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Abstract. Knowledge of how uncertainty propagates through a hydrological land surface modelling seq uence is of crucial 

importance in the identification and characterisation of system weaknesses in the prediction of droughts and floods at global  

scale. We evaluated the performance of five state-of-the-art global hydrological and land surface models in the context of 

modelling extreme conditions (drought and flood). Uncertainty was apportioned between model used (model skill) and also 10 

the satellite-based precipitation products used to drive the simulations (forcing data variability) for extreme values of 

precipitation, surface runoff and evaporation. We found in general that model simulations acted to augment uncertainty rather 

than reduce it. In percentage terms, the increase in uncertainty was most often less than the magnitude of the input data 

uncertainty, but of comparable magnitude in many environments. Uncertainty in predictions of evapotranspiration lows 

(drought) in dry environments was especially high, indicating that these circumstances are a weak point in current modelling  15 

system approaches. We also found that high data and model uncertainty points for both ET lows and runoff lows were 

disproportionately concentrated in the equatorial and southern tropics. Our results are important for highlighting the relative 

robustness of satellite products in the context of land surface simulations of extreme events and identifying areas where 

improvements may be made in the consistency of simulation models. 

1 Introduction 20 

Producing robust predictions about the future dynamics of the water cycle at local, regional and global scales is critically  

important because it is the only way to avoid or mitigate the effects of water cycle extremes (e.g. flood, drought) (IPCC, 2012) 

and, in the longer term, to improve our use of resources and achieve long-term adaptation to climate change (Bierkens, 2015). 

Over the 21st century, climate and hydrological regimes are predicted to undergo significant shifts in baseline variables such 

as temperature, precipitation and runoff, leading to changes in the frequency of extremes of p recipitation, evaporation and 25 

overland flow, and ultimately to changes in the frequency and intensity of both floods and droughts (Bierkens, 2015; Dadson 

et al., 2017; Marthews et al., 2019; Prudhomme et al., 2014). Understanding and predicting these shifts in the global dynamical 

system, both at atmospheric and land surface level is therefore of crucial importance (Santanello et al. 2018). 
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 All model predictions have uncertainties, and linked modelling sequences have identifiable uncertainties at each step 

in the sequence (uncertainty propagation). In the case of a hydrological land surface modelling sequence, where climate data 

inputs are used to drive a simulator of the surface water cycle and land surface interactions, there are two main sources of 

uncertainty: data uncertainty (differences between forcing data used) and model uncertainty (differences between the 

simulation models). Data and model uncertainty differ greatly not just between themselves at particular locations, but also 5 

between coastal and floodplain areas of the world, and remote regions with heterogeneous terrain (Bhuiyan et al., 2018a; Riley  

et al., 2017) and between extreme high flows (floods) (Mehran and AghaKouchak, 2014; Nikolopoulos et al., 2016) and 

extreme water scarcity (droughts) (Veldkamp and Ward, 2015). 

 We focus on the relative dominance of model uncertainty (we take this as a broadly defined measure, including 

uncertainty from hydrology models that simulate water dynamics, vegetation models that focus on carbon dynamics and land 10 

surface models that attempt to integrate all biogeochemical cycles) and uncertainty in the precipitation product used to drive 

those models. In situations where model uncertainty is significant, the range of predictions possible from standard model 

simulations is of great importance to stakeholders and other users. If precipitation data uncertainty dominates, however, then 

greater attention should arguably be focused on selecting the most appropriate product to use, and perhaps additionally on 

interrogating the potentially sparse data base of precipitation measuring stations used by the precipitation products. 15 

1.1 Uncertainties in land surface model simulations  

Model uncertainty, i.e. prediction variation as a result of differing process representations within a model (e.g. Li and Wu 

(2006)), is commonly the dominant uncertainty in complex systems used in risk-informed decision-making (Oberkampf and 

Roy, 2010). Although historically often overlooked (Li and Wu, 2006), model uncertainty has recently come under increasing 

scrutiny in the context of land surface models (Huntingford et al., 2013; Long et al., 2014; Schewe et al., 2014; Ukkola et al., 20 

2016). A lack of adequate representation of flood-generation processes (both from surface and subsurface runoff) and 

permafrost or snow dynamics can lead to an imprecise simulation of runoff peaks in many large river basins, and a lack of 

proper representation of wetland evaporation and human effects such as water consumption and inter-basin transfers can lead 

to over- or under-estimated discharge in many basins, especially those with large semiarid regions (Bierkens, 2015; Veldkamp 

et al., 2018). Additionally, even though regional-scale precipitation is predominantly caused by the atmospheric moisture 25 

convergence associated with large-scale and mesoscale circulations, processes operating on smaller length scales significantly 

modify even regional-scale dynamics, so it is to be expected that uncertainty in land surface models will depend on local 

topography, the presence or absence of vegetation or water bodies and, importantly, which type of precipitation is dominant 

at a particular point and time (cyclonic, orographic or convective, Table 1). 

1.2 Uncertainties in precipitation products  30 

Precipitation is a necessary forcing input for land surface and hydrological models that is extremely challenging to estimate  

independently (Beck et al., 2017b; Bhuiyan et al., 2018a; Bhuiyan et al., 2018b; Levizzani et al., 2018). The accuracy and 
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precision of precipitation measurements fundamentally influences predictions of land surface and hydrological models (Hirpa 

et al., 2016), however many widely-used precipitation products have high uncertainties over the tropics and/or areas of high 

relief (Bierkens, 2015; Derin et al., 2016; Kimani et al., 2017; Yin et al., 2015). 

 High precipitation extremes are not always well-characterised: Mehran and AghaKouchak (2014) reviewed the 

capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. For 5 

example, the precipitation radar on board TRMM (Table 2) is capable of capturing moderate to heavy precipitation b ut does 

not detect light rain or drizzle (Huffman et al., 2007; Luo et al., 2017). 

