producing 10 

better simulations during wetter winter periods. The models cannot produce adequate simulations for many catchments over 

the summer months of June to August, especially in the Southeast of England. However, for some catchments, especially 

catchments in the west, good simulations are produced all year round. 

There is a seasonal impact on model performance across the areas previously identified as regions where models are failing. 

In northeast Scotland, model performance is generally worst during the winter and spring months of December to May, with 15 

a few catchments also being poorly simulated in summer. In south eastern England, model performance is particularly poor 

during the summer months of June-August. Reasons for this are discussed in later sections. 

4.3 Model Structure Impact on Performance 

An interesting question is whether a certain model structure is favoured for certain types of climatology or generalised 

catchment behaviour. Therefore, the relative performance of the four model structures ranked by both baseflow index (BFI) 20 

and annual catchment rainfall totals, is presented in Figure 8Figure 8. The Sacramento model tends to be the dominant model 

structure across most catchments, producing the largest number of behavioural simulations. However, catchment specific BFI 

and annual average rainfall both have an impact on which model structure tends to produce the most behavioural simulations  

as well as the total number of behavioural simulations. 

Catchments with increasing BFI from 0 to 0.87 show an increasing trend of the SACRAMENTO model structure becoming 25 

dominant albeit with considerable variability (see Fig. 8a). TOPMODEL and PRMS performance relative to the other models 

decreased for catchments with increasing BFI, TOPMODEL especially is known to have a conceptual structure that bet ter 

relates to a variable source area concept that does not relate as well to more groundwater dominated catchments. However, for 

slower responding and more groundwater dominated catchments with a BFI of greater than 0.9, the ARNO/VIC model was 

the only structure able to represent the hydrological dynamics well. ARNO-VIC is the only model that has a very strong non-30 

linear relationship in its upper storage zone that links the deficit ratio of this store to saturated area extent and thus ra infall-

driven surface runoff amounts. For very low values of the ARNO-VIC ‘b’ exponent (AXV_BEXP) as seen for high BFI values 
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in Figure 9Figure 9 for behavioural model distributions means that only at very high, near full upper storage levels is any larger 

extent of saturated areas predicted. This formulation clearly helps these more groundwater dominated catchments where both 

higher infiltration and percolation dynamics may be expected by constraining fast rainfall driven runoff process except to only 

more extreme storm event behaviour. It is also the reason why the sensitivity to BFI of this parameter is stronger in Figure 

9than the other ‘surface runoff’ formulations that link storages to saturated area extent. 5 

For catchments with annual rainfall totals below 2000mm (see Fig. 8b), there is no clear relationship between annual rainfall 

and relative performance of each model structure besides the SACROMENTO model tending to dominate. However, for 

catchments with average annual rainfall totals of above 2000mm, then TOPMODEL and ARNO/VIC became more dominant 

whilst the relative performance of the SACRAMENTO model decreased. In effect the final trend is that for very wet catchment 

types (by rainfall totals) no model dominates, there is no ‘gain’ in the nuances of the non-linear model formulation and all 10 

structures can produce behavioural simulations from some part of their parameter space through a variety of flow pathway 

mechanism from different storages. This again is clear in Figure 9Figure 9, where for at least 3 of the parameters shared 

between structures and controlling different parts of the hydrograph show little sensitivity across the parameter ranges sampled. 

The core exception to that is the TIMEDELAY parameter that controls the Gamma distribution routing formulation and shifts 

to less routing delay that is common to all model structures and so no one structure has an advantage. Similarly, TIMEDELAY 15 

is also sensitive to high BFI catchments by increasing to longer routing times. 

4.4 Influence of Hydrological Regime and Catchment Attributes on Model Performance 

The influence of hydrological regime was then assessed to see if there were specific types of catchments that the models were 

unable to represent given the spatial differences in model performance already observed. Catchment hydrological regime was 

defined using two metrics, the overall runoff coefficient (ratio of annual discharge to annual rainfall), and the catchment 20 

wetness index (ratio of precipitation to potential evapotranspiration), results are provided in Figure 10Figure 10. The 

relationship between model performance and a wider range of catchment characteristics is given in supplementary information.  

Figure 10Figure 10 shows that model performance relates to the catchment water balance. For catchments when the water 

balance tends to close, indicated as the area between the dashed lines, the models are generally able to produce reasonable 

simulations overall and with small biases. For these catchments, precipitation, evaporation and discharge are balanced, and 25 

runoff can be explained using the precipitation and evaporation data. When this relationship breaks down, we have situations 

where catchment runoff exceeds total rainfall i.e. there is more water than we would expect, or catchments where runoff is low 

relative to precipitation, and this deficit cannot be explained solely by evapotranspiration i.e. the catchment is losing water. 

