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Abstract. Knowledge of how uncertainty propagates through a hydrological land surface modelling sequence is of crucial 7 

importance in the identification and characterisation of system weaknesses in the prediction of droughts and floods at global scale. 8 

We evaluated the performance of five state-of-the-art global hydrological and land surface models in the context of modelling 9 

extreme conditions (drought and flood). Uncertainty was apportioned between model used (model skill) and also the satellite-10 

based precipitation products used to drive the simulations (forcing data variability) for extreme values of precipitation, surface 11 

runoff and evaporation. We found in general that model simulations acted to augment uncertainty rather than reduce it. In 12 

percentage terms, the increase in uncertainty was most often less than the magnitude of the input data uncertainty, but of 13 

comparable magnitude in many environments. Uncertainty in predictions of evapotranspiration lows (drought) in dry 14 

environments was especially high, indicating that these circumstances are a weak point in current modelling system approaches. 15 

We also found that high data and model uncertainty points for both ET lows and runoff lows were disproportionately concentrated 16 

in the equatorial and southern tropics. Our results are important for highlighting the relative robustness of satellite products in the 17 

context of land surface simulations of extreme events and identifying areas where improvements may be made in the consistency 18 

of simulation models. 19 

1 Introduction 20 

Producing robust predictions about the future dynamics of the water cycle at local, regional and global scales is critically 21 

important because it is the only way to avoid or mitigate the effects of water cycle extremes (e.g. flood, drought) (IPCC, 2012) 22 

and, in the longer term, to improve our use of resources and achieve long-term adaptation to climate change (Bierkens, 2015). 23 

Over the 21st century, climate and hydrological regimes are predicted to undergo significant shifts in baseline variables such as 24 

temperature, precipitation and runoff, leading to changes in the frequency of extremes of precipitation, evaporation and overland 25 

flow, and ultimately to changes in the frequency and intensity of both floods and droughts (Bierkens, 2015; Dadson et al., 2017; 26 

Prudhomme et al., 2014). Understanding and predicting these shifts in the global dynamical system, both at atmospheric and land 27 

surface level is therefore of crucial importance (Santanello et al. 2018). 28 

 All model predictions have uncertainties, and linked modelling sequences have identifiable uncertainties at each step in 29 

the sequence (uncertainty propagation). In the case of a hydrological land surface modelling sequence, where climate data inputs 30 

are used to drive a simulator of the surface water cycle and land surface interactions, there are two main sources of uncertainty: 31 

data uncertainty (differences between forcing data used) and model uncertainty (differences between the simulation models). Data 32 

and model uncertainty differ greatly not just between themselves at particular locations, but also between coastal and floodplain 33 

areas of the world, and remote regions with heterogeneous terrain (Bhuiyan et al., 2018a; Riley et al., 2017) and between extreme 34 

high flows (floods) (Mehran and AghaKouchak, 2014; Nikolopoulos et al., 2016) and extreme water scarcity (droughts) 35 

(Veldkamp and Ward, 2015). 36 

 We focus on the relative dominance of model uncertainty (we take this as a broadly defined measure, including 37 

uncertainty from hydrology models that simulate water dynamics, vegetation models that focus on carbon dynamics and land 38 

surface models that attempt to integrate all biogeochemical cycles) and uncertainty in the precipitation product used to drive those 39 

models. In situations where model uncertainty is significant, the range of predictions possible from standard model simulations is 40 



of great importance to stakeholders and other users. If precipitation data uncertainty dominates, however, then greater attention 41 

should arguably be focused on selecting the most appropriate product to use, and perhaps additionally on interrogating the 42 

potentially sparse data base of precipitation measuring stations used by the precipitation products. 43 

1.1 Uncertainties in land surface model simulations 44 

Model uncertainty, i.e. prediction variation as a result of differing process representations within a model (e.g. Li and Wu (2006)), 45 

is commonly the dominant uncertainty in complex systems used in risk-informed decision-making (Oberkampf and Roy, 2010). 46 

Although historically often overlooked (Li and Wu, 2006), model uncertainty has recently come under increasing scrutiny in the 47 

context of land surface models (Huntingford et al., 2013; Long et al., 2014; Schewe et al., 2014; Ukkola et al., 2016). A lack of 48 

adequate representation of flood-generation processes (both from surface and subsurface runoff) and permafrost or snow 49 

dynamics can lead to an imprecise simulation of runoff peaks in many large river basins, and a lack of proper representation of 50 

wetland evaporation and human effects such as water consumption and inter-basin transfers can lead to over- or under-estimated 51 

discharge in many basins, especially those with large semiarid regions (Bierkens, 2015; Veldkamp et al., 2018). Additionally, 52 

