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Abstract. Knowledge of how uncertainty propagates through a hydrological land surface modelling sequence is of crucial
importance in the identification and characterisation of systemweaknesses in the prediction of droughts and floods at global
scale. We evaluated the performance of five state-of-the-art global hydrological and land surface models in the context of
modelling extreme conditions (drought and flood). Uncertainty was apportioned between model used (model skill) and also
the satellite-based precipitation products used to drive the simulations (forcing data variability) for extreme values of
precipitation, surface runoff and evaporation. We found in general that model simulations acted to augment uncertainty rather
than reduce it. In percentage terms, the increase in uncertainty was most often less than the magnitude of the input data
uncertainty, but of comparable magnitude in many environments. Uncertainty in predictions of evapotranspiration lows

(drought) in dry environments was especially high, indicating that these circumstances are a weak point in current modelling

system approaches. We also found that high data and model uncertainty points for both ET lows and runoff lows were

disproportionately concentrated in the equatorial and southern tropics. Our results are important for highlighting the relative
robustness of satellite products in the context of land surface simulations of extreme events and identifying areas where

improvements may be made in the consistency of simulation models.

1 Introduction

Producing robust predictions about the future dynamics of the water cycle at local, regional and global scales is critically
important because it is the only way to avoid or mitigate the effects of water cycle extremes (e.g. flood, drought) (IPCC, 2012)
and, in the longer term, to improve our use of resources and achieve long-term adaptation to climate change (Bierkens, 2015).
Over the 21st century, climate and hydrological regimes are predicted to undergo significant shifts in baseline variables such
as temperature, precipitation and runoff, leading to changes in the frequency of extremes of precipitation, evaporation and
overland flow, and ultimately to changes in the frequency and intensity of both floods and droughts (Bierkens, 2015; Dadson
etal, 2017; Marthews etal., 2019; Prudhomme etal., 2014). Understanding and predicting these shifts in the global dynamical

system, both at atmospheric and land surface level is therefore of crucial importance (Santanello ez al. 2018).
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All model predictions have uncertainties, and linked modelling sequences have identifiable uncertainties at each step
in the sequence (uncertainty propagation). In the case of a hydrological land surface modelling sequence, where climate data
inputs are used to drive a simulator of the surface water cycle and land surface interactions, there are two main sources of
uncertainty: data uncertainty (differences between forcing data used) and model uncertainty (differences between the
simulation models). Data and model uncertainty differ greatly not just between themselves at particular locations, but also
between coastaland floodplain areas of the world, and remote regions with heterogeneous terrain (Bhuiyan et al., 2018a; Riley
et al, 2017) and between extreme high flows (floods) (Mehran and AghaKouchak, 2014; Nikolopoulos et al., 2016) and
extreme water scarcity (droughts) (Veldkamp and Ward, 2015).

We focus on the relative dominance of model uncertainty (we take this as a broadly defined measure, including
uncertainty from hydrology models that simulate water dynamics, vegetation models that focus on carbon dynamics and land
surface models that attempt to integrate all biogeochemical cycles) and uncertainty in the precipitation product used to drive
those models. In situations where model uncertainty is significant, the range of predictions possible from standard model
simulations is of great importance to stakeholders and other users. If precipitation data uncertainty dominates, however, then
greater attention should arguably be focused on selecting the most appropriate product to use, and perhaps additionally on

interrogating the potentially sparse database of precipitation measuring stations used by the precipitation products.

1.1 Uncertainties in land surface model simulations

Model uncertainty, i.e. prediction variation as a result of differing process representations within a model (e.g. Li and Wu
(2006)), is commonly the dominant uncertainty in complex systems used in risk-informed decision-making (Oberkampf and
Roy, 2010). Although historically often overlooked (Li and Wu, 2006), model uncertainty has recently come under increasing
scrutiny in the context of land surface models (Huntingford et al., 2013; Long et al., 2014; Schewe et al., 2014; Ukkola et al.,
2016). A lack of adequate representation of flood-generation processes (both from surface and subsurface runoff) and
permafrost or snow dynamics can lead to an imprecise simulation of runoff peaks in many large river basins, and a lack of
proper representation of wetland evaporation and human effects such as water consumption and inter-basin transfers can lead
to over- or under-estimated discharge in many basins, especially those with large semiarid regions (Bierkens, 2015; Veldkamp
et al, 2018). Additionally, even though regional-scale precipitation is predominantly caused by the atmospheric moisture
convergence associated with large-scale and mesoscale circulations, processes operating on smaller length scales significantly
modify even regional-scale dynamics, so it is to be expected that uncertainty in land surface models will depend on local
topography, the presence or absence of vegetation or water bodies and, importantly, which type of precipitation is dominant

at a particular pointand time (cyclonic, orographic or convective, Table 1).

1.2 Uncertainties in precipitation products

Precipitation is a necessary forcing input for land surface and hydrological models that is extremely challenging to estimate

independently (Beck et al., 2017b; Bhuiyan et al., 2018a; Bhuiyan et al., 2018b; Levizzani et al, 2018). The accuracy and
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precision of precipitation measurements fundamentally influences predictions of land surface and hydrological models (Hirpa
et al., 2016), however many widely-used precipitation products have high uncertainties over the tropics and/orareas of high
relief (Bierkens, 2015; Derin et al., 2016; Kimani et al., 2017; Yin et al., 2015).