These catchments fall above the top dashed line in Figure 10Figure 10, or below the bottom dashed line, respectively. The 

models cannot simulate these catchments, as they cannot account for large water additions or losses, and so become stressed 30 

leading to large streamflow biases (as also seen in Figure 6). This problem is most extreme for the driest catchments, where 

models may be converting less potential evaporation to actual evaporation as the conditions are drier, and so we have an even 
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larger water deficit which the model structures cannot simulate. For the driest catchments, models have higher error in 

predicting the standard deviation and correlation.  

4.5 Benchmarking Predictive Capability for Annual Maximum Peak Flows 

Model predictive capability for simulating annual maximum (AMAX) flows from behavioural models defined from the NSE 

measure is shown in Figure 11Figure 11 and Figure 12Figure 12. Figure 11Figure 11 assesses the ability of models to produce 5 

AMAX discharge estimates which are as close as possible to observations. Here, a value of 0 means simulated AMAX 

discharge is equal to observed, up to 1 means simulated AMAX discharge is within the bounds of the observational 

uncertainties applied and larger values such as 2 indicate that simulated discharge is double the limit of observational 

uncertainties away from the observed discharge (negative values mean that the model simulations are lower than the observed). 

Median Eamax values from Eq. (2) are around -2.4 to -3.2 across all four models, with PRMS producing slightly better 10 

predictions in general than the other models. This shows that the models are underestimating peak annual discharges across 

the majority of GB catchments even though behavioural models have been selected using NSE which favours models that 

perform well at higher flows.  

Figure 12Figure 12 shows the percentage overlap between the simulated 5th and 95th AMAX bounds and the observed AMAX 

uncertainty bounds. Here, the boxplot on the left shows the variation of results across all catchments and models for each year, 15 

whilst the boxplot on the right summarizes results across all catchments and years for each model. The median value across 

all catchments is 0.16, meaning that there is a 16% overlap between the observed and simulated AMAX bounds averaged 

across all 20 years.  

There are large variations in model ability to simulate observed annual maximum flows between years, when looking at median 

predictions. For example, 1990 and 2008, which were wetter than average years across most of GB, model ability to represent 20 

annual maximum discharge is poor. However, in 1996, which was a particularly dry year following the 1995 drought  (Marsh 

et al., 2007), the models do a much better job of representing the annual maximum discharge. This may be in part due to the 

model tendency to underestimate discharge as seen in Figure 11Figure 11. However, variations between years are less apparent 

when looking at 25th and 75th percentiles in Figure 12Figure 12. This could suggest that there are some catchments where 

predictions are more consistent between years, or that the large climatic variation across GB may conceal some of the effects  25 

of inter-year differences. 

5 Discussion 

This study provides a useful benchmark of the performance and associated uncertainties of four commonly used lumped model 

structures across GB, for future model developments and model types to be compared against. The large number of catchments 

included makes this assessment a fair benchmark for any future national modelling studies, as well as smaller scale modelling 30 

efforts. A full list of models scores can be found at https://doi.org/10.5523/bris.3ma509dlakcf720aw8x82aq4tm.   
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5.1 Identifying missing process parameterisations  

There were some clusters of catchments, notably catchments in northern and northeast Scotland and those on permeable 

bedrock in southeast England, where all models failed to produce good simulations. The Scottish catchments are mountainous 

catchments, at a considerably higher elevation than the rest of GB, and experience colder temperatures with daily maximum 

temperatures in January consistently below zero (Met Office, 2014). Many catchments in northeast Scotland are classed as 5 

natural, but there are a group of catchments in central northern Scotland which are impacted by hydro-electric power (HEP) 

generation and subsequent diversions out of the catchment as well as storage influences on the regime (Marsh and Hannaford, 

2008b). As model failures in northeast Scotland were particularly pronounced during winter and spring, this suggests that 

models were unable to capture the different seasonal climatic conditions of these catchments, such as snow accumulation and 

melt or the impact of frozen ground. This is supported by the low correlations between simulated and observed flows in 10 

northeast Scotland, suggesting that the models are unable to represent the overall shape and timing of flows. Many catchments 

in central/northern Scotland had particularly low NSE values which were worst in summer/autumn. Modifications to the flow 

regime resulting from HEP can explain poor model performance for these catchments, supported by the models failing to 

reflect model bias and correlation. The FUSE models in this study do not incorporate snow processes and indicates that future 

modelling efforts for GB may need to include a snowmelt regime, and the anthropogenic impacts resulting from hydroelectric 15 

power generation, to produce good simulations in these catchments.  