even though regional-scale precipitation is predominantly caused by the atmospheric moisture convergence associated with large-53 

scale and mesoscale circulations, processes operating on smaller length scales significantly modify even regional-scale dynamics, 54 

so it is to be expected that uncertainty in land surface models will depend on local topography, the presence or absence of 55 

vegetation or water bodies and, importantly, which type of precipitation is dominant at a particular point and time (cyclonic, 56 

orographic or convective, Table 1). 57 

1.2 Uncertainties in precipitation products 58 

Precipitation is a necessary forcing input for land surface and hydrological models that is extremely challenging to estimate 59 

independently (Beck et al., 2017b; Bhuiyan et al., 2018a; Bhuiyan et al., 2018b; Levizzani et al., 2018). The accuracy and 60 

precision of precipitation measurements fundamentally influences predictions of land surface and hydrological models (Hirpa et 61 

al., 2016), however many widely-used precipitation products have high uncertainties over the tropics and/or areas of high relief 62 

(Bierkens, 2015; Derin et al., 2016; Kimani et al., 2017; Yin et al., 2015). 63 

 High precipitation extremes are not always well-characterised: Mehran and AghaKouchak (2014) reviewed the 64 

capabilities of satellite precipitation datasets to estimate heavy precipitation rates at different temporal accumulations. For 65 

example, the precipitation radar on board TRMM (Table 2) is capable of capturing moderate to heavy precipitation but does not 66 

detect light rain or drizzle (Huffman et al., 2007; Luo et al., 2017). 67 

 Low precipitation extremes are also not always well-characterised: Veldkamp and Ward (2015) reviewed the advantages 68 

of different drought indices and highlighted many issues at the global scale. This relates to a more general point about remote 69 

sensing rainfall intensity: a precipitation product is more likely to record correctly that it is raining at a particular location than to 70 

record correctly the amount, which is unfortunate because it is usually precipitation amount that is most important for predictive 71 

modelling of drought or flood intensity. 72 

 Accuracy of meteorological data including precipitation will be expected to be lower (and uncertainty higher) for ‘real-73 

time’ precipitation products because they have not been ‘blended’ with raingauge or reanalysis data (Table 2) (Munier et al., 74 

2018). If a near-real time estimate of drought or flood is needed, therefore, then a cost-benefit balance arises with the end user 75 

having to make a choice between up-to-date information versus lowest uncertainty (Munier et al., 2018). 76 

1.3 The eartH2Observe project 77 

During 2014-2018, the eartH2Observe project http://www.eartH2Observe.eu/ brought together a multinational team of modelling 78 

and Earth Observation (EO) researchers to improve the assessment of global water resources through the integration of new 79 

datasets and modelling techniques. The uncertainties described above for different parts of the forcing data - land surface model 80 

system have been the starting point for this investigation, and eartH2Observe has quantified these uncertainties using an ensemble 81 

http://www.earth2observe.eu/


of forcing data and modelling systems. The project aimed to provide an overall understanding of the uncertainty in the EO 82 

products and EO-driven water resources models. This understanding is needed for optimal data-model integration and for water 83 

resources reanalysis, and their use for basin scale and end-user applications (e.g. floods, droughts, basin water budgets, stream 84 

flow simulations) (Nikolopoulos et al., 2016). As part of eartH2Observe, and in order to make progress towards this aim, in this 85 

study we asked the following two research questions: 86 

 87 

   (1) Under what circumstances can uncertainty in the prediction of water cycle quantities be attributed clearly to the model in use 88 

(model uncertainty) and/or to the precipitation product used to drive the model (data uncertainty)? 89 

 90 

   (2) When uncertainty is attributable to both model and data sources, is data uncertainty generally the greater (i.e. the model acts 91 

to reduce or ‘stabilise’ uncertainty) or the lesser (i.e. the model effectively augments variation)? 92 

2 Data and methods 93 

Uncertainty in extreme event representation varies both between models used (model uncertainty) and also between satellite-based 94 

precipitation products used to drive the simulations (data uncertainty). Five of the most widely-used and well-supported 95 

precipitation data products were used in this study (Table 2) and five state-of-the-art land surface models and hydrological models 96 

were run using each of those forcing data products (Table 3). This produced an ensemble of 25 estimates for each output variable 97 

(mirroring the method of competing models approach advocated for complex systems by (Oberkampf and Roy, 2010)). 98 

 Only the precipitation forcing data for each model were allowed to vary between simulations: the remaining non-99 

precipitation drivers (temperature, wind speed, radiation, etc.) were held constant across all simulations and taken from global 100 

Water Resources Reanalysis 2 baseline forcing data used in other eartH2Observe projects (WRR2) (Arduini et al., 2017). The 101 

combination of WRR2 non-precipitation drivers and the selected precipitation drivers (Table 2) is called WRR-ENSEMBLE 102 