 Low precipitation extremes are also not always well-characterised: Veldkamp and Ward (2015) reviewed the 

advantages of different drought indices and highlighted many issues at the global scale. This relates to a more general point  

about remote sensing rainfall intensity: a precipitation product is more likely to record correctly that it is raining at a particular 10 

location than to record correctly the amount, which is unfortunate because it is usually precipitation amount that is most 

important for predictive modelling of drought or flood intensity. 

 Accuracy of meteorological data including precipitation will be expected to be lower (and uncertainty higher) for 

‘real-time’ precipitation products because they have not been ‘blended’ with raingauge or reanalysis data (Table 2) (Munier et 

al., 2018). If a near-real time estimate of drought or flood is needed, therefore, then a cost-benefit balance arises with the end 15 

user having to make a choice between up-to-date information versus lowest uncertainty (Munier et al., 2018). 

1.3 The eartH2Observe project 

During 2014-2018, the eartH2Observe project http://www.eartH2Observe.eu/ brought together a multinational team of 

modelling and Earth Observation (EO) researchers to improve the assessment of global water resources through the integration 

of new datasets and modelling techniques. The uncertainties described above for different parts of the forcing data - land 20 

surface model system have been the starting point for this investigation, and eartH2Observe has quantified these uncertainties 

using an ensemble of forcing data and modelling systems. The project aimed to provide an overall understanding of the 

uncertainty in the EO products and EO-driven water resources models. This understanding is needed for optimal data-model 

integration and for water resources reanalysis, and their use for basin scale and en d-user applications (e.g. floods, droughts, 

basin water budgets, stream flow simulations) (Nikolopoulos et al., 2016). As part of eartH2Observe, and in order to make 25 

progress towards this aim, in this study we asked the following two research questions: 

 

   (1) Under what circumstances can uncertainty in the prediction of water cycle quantities be attributed clearly to the model 

in use (model uncertainty) and/or to the precipitation product used to d rive the model (data uncertainty)? 

 30 

   (2) When uncertainty is attributable to both model and data sources, is data uncertainty generally the greater (i.e. the mode l 

contributes less than 50% of total uncertainty) or the lesser? 

http://www.earth2observe.eu/
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2 Data and methods 

Uncertainty in extreme event representation varies both between models used (model uncertainty) and also between satellite -

based precipitation products used to drive the simulations (data uncertainty). Five of the most widely-used and well-supported 

precipitation data products were used in this study (Table 2) and five state-of-the-art land surface models and hydrological 

models were run using each of those forcing data products (Table 3). This produced an ensemble of 25 estimates for each 5 

output variable. 

 Only the precipitation forcing data for each model were allowed to vary between simu lations: the remaining non-

precipitation drivers (temperature, wind speed, radiation, etc.) were held constant across all simulations and taken from glo bal 

Water Resources Reanalysis 2 baseline forcing data used in other eartH2Observe projects (WRR2) (Arduini et al., 2017). The 

combination of WRR2 non-precipitation drivers and the selected precipitation drivers (Table 2) is called WRR-ENSEM BLE 10 

(Arduini et al., 2017). All simulations used a global spatial resolution of 0.25° and covered the period 2000-2013. Because of 

source data limitations (Table 2), we restricted our analysis to latitudinal zones between 50°S and 50°N (Fig. 1). 

2.1 Focus on extremes 

Performance was assessed in terms of the variability of evapotranspiration (ET) and surface runoff under extreme rainfall 

conditions (both high extremes and low extremes). We quantified the relative magnitudes of th ese uncertainties under (i) 15 

varying simulation model (model uncertainty) and (ii) varying choice of precipitation product (data uncertainty). We quantified 

uncertainty in terms of the number of extreme events per month, with the extreme event defined as the occurrence of an extreme 

value for the monthly average of a given variable, and extreme defined as a value in the top/bottom 10% of the baseline 

distribution of values for that variable (following IPCC (2014)). Extreme event probability was calculated within each pixel 

for each month of the year, summed over the year and then the standard deviation (SD) taken across either the model outputs 20 

or precipitation products  in units of (occurrence of extreme events per year). In order to avoid spurious extremes occurring in 

deserts and other areas with very low variability in water cycle values, gridcells with less than 20 mm annual precipitation 

(multi-year mean) or <0.1 SD in their monthly precipitation across the year were excluded. 

 Extremes for any particular variable may only be assessed in relation to an estimate of ‘normal’ conditions, and for 

this we took a baseline distribution of values calculated at each gridcell (i.e. not globally, regionally or per biome) from an 25 

average of the five simulations involving the 2000-2013 MSWEP forcing data (Beck et al., 2017a). We took MSWEP to be 

our baseline product because of its high reliability and multi-source nature (satellite observations blended with reanalysis and 

gauge data, Beck et al. (2017a), Munier et al. (2018)) in comparison to other available products (Table 2). Carrying out the 

analysis on a month-by-month (e.g. comparing to a baseline calculated from all the Februaries in the MSWEP dataset) excludes 

spurious matching in any gridcell of e.g. winter months to summer months. 30 
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2.2 Uncertainty propagation 

We defined three indices of uncertainty propagation α, β and ε (Fig. 2). These indices quantify the extent to which a given 

simulation model increases or augments the uncertainty introduced to its simulations via the precipitation driver inputs . The α 

measure quantifies the increase or decrease in uncertainty attributable to the precipitation drivers, β measures the equivalent 

for uncertainty attributable to the simulator model itself and ε quantifies the overall change in uncertainty over the course of 5 

the simulation (Fig. 2). Note that the quantification of absolute uncertainty in predicted quantities (Li and Wu, 2006) is not our 

focus: we are instead concerned with the relative contributions of data and model uncertainty in a combination setting 