The catchments in southeast England receive relatively little rainfall compared to the rest of GB and are overlaying a chalk 

aquifer as can be seen in Figure 2. Previous studies have found that hydrological models tend to perform better in wetter 

catchments (Liden and Harlin, 2000; McMillan et al., 2016), which could be part of the reason model performance is so poor 

for these catchments. The presence of the chalk aquifer could also stress the models, as there is nothing in the model structures 20 

to account for groundwater and particularly groundwater flows between catchment boundaries. Equally, the South-East has 

some of the highest population densities in the UK and human influences can significantly impact flows in this region, 

particularly for lower flow conditions in the drier seasonal periods.  

For catchments where groundwater is the reason for model failure, a possible solution could be to use a conceptual model that 

allows for groundwater exchange (as opposed to the models used here which all maintain the water balance).  Hydrological 25 

models such as GR4J and SMAR have been developed with functions that allow models to gain or lose water, to represent 

inter-catchment groundwater flows (Le Moine et al., 2007). The use of these models where there is evidence of groundwater 

flows can help to improve model performance and reduce discrepancies between observed and simulated flows, but must be 

used with caution to avoid overfitting of the water balance where there is no physical reasoning for a catchment to be gaining 

or losing water. Whilst it has been noted that there is a general pattern of poor performance for catchments in southeast England, 30 

it is hard to disentangle the reasons that this may be the case. Both the underlying chalk geology causing water transfer between 

catchments, and heavily human modified flow regimes could explain model failures which are greatest during the summer. 
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Interestingly, McMillan et al., (2016) found that whilst aquifer fraction was expected to have a strong link to model 

performance, no relationship was found for the TOPNET model applied in New Zealand.   

5.2 Influence of Catchment Characteristics and Climate on Model Performance 

One of the key advantages of large-sample studies is that by applying models to many catchments, we can see general trends 

and identify important catchment characteristics or climates that are not represented well by our choice of model structures.  5 

We found that looking at the catchment water balance, considering the relationship between catchment precipitation, 

evaporation and observed flows, helped to identify common features of catchments where all models were failing (Figs. 5,10).  

All model structures produced poor simulations in catchments where either total runoff exceeded total rainfall or where 

observed runoff was very low compared to total rainfall, and this runoff deficit could not be accounted for by 

evapotranspiration losses alone. These differences in water balance are likely due to human modifications to the natural flow 10 

regime such as dams, effluent returns or inter-catchment water transfers, groundwater flow between catchments or it is also 

possible that there are systematic errors in the observational data and this information is dis-informative (Beven and 

Westerberg, 2011; Kauffeldt et al., 2013). Most of these catchments were located within chalk aquifers in southeast England, 

and therefore are in a heavily urbanised area where groundwater abstractions and flows between catchments could be expected. 

The simple, lumped models used here were only given inputs of observed precipitation and PET, therefore they are unable to 15 

account for the additional observed runoff and so are ‘stressed’ even in terms of simulating mean annual runoff, irrespective  

of more detailed hydrograph behaviour.  

 

We also found that catchment characteristics were important in determining which model structure was most appropriate. For 

catchments with a high baseflow index, only the ARNO/VIC model was able to produce behavioural simulations. This could 20 

be explained by the strong non-linear relationship in the upper storage zone of the ARNO/VIC model, which separates it from 

the other model structures. This enables the ARNO/VIC model to constrain the fast rainfall-runoff processes, which would 

only occur for extreme events in these groundwater dominated catchments and so allow for a complex mixture of highly non-

linear saturated fast responses coupled with more general baseflow dynamics to be captured effectively. The catchment annual 

rainfall total also influenced which model structure was most appropriate. We found that for catchments with average annual 25 

rainfall values of around 2000mm/year or lower, the SACRAMENTO model structure is more dominant. As we move towards 

catchments with higher annual rainfall, the relative importance of the different structures shift until all structures are 

approximately equal for the catchments with the highest annual rainfalls. This shows that for very wet catchments, the model 

structure is less important as all models can produce behavioural simulations through some part of the parameter space, as seen 

by the relatively high number of behavioural simulations for wetter catchments (Fig. 8b). This agrees with previous studies, 30 

where models have been found to perform better for wetter catchments, which are likely to have more connected saturated 

areas, as there is a more direct link between rainfall and runoff (McMillan et al., 2016).  
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Our results highlight the difficulty in national and large-scale modelling studies, which for GB must incorporate human 

modified hydrological regimes, complex groundwater processes, a range of different climates and the potential of dis-

informative data, or at least a lack of process understanding to adjust model conceptualisations. Whilst simple, lumped 

hydrological models can produce adequate simulations for most catchments, the model structures are put under too much stress 

when trying to simulate catchments where the water balance does not close or is increasingly departing more normal conditions. 5 