(Arduini et al., 2017). All simulations used a global spatial resolution of 0.25° and covered the period 2000-2013. Because of 103 

source data limitations (Table 2), we restricted our analysis to latitudinal zones between 50°S and 50°N (Fig. 1). 104 

2.1 Focus on extremes 105 

Performance was assessed in terms of the variability of evapotranspiration (ET) and surface runoff under extreme rainfall 106 

conditions (both high extremes and low extremes). We quantified the relative magnitudes of these uncertainties under (i) varying 107 

simulation model (model uncertainty) and (ii) varying choice of precipitation product (data uncertainty). We quantified 108 

uncertainty in terms of the number of extreme events per month, with the extreme event defined as the occurrence of an extreme 109 

value for the monthly average of a given variable, and extreme defined as a value in the top/bottom 10% of the baseline 110 

distribution of values for that variable (IPCC, 2014). Extreme event probability was calculated within each pixel for each month 111 

of the year, summed over the year and then the standard deviation (SD) taken across either the model outputs or precipitation 112 

products (see below) in units of (occurrence of extreme events per year). In order to avoid spurious extremes occurring in deserts 113 

and other areas with very low variability in water cycle values, gridcells with less than 20 mm annual precipitation (multi-year 114 

mean) or <0.1 SD in their monthly precipitation across the year were excluded. 115 

 Extremes for any particular variable may only be assessed in relation to an estimate of ‘normal’ conditions, and for this 116 

we took a baseline distribution of values calculated at each gridcell (i.e. not globally, regionally or per biome) from an average of 117 

the five simulations involving the 2000-2013 MSWEP forcing data (Beck et al., 2017a). We took MSWEP to be our ‘gold 118 

standard’ product in this sense because of its high reliability and multi-source nature (satellite observations blended with 119 

reanalysis and gauge data, Beck et al. (2017a), Munier et al. (2018)) in comparison to other available products (Table 2). 120 



2.2 Uncertainty propagation 121 

We defined three indices of uncertainty propagation α, β and ε to quantify the extent to which a given land surface or hydrological 122 

model increases or augments the uncertainty introduced to its simulations via the precipitation driver inputs (we consider water 123 

cycle variables only in this analysis so it is reasonable to assume that uncertainty in our variables is not independent of uncertainty 124 

in precipitation). The α measure quantifies the increase or decrease in uncertainty attributable to the precipitation drivers, β 125 

measures the equivalent for uncertainty attributable to the simulator model itself and ε quantifies the overall change in uncertainty 126 

over the course of the simulation. Note that the quantification of absolute uncertainty in predicted quantities (Li and Wu, 2006) is 127 

not our focus: we are instead concerned with the relative contributions of data and model uncertainty in a combination setting 128 

(Oberkampf and Roy, 2010). 129 

 The defining equations are (calculated on a gridcell by gridcell basis): 130 

 131 

 Scaled data uncertainty αX,j = DOU ÷ DIU       (1) 132 

 Scaled model uncertainty βX,j = MU ÷ DIU       (2) 133 

 Scaled total uncertainty εX,j = αX,j + βX,j = ( DOU + MU ) ÷ DIU    (3) 134 

 135 

where DIU = Mean uncertainty across products in precipitation extreme occurrence (input forcing data uncertainty) 136 

 DOU = Mean uncertainty across products in variable X extreme occurrence (output model uncertainty attributable to 137 

forcing data input) 138 

 MU = Mean uncertainty across models in variable X extreme occurrence (output model uncertainty attributable to model 139 

differences) 140 

 141 

All mean uncertainties are in units of (extreme event occurrence frequency per year: EE/yr hereafter) and j can be either high or 142 

low depending on whether high or low extremes are being considered. The uncertainty propagation involves input uncertainty 143 

from the precipitation driver (DIU), which under the simulation is modified into the uncertainty of X when averaged across the 144 

different results obtained from using different precipitation products (DOU), but, unlike the forcing data, the simulation results 145 

have uncertainty as a consequence of the differences between simulator model used (MU) which means that total uncertainty at 146 

output level is (DOU+MU). 147 

 In summary, εX,j may be understood as a measure of how much input precipitation product data uncertainty (DIU) is 148 

amplified into output uncertainty (DOU+MU) during an ensemble of simulations. αX,j may be understood as the special case of εX,j 149 

where the ensemble consists of one model only, and βX,j as the special case of εX,j where all ensemble members use one 150 

precipitation product only. Values of εX,j > 1.0 indicate that the model simulation acts effectively to increase (amplify) the 151 

uncertainty in the forcing precipitation data. Values 0.0 < εX,j < 1.0 indicate that the model simulation acts to decrease (stabilise) 152 

the uncertainty in the forcing precipitation data (i.e. the model acts effectively to ‘stabilise’ the input uncertainty to (εX,j*100)% of 153 

the input data uncertainty). Division by zero should not occur because of the masking to avoid spurious ‘extremes’ in arid areas 154 