High precipitation extremes are not always well-characterised: Mehran and AghaKouchak (2014) reviewed the
capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. For
example, the precipitation radar on board TRMM (Table 2) is capable of capturing moderate to heavy precipitation b ut does
notdetect light rain or drizzle (Huffman et al., 2007; Luo et al., 2017).

Low precipitation extremes are also not always well-characterised: Veldkamp and Ward (2015) reviewed the
advantages of different drought indices and highlighted many issues at the global scale. This relates to a more general point
aboutremote sensing rainfall intensity: a precipitation productis more likely to record correctly thatit is raining ata particular
location than to record correctly the amount, which is unfortunate because it is usually precipitation amount that is most
important for predictive modelling of drought or flood intensity.

Accuracy of meteorological data including precipitation will be expected to be lower (and uncertainty higher) for
‘real-time’ precipitation products because they have not been ‘blended’ with raingauge or reanalysis data (Table 2) (Munier et
al., 2018). If a near-real time estimate of drought or flood is needed, therefore, then a cost-benefit balance arises with the end

user having to make a choice between up-to-date information versus lowestuncertainty (Munier et al., 2018).

1.3 The eartH2Observe project

During 2014-2018, the eartH2Observe project http://www.eartH2Observe.eu/ brought together a multinational team of

modelling and Earth Observation (EO) researchers to improve the assessment of global water resources through the integration
of new datasets and modelling techniques. The uncertainties described above for different parts of the forcing data - land
surface model systemhave been the starting point for this investigation, and eartH2 Observe has quantified these uncertainties
using an ensemble of forcing data and modelling systems. The project aimed to provide an overall understanding of the
uncertainty in the EO products and EO-driven water resources models. This understanding is needed for optimal data-model
integration and for water resources reanalysis, and their use for basin scale and end-user applications (e.g. floods, droughts,
basin water budgets, stream flow simulations) (Nikolopoulos et al., 2016). As part of eartH2Observe, and in order to make

progress towards this aim, in this study we asked the following two research questions:

(1) Under what circumstances can uncertainty in the prediction of water cycle quantities be attributed clearly to the model

in use (model uncertainty) and/orto the precipitation productused to drive the model (data uncertainty)?

(2) When uncertainty is attributable to both model and datasources,is datauncertainty generally the greater (i.e. the model

contributes less than 50% of total uncertainty) or the lesser?


http://www.earth2observe.eu/
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2 Data and methods

Uncertainty in extreme event representation varies both between models used (model uncertainty) and also between satellite -
based precipitation products used to drive the simulations (data uncertainty). Five of the most widely-used and well-supported
precipitation data products were used in this study (Table 2) and five state-of-the-art land surface models and hydrological
models were run using each of those forcing data products (Table 3). This produced an ensemble of 25 estimates for each
output variable.

Only the precipitation forcing data for each model were allowed to vary between simulations: the remaining non-
precipitation drivers (temperature, wind speed, radiation, etc.) were held constant across all simulations and taken from glo bal
Water Resources Reanalysis 2 baseline forcing data used in other eartH2Observe projects (WRR2) (Arduini et al., 2017). The
combination of WRR2 non-precipitation drivers and the selected precipitation drivers (Table 2) is called WRR-ENSEM BLE
(Arduini et al., 2017). All simulations used a global spatial resolution 0of 0.25° and covered the period 2000-2013. Because of

source data limitations (Table 2), we restricted our analysis to latitudinal zones between 50°S and 50°N (Fig. 1).

2.1 Focus on extremes

Performance was assessed in terms of the variability of evapotranspiration (ET) and surface runoff under extreme rainfall
conditions (both high extremes and low extremes). We quantified the relative magnitudes of these uncertainties under (i)
varying simulation model (model uncertainty)and (i) varying choice of precipitation product (data uncertainty). We quantified
uncertainty in terms of the number of extreme events per month, with the extreme event defined as the occurrence ofan extreme
value for the monthly average of a given variable, and extreme defined as a value in the top/bottom 10% of the baseline
distribution of values for that variable (following IPCC (2014)). Extreme event probability was calculated within each pixel
for each month of the year, summed over the year and then the standard deviation (SD) taken across either the model outputs
or precipitation products in units of (occurrence of extreme events per year). In order to avoid spurious extremes occurring in
deserts and other areas with very low variability in water cycle values, gridcells with less than 20 mm annual precipitation
(multi-year mean) or <0.1 SD in their monthly precipitation across the year were excluded.

Extremes for any particular variable may only be assessed in relation to an estimate of ‘normal’ conditions, and for
this we took a baseline distribution of values calculated at each gridcell (i.e. not globally, regionally or per biome) from an
average of the five simulations involving the 2000-2013 MSWEP forcing data (Beck et al.,, 2017a). We took MSWEP to be
our baseline product because of'its high reliability and multi-source nature (satellite observations blended with reanalysis and
gauge data, Beck et al. (2017a), Munier et al. (2018)) in comparison to other available products (Table 2). Carrying out the
analysis on amonth-by-month (e.g. comparing to a baseline calculated from all the Februaries in the MSWEP dataset)excludes

spurious matching in any gridcell of e.g. winter months to summer months.
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2.2 Uncertainty propagation

We defined three indices of uncertainty propagation a, £ and ¢ (Fig. 2). These indices quantify the extent to which a given
simulation model increases or augments the uncertainty introduced to its simulations via the precipitation driver inputs.The a
measure quantifies the increase or decrease in uncertainty attributable to the precipitation drivers, § measures the equivalent
for uncertainty attributable to the simulator model itself and ¢ quantifies the overall change in uncertainty over the course of
the simulation (Fig. 2). Note that the quantification of absolute uncertainty in predicted quantities (Li and Wu, 2006) is not our
focus: we are instead concerned with the relative contributions of data and model uncertainty in a combination setting