The models fail or produce poor simulations when large volumes of water enter or leave the catchment due to human activities 

or groundwater processes, indicating the importance of considering these influences in any national study. What is striking 

here in these results, is that general hydrological processes, defined by water availability and BFI metrics to infer the extent of 

slower flow pathways, are important in defining the quality of simulated output and differences in model structures and 

parameter ranges, even though nationally many catchments are impacted by additional anthropogenic activities such as 10 

abstractions and multiple flow structures. 

5.3 Predictive Capability of Models for Predicting Annual Maximum Flows 

Predictions of annual maximum discharge using behavioural models based on Nash-Sutcliffe Efficiency (NSE) posed a larger 

challenge for the models, even when allowing for an estimate of observational uncertainty from results generalised in Coxon 

et al., (2015). It was found that all model structures systematically underpredicted annual maximum flows across most 15 

catchments, which could have large implications if these structures were used for flood modelling or forecasting. These results 

are in line with previous large-scale modelling efforts. McMillan et al., (2016) report that their TOPNET model applied across 

New Zealand showed a smoothing of the modelled hydrograph relative to the observations, which resulted in overestimation 

of low flows and underestimation of annual maximum flows. Newman et al., (2015) found the same effect in their study 

covering 617 catchments across the US. This underestimation of peaks could be in part due to the use of NSE in selection of 20 

the behavioural models. NSE is often used in flood studies, as it emphasises correct prediction of flood peaks relative to low 

flows (For example, Tian et al., 2013). However, NSE tends to underestimate the overall variance in the time-series, resulting 

in underprediction of floods and overprediction of low flows (Gupta et al., 2009).  

It was found that there were some variations in the ability of models to simulate AMAX flows between years, and this often 

related to the wetness of a particular year. Models tended to perform worse in wetter years, and better in drier years. This could 25 

be linked to the fact that all models tended to underestimate annual maximum flows, and therefore are closer to observations 

in years with lower annual maximum flows.   

5.4 Uncertainty Evaluation in Hydrological Modelling 

This study evaluated both model parameter and model structural uncertainty.  The results showed that there is considerable 

value in using multiple model structures. No one model structure was appropriate for all catchments, seasons and when 30 

evaluating different metrics from the hydrographs. We found that generally the Sacramento model resulted in the best NSE 

values overall, TOPMODEL was able to produce the simulations with the least biases, the ARNO/VIC model proved best for 
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high baseflow catchments yet the PRMS model was the best at capturing AMAX peak flows. Furthermore, it was found that 

for some catchments only a selection of the model structures were able to produce good simulations, such as the baseflow 

dominated catchments which only ARNO could simulate well. For these catchments, selection of the appropriate model 

structure is important to produce good simulations and unsuitability of the model structure cannot be corrected for through 

parameter calibration. This supports previous research highlighting the importance of considering alternative model structures 5 

and using model structure ensembles or flexible frameworks such as FUSE (Butts et al., 2004; Clark et al., 2008; Perrin et al., 

2001). Consequently, future hydrological modelling over a national scale and/or over a large sample of catchments need to 

ensure appropriate model structures are selected for these catchments and consider the possibility of using multiple model 

structures to represent hydrological processes in varied catchments.  

The results also highlighted the importance of considering parameter uncertainty. It was shown that there were often many 10 

different parameter sets which could produce good simulation results for the same model structure. For some catchments, 

particularly the wetter catchments in the west, all model structures were able to produce good simulations through sampling 

the parameter space. We also show how behavioural parameter distributions change with regards to BFI (Figure 9Figure 9), 

which shows expected shifts in some of the common behavioural parameters/concepts for different conditions, showing the 

model behaviour and parameter formulations are in general making rationale sense (i.e. Higher BFI equals higher time delays).   15 

While this study incorporated uncertainties in model structures and parameters, future work will also focus on incorporating 

uncertainties in the data used to drive hydrological models and more sophisticated representation of discharge uncertainties.    

This is important because errors in observational data will introduce errors to runoff predictions when fed through rainfall -

runoff models (Andréassian et al., 2001; Fekete et al., 2004; Yatheendradas et al., 2008), and in conjunction with uncertainties 

in the observational data used to evaluate hydrological models will also affect our ability to calibrate and evaluate hydrological 20 

models (Blazkova and Beven, 2009; Coxon et al., 2014; McMillan et al., 2010; Westerberg and Birkel, 2015). 