(Oberkampf and Roy, 2010). The defining equations are (calculated on a gridcell by gridcell basis): 

 

 Scaled data uncertainty αX,j = DOU ÷ DIU       (1) 10 

 Scaled model uncertainty βX,j = MU ÷ DIU       (2) 

 Scaled total uncertainty εX,j = αX,j + βX,j = ( DOU + MU ) ÷ DIU    (3) 

 

where DIU = Mean uncertainty across products in precipitation extreme occurrence (input forcing data uncertainty) 

 DOU = Mean uncertainty across products in variable X extreme occurrence (output model uncertainty attributable to 15 

forcing data input) 

 MU = Mean uncertainty across models in variable X extreme occurrence (output model uncertainty attributable to 

model differences) 

 

All mean uncertainties are in units of (extreme event occurrence frequency per year: EE/yr hereafter) and j can be either high 20 

or low depending on whether high or low extremes are being considered. The uncertainty propagation involves input 

uncertainty from the precipitation driver (DIU), which under the simulation is modified into the uncertainty of X when averaged 

across the different results obtained from using different precipitation products (DOU), but, unlike the forcing data, the 

simulation results have uncertainty as a consequence of the differences between simulator model used (MU) which means that 

total uncertainty at output level is (DOU+MU) (Fig. 2). 25 

 In summary, εX,j may be understood as a measure of how much input precipitation product data uncertainty (DIU) is 

amplified into output uncertainty (DOU+MU) during an ensemble of simulations. Note that it is possible for (DOU+MU) to 

be less than DIU (i.e. to have 0.0 < εX,j < 1.0), which will occur if we have models that are broadly similar in output (i.e. similar 

columns in the table of Fig. 2) and also little variability in the responses of those models to different levels of precipita tion 

and/or precipitation correlates (i.e. similar rows). This may be interpreted as the ensemble models ‘stabilising’ the input 30 

uncertainty DIU to a lower amount of uncertainty in the outputs (DOU+MU) and reinforces the interpretation of ε as a measure 

of the ‘augmentation’ of input uncertainty as a result of model calculations.. This augmentation comes from two sources: 

firstly, a model ensemble can produce outputs with higher sensitivity to input precipitation e.g. through a significant nonlinear 
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relationship between X and precipitation in the majority of ensemble models (α), but it must not be forgotten that higher 

uncertainty in the outputs may also come from the differences in non-precipitation dependencies inside these models, which 

may also be larger in magnitude than DIU (β). Division by zero in the case DIU=0.0 will not occur because of the masking to 

avoid spurious extremes in arid areas (above). 

 5 

3 Results 

Comparison of precipitation extreme event occurrences across the forcing precipitation products shows immediate differences 

both spatially (Fig. 3) and between the products themselves (Fig. 4). Notably, the precipitation products differ in their extreme 

event occurrence rates, with especially TRMM-RT presenting increased rates of extreme high precipitation events across the 

globe and particularly GSMaP presenting increased rates of extreme low events (for uncertainty maps, see Fig. S1, Fig. S2, 10 

Fig. S3 and Fig. S4). Calculating these absolute uncertainty values is a necessary step towards assessing the relative magnit udes 

of data and model uncertainty for different extreme events. 

3.1 Scaled uncertanity 

Considering firstly αX,j, the uncertainty that is directly attributable to the precipitation data products, we found that in terms of 

global average αX,j was mostly <1 (i.e. log10(αX,j)<0) for ET highs (58.1% vs. 41.9%) and decreased as precipitation increased 15 

in all latitudinal zones except the northern tropics, but for runoff highs, αX,j increased with precipitation in all latitudinal zones 

except the equatorial tropics (Fig. 5). Points where data uncertainty greatly increased on propagation through models (αX,j>1) 

occurred mostly during the prediction of low extremes (ET or runoff) and were restricted to areas with rainfall <2000 mm/yr 

(Fig. 5). Points where data uncertainty greatly decreased on propagation through models (αX,j<0.1, log10(αX,j)<-1) occurred 

mostly during the prediction of runoff extremes (mostly low extremes, but also high) and were restricted to areas with rainfa ll 20 

<1000 mm/yr (Fig. 5). Points with high precipitation uncertainty occurred in both dry and wet environments. 

 Considering βX,j, the increase in model uncertainty relative to input data uncertainty, we found that βX,j was dominantly 

<1 (i.e. log10(βX,j)<0) for ET highs (80.1% vs. 19.8%) and decreased as precipitation increased in all latitudinal zones; for 

runoff highs, βX,j was also mostly <1 (55.6% vs. 44.4%) but increased with precipitation in all latitudinal zones except the 

equatorial tropics (Fig. 6). 25 

 The scaled increase in total (data + model) uncertainty is measured by εX,j. In all latitude zones except the northern 

tropics, we found that uncertainty in ET highs increased over the course of the simulation (εX,j was dominantly >1 - i.e. 

log10(εX,j)>0) at the great majority of locations (80.5% vs. 19.5%), though the magnitude of the increase reduced in wetter 

environments (Fig. 7). In all latitude zones except the equatorial tropics, we also found that uncertainty in runoff highs 

increased over the course of the simulation at the great majority of locations (76.2% vs. 23.8%), but for runoff the magnitude 30 
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increased with precipitation (Fig. 7). This implies that the causes of higher model uncertainty operate differentially in wet and 

dry environments, with dry environments being perhaps generally less well-modelled than wetter environments. 

3.2 Global uncertainty 

The global mean value of α is a measure of the amount a given quantity is affected as precipitation changes relative to the 

input precipitation data uncertainty (Eq. 1). For quantities that ‘track precipitation’, we would expect this to be close to 1 (e.g. 5 

runoff values, Fig. 8a), but especially in drier climates small variations in precipitation can drive much higher variation in 

output variables through threshold effects , so we might expect higher values in such regions  (e.g. ET values, Fig. 8b). 