(above). 155 

3 Results 156 

Comparison of precipitation extreme event occurrences across the forcing precipitation products shows immediate differences 157 

both spatially (Fig. 2) and between the products themselves (Fig. 3). Notably, the precipitation products differ in their extreme 158 

event occurrence rates, with especially TRMM-RT presenting increased rates of extreme high precipitation events across the 159 

globe and particularly GSMaP presenting increased rates of extreme low events (for uncertainty maps, see Fig. S1, Fig. S2, Fig. 160 

S3 and Fig. S4). Calculating these absolute uncertainty values is a necessary step towards assessing the relative magnitudes of 161 

data and model uncertainty for different extreme events. 162 



3.1 Scaled uncertanity 163 

Considering firstly αX,j, the uncertainty that is directly attributable to the precipitation data products, we found that in terms of 164 

global average αX,j was mostly <1 (i.e. log10(αX,j)<0) for ET highs (58.1% vs. 41.9%) and decreased as precipitation increased in 165 

all latitudinal zones except the northern tropics, but for runoff highs, αX,j increased with precipitation in all latitudinal zones except 166 

the equatorial tropics (Fig. 4). Points where data uncertainty greatly increased on propagation through models (αX,j>1) occurred 167 

mostly during the prediction of low extremes (ET or runoff) and were restricted to areas with rainfall <2000 mm/yr (Fig. 4). 168 

Points where data uncertainty greatly decreased on propagation through models (αX,j<0.1, log10(αX,j)<-1) occurred mostly during 169 

the prediction of runoff extremes (mostly low extremes, but also high) and were restricted to areas with rainfall <1000 mm/yr 170 

(Fig. 4). Points with high precipitation uncertainty occurred in both dry and wet environments. 171 

 Considering βX,j, the increase in model uncertainty relative to input data uncertainty, we found that βX,j was dominantly 172 

<1 (i.e. log10(βX,j)<0) for ET highs (80.1% vs. 19.8%) and decreased as precipitation increased in all latitudinal zones; for runoff 173 

highs, βX,j was also mostly <1 (55.6% vs. 44.4%) but increased with precipitation in all latitudinal zones except the equatorial 174 

tropics (Fig. 5). 175 

 The scaled increase in total (data + model) uncertainty is measured by εX,j. In all latitude zones except the northern 176 

tropics, we found that uncertainty in ET highs increased over the course of the simulation (εX,j was dominantly >1 - i.e. 177 

log10(εX,j)>0) at the great majority of locations (80.5% vs. 19.5%), though the magnitude of the increase reduced in wetter 178 

environments (Fig. 6). In all latitude zones except the equatorial tropics, we also found that uncertainty in runoff highs increased 179 

over the course of the simulation at the great majority of locations (76.2% vs. 23.8%), but for runoff the magnitude increased with 180 

precipitation (Fig. 6). This implies that the causes of higher model uncertainty operate differentially in wet and dry environments, 181 

with dry environments being perhaps generally less well-modelled than wetter environments. 182 

3.2 Global uncertainty 183 

The global mean value of α is a measure of the amount a given quantity is affected as precipitation changes relative to the input 184 

precipitation data uncertainty (Eq. 1). For quantities that ‘track precipitation’ (i.e. are sensitive to precipitation extremes), we 185 

would expect this to be close to 1 (e.g. runoff values, Fig. 7a), but especially in drier climates small variations in precipitation can 186 

drive much higher variation in output variables through threshold effects, so we might expect higher values in such regions (e.g. 187 

ET values, Fig. 7b). 188 

 The global mean value of βX is a measure of the internal model uncertainty in quantity X, relative to the input 189 

precipitation data uncertainty (Eq. 2), i.e. a measure of the diversity of the calculation methods used to derive X between models. 190 

If quantity X is sensitive to precipitation extremes, we should expect low model uncertainty and therefore low values of βX (e.g. 191 

under conditions where evapotranspiration and soil storage are minimal we would expect runoff highs and lows to be closely 192 

similar to precipitation highs and lows with the model introducing little modification of the input data). Our results show that 193 

evapotranspiration extremes are more sensitive to precipitation uncertainty in wet environments than dry environments (Fig. 7c). 194 