6 Summary and Conclusions 

In this study, we have benchmarked the performance of an ensemble of lumped, conceptual models across over 1000 

catchments in Great Britain.  

Overall, we found the four models performed well over most of Great Britain with each model producing simulations exceeding 25 

0.5 Nash Sutcliffe efficiency over at least 80% of catchments. The performance of the four models was similar, with all models 

showing similar spatial patterns of performance, and no single model outperforming the others across all catchment 

characteristics for both daily flows and peak flows. However, decomposing NSE into model performance for bias, standard 

deviation error and correlation, clear differences emerged between the best simulation produced by each of the model 

structures. The ensemble did better than each individual model, demonstrating the value of model structure ensembles when 30 

exploring national-scale hydrology.   

Commented [Rl53]: R3: Page 17 Line 1 “P16 L19 – refer to 
Fig 6” 

Commented [Rl54]: R3C4 Page 12 Line 30 “Your statement 
in the abstract L23 that NSE scores of 0.72-0.78 were 
achieved for all catchments is misleading. How useful a 
measure is the “median maximum NSE for all the 
catchments”? It’s pretty cryptic. There are catchments in E 
Scotland, and Anglian region that are showing pink/red for all 4 
models, so NSE must be <0.5. Having got to page 9 I now see 
what you meant, but it isn’t clearly stated. The sentences on 
P12 L16-17 are a better summary of the performances across 
catchments. Same issue on P16 L 32.” 



 

37 

 

We found that all models showed higher skill in simulating the wet catchments to the west, and all models failed in areas of 

Scotland and southeast England. Seasonal performance and analysis of the water balance suggested that these model failures 

could be at least in part attributed to missing snowmelt or frozen ground processes in Scotland and chalk geology in southeast 

England where water was able to move between catchment boundaries. In general, we found models performed poorly for 

catchments with unaccounted losses or gains of water, which could be due to measurement errors, water transfer between 5 

catchments due to groundwater aquifers and human modifications to the water system. Therefore, these factors would need to 

be considered in a national model of Great Britain.  

We also evaluated model predictive capability for high flows, as good model performance in replicating the hydrograph, 

assessed using Nash-Sutcliffe efficiency, does not necessarily mean models are performing well for other hydrological 

signatures. We found that the FUSE models tended to underestimate peak flows, and there were variations in model ability 10 

between years with models performing particularly poorly for extremely wet years.  

This benchmark series provides a useful baseline for assessing more complex modelling strategies. From this we can resolve 

how or where we can and need to improve models, to understand the value of different conceptualisations, linkages to human 

impacts, and levels of spatial complexity our model frameworks could deploy in the future. Therefore, the results of this study 

are made available at https://doi.org/10.5523/bris.3ma509dlakcf720aw8x82aq4tm. 15 
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Figures 

 5 

Figure 1. Factors affecting runoff in the study catchments, using information from the UK hydrometric register. Natural catchments 

are defined as having limited variation from abstractions/discharges so that the gauged flow is within 10% of the natural flow at or 

above the Q95 flow. The groundwater category includes both groundwater abstraction and recharge, as well as the few catchments 

where mine-water discharges influence flow. Full descriptions of all factors can be found in the UK hydrometric register (Marsh 

and Hannaford, 2008b) .   10 
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Figure 2: A) Major aquifers across Great Britain, based upon BSS Geology 625k, with the permission of the British Geological 

Survey B) Mean annual rainfall for 10km2 rainfall grid cells across Great Britain. C) Fraction of rainfall falling as snow for 

catchments across Great Britain, where a value of 0.15 indicates that 15% of the catchment precipitation falls on days when the 

temperature is below zero.  5 Commented [Rl57]: R1: Page 5 Line 12 “In §2, I would give an 
estimation of the proportion of watersheds where snowmelt processes 

are observable (solid precipitation >20% of total precipitation ?)” 
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Figure 3: FUSE wiring diagram, showing the model structure decisions. TOPMODEL and ARNO/VIC have 10 parameters, PRMS 

has 11 parameters and SACRAMENTO has 12 parameters. Adapted from Clark et al., (2008). Commented [Rl58]: R1: Page 5 Line 30 “In Figure 2, I would 
put the number of free parameters to calibrate.” 
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Figure 4. Distribution of model performance across all catchments, for all 4 individual model structures and the model structure 

ensemble. Each plot shows model performance assessed using a different metric. Top left shows model performance assessed using 