(Oberkampf and Roy, 2010). The defining equations are (calculated on a gridcell by gridcell basis):

Scaled datauncertainty axj = DOU + DIU )
Scaled model uncertainty fx; = MU +~ DIU 2
Scaled total uncertainty ex;j = axj + fxj = ( DOU + MU ) + DIU )

where DIU = Mean uncertainty across products in precipitation extreme occurrence (input forcing data uncertainty)

DOU = Mean uncertainty across products in variable X extreme occurrence (output model uncertainty attributable to
forcing datainput)

MU = Mean uncertainty across models in variable X extreme occurrence (output model uncertainty attributable to

model differences)

All mean uncertainties are in units of (extreme event occurrence frequency per year: EE/yr hereafter) and j can be either Aigh
or low depending on whether high or low extremes are being considered. The uncertainty propagation involves input
uncertainty from the precipitation driver (DIU), which underthe simulation is modified into the uncertainty of X when averaged
across the different results obtained from using different precipitation products (DOU), but, unlike the forcing data, the
simulation results have uncertainty as a consequence of the differences between simulator model used (MU) which means that
total uncertainty at outputlevel is (DOU+MU) (Fig. 2).

In summary, ex; may be understood as a measure of how much input precipitation product data uncertainty (DIU) is
amplified into output uncertainty (DOU+MU) during an ensemble of simulations. Note that it is possible for (DOU+MU) to
beless than DIU (i.e. to have 0.0 < ex; < 1.0), which will occur if we have models that are broadly similar in output (i.e. similar
columns in the table of Fig. 2) and also little variability in the responses of those models to different levels of precipitation
and/or precipitation correlates (i.e. similar rows). This may be interpreted as the ensemble models ‘stabilising’ the input
uncertainty DIU to alower amount of uncertainty in the outputs (DOU+MU) and reinforces the interpretation of ¢ as a measure
of the ‘augmentation’ of input uncertainty as a result of model calculations.. This augmentation comes from two sources:

firstly, a model ensemble can produce outputs with higher sensitivity to input precipitation e.g. through a significant nonlinear
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relationship between X and precipitation in the majority of ensemble models (a), but it must not be forgotten that higher
uncertainty in the outputs may also come from the differences in non-precipitation dependencies inside these models, which
may also be larger in magnitude than DIU (f). Division by zero in the case DIU=0.0 will not occur because of the masking to

avoid spurious extremes in arid areas (above).

3 Results

Comparison of precipitation extreme event occurrences across the forcing precipitation products shows immediate differences
both spatially (Fig. 3) and between the products themselves (Fig. 4). Notably, the precipitation products differ in their extreme
event occurrence rates, with especially TRMM-RT presenting increased rates of extreme high precipitation events across the
globe and particularly GSMaP presenting increased rates of extreme low events (for uncertainty maps, see Fig. S1, Fig. S2,
Fig. S3 and Fig. S4). Calculating these absolute uncertainty values is anecessary step towards assessing the relative magnit udes

of data and model uncertainty for different extreme events.

3.1 Scaled uncertanity

Considering firstly ax;, theuncertainty thatis directly attributable to the precipitation data products, we found that in terms of
global average ax; was mostly <1 (i.e. logio(ax;)<0) for ET highs (58.1% vs. 41.9%) and decreased as precipitation increased
in all latitudinal zones except the northern tropics, but for runoff highs, ax; increased with precipitation in all latitudinal zones
except the equatorial tropics (Fig. 5). Points where data uncertainty greatly increased on propagation through models (ax;>1)
occurred mostly during the prediction of low extremes (ET or runoff) and were restricted to areas with rainfall <2000 mm/yr
(Fig. 5). Points where data uncertainty greatly decreased on propagation through models (ax;j<0.1, logio(ax;)<-1) occurred
mostly during the prediction of runoff extremes (mostly low extremes, butalso high) and were restricted to areas with rainfall
<1000 mm/yr (Fig. 5). Points with high precipitation uncertainty occurred in both dry and wet environments.

Considering fx;, the increase in model uncertainty relative to input data uncertainty, we found that fx;j was dominantly
<1 (ie. logi0(fxj)<0) for ET highs (80.1% vs. 19.8%) and decreased as precipitation increased in all latitudinal zones; for
runoff highs, fx;j was also mostly <1 (55.6% vs. 44.4%) but increased with precipitation in all latitudinal zones except the
equatorial tropics (Fig. 6).

The scaled increase in total (data + model) uncertainty is measured by ex;. In all latitude zones except the northern
tropics, we found that uncertainty in ET highs increased over the course of the simulation (ex; was dominantly >1 - ie.
logio(exj)>0) at the great majority of locations (80.5% vs. 19.5%), though the magnitude of the increase reduced in wetter
environments (Fig. 7). In all latitude zones except the equatorial tropics, we also found that uncertainty in runoff highs

increased over the course of the simulation at the great majority of locations (76.2% vs. 23.8%), but for runoff the magnitude
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increased with precipitation (Fig. 7). This implies thatthe causes ofhigher model uncertainty operate differentially in wet and

dry environments, with dry environments being perhaps generally less well-modelled than wetter environments.