 The global mean value of βX is a measure of the internal model uncertainty in quantity X, relative to the input 

precipitation data uncertainty (Eq. 2), i.e. a measure of the diversity of the calculation methods used to derive X between 

models. If quantity X is equally sensitive to precipitation extremes  across models, we should expect low model uncertainty 10 

and therefore low values of βX (e.g. under conditions where evapotranspiration and soil storage are minimal we would expect 

runoff highs and lows to be closely similar to precipitation highs and lows with the model introducing little modification of 

the input data). Our results show that evapotranspiration extremes are more sensitive to precipitation uncertainty in wet 

environments than dry environments (Fig. 8c). 

 Globally, model uncertainty was generally less  than data uncertainty (Fig. 6, Fig. 8). In the equatorial tropics, ET 15 

prediction uncertainty was more attributable to data uncertainty, but runoff uncertainty was more attributable to model 

uncertainty, either indicating a wider variety of model representations of runoff generation processes within the tested models, 

or a greater dependence of ET estimates on precipitation inputs (Fig. 6). 

 Munier et al. (2018) found that the occurrence of flood (high runoff values) is generally more sensitive to high 

precipitation extremes than the occurrence of high evapotranspiration values, but that the reverse is true for low extremes. We 20 

do find this in our results as a rule of thumb across all environments (e.g. (εET,high<εrunoff,high) and (εET,low>εrunoff,low) and the same 

for α and β in Fig. 8a), but we also note that in very dry and very wet environments this pattern does not persist (Fig. 8) and it 

also does not persist in all latitudinal zones when taken separately. 

 The total change in uncertainty over the course of the simulation of variable X is measured by εX,j (Eq. 3) and our 

values for εX,j were universally >1.0, indicating that the model simulation does act effectively to increase (amplify) the 25 

uncertainty in the forcing precipitation data. This also implies that when a set of models is under consideration, model 

uncertainty is usually greater than data uncertainty. Finally, high uncertainty points for ET lows and runoff lows were 

disproportionately concentrated in the equatorial and southern tropics not only for εX,j but also for both components αX,j and 

βX,j (Fig. 5, Fig. 6 and Fig. 7; cf. Fig. 3). 
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4 Discussion 

Model output uncertainty is always a mixture of input data uncertainty and uncertainty accumulated during the simulation (Li 

and Wu, 2006; Oberkampf and Roy, 2010; Van Loon, 2015). However, these uncertainties are not orthogonal in general 

because the models encode nonlinear relationships and therefore cannot be assumed to react consistently to different levels of 

precipitation input (e.g. (Bhuiyan et al., 2018a; Munier et al., 2018; Ukkola et al., 2016)). In this study we have had 5 

unprecedented access through the eartH2Observe project to an ensemble of simulations that has combined a selection of 

widely-used and validated precipitation data products with a spread of cutting edge land surface and hydrology simulation  

models. 

4.1 Clear attribution of uncertainty to data and/or model sources  

Under what circumstances can uncertainty in the prediction of water cycle quantities be attributed clearly to the model in us e 10 

(model uncertainty) and/or to the precipitation product used to drive the model (data uncertainty)? Ukkola et al. (2016) found 

that land surface models diverged in evapotranspiration prediction during the dry season, and the results of our study strongly 

support this conclusion, with our calculated envelope of uncertainty widening in drier climates across the globe for all our 

uncertainty measures. 

 We found that high data and model uncertainty points for both ET lows and runoff lows were disproportionately 15 

concentrated in the equatorial and southern tropics. These zones are dominantly covered by tropical rainforests and savanna 

grasslands, so one possibility is that low fluxes in xeric environments are better characterised - both in data products and model 

characterisation - than low fluxes in these mesic and hydric environments. Data products are known to be more accurate away 

from areas with consistent cloud cover and a high occurrence of convective rainfall (Table 1) (Derin et al., 2016; Levizzani et 

al., 2018), which might explain this for data uncertainty, but having model uncertainty follow the same geographic distribution 20 

indicates that we must also consider uncertainties in the calculations of runoff and evapotranspiration. It seems also to be the 

case that the simple water balance approach taken by land surface and hydrology models becomes approximate in latitudinal 

zones where low flows are generally combined with higher temperatures and more episodic rainfall events (McGregor and 

Nieuwolt, 1998). This could indicate that using generalised approaches for all environments (e.g. the Priestley -Taylor or 

Penman-Monteith equations) is no longer sufficient for simulations at these spatio -temporal scales (Long et al., 2014;  25 

Wartenburger et al., 2018) or perhaps because we still lack crucial processes in these models, e.g. soil crusting or sealing, 

which only occur in semi-arid or arid areas (Marshall et al., 1996). However, we must also be careful to draw strong conclusions 

from these zones because another possibility is that this result simply confirms that these regions are where our available 

sources data are of lower quality (q.v. Fig. 3a). 

 Uncertainty in predictions of evapotranspiration lows (drought) in dry environments is especially high, indicating that 30 

these circumstances are a weak point in current modelling approaches. Importantly, our results qua ntify this effect and show 

that even though uncertainty in the precipitation inputs is highest in these environments, the uncertainty in model represent ation 
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of the processes involved is also significant and should not be ignored. A practical application o f this is that when robust 

predictions of drought are required in very dry environments, not only should a spread of precipitation products be applied, 

but also more than one simulator model, and the model outputs should be validated as closely as possible  against local data 

sources in order to ensure that conclusions drawn from these analyses are suitable for decision -making. 