Nash-Sutcliffe Efficiency, top right shows model relative bias or relative error in simulated mean runoff (%), bottom left shows 

relative error in the standard deviation of runoff (%), and bottom right gives correlation between observed and simulated 5 
streamflow. 
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Figure 5: GB maps of model performance for each structure. Each point is a gauge location which is coloured based upon the best 

Nash Sutcliffe score attained by the model for that catchment. 
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Figure 6. GB maps of model performance for each structure for 3 different metrics. Top row shows model relative bias or relative 

error in simulated mean runoff (%), middle row shows relative error in the standard deviation of runoff (%), and the third row 

shows correlation between observed and simulated streamflow. Each point is a gauge location which is coloured based upon the best 

score for that metric. 5 
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Figure 7: GB maps of FUSE multi-model ensemble model performance for each season (47a) and observed seasonal variations in 

catchment wetness index (74b). Each point on 4a is a gauge location which is coloured based upon the best Nash Sutcliffe score 5 
attained by any of the four models sampled for that catchment and season. Figure 47b then shows how seasons vary hydrologically 

across GB, through the wetness index (precipitation/PET) calculated from the observed data, split by month, used to drive the 

hydrological models across all catchments shown in 74a. 
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Figure 8: Relative performance of the four FUSE model structures, depending on catchment characteristics. Scatter plots show the 

total number of behavioural simulations, from all model structures, forming each line on the stacked bar graph. Each line on this 

stacked bar chart represents 1 catchment, and the colour shows the proportion of the behavioural simulations from each model 

structure. Catchments have been ordered by BFI (a) and Annual Rainfall (b). 5 
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Figure 9: Cumulative distribution function (CDF) plots showing parameter values of the behavioural simulations for each 

catchment. Each line represents a catchment and is coloured by that catchment’s BFI. The 4 rows show different parameters 

controlling different parts of the hydrograph. Surface runoff is given by the LOGLAMB (TOPMODEL), AXV_BEXP (ARNO) and 

SAREMAX (PRMS and SAC) as there was no common surface runoff parameter used for all 4 models. Each column is a different 5 
hydrological model. 
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Figure 10: Scatter plots of the relationship between wetness index, runoff coefficient and best sampled model performance. Each 

point represents a catchment, coloured by the best Nash-Sutcliffe score for that catchment from the model structure ensemble. The 

plotting order was modified to ensure catchments with more extreme (high and low) performance values would be plotted on top.  

Any points above the horizontal dotted line are where runoff exceeds total rainfall in a catchment and any points below the curved 5 
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line are where runoff deficits exceed total PET in a catchment. Top plot is coloured by Nash-Sutcliffe Efficiency, and bottom plots 

are coloured by relative bias, relative error in the standard deviation, and correlation between simulated and observed streamflow. 

 

Figure 11: Predictive capability of 4 hydrological models for annual maximum (AMAX) flows across Great Britain. Shows 

behavioural model ensemble (NSE>0.5) median performance in replicating the observed AMAX flows, with a value of 0 being a 5 
perfect score and a value of 1 meaning the simulated AMAX value was at the limits of the observational uncertainty. The spread 

covers all catchments. 

 

Figure 12: Predictive capability of 4 hydrological models for annual maximum (AMAX) flows across Great Britain. Boxplots show 

the overlap of the simulated and observed uncertainty bounds, as a percentage of the total uncertainty. This metric ranges from 0 10 
to 100, with 0 indicating no overlap between observed and simulated AMAX discharge and 100 indicating a perfect overlap of 

observed and simulated discharge bounds. The range in the left plot is over all catchments and all models, whilst the right-hand plot 

shows the range across all catchments. 
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Tables 

Table 1: Characteristics of the 1013 catchments included in this study. Values for Mean annual rainfall, runoff, loss, flood peaks and 

peak daily flows were calculated from the model input timeseries. Other values were taken from the UK hydrometric register (Marsh 5 
and Hannaford, 2008b).  

Variable 95th percentile Median 5th percentile 

Catchment Area [km2] 1299 135 17 

Baseflow Index [-] 0.86 0.47 0.30 

Mean Annual Rainfall [mm] 2332 975 618 

Mean Annual Runoff [mm] 1912 525 146 

Mean Annual Loss [mm] 693 459 220 

Median Annual Flood Peak [mm] 48 13 2 

Peak Daily Flow [mm] 100 29 4 

Gauge Elevation [m] 220 39 5 

Urban Extent [%] 19 1 0 
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Table 2: FUSE parameters and defined upper and lower bounds. 