3.2 Global uncertainty

The global mean value of  is a measure of the amount a given quantity is affected as precipitation changes relative to the
input precipitation data uncertainty (Eq. 1). For quantities that ‘track precipitation’, we would expect this to be closeto 1 (e.g.
runoff values, Fig. 8a), but especially in drier climates small variations in precipitation can drive much higher variation in
output variables through threshold effects, so we might expect higher values in such regions (e.g. ET values, Fig. 8b).

The global mean value of fx is a measure of the internal model uncertainty in quantity X, relative to the input
precipitation data uncertainty (Eq. 2), ie. a measure of the diversity of the calculation methods used to derive X between
models. If quantity X is equally sensitive to precipitation extremes across models, we should expect low model uncertainty
and therefore low values of fx (e.g. under conditions where evapotranspiration and soil storage are minimal we would expect
runoff highs and lows to be closely similar to precipitation highs and lows with the model introducing little modification of
the input data). Our results show that evapotranspiration extremes are more sensitive to precipitation uncertainty in wet
environments than dry environments (Fig. 8c).

Globally, model uncertainty was generally less than data uncertainty (Fig. 6, Fig. 8). In the equatorial tropics, ET
prediction uncertainty was more attributable to data uncertainty, but runoff uncertainty was more attributable to model
uncertainty, either indicating a wider variety of model representations of runoff generation processes within the tested models,
or a greater dependence of ET estimates on precipitation inputs (Fig. 6).

Munier et al. (2018) found that the occurrence of flood (high runoff values) is generally more sensitive to high
precipitation extremes than the occurrence of high evapotranspiration values, but that the reverse is true for low extremes. We
do find this in ourresults as a rule of thumb across all environments (e.g. (€EThigh<€runofthigh) and (EET,low>Erunofilow) and the same
for @ and f in Fig. 8a), but we also note thatin very dry and very wet environments this pattern does not persist (Fig. 8) and it
also does not persistin all latitudinal zones when taken separately.

The total change in uncertainty over the course of the simulation of variable X is measured by ex; (Eq. 3) and our
values for ex; were universally >1.0, indicating that the model simulation does act effectively to increase (amplify) the
uncertainty in the forcing precipitation data. This also implies that when a set of models is under consideration, model
uncertainty is usually greater than data uncertainty. Finally, high uncertainty points for ET lows and runoff lows were
disproportionately concentrated in the equatorial and southern tropics not only for ex; but also for both components ax; and

pxj (Fig. 5, Fig. 6 and Fig. 7; cf. Fig. 3).
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4 Discussion

Model output uncertainty is always a mixture of input data uncertainty and uncertainty accumulated during the simulation (Li
and Wu, 2006; Oberkampf and Roy, 2010; Van Loon, 2015). However, these uncertainties are not orthogonal in general
because the models encode nonlinear relationships and therefore cannot be assumed to react consistently to different levels of
precipitation input (e.g. (Bhuiyan et al, 2018a; Munier et al, 2018; Ukkola et al, 2016)). In this study we have had
unprecedented access through the eartH2Observe project to an ensemble of simulations that has combined a selection of
widely-used and validated precipitation data products with a spread of cutting edge land surface and hydrology sinulation

models.

4.1 Clear attribution of uncertainty to data and/or model sources

Under what circumstances can uncertainty in the prediction of water cycle quantities be attributed clearly to the model in use
(model uncertainty) and/orto the precipitation productused to drive the model (data uncertainty)? Ukkola et al. (2016) found
thatland surface models diverged in evapotranspiration prediction during the dry season, and the results of our study strongly
support this conclusion, with our calculated envelope of uncertainty widening in drier climates across the globe for all our
uncertainty measures.

We found that high data and model uncertainty points for both ET lows and runoff lows were disproportionately
concentrated in the equatorial and southern tropics. These zones are dominantly covered by tropical rainforests and savanna
grasslands, so one possibility is that low fluxes in xeric environments are better characterised - both in data products and model
characterisation - than low fluxes in these mesic and hydric environments. Data products are known to be more accurate away
from areas with consistent cloud coverand a high occurrence of convective rainfall (Table 1) (Derin et al., 2016; Levizzani et
al., 2018), which might explain this for data uncertainty, but having model uncertainty follow the same geographic distribution
indicates that we must also consider uncertainties in the calculations of runoff and evapotranspiration. It seems also to be the
case thatthe simple water balance approach taken by land surface and hydrology models becomes approximate in latitudinal
zones where low flows are generally combined with higher temperatures and more episodic rainfall events (McGregor and
Nieuwolt, 1998). This could indicate that using generalised approaches for all environments (e.g. the Priestley-Taylor or
Penman-Monteith equations) is no longer sufficient for simulations at these spatio-temporal scales (Long et al., 2014;
Wartenburger et al., 2018) or perhaps because we still lack crucial processes in these models, e.g. soil crusting or sealing,
which only occur in semi-arid or arid areas (Marshall et al., 1996). However, we must also be careful to draw strong conclusions
from these zones because another possibility is that this result simply confirms that these regions are where our available
sources data are of lower quality (q.v. Fig. 3a).

Uncertainty in predictions of evapotranspiration lows (drought)in dry environments is especially high, indicating that
these circumstances are a weak point in current modelling approaches. Importantly, our results quantify this effect and show

that even though uncertainty in the precipitation inputs is highest in these environments, the uncertainty in model represent ation
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of the processes involved is also significant and should not be ignored. A practical application o f this is that when robust
predictions of drought are required in very dry environments, not only should a spread of precipitation products be applied,
but also more than one simulator model, and the model outputs should be validated as closely as possible against local data

sources in order to ensure that conclusions drawn from these analyses are suitable for decision -making.