4.2 Relative importance of data and model uncertainty 5 

When uncertainty is attributable to both model and data sources  in a simulation ensemble, is data uncertainty generally the 

greater or the lesser? In a report for the Intergovernmental Panel on Climate Change (IPCC), Bates et al. (2008) drew attention 

to the high uncertainty there was in climate models in precipitation data (= data uncertainty), and also suggested that for 

aspects of the hydrological cycle such as changes in evaporation, soil moisture and runoff, the relative spread in projection s 

(= total uncertainty) was similar to, or larger than, the changes in precipitation (points echoed later by Schewe et al. (2014) 10 

and others). Precipitation observations are known to have high uncertainty (Beck et al., 2017a; Bierkens, 2015; Kimani et al., 

2017; Levizzani et al., 2018; Yin et al., 2015), but responses to precipitation low extremes (drought) should not be expected 

to be proportional to responses from the same model to precipitation high extremes (flood) (Veldkamp et al., 2018). 

 We found in general that the model simulations we analysed acted to augment uncertainty rather than reduce it. In 

percentage terms, the increase in uncertainty was most often less than the magnitude of the input data uncertainty, but 15 

uncertainty did not decrease through the model for any variable so the simulation models did not in any case act to ‘stabilise’ 

or decrease the uncertainty supplied to them through the precipitation data products used to drive them. We do agree with 

Wartenburger et al. (2018)’s finding that the forcing (data uncertainty) generally dominates the variance in ET extremes, but 

we found model uncertainty to be important in all cases analysed and very nearly the magnitude of the forcing uncertainty in 

both very dry and very wet environments. This is a very significant result because it implies that a focus on the reduction of 20 

both data and model uncertainty will be necessary in order to improve the prediction of water cycle extremes. 

4.3 Sources of unquantified uncertainty 

It is important to bear in mind that some sources of uncertainty exist in these water cycle quantities that are as yet unmeasured 

in any existing data products, and therefore cannot be analysed in this study. There is a very strong current emphasis in climate 

science on identifying global areas of high precipitation uncertainty, for example (Bierkens, 2015; He et al., 2017; Levizzan i 25 

et al., 2018), from which we can highlight two uncertainty sources: Firstly, most precipitation products record observations of 

amount, not the type of precipitation (Table 2), however it is very likely that precipitation type strongly influences our 

precipitation data uncertainty: for example, convective processes are dominant in the precipitation generating processes in 

dryland ecosystems (Table 1), and different precipitation types occur at different spatial scales as well (Table 1). Secondly , 

our equatorial tropical zone (Fig. 1) includes the tropical rain belt (also known as the Inter-Tropical Convergence Zone, ITCZ) 30 

of low pressure, characterised by convective activity generating many storms. It is well-known that because of the transitory 
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nature of the cloud dynamics in the rain belt, precipitation products necessarily have higher uncertainty and, simultaneously, 

these conditions are of too short duration to be captured reliably in our analysis  (Marthews et al., 2019). 

 For evapotranspiration in particular, Lopez et al. (2017) drew attention to the global lack of high quality in situ site 

data and the “inevitable scale mismatch” when using such data to calibrate Earth Observation datasets. Regional estimates of 

evapotranspiration rely on scaling-up methods to take account of regional advection effects and, additionally, the use of 5 

estimated values for evaporation rates from unmeasured land use types. Each step in these calculations potentially introduces 

significant uncertainty with the result that there is currently wide variation between the values suggested by various global 

evapotranspiration products (Martens et al., 2017). 

 Finally, runoff: Surface runoff estimates are linked to precipitation and evapotranspiration estimates via the water 

cycle balance equation (Beck et al., 2017b; Bierkens, 2015; Veldkamp et al., 2018). Because soil storage terms are usually 10 

taken as constant, underestimation of evapotranspiration often means overestimation of runoff and streamflow data (and vice 

versa). In this way, uncertainty in surface runoff is related to uncertainty in evapotranspiration estimates. However, b ecause 

of the wide availability and high quality of global streamflow datasets (e.g. the Global Runoff Database, GRDC), and a much 

lower requirement for approximation and gap-filling in comparison to evapotranspiration data, runoff data is usually 

considered to be of the highest quality in water balance studies. 15 

4.4 Conclusions 

Water resources management has become one of the most important challenges facing hydrologists and decision -makers at 

state and national levels, motivated by increasing water scarcity in some global regions and a higher frequency of extreme 

flood events in others (Bierkens, 2015; Dadson et al., 2017; Schewe et al., 2014). At the same time, precipitation extremes are 

predicted to increase in frequency and impact under committed climate change (Ali and Mishra, 2017). Therefore, reliance on 20 

robust model predictions has never been greater (Kundzewicz and Stakhiv, 2010; Riley et al., 2017). In this study we have 

used an ensemble of simulation results from the eartH2Observe project derived from cutting-edge model simulators driven by 

a wide variety of precipitation observations, but the sources of uncertainty are nevertheless many and varied. 

 We found that models augmented uncertainty relative to the magnitude of forcing data uncertainty  at the great 

majority of spatial points , and therefore always did so in terms of global average uncertainty . Although, for predicting the 25 

extremes of evapotranspiration and runoff, the uncertainties inherent in the current generation of precipitation observation 

products are generally larger than the uncertainty introduced into the calculation by the land surface and hydrology models 

used, model uncertainty cannot be ignored and in many environments is comparable in magnitude to forcing data uncertainty. 