Parameter Description Units Lower 

Bound 

Upper 

Bound 

Model(s) using parameter 

MAXWATER 

1 

Depth of upper soil layer mm 25 500 TOPMODEL, ARNO, PRMS, 

SAC 
MAXWATER 

2 

Depth of lower soil layer mm 50 5000 TOPMODEL, ARNO, PRMS, 

SAC 

FRACTEN Fraction total storage in tension storage - 0.05 0.95 TOPMODEL, ARNO, PRMS, 

SAC 

FRCHZNE Fraction tension storage in recharge zone - 0.05 0.95 PRMS 

FPRIMQB Fraction storage in 1st baseflow reservoir - 0.05 0.95 SACRAMENTO 

RTFRAC1 Fraction of roots in the upper layer - 0.05 0.95 ARNO 

PERCRTE Percolation rate mm day-

1 

0.01 1000 TOPMODEL, ARNO, PRMS 

PERCEXP Percolation exponent - 1 20 TOPMODEL, ARNO, PRMS 

SACPMLT SAC model percolation multiplier for dry 

soil layer 

- 1 250 SACRAMENTO 

SACPEXP SAC model percolation exponent for dry 

soil layer 

- 1 5 SACRAMENTO 

PERCFRAC Fraction of percolation to tension storage - 0.5 0.95 SACRAMENTO 

FRACLOWZ Fraction of soil excess to lower zone - 0.5 0.95 PRMS 

IFLWRTE Interflow rate mm day-

1 

0.1 1000 PRMS, SACRAMENTO 

BASERTE Baseflow rate mm day-

1 

0.001 1000 TOPMODEL, ARNO 

QB_POWR Baseflow exponent - 1 10 TOPMODEL, ARNO 

QB_PRMS Baseflow depletion rate day-1 0.001 0.25 PRMS 

QBRATE_2A Baseflow depletion rate 1st reservoir day-1 0.001 0.25 SACRAMENTO 

QBRATE_2B Baseflow depletion rate 2nd reservoir day-1 0.001 0.25 SACRAMENTO 

SAREAMAX Maximum saturated area - 0.05 0.95 PRMS, SACRAMENTO 

AXV_BEXP ARNO/VIC b exponent - 0.001 3 ARNO 

LOGLAMB Mean value of the topographic index m 5 10 TOPMODEL 

TISHAPE Shape parameter for the topographic 

index Gamma distribution 

- 2 5 TOPMODEL 

TIMEDELAY Time delay in runoff days 0.01 7 TOPMODEL, ARNO, PRMS, 

SAC 
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Table 3. Modelling decisions in the four parent models of the FUSE framework. A full description of the models can be found in 

(Clark et al., 2008). 

 Upper 
layer 

Lower 
layer Surface Runoff Percolation Evaporation Interflow Time delay 

in runoff 

TOPMODEL 
Single 
state 
variable 

Baseflow 
reservoir 
of 
unlimited 
size, 
power 
recession 

TOPMODEL 
parameterization 

Water from 
field 
capacity to 
sat 
available 
for 
percolation 

Sequential 
evaporation 
model 

No 
Gamma 
distribution 
for routing 

ARNO/VIC 
Single 
state 
variable 

Baseflow 
reservoir 
of fixed 
size 

ARNO/VIC 
parameterization 
(upper zone 
control) 

Water from 
wilting 
point to sat 
available 
for 
percolation 

Root 
weighting No 

Gamma 
distribution 
for routing 

PRMS 

Tension 
storage 
sub-
divided 
into 
recharge 
and 
excess 

Baseflow 
reservoir 
of 
unlimited 
size, frac 
rate 

PRMS variant 
(fraction of 
upper tension 
storage) 

Water from 
field 
capacity to 
sat 
available 
for 
percolation 

Sequential 
evaporation 
model 

Yes 
Gamma 
distribution 
for routing 

SACRAMENTO 

Broken up 
into 
tension 
and free 
storage 

Tension 
reservoir 
plus two 
parallel 
tanks 

PRMS variant 
(fraction of 
upper tension 
storage) 

Defined by 
moisture 
content in 
the lower 
layer 

Sequential 
evaporation 
model 

Yes 
Gamma 
distribution 
for routing 
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Supplementary Information 1 – Plots looking at the relationship between catchment characteristics and model 

performance 

The main body of the paper looked at the relationship between the catchment wetness index and runoff coefficient and model 

performance. These attributes were selected as they strongly related to model performance and explained differences between 

catchments. Here, we provide additional plots looking at the relationship between model performance and many different 5 

catchment characteristics to demonstrate how other catchment attributes impact model performance. These characteristics were 

either taken from the hydrometric register or calculated from the model input data timeseries (Centre for Ecology and 

Hydrology, 2016; Marsh and Hannaford, 2008a; Robinson et al., 2015a). 