 Globally, model uncertainty was generally less than data uncertainty (Fig. 5, Fig. 7). In the equatorial tropics, ET 195 

prediction uncertainty was more attributable to data uncertainty, but runoff uncertainty was more attributable to model 196 

uncertainty, either indicating a wider variety of model representations of runoff generation processes within the tested models, or a 197 

greater dependence of ET estimates on precipitation inputs (Fig. 5). 198 

 Munier et al. (2018) found that the occurrence of flood (high runoff values) is generally more sensitive to high 199 

precipitation extremes than the occurrence of high evapotranspiration values, but that the reverse is true for low extremes. We do 200 

find this in our results as a rule of thumb across all environments (e.g. (εET,high<εrunoff,high) and (εET,low>εrunoff,low) and the same for α 201 

and β in Fig. 7a), but we also note that in very dry and very wet environments this pattern does not persist (Fig. 7) and it also does 202 

not persist in all latitudinal zones when taken separately. 203 

 The total change in uncertainty over the course of the simulation of variable X is measured by εX,j (Eq. 3) and our values 204 

for εX,j were universally >1.0, indicating that the model simulation does act effectively to increase (amplify) the uncertainty in the 205 



forcing precipitation data. This also implies that when a set of models is under consideration, model uncertainty is usually greater 206 

than data uncertainty. Finally, high uncertainty points for ET lows and runoff lows were disproportionately concentrated in the 207 

equatorial and southern tropics not only for εX,j but also for both components αX,j and βX,j (Fig. 4, Fig. 5 and Fig. 6; cf. Fig. 2). 208 

4 Discussion 209 

Model output uncertainty is always a mixture of input data uncertainty and uncertainty accumulated during the simulation (Li and 210 

Wu, 2006; Oberkampf and Roy, 2010; Van Loon, 2015). However, these uncertainties are unfortunately not orthogonal in general 211 

because the models encode nonlinear relationships and therefore cannot be assumed to react consistently to different levels of 212 

precipitation input (e.g. (Bhuiyan et al., 2018a; Munier et al., 2018; Ukkola et al., 2016)). In this study we have had unprecedented 213 

access through the eartH2Observe project to an ensemble of simulations that has combined a selection of widely-used and 214 

validated precipitation data products with a spread of cutting edge land surface and hydrology simulation models. 215 

4.1 Clear attribution of uncertainty to data and/or model sources 216 

Under what circumstances can uncertainty in the prediction of water cycle quantities be attributed clearly to the model in use 217 

(model uncertainty) and/or to the precipitation product used to drive the model (data uncertainty)? Ukkola et al. (2016) found that 218 

land surface models diverged in evapotranspiration prediction during the dry season, and the results of our study strongly support 219 

this conclusion, with our calculated envelope of uncertainty widening in drier climates across the globe for all our uncertainty 220 

measures. 221 

 We found that high data and model uncertainty points for both ET lows and runoff lows were disproportionately 222 

concentrated in the equatorial and southern tropics. These zones are dominantly covered by tropical rainforests and savanna 223 

grasslands, so one possibility is that low fluxes in xeric environments are better characterised - both in data products and model 224 

characterisation - than low fluxes in these mesic and hydric environments. Data products are known to be more accurate away 225 

from areas with consistent cloud cover and a high occurrence of convective rainfall (Table 1) (Derin et al., 2016; Levizzani et al., 226 

2018), which might explain this for data uncertainty, but having model uncertainty follow the same geographic distribution 227 

indicates that we must also consider uncertainties in the calculations of runoff and evapotranspiration. It seems also to be the case 228 

that the simple water balance approach taken by land surface and hydrology models becomes approximate in latitudinal zones 229 

where low flows are generally combined with higher temperatures and more episodic rainfall events (McGregor and Nieuwolt, 230 

1998). This could indicate that using generalised approaches for all environments (e.g. the Priestley-Taylor or Penman-Monteith 231 

equations) is no longer sufficient for simulations at these spatio-temporal scales (Long et al., 2014; Wartenburger et al., 2018) or 232 

perhaps because we still lack crucial processes in these models, e.g. soil crusting or sealing, which only occur in semi-arid or arid 233 

areas (Marshall et al., 1996). However, we must also be careful to draw strong conclusions from these zones because another 234 

possibility is that this result simply confirms that these regions are where our available sources data are of lower quality (q.v. Fig. 235 

2a). 236 

 Uncertainty in predictions of evapotranspiration lows (drought) in dry environments is especially high, indicating that 237 

these circumstances are a weak point in current modelling approaches. Importantly, our results quantify this effect and show that 238 

even though uncertainty in the precipitation inputs is highest in these environments, the uncertainty in model representation of the 239 

processes involved is also significant and should not be ignored. A practical application of this is that when robust predictions of 240 

drought are required in very dry environments, not only should a spread of precipitation products be applied, but also more than 241 

one simulator model, and the model outputs should be validated as closely as possible against local data sources in order to ensure 242 

that conclusions drawn from these analyses are suitable for decision-making. 243 

4.2 Relative importance of data and model uncertainty 244 

When uncertainty is attributable to both model and data sources in a simulation ensemble, is data uncertainty generally the greater 245 