Therefore, in order to reduce prediction uncertainty we need very much to make progress on two fronts: (1) we need 

precipitation data product uncertainty to be reduced (improved satellites are always welcome, of course, but we believe that 30 

much progress can also be made through moving towards blended products that are sensitive to more types of precipitation) 

and (2) we need to improve the mechanistic equations used in these models to derive water cycle qu antities (including a better 

consideration of scale issues and domains of validity for existing equations). 
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 It is important to resolve both data and model uncertainty much more clearly and identify exactly at which points in 

our linked modelling systems these uncertainties become the most significant. Our current model representation of land surface 

hydrological and biogeochemical processes remains approximate especially in very dry and very wet environments and there 

is a clear need for a better characterisation of these environmental extremes in order for us to move forward to the next  

generation of climate and land surface prediction models. 5 
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Fig. 1: Latitudinal zones used in this study: black = southern temperate 23.5°S to 50.0°S, red = southern 4 
tropical 10.0°S to 23.5°S, yellow = equatorial tropical 10.0°N to 10.0°S, purple = northern tropical 23.5°N to 5 
10.0°N and green = northern temperate 50.0°N to 23.5°S. Analyses are restricted to the area 50.0°N to 6 
50.0°S because of the bounds of data validity in the TRMM and TRMM-RT precipitation data products (Table 7 
2). 8 
 9 



 10 
The relationship between α, β and ε is most clearly 
explained by example (P=precipitation): 
 

1. Say at this point and time we have 3 P estimates from 
different data products: 5 mm, 8 mm and 10 mm. We 
can calculate the standard deviation DIU =SD(5,8,10) 

=2.52 mm 
 

2. Assume also that we have 3 models for predicting 
X=runoff: 

 Model 1 assumes runoff is equal to 2 mm/day 
plus an exponential contribution from P if it 

exceeds 4 mm. 

 Model 2 is a very basic model, assuming 
constant runoff at this location based on the 

historical average, say 8.2 mm. 

 Model 3 assumes runoff is 50% of P plus a 
contribution from groundwater return flow that 

ranges from 0.1 mm to 100.0 mm depending on 
the state of belowground aquifers. 

Driving our models with those P numbers to produce an 

estimate of X, we might get a table like this: 
 

P estimate 
Runoff (mm/day) from  SD across models 

(mm/day) Model 1 Model 2 Model 3  

5 mm 
2.0+exp(5-
4.0) = 4.7 

8.2 
(0.50*5)+0.1 = 

2.6 
 2.8 

8 mm 
2.0+exp(8-

4.0) = 56.6 
8.2 

(0.50*8)+10.0 = 

14.0 
 26.4 

10 mm 
2.0+exp(10-
4.0) = 405.4 

8.2 
(0.50*10)+100.0 

= 105.0 
 207.1 

      

SD across 

products 
(mm/day): 

217.9 0.0 56.1  

Mean from the left 
= 91.3 mm/day 

Mean from above 

= 78.8 mm/day 
 

3. Note that DOU = mean(SDs across products) = 91.3 mm/day, which is not equal to MU = mean(SDs across models) = 78.8 mm/day (there is no 
constraint for these to be equal in general). We are interested in when these values are greater or less than DIU, so we consider the scaled uncertainties 
α=(DOU÷DIU) and β=(MU÷DIU). 
 

4. Note the key difference between α, which is calculated from the outputs of the model, and DIU, which is calculated from the inputs: why not just 

consider DIU? Because our focus is on X and therefore we need to quantify the uncertainty introduced into X by the precipitation (α), which is not the 
same as the uncertainty in the precipitation (DIU) (this is an attribution study, therefore we focus on α rather than DIU). 
 

5. In this analysis, we considered SDs of extreme event occurrence (EE/yr) rather than SDs of straight X values, which we have done for two reasons: (i) 
this allows us to consider and compare consistently the uncertainties of different response variables with different units (e.g. X=runoff vs. 

X=evapotranspiration) and (ii) in a global analysis it is necessary to compare across biomes (e.g. a desert point with a rainforest point) and using event 
occurrence statistics avoids the bias towards wet or dry regions (because of their greater absolute values of e.g. runoff) that must be corrected for in 
studies that work with the absolute values of X. Using occurrence statistics doesn’t change the calculations of α, β and ε above, but does involve the 

additional assumption of a baseline distribution against which we may measure how extreme conditions are (see §2.1). 
 

Fig. 2: Uncertainty measures quantifying how much a simulation model (land surface or hydrological model) alters the uncertainty introduced to its simulations via the 11 
precipitation driver inputs, following the method of competing models approach advocated for complex systems by Oberkampf and Roy (2010). 12 
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Fig. 3: Uncertainty in the precipitation inputs to the eartH2Observe ensemble models: (a) Uncertainty in precipitation 16 
extreme highs and (b) Uncertainty in precipitation extreme lows (standard deviation (SD) taken across the precipitation 17 
products) in units of (occurrence of extreme events per year). Areas of consistently very low precipitation are masked 18 
in grey. Note that only isolated global areas exceeded 4 events/yr, so the scale is restricted to 0-4 events/yr. 19 
 20 
 21 



 22 
 23 

a. CMORPH 

 

b. GSMaP 

 

c. TRMM 

 

d. TRMM-RT 

 
e. CMORPH 

 

f. GSMaP 

 

g. TRMM 

 

h. TRMM-RT 

 
 