 

Figures S1 – S4 are scatter plots looking at the relationship between model performance (assessed using NSE, bias, error in 10 

standard deviation and correlation respectively) and different catchment attributes. Figures S5 onwards are plots looking at 

interactions between different catchment attributes and model performance. 

 

Some links between catchment attributes and model performance can be seen from Figures S1-S4. Firstly, small catchments 

(<200km2) tend to have more variable NSE scores (both high and low), whilst large catchments (>3000km2) are easier to 15 

model. This is seen with all the decomposed metrics  potentially indicating that daily data is not able to capture flow variation 

in small catchments. Secondly, baseflow dominated catchments (BFI > 0.7) are more likely to gain very low NSE values 

(although some high BFI catchments can be simulated well). Interestingly, BFI seems to have a relationship with error in the 

standard deviation, with baseflow dominated catchments the only catchments where the best simulations tend to overpredict 

variation. This could be due to groundwater dampening variation in flows. Thirdly, gauge elevation seems to cap overall model 20 

performance, with higher elevation gauges unable to achieve performance scores as high as low elevation gauges. Finally, it 

is surprising that urbanisation does not seem to decrease model performance.  

 

From figures S5 onwards we can see that the worst performing catchments in terms of Nash-Sutcliffe efficiency are grouped 

being small catchments less than 120km2, with elevations below 125m, mid to high BFIs (>0.5), low annual rain less than 25 

1000mm and annual runoff values which differ from other catchments with similar annual rainfall totals. Poor NSE ~0.5 is 

achieved for wetter catchments (annual rain > 1200mm), which have relatively low annual runoff generally less than 900mm. 

Many have flow attenuation from reservoirs and lakes, and for these catchments correlation is poor.  

 

 30 
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Figure S1: Relationship between NSE and a selection of 15 catchment descriptor variables. Column 1 gives general catchment 

attributes from the hydrometric register (Marsh and Hannaford, 2008). These are catchment area (km2), Baseflow index (BFI), 

Gauge elevation (m above sea level), mean drainage path slope (DPSBAR) which indicates overall catchment steepness in metres 

per kilometre, and flood attenuation by reservoirs and lakes (FARL) where values close to 1 indicate the absence of flow attenuation 5 
and values below 0.8 indicate a substantial influence. Column 2 gives hydroclimatic attributes calculated from our data, and 

proportion catchment is wet (PROPWET) from the hydrometric register. Annual Loss is Rainfall-Runoff, whilst Annual flood is the 

Median Annual maximum flood peak, and all are reported in mm. Column 3 gives land-use and bedrock permeability descriptors 

(%), also from the UK hydrometric register.  
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Figure S2: Relationship between bias and a selection of 15 catchment descriptor variables, as in Figure S1.  Formatted: Caption, Don't keep with next
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Figure S3: Relationship between error in standard deviation and a selection of 15 catchment descriptor variables, as in Figure S1.  

 

Formatted: Caption, Don't keep with next
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Figure S4: Relationship between correlation and a selection of 15 catchment descriptor variables, as in Figure S1.  Formatted: Caption, Don't keep with next
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Figure S5: Relationship between general catchment characteristics, coloured by model ensemble NSE score for that catchment. 

Column 1 gives general catchment attributes from the hydrometric register (Marsh and Hannaford, 2008). These are catchment 

area (km2), Baseflow index (BFI), Gauge elevation (m above sea level), mean drainage path slope (DPSBAR) which indicates overall 

catchment steepness in metres per kilometre, and flood attenuation by reservoirs and lakes (FARL) where values close to 1 indicate 5 
the absence of flow attenuation and values below 0.8 indicate a substantial influence. Column 2 gives hydroclimatic attributes 

calculated from our data, and proportion catchment is wet (PROPWET) from the hydrometric register. Annual Loss is Rainfall-

Runoff, whilst Annual flood is the Median Annual maximum flood peak, and all are reported in mm. Column 3 gives land-use and 

bedrock permeability descriptors (%), also from the UK hydrometric register. 
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Figure S6. Same as figure S5, but this time looking at hydroclimatic catchment descriptors. Annual rainfall (mm), annual runoff 

(mm), annual loss (mm) and mean annual maximum flood (mm), were all calculated from the model input data used in  this study. 

PROPWET is a measure of the percentage of time soils are wet, as calculated by the UK hydrometric register (Marsh and 

Hannaford, 2008). 5 
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