(i.e. the model acts to reduce or ‘stabilise’ uncertainty) or the lesser (i.e. the model effectively augments variation)? In a report for 246 



the Intergovernmental Panel on Climate Change (IPCC), Bates et al. (2008) drew attention to the high uncertainty there was in 247 

climate models in precipitation data (= data uncertainty), and also suggested that for aspects of the hydrological cycle such as 248 

changes in evaporation, soil moisture and runoff, the relative spread in projections (= total uncertainty) was similar to, or larger 249 

than, the changes in precipitation (points echoed later by Schewe et al. (2014) and others). Precipitation observations are known to 250 

have high uncertainty (Beck et al., 2017a; Bierkens, 2015; Kimani et al., 2017; Levizzani et al., 2018; Yin et al., 2015), but 251 

responses to precipitation low extremes (drought) should not be expected to be proportional to responses from the same model to 252 

precipitation high extremes (flood) (Veldkamp et al., 2018). 253 

 We found in general that the model simulations we analysed acted to augment uncertainty rather than reduce it. In 254 

percentage terms, the increase in uncertainty was most often less than the magnitude of the input data uncertainty, but uncertainty 255 

did not decrease through the model for any variable so the simulation models did not in any case act to ‘stabilise’ or decrease the 256 

uncertainty supplied to them through the precipitation data products used to drive them. We do agree with Wartenburger et al. 257 

(2018)’s finding that the forcing (data uncertainty) generally dominates the variance in ET extremes, but we found model 258 

uncertainty to be important in all cases analysed and very nearly the magnitude of the forcing uncertainty in both very dry and 259 

very wet environments. This is a very significant result because it implies that a focus on the reduction of both data and model 260 

uncertainty will be necessary in order to improve the prediction of water cycle extremes. 261 

4.3 Sources of unquantified uncertainty 262 

It is important to bear in mind that some sources of uncertainty exist in these water cycle quantities that are as yet unmeasured in 263 

any existing data products, and therefore cannot be analysed in this study. There is a very strong current emphasis in climate 264 

science on identifying global areas of high precipitation uncertainty, for example (Bierkens, 2015; He et al., 2017; Levizzani et al., 265 

2018), from which we can highlight two: Firstly, most precipitation products record observations of amount, not the type of 266 

precipitation (Table 2), however it is very likely that precipitation type strongly influences our precipitation data uncertainty: for 267 

example, convective processes are dominant in the precipitation generating processes in dryland ecosystems (Table 1), and 268 

different precipitation types occur at different spatial scales as well (Table 1). Secondly, our equatorial tropical zone (Fig. 1) 269 

includes the Inter-Tropical Convergence Zone (ITCZ) of low pressure, characterised by convective activity generating many 270 

storms. It is well-known that because of the transitory nature of the cloud dynamics in the ITCZ, precipitation products necessarily 271 

have higher uncertainty and, simultaneously, these conditions are of too short duration to be captured reliably in our analysis. 272 

 For evapotranspiration in particular, Lopez et al. (2017) drew attention to the global lack of high quality in situ site data 273 

and the “inevitable scale mismatch” when using such data to calibrate Earth Observation datasets. Regional estimates of 274 

evapotranspiration rely on scaling-up methods to take account of regional advection effects and, additionally, the use of estimated 275 

values for evaporation rates from unmeasured land use types. Each step in these calculations potentially introduces significant 276 

uncertainty with the result that there is currently wide variation between the values suggested by even the best global 277 

evapotranspiration products (Martens et al., 2017). 278 

 Finally, runoff: Surface runoff estimates are linked to precipitation and evapotranspiration estimates via the water cycle 279 

balance equation (Beck et al., 2017b; Bierkens, 2015; Veldkamp et al., 2018). Because soil storage terms are usually taken as 280 

constant, underestimation of evapotranspiration often means overestimation of runoff and streamflow data (and vice versa). In this 281 

way, uncertainty in surface runoff is related to uncertainty in evapotranspiration estimates. However, because of the wide 282 

availability and high quality of global streamflow datasets (e.g. the Global Runoff Database, GRDC), and a much lower 283 

requirement for approximation and gap-filling in comparison to evapotranspiration data, runoff data is usually considered to be of 284 

the highest quality in water balance studies. 285 

4.4 Conclusions 286 

Water resources management has become one of the most important challenges facing hydrologists and decision-makers at state 287 

and national levels, motivated by increasing water scarcity in some global regions and a higher frequency of extreme flood events 288 



in others (Bierkens, 2015; Dadson et al., 2017; Schewe et al., 2014). At the same time, precipitation extremes are predicted to 289 

increase in frequency and impact under committed climate change (Ali and Mishra, 2017). Therefore, reliance on robust model 290 

predictions has never been greater (Kundzewicz and Stakhiv, 2010; Riley et al., 2017). In this study we have used an ensemble of 291 

simulation results from the eartH2Observe project derived from cutting-edge model simulators driven by the best available 292 

published (and validated) precipitation observations, but the sources of uncertainty are nevertheless many and varied. 293 