Fig. 4: Increase in extreme precipitation event occurrence in relation to MSWEP. Subtracting extreme high event occurrence rates in the MSWEP precipitation input from the 24 
rates in the CMORPH precipitation input gives map (a), and (b) to (d) are the same calculation using GSMaP, TRMM and TRMM-RT instead of CMORPH. (e) to (h) is the same 25 
calculation, but for extreme low event occurrence (i.e. the averages of the upper and lower rows are effectively the maps Fig. 3a and Fig. 3b, respectively). The clear lines at  26 
50°N (TRMM, TRMM-RT) and 60°N (CMORPH, GSMaP) show the bounds of data validity for these products (Table 2). Note that only isolated global areas exceeded 4 27 
events/yr, so the scale is restricted to -4 to +4 events/yr. 28 
 29 
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Fig. 5: Values of log10(αX,j), where αX,j is the scaled data uncertainty in variable X (eqn 1). (log10(αX,j)<0 32 
indicates uncertainty in the predicted variable X attributable to the data is less than the variability in the input 33 
precipitation forcing data; >0 indicates uncertainty in the predicted variable X is greater), where X is 34 
evapotranspiration (a, c, e, f) or runoff (b, d, g, h) and j refers to either high extremes (a, b, e, g) or low 35 
extremes (c, d, f, h). Points on the scatter plots are coloured according to latitudinal zones (Fig. 1). Because 36 
of the density of overlapping points, only the envelope of points for each latitudinal zone is shown and the 37 
points with the highest uncertainty (uncertainty DIU ≥ (2/3)*(global maximum of DIU) ). Linear regression 38 
lines for each latitudinal zone indicate the trend as precipitation increases within each zone (all regressions 39 
were significant at the 1% level), although n.b. we do not contend in any way that the distribution of points 40 
shown is linear: these lines simply indicate a trend that is not clear to the eye from the envelopes displayed 41 
(which do not show the complete point cloud). Maps (e-h) show the corresponding spatial distributions of 42 
log10(αX,j) values for each variable, with the colour scales corresponding to the vertical axis on scatter plot 43 
(a). 44 
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Fig. 6: Values of log10(βX,j), where βX,j is the scaled model uncertainty in variable X (eqn 2). (log10(βX,j)<0 48 
indicates model uncertainty in the predicted variable X is less than the variability in the input precipitation 49 
forcing data; >0 indicates model uncertainty in the predicted variable X is greater), where X is 50 
evapotranspiration (a, c, e, f) or runoff (b, d, g, h) and j refers to either high extremes (a, b, e, g) or low 51 
extremes (c, d, f, h). Points on the scatter plots are coloured according to latitudinal zones (Fig. 1). Because 52 
of the density of overlapping points, only the envelope of points for each latitudinal zone is shown and the 53 
points with the highest uncertainty (uncertainty DIU ≥ (2/3)*(global maximum of DIU) ). Linear regression 54 
lines for each latitudinal zone indicate the trend as precipitation increases within each zone (all regressions 55 
were significant at the 1% level), although n.b. we do not contend in any way that the distribution of points 56 
shown is linear: these lines simply indicate a trend that is not clear to the eye from the envelopes displayed 57 
(which do not show the complete point cloud). Maps (e-h) show the corresponding spatial distributions of 58 
log10(βX,j) values for each variable, with the colour scales corresponding to the vertical axis on scatter plot 59 
(a). 60 
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Fig. 7: Values of log10(εX,j), where εX,j is the total uncertainty in variable X (eqn 3), where X is 65 
evapotranspiration (a, c, e, f) or runoff (b, d, g, h) and j refers to either high extremes (a, b, e, g) or low 66 
extremes (c, d, f, h). Points on the scatter plots are coloured according to latitudinal zones (Fig. 1). Because 67 
of the density of overlapping points, only the envelope of points for each latitudinal zone is shown and the 68 
points with the highest uncertainty (uncertainty DIU ≥ (2/3)*(global maximum of DIU) ). Linear regression 69 
lines for each latitudinal zone indicate the trend as precipitation increases within each zone (all regressions 70 
were significant at the 1% level), although n.b. we do not contend in any way that the distribution of points 71 
shown is linear: these lines simply indicate a trend that is not clear to the eye from the envelopes displayed 72 
(which do not show the complete point cloud). Maps (e-h) show the corresponding spatial distributions of 73 
log10(εX,j) values for each variable, with the colour scales corresponding to the vertical axis on scatter plot (a). 74 
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a. 

 

b. 

 

c. 

 
Fig. 8: Global mean values (averaged over 50°S to 50°N) from scatter plots in Fig. 5, Fig. 6 and Fig. 7. Plots show (a) 78 
all values, (b) values from dry environments with mean annual precipitation <1000 mm/yr only and (c) values from wet  79 
environments ≥6000 mm/yr only. Bar heights are ε values (scaled total uncertainty), with  showing α values (scaled 80 
data uncertainty) and  β (scaled model uncertainty); error bars show SE. 81 
 82 
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 2 
Table 1: Types of precipitation and their main controlling factors (McGregor and Nieuwolt, 1998). 3 

Precipitation 
type 

Spatial 
scale 

Characteristics Challenges 

Cyclonic 
(=frontal) 

Synoptic, 
regional 

The leading edge of a warm and 
moist air mass (warm front) meets 

a cool, dry air mass (cold front).  
The warmer air mass rises over the 
cooler air, with precipitation 

occurring along the front. If the air 
begins to circulate, a cyclonic 
storm can occur. 

 It is widely accepted that global warming will 
lead to a higher water-holding capacity for 

the atmosphere as well as increased rates 
of evaporation, and therefore increased 
extreme weather (Trenberth et al., 2015; Yi 

et al., 2015). However, the mechanisms 
through which the location and magnitude 
of these extreme events may be predicted 

(e.g. tipping points, thresholds) remain 
inadequately understood (Marthews et al., 
2012). 

Orographic Intermediate Warm, moist air entering a 

mountain range is forced to rise, 
and then cools and precipitation 
ensues (= orographic lift). 

 Scale is an important issue: mountains can 

modify large-scale circulation, causing 
changes in local moisture convergence, but 
local condensation and microphysical 

processes also influence flow stability 
upstream (Marthews et al., 2012). 

Convective Local (often 
sub-grid) 

A warm soil or vegetation surface 
warms the air above it, which then 
rises vertically and cools, with 

precipitation occurring on cooling. 
 
‘Convection-permitting’ model runs 

usually require a sub-daily  
timestep and <10 km spatial 
resolution, and in the absence of 

these a convection 
parameterisation scheme (CPS) is 
necessary (i.e. assumptions about  

subgrid and subdaily dynamics) 
(Prein et al. 2015). 