4.2 Relative importance of data and model uncertainty

When uncertainty is attributable to both model and data sources in a simulation ensemble, is data uncertainty generally the
greater or the lesser? In a report for the Intergovernmental Panel on Climate Change (IPCC), Bates etal. (2008) drew attention
to the high uncertainty there was in climate models in precipitation data (= data uncertainty), and also suggested that for
aspects of the hydrological cycle such as changes in evaporation, soil moisture and runoff, the relative spread in projection s
(= total uncertainty) was similar to, or larger than, the changes in precipitation (points echoed later by Schewe et al. (2014)
and others). Precipitation observations are known to have high uncertainty (Beck et al., 2017a; Bierkens, 2015; Kimani et al.,
2017; Levizzani etal., 2018; Yin et al., 2015), but responses to precipitation low extremes (drought) should not be expected
to be proportional to responses from the same model to precipitation high extremes (flood) (Veldkamp et al., 2018).

We found in general that the model simulations we analysed acted to augment uncertainty rather than reduce it. In
percentage terms, the increase in uncertainty was most often less than the magnitude of the input data uncertainty, but
uncertainty did not decrease through the model for any variable so the simulation models did notin any caseact to ‘stabilise’
or decrease the uncertainty supplied to them through the precipitation data products used to drive them. We do agree with
Wartenburger et al. (2018)’s finding that the forcing (data uncertainty) generally dominates the variance in ET extremes, but
we found model uncertainty to be important in all cases analysed and very nearly the magnitude of the forcing uncertainty in
both very dry and very wet environments. This is a very significant result because it implies that a focus on the reduction of

both data and model uncertainty will be necessary in order to improve the prediction of water cycle extremes.

4.3 Sources of unquantified uncertainty

It is important to bear in mind that some sources ofuncertainty exist in these water cycle quantities that are as yet unmeasured
in any existing data products, and therefore cannot be analysed in this study. There is a very strong current emphasis in climate
science on identifying global areas of high precipitation uncertainty, for example (Bierkens, 2015; He et al., 2017; Levizzani
et al., 2018), from which we can highlight two uncertainty sources: Firstly, most precipitation products record observations of
amount, not the type of precipitation (Table 2), however it is very likely that precipitation type strongly influences our
precipitation data uncertainty: for example, convective processes are dominant in the precipitation generating processes in
dryland ecosystems (Table 1), and different precipitation types occur at different spatial scales as well (Table 1). Secondly,
our equatorial tropical zone (Fig. 1) includes the tropical rain belt (also known as the Inter-Tropical Convergence Zone, ITCZ)

of low pressure, characterised by convective activity generating many storms. It is well-known that because of the transitory
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nature of the cloud dynamics in the rain belt, precipitation products necessarily have higher uncertainty and, simultaneously,
these conditions are of too short duration to be captured reliably in our analysis (Marthews et al., 2019).

For evapotranspiration in particular, Lopez et al. (2017) drew attention to the global lack of high quality in situ site
data and the “inevitable scale mismatch” when using such data to calibrate Earth Observation datasets. Regional estimates of
evapotranspiration rely on scaling-up methods to take account of regional advection effects and, additionally, the use of
estimated values for evaporation rates from unmeasured land use types. Each step in these calculations potentially introduces
significant uncertainty with the result that there is currently wide variation between the values suggested by various global
evapotranspiration products (Martens etal., 2017).

Finally, runoff: Surface runoff estimates are linked to precipitation and evapotranspiration estimates via the water
cycle balance equation (Beck et al., 2017b; Bierkens, 2015; Veldkamp et al., 2018). Because soil storage terms are usually
taken as constant, underestimation of evapotranspiration often means overestimation of runoff and streamflow data (and vice
versa). In this way, uncertainty in surface runoff is related to uncertainty in evapotranspiration estimates. However, b ecause
ofthe wide availability and high quality of global streamflow datasets (e.g. the Global Runoff Database, GRDC), and a much
lower requirement for approximation and gap-filling in comparison to evapotranspiration data, runoff data is usually

considered to be of the highest quality in water balance studies.

4.4 Conclusions

Water resources management has become one of the most important challenges facing hydrologists and decision -makers at
state and national levels, motivated by increasing water scarcity in some global regions and a higher frequency of extreme
flood events in others (Bierkens, 2015; Dadson et al., 2017; Schewe et al., 2014). At the same time, precipitation extremes are
predicted to increase in frequency and impact under committed climate change (Ali and Mishra, 2017). Therefore, reliance on
robust model predictions has never been greater (Kundzewicz and Stakhiv, 2010; Riley et al., 2017). In this study we have
used an ensemble of simulation results from the eartH2Observe project derived from cutting-edge model simulators driven by
a wide variety of precipitation observations, butthe sources of uncertainty are nevertheless many and varied.

We found that models augmented uncertainty relative to the magnitude of forcing data uncertainty at the great
majority of spatial points, and therefore always did so in terms of global average uncertainty . Although, for predicting the
extremes of evapotranspiration and runoff, the uncertainties inherent in the current generation of precipitation observation
products are generally larger than the uncertainty introduced into the calculation by the land surface and hydrology models
used, model uncertainty cannot be ignored and in many environments is comparable in magnitude to forcing datauncertainty.
Therefore, in order to reduce prediction uncertainty we need very much to make progress on two fronts: (1) we need
precipitation data product uncertainty to be reduced (improved satellites are always welcome, of course, but we believe that
much progress can also be made through moving towards blended products that are sensitive to more types of precipitation)
and (2) we need to improve the mechanistic equations used in these models to derive water cycle quantities (including a better

consideration of scale issues and domains of validity for existing equations).