 We found that models always augmented uncertainty relative to the magnitude of forcing data uncertainty. Although, for 294 

predicting the extremes of evapotranspiration and runoff, the uncertainties inherent in the current generation of precipitation 295 

observation products are generally larger than the uncertainty introduced into the calculation by the land surface and hydrology 296 

models used, model uncertainty cannot be ignored and in many environments is comparable in magnitude to forcing data 297 

uncertainty. Therefore, in order to reduce prediction uncertainty we need very much to make progress on two fronts: (1) we need 298 

precipitation data product uncertainty to be reduced (improved satellites are always welcome, of course, but we believe that much 299 

progress can also be made through moving towards blended products that are sensitive to more types of precipitation) and (2) we 300 

need to improve the mechanistic equations used in these models to derive water cycle quantities (including a better consideration 301 

of scale issues and domains of validity for existing equations). 302 

 It is important to resolve both data and model uncertainty much more clearly and identify exactly at which points in our 303 

linked modelling systems these uncertainties become the most significant. Our current model representation of land surface 304 

hydrological and biogeochemical processes remains approximate especially in very dry and very wet environments and there is a 305 

clear need for a better characterisation of these environmental extremes in order for us to move forward to the next generation of 306 

climate and land surface prediction models. 307 

  308 



 309 

Table 1: Types of precipitation and their main controlling factors (McGregor and Nieuwolt, 1998). 310 

Precipitation 
type 

Spatial 
scale 

Characteristics Challenges 

Cyclonic 
(=frontal) 

Synoptic, 
regional 

The leading edge of a warm and 
moist air mass (warm front) meets a 
cool, dry air mass (cold front). The 
warmer air mass rises over the 
cooler air, with precipitation 
occurring along the front. If the air 
begins to circulate, a cyclonic storm 
can occur. 

• It is widely accepted that global warming 
will lead to a higher water-holding capacity 
for the atmosphere as well as increased 
rates of evaporation, and therefore 
increased extreme weather (Trenberth et 
al., 2015; Yi et al., 2015). However, the 
mechanisms through which the location 
and magnitude of these extreme events 
may be predicted (e.g. tipping points, 
thresholds) remain inadequately 
understood (Marthews et al., 2012). 

Orographic Intermediate Warm, moist air entering a mountain 
range is forced to rise, and then 
cools and precipitation ensues (= 
orographic lift). 

• Scale is an important issue: mountains can 
modify large-scale circulation, causing 
changes in local moisture convergence, 
but local condensation and microphysical 
processes also influence flow stability 
upstream (Marthews et al., 2012). 

Convective Local (often 
sub-grid) 

A warm soil or vegetation surface 
warms the air above it, which then 
rises vertically and cools, with 
precipitation occurring on cooling. 
 
‘Convection-permitting’ model runs 
usually require a sub-daily timestep 
and <10 km spatial resolution, and in 
the absence of these a convection 
parameterisation scheme (CPS) is 
necessary (i.e. assumptions about 
subgrid and subdaily dynamics) 
(Prein et al. 2015). 

• Stratiform precipitation is when the rise is 
diagonal rather than vertical (i.e. similar to 
orographic, but not as a result of landform) 

• Sub-grid displacement of cloud occurrence 
from driver (Taylor et al., 2012) 

• Land surface exchange (e.g. 
evapotranspiration) has a significant effect, 
but often not modelled explicitly. 

• Resolution of snow versus rainfall in 
mountain regions is critical for water 
resources management, but not well-
characterised in models. 