 Stratiform precipitation is when the rise is 
diagonal rather than vertical (i.e. similar to 
orographic, but not as a result of landform) 

 Sub-grid displacement of cloud occurrence 
from driver (Taylor et al., 2012) 

 Land surface exchange (e.g. 

evapotranspiration) has a significant effect,  
but often not modelled explicitly. 

 Resolution of snow versus rainfall in 
mountain regions is critical for water 

resources management, but not well-
characterised in models. 

 CPSs generally overestimate light rain 

(drizzle) because they overestimate the 
number of precipitation days (by equating 
clouds with rain) and / or underestimate 

precipitation intensity (Marthews et al., 
2012; Prein et al., 2015). Conversely, it is a 
known limitation of some satellites that they 

are not sensitive to, and therefore 
underestimate, light rain (e.g. Luo et al. 
(2017)). This introduces a ‘calibration gap’:  

calibration of large-scale models against  
satellite-based precipitation observations 
must not only factor out the overestimation 

of CPSs, but also the underestimation of the 
observations. 

 

 4 
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 7 
Table 2: Global precipitation products used to drive the models selected from Dorigo et al. (2014). Data files used are 8 
available through the Water Cycle Integrator https://wci.eartH2Observe.eu/ at 25 km resolution for the period 2000-9 
2013. Algorithm type is as given by the International Precipitation Working Group (IPWG) *. 10 

Product Algorithm Notes 

Multi-Source 

Weighted-Ensemble 
Precipitation 
(MSWEP) 

 Global reanalysis data (Beck et al., 2017) 

Climate Prediction 

Center MORPHing 
Technique 
(CMORPH) 

Blended 

microwave-
infrared 

Restricted to 60°S to 60°N 

 
A passive microwave-based product advected in time using 
geosynchronous infrared data (Joyce et al., 2004). When microwave 

observations are not available, infrared observations are used to advect the 
last microwave scan over time. In addition to advecting precipitation forward 
in time, the algorithm propagates precipitation backward once the next 

microwave observation becomes available (Mehran and AghaKouchak,  
2014). 

Global Satellite 
Mapping of 

Precipitation 
(GSMaP) 

Blended 
microwave-

infrared 

Restricted to 60°S to 60°N (Tian et al., 2010) 

Tropical Rainfall 
Measuring Mission 

(TRMM) 

Satellite-
based 

Restricted to 50°S to 50°N 

TRMM Real Time 
(TRMM-RT) 

Satellite-
based 

Restricted to 50°S to 50°N 
 
Mainly based on microwave data aboard Low Earth Orbit satellites 

(Huffman et al., 2007). The TRMM-RT algorithm is primarily based on 
microwave observations from low orbiter satellites. Gaps in microwave 
observations are filled with infrared data (Mehran and AghaKouchak ,  

2014). 
* Real-time usually = there is at most a 1-2 hour delay before observation data is made available raw (i.e. with no gap-11 
filling or other modification). 12 
Near-real-time = there is at most a 1-2 day delay before delivery, allowing some initial data checks to be carried out. 13 
Reanalysis data = data assimilation techniques have been used to fill gaps in the observation data (e.g. missing 14 
variables). 15 
Blended = observation data have been combined with either or both of raingauge and reanalysis data to create a more 16 
robust and quality-controlled product. 17 
  18 

https://wci.earth2observe.eu/


 19 
 20 
Table 3: Modelling systems details (Dutra et al., 2015; Nikolopoulos et al., 2016). Each model was driven using as close 21 
as possible to the same configuration: Global Water Resources Reanalysis 2 (WRR2,  Arduini et al. (2017) and 22 
http://jules.jchmr.org/content/research-community-configurations). Simulation results are available on the THREDDS 23 
data server (https://wci.eartH2Observe.eu/thredds/catalog.html, see Schellekens et al. (2017)). 24 

Model Institution Simulations 

Hydrology Tiled ECMWF Scheme for 
Surface Exchanges over Land model (H-
TESSEL) (Balsamo et al., 2009) 

ECMWF A 10-year spin-up was carried out: an initial run from 1 
January 1979 to 1 January 1989, while the land 
surface state of January 1989 was used to initialize the 

main simulation. 

JULES is the Joint UK Land Environment 
Simulator model (JULES) (Best et al., 2011;  
Clark et al., 2011) 

MetO/CEH A 10-year spin-up was carried out: an initial run from 1 
January 1979 to 1 January 1989, while the land 
surface state of January 1989 was used to initialize the 

main simulation. 

ORganizing Carbon and Hydrology In 
Dynamic EcosystEms model (ORCHIDEE) 
(d'Orgeval et al., 2008; Krinner et al., 2005) 

CNRS/IPSL The model was spun up with a simulation from 1 
January 1979 to 31 December 1990. This simulation 
started with an average soil moisture and empty 

aquifers. After the 12 years of spin-up, river discharges 
have reached equilibrium. 

SURFace EXternalisée model (SURFEX ) 
(Decharme et al., 2011; Decharme et al., 

2013) 

Météo-
France 

A 20-year spin-up was carried out using the 1979–
1988 period twice. 

Water – Global Assessment and Prognosis -
3 (WaterGAP3) (Schneider et al., 2011;  
Verzano et al., 2012). A grid-based,  

integrative global fresh water resource 
assessment tool. 

University of 
Kassel 

Storage compartments were initialized by re-running 
the model with the first year of available meteorological 
forcing 10 times. 

 
WaterGAP includes a water use model (domestic and 
industrial water use are parameterised as a function of 

average income per country (GDP/capita), allowing 
global water use calculations. 
 

 25 
  26 

http://jules.jchmr.org/content/research-community-configurations
https://wci.earth2observe.eu/thredds/catalog.html
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