10



It is important to resolve both dataand model uncertainty much more clearly and identify exactly at which points in
ourlinked modelling systems these uncertainties become the most significant. Our current model representation ofland surface
hydrological and biogeochemical processes remains approximate especially in very dry and very wet environments and there
is a clear need for a better characterisation of these environmental extremes in order for us to move forward to the next

generation of climate and land surface prediction models.
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Fig. 1: Latitudinal zones used in this study: black = southern temperate 23.5°S to 50.0°S, red = south.ern'
tropical 10.0°S to 23.5°S, yellow = equatorial tropical 10.0°N to 10.0°S, purple = northern tropical 23.5°N to
10.0°N and green = northern temperate 50.0°N to 23.5°S. Analyses are restricted to the area 50.0°N to

50.0°S because of the bounds of data validity in the TRMM and TRMM-RT precipitation data products (Table
2).



Output data
Driving data Simulation model

Variability across
Variability across Variability across models products and models

products (modeluncertainty, ) (e=a+p)
(data uncertainty, o) Inputs Outputs
The relationship between a, 8 and ¢ is most clearly
explained by example (P=precipitation):
1. Say at this point and time we have 3 P estimates from
different data products: 5 mm, 8 mm and 10 mm. We P estimate Runoff (mm/day) from SD across models
can calculate the standard deviation DIU =SD(5,8,10) Model 1 Model 2 Model 3 (mm/day)
=2.52 mm
2.0+exp(5- (0.50*5)+0.1 =
2. Assume also that we have 3 models for predicting 5mm 4.0)=4.7 8.2 26 2.8
X=runoff:

e Model 1 assumes runoff is equal to 2 mm/day 8 mm 2.0+exp(8- 8.2 (0.50"8)+10.0 = 26.4
plus an exponential contribution from P if it 4.0) = 56.6 14.0
exceeds 4 mm. "

+ - +
e Model 2is a very basic model, assuming 10 mm 2.0 e_xp(10 8.2 (0'5(1 10)+100.0 207.1
; X 4.0) =405.4 =105.0
constant runoff at this location based on the
historical average, say 8.2 mm.

e Model 3 assumes runoff is 50% of P plus a SD across Mfa” from the left
contribution from groundwater return flow that products 217.9 0.0 56.1 = 91.3 mm/day
ranges from 0.1 mm to 100.0 mm depending on (mmi/day): Mean from above

= 78.8 mm/day

the state of belowground aquifers.
Driving our models with those P numbers to produce an
estimate of X, we might get a table like this:

3. Note that DOU = mean(SDs across products) = 91.3 mm/day, which is not equal to MU = mean(SDs across models) = 78.8 mm/day (there is no
constraint for these to be equal in general). We are interested in when these values are greater or less than DIU, sowe consider the scaled uncertainties
a=(DOU+DIU) and B=(MU=+DIU).

4. Note the key difference between a, which is calculated from the outputs of the model, and DIU, which is calculated from the inputs: why not just
consider DIU? Because our focus is on X and therefore we need to quantify the uncertainty introduced into X by the precipitation (a), which is not the
same as the uncertainty in the precipitation (DIU) (this is an attribution study, therefore we focus on a rather than DI/U).

5. In this analysis, we considered SDs of extreme event occurrence (EE/yr) rather than SDs of straight X values, which we have done for two reasons: (i)
this allows us to consider and compare consistently the uncertainties of different response variables with different units (e.g. X=runoff vs.
X=evapotranspiration) and (ii) in a global analysis it is necessary to compare across biomes (e.g. a desert point with a rainforest point) and using event
occurrence statistics awids the bias towards wet or dry regions (because of their greater absolute values of e.g. runoff) that must be corrected for in
studies that work with the absolute values of X. Using occurrence statistics doesn’t change the calculations of a, 8 and ¢ abowve, but does inwlve the
additional assumption of a baseline distribution against which we may measure how extreme conditions are (see §2.1).

Fig. 2: Uncertainty measures quantifying how much a simulation model (land surface or hydrological model) alters the uncertainty introduced to its simulations via the
precipitation driver inputs, following the method of competing models approach advocated for complex systems by Oberkampf and Roy (2010).
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Fig. 3: Uncertainty in the precipitation inputs to the eartH20Observe ensemble models: (a) Uncertainty in precipitation
extreme highs and (b) Uncertainty in precipitation extreme lows (standard deviation (SD) taken across the precipitation
products) in units of (occurrence of extreme events per year). Areas of consistently very low precipitation are masked
in grey. Note that only isolated global areas exceeded 4 events/yr, so the scale is restricted to 0-4 events/yr.
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Fig. 4: Increase in extreme precipitation event occurrence in relation to MSWEP. Subtracting extreme high event occurrence rates in the MSWEP precipitation input from the
rates in the CMORPH precipitation input gives map (a), and (b) to (d) are the same calculation using GSMaP, TRMM and TRMM-RT instead of CMORPH. (e) to (h) is the same
calculation, but for extreme low event occurrence (i.e. the averages of the upper and lower rows are effectively the maps Fig. 3a and Fig. 3b, respectively). The clear lines at
50°N (TRMM, TRMM-RT) and 60°N (CMORPH, GSMaP) show the bounds of data validity for these products (Table 2). Note that only isolated global areas exceeded 4
events/yr, sothe scale is restricted to -4 to +4 events/yr.
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Fig. 5: Values of logio(axj), where ax; is the scaled data uncertainty in variable X (eqn 1). (logio(ax;)<0
indicates uncertainty in the predicted variable X attributable to the data is less than the variability in the input
precipitation forcing data; >0 indicates uncertainty in the predicted variable X is greater), where X is
evapotranspiration (a, c, e, f) or runoff (b, d, g, h) and j refers to either high extremes (a, b, e, g) or low
extremes (c, d, f, h). Points on the scatter plots are coloured according to latitudinal zones (Fig. 1). Because
of the density of overlapping points, only the envelope of points for each latitudinal zone is shown and the
points with the highest uncertainty (uncertainty DIU = (2/3)*(global maximum of DIU) ). Linear regression
lines for each latitudinal zone indicate the trend as precipitation increases within each zone (all regressions
were significant at the 1% level), although n.b. we do not contend in any way that the distribution of points
shown is linear: these lines simply indicate a trend that is not clear to the eye from the envelopes displayed
(which do not show the complete point cloud). Maps (e-h) show the corresponding spatial distributions of
logio(ax;j) values for each variable, with the colour scales corresponding to the vertical axis on scatter plot

(a).
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Fig. 6: Values of logio(Bxj), where Bx; is the scaled model uncertainty in variable X (egn 2). (logto(Bx;)<0
indicates model uncertainty in the predicted variable X is less than the variability in the input precipitation
forcing data; >0 indicates model uncertainty in the predicted variable X is greater), where X is
evapotranspiration (a, c, e, f) or runoff (b, d, g, h) and j refers to either high extremes (a, b, e, g) or low
extremes (c, d, f, h). Points on the scatter plots are coloured according to latitudinal zones (Fig. 1). Because
of the density of overlapping points, only the envelope of points for each latitudinal zone is shown and the
points with the highest uncertainty (uncertainty DIU = (2/3)*(global maximum of DIU) ). Linear regression
lines for each latitudinal zone indicate the trend as precipitation increases within each zone (all regressions
were significant at the 1% level), although n.b. we do not contend in any way that the distribution of points
shown is linear: these lines simply indicate a trend that is not clear to the eye from the envelopes displayed
(which do not show the complete point cloud). Maps (e-h) show the corresponding spatial distributions of
log1o(Bx;j) values for each variable, with the colour scales corresponding to the vertical axis on scatter plot

(a).
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Fig. 7: Values of logio(exj), where ex;j is the total uncertainty in variable X (eqn 3), where X is
evapotranspiration (a, c, e, f) or runoff (b, d, g, h) and j refers to either high extremes (a, b, e, g) or low
extremes (c, d, f, h). Points on the scatter plots are coloured according to latitudinal zones (Fig. 1). Because
of the density of overlapping points, only the envelope of points for each latitudinal zone is shown and the
points with the highest uncertainty (uncertainty DIU = (2/3)*(global maximum of D/U) ). Linear regression
lines for each latitudinal zone indicate the trend as precipitation increases within each zone (all regressions
were significant at the 1% level), although n.b. we do not contend in any way that the distribution of points
shown is linear: these lines simply indicate a trend that is not clear to the eye from the envelopes displayed
(which do not show the complete point cloud). Maps (e-h) show the corresponding spatial distributions of
log1o(€x;) values for each variable, with the colour scales corresponding to the vertical axis on scatter plot (a).
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Fig. 8: Global mean values (averaged over 50°S to 50°N) from scatter plots in Fig. 5, Fig. 6 and Fig. 7. Plots show (a)
all values, (b) values from dry environments with mean annual precipitation <1000 mm/yr only and (c) values from wet
environments 26000 mm/yr only. Bar heights are ¢ values (scaled total uncertainty), with B showing a values (scaled
data uncertainty) and ™ B (scaled model uncertainty); error bars show SE.

Oberkampf, W.L.,and C.J. Roy (2010). Verification and Validation in Scientific Computing, Cambridge University Press.
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Table 1: Types of precipitation and their main controlling factors (

Precipitation

Cyclonic
(=frontal)

Orographic

Convective

Spatial
scale
Synoptic,
regional

Intermediate

Local (often
sub-grid)

Characteristics

The leading edge of a warm and
moist air mass (warm front) meets
a cool, dry air mass (cold front).
The warmer air mass rises over the
cooler air, with precipitation
occurring along the front. If the air

begins to circulate, a cyclonic
storm can occur.
Warm, moist air entering a

mountain range is forced to rise,
and then cools and precipitation
ensues (= orographic lift).

A warm soil or vegetation surface
warms the air abowe it, which then
rises \‘ertically and cools, with
precipitation occurring on cooling.

‘Convection-permitting’ model runs
usually  require a sub-daily
timestep and <10 km spatial
resolution, and in the absence of
these a convection
parameterisation scheme (CPS) is
necessary (i.e. assumptions about
subgrid and subdaily dynamics)
(Prein et al. 2015).

McGregor and Nieuwolt, 1998).

Challenges

It is widely accepted that global warming will
lead to a higher water-holding capacity for
the atmosphere as well as increased rates
of evaporation, and therefore increased
extreme weather (Trenberth et al., 2015; Yi
et al.,, 2015). However, the mechanisms
through which the location and magnitude
of these extreme events may be predicted
(e.g. tipping points, thresholds) remain
inadequately understood (Marthews et al.,
2012).

Scale is an important issue: mountains can
modify large-scale circulation, causing
changes in local moisture convergence, but
local condensation and microphysical
processes also influence flow stability
upstream (Marthews et al., 2012).
Stratiform precipitation is when the rise is
diagonal rather than vertical (i.e. similar to
orographic, but not as a result of landform)
Sub-grid displacement of cloud occurrence
from driver (Taylor etal., 2012)

Land surface exchange (e.g.
evapotranspiration) has a significant effect,
but often not modelled explicitly.
Resolution of snow versus rainfall in
mountain regions is critical for water
resources management, but not well-
characterised in models.

CPSs generally overestimate light rain
(drizzle) because they owerestimate the
number of precipitation days (by equating
clouds with rain) and / or underestimate
precipitation intensity (Marthews et al,
2012; Prein et al., 2015). Conwersely, itis a
known limitation of some satellites that they
are not sensitie to, and therefore
underestimate, light rain (e.g. Luo et al.
(2017)). This introduces a ‘calibration gap’:
calibration of large-scale models against
satellite-based precipitation observations
must not only factor out the overestimation
of CPSs, but also the underestimation of the
observations.
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Table 2: Global precipitation products used to drive the models selected from Dorigo et al. (2014). Data files used are
available through the Water Cycle Integrator https://wci.eartH2Observe.eu/ at 25 km resolution for the period 2000-

2013. Algorithm type is as given by the International Precipitation Working Group (IPWG)

| Product

Multi-Source
Weighted-Ensemble
Precipitation

(MSWEP)

Climate Prediction
Center MORPHing
Technique
(CMORPH)

Global Satellite
Mapping of
Precipitation
(GSMaP)

Tropical Rainfall
Measuring Mission
(TRMM)

TRMM Real Time
(TRMM-RT)

Algorithm

Blended
microwave-
infrared

Blended
microwave-
infrared

Satellite-
based

Satellite-
based

*

Notes
Global reanalysis data (Beck et al., 2017)

Restricted to 60°S to 60°N

adwvected in

A passive microwave-based  product time using
geosynchronous infrared data (Joyce et al.,, 2004). When microwave
observations are not available, infrared observations are used to advect the
last microwave scan over time. In addition to advecting precipitation forward
in time, the algorithm propagates precipitation backward once the next
microwave observation becomes available (Mehran and AghaKouchak,
2014).

Restricted to 60°S to 60°N (Tian et al., 2010)

Restricted to 50°S to 50°N

Restricted to 50°S to 50°N

Mainly based on microwave data aboard Low Earth Orbit satellites
(Huffman et al., 2007). The TRMM-RT algorithm is primarily based on
microwave observations from low orbiter satellites. Gaps in microwave
observations are filled with infrared data (Mehran and AghaKouchak,
2014).

" Real-time usually = there is at most a 1-2 hour delay before observation data is made available raw (i.e. with no gap-
filling or other modification).
Near-real-time = there is at most a 1-2 day delay before delivery, allowing some initial data checks to be carried out.

Reanalysis data = data assimilation techniques hawe been used to fill gaps in the observation data (e.g. missing

variables).

Blended = observation data have been combined with either or both of raingauge and reanalysis data to create a more
robust and quality-controlled product.


https://wci.earth2observe.eu/
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Table 3: Modelling systems details (Dutra et al., 2015; Nikolopoulos et al., 2016). Each model was driven using as close
as possible to the same configuration: Global Water Resources Reanalysis 2 (WRR2, Arduini et al. (2017) and
http://jules.jchmr.org/content/research-community-configurations). Simulation results are available on the THREDDS

Hydrology Tiled ECMWEF Scheme for
Surface Exchanges over Land model (H-
TESSEL) (Balsamo et al., 2009)

JULES is the Joint UK Land Environment
Simulator model (JULES) (Best et al., 2011;
Clark et al., 2011)

ORganizing Carbon and Hydrology In
Dynamic EcosystEms model (ORCHIDEE)
(d'Orgeval et al., 2008; Krinner et al., 2005)

SURFace EXiernalisée model (SURFEX)
(Decharme et al., 2011; Decharme et al.,
2013)

Water — Global Assessment and Prognosis -
3 (WaterGAP3) (Schneider et al.,, 2011;
Verzano et al.,, 2012). A grid-based,
integrative global fresh water resource
assessment tool.

Institution

ECMWF

MetO/CEH

CNRS/IPSL

Météo-
France

University of
Kassel

data server (https://wci.eartH20bserve.eu/thredds/catalog.html, see Schellekens et al. (2017)).

Simulations

A 10-year spin-up was carried out: an initial run from 1

January 1979 to 1 January 1989, while the land
surface state of January 1989 was used to initialize the
main simulation.

A 10-year spin-up was carried out: an initial run from 1
January 1979 to 1 January 1989, while the land
surface state of January 1989 was used to initialize the
main simulation.

The model was spun up with a simulation from 1
January 1979 to 31 December 1990. This simulation
started with an average soil moisture and empty
aquifers. After the 12 years of spin-up, river discharges
have reached equilibrium.

A 20-year spin-up was carried out using the 1979-—
1988 period twice.

Storage compartments were initialized by re-running
the model with the first year of available meteorological
forcing 10 times.

WaterGAP includes a water use model (domestic and
industrial water use are parameterised as a function of
average income per country (GDP/capita), allowing
global water use calculations.


http://jules.jchmr.org/content/research-community-configurations
https://wci.earth2observe.eu/thredds/catalog.html
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