• CPSs generally overestimate light rain 
(drizzle) because they overestimate the 
number of precipitation days (by equating 
clouds with rain) and / or underestimate 
precipitation intensity (Marthews et al., 
2012; Prein et al., 2015). Conversely, it is 
a known limitation of some satellites that 
they are not sensitive to, and therefore 
underestimate, light rain (e.g. Luo et al. 
(2017)). This introduces a ‘calibration gap’: 
calibration of large-scale models against 
satellite-based precipitation observations 
must not only factor out the overestimation 
of CPSs, but also the underestimation of 
the observations. 
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 313 

Table 2: Global precipitation products used to drive the models selected from Dorigo et al. (2014). Data files used are 314 

available through the Water Cycle Integrator https://wci.eartH2Observe.eu/ at 25 km resolution for the period 2000-315 

2013. Algorithm type is as given by the International Precipitation Working Group (IPWG) *. 316 

Product Algorithm Notes 

Multi-Source 
Weighted-Ensemble 
Precipitation 
(MSWEP) 

 Global reanalysis data (Beck et al., 2017a) 

Climate Prediction 
Center MORPHing 
Technique 
(CMORPH) 

Blended 
microwave-
infrared 

Restricted to 60°S to 60°N 
 
A passive microwave-based product advected in time using 
geosynchronous infrared data (Joyce et al., 2004). When microwave 
observations are not available, infrared observations are used to advect the 
last microwave scan over time. In addition to advecting precipitation forward 
in time, the algorithm propagates precipitation backward once the next 
microwave observation becomes available (Mehran and AghaKouchak, 
2014). 

Global Satellite 
Mapping of 
Precipitation 
(GSMaP) 

Blended 
microwave-
infrared 

Restricted to 60°S to 60°N (Tian et al., 2010) 

Tropical Rainfall 
Measuring Mission 
(TRMM) 

Satellite-
based 

Restricted to 50°S to 50°N 

TRMM Real Time 
(TRMM-RT) 

Satellite-
based 

Restricted to 50°S to 50°N 
 
Mainly based on microwave data aboard Low Earth Orbit satellites (Huffman 
et al., 2007). The TRMM-RT algorithm is primarily based on microwave 
observations from low orbiter satellites. Gaps in microwave observations are 
filled with infrared data (Mehran and AghaKouchak, 2014). 

* Real-time usually = there is at most a 1-2 hour delay before observation data is made available raw (i.e. with no gap-317 

filling or other modification). 318 

Near-real-time = there is at most a 1-2 day delay before delivery, allowing some initial data checks to be carried out. 319 

Reanalysis data = data assimilation techniques have been used to fill gaps in the observation data (e.g. missing 320 

variables). 321 

Blended = observation data have been combined with either or both of raingauge and reanalysis data to create a 322 

more robust and quality-controlled product. 323 
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 326 

Table 3: Modelling systems details (Dutra et al., 2015; Nikolopoulos et al., 2016). Each model was driven using as 327 

close as possible to the same configuration: Global Water Resources Reanalysis 2 (WRR2, Arduini et al. (2017) and 328 

http://jules.jchmr.org/content/research-community-configurations). Simulation results are available on the THREDDS 329 

data server (https://wci.eartH2Observe.eu/thredds/catalog.html, see Schellekens et al. (2017)). 330 

Model Institution Simulations 

Hydrology Tiled ECMWF Scheme for 
Surface Exchanges over Land model (H-
TESSEL) (Balsamo et al., 2009) 

ECMWF A 10-year spin-up was carried out: an initial run from 1 
January 1979 to 1 January 1989, while the land 
surface state of January 1989 was used to initialize the 
main simulation. 

JULES is the Joint UK Land Environment 
Simulator model (JULES) (Best et al., 2011; 
Clark et al., 2011) 

MetO/CEH A 10-year spin-up was carried out: an initial run from 1 
January 1979 to 1 January 1989, while the land 
surface state of January 1989 was used to initialize the 
main simulation. 

ORganizing Carbon and Hydrology In 
Dynamic EcosystEms model (ORCHIDEE) 
(d'Orgeval et al., 2008; Krinner et al., 2005) 

CNRS/LSCE The model was spun up with a simulation from 1 
January 1979 to 31 December 1990. This simulation 
started with an average soil moisture and empty 
aquifers. After the 12 years of spin-up, river discharges 
have reached equilibrium. 

SURFace EXternalisée model (SURFEX) 
(Decharme et al., 2011; Decharme et al., 
2013) 

Météo-France A 20-year spin-up was carried out using the 1979–
1988 period twice. 

Water – Global Assessment and Prognosis-
3 (WaterGAP3) (Schneider et al., 2011; 
Verzano et al., 2012). A grid-based, 
integrative global fresh water resource 
assessment tool. 

University of 
Kassel 

Storage compartments were initialized by re-running 
the model with the first year of available meteorological 
forcing 10 times. 
 
WaterGAP includes a water use model (domestic and 
industrial water use are parameterised as a function of 
average income per country (GDP/capita), allowing 
global water use calculations. 
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 334 
Fig. 1: Latitudinal zones used in this study: black = southern temperate 23.5°S to 50.0°S, red = southern tropical 335 

10.0°S to 23.5°S, yellow = equatorial tropical 10.0°N to 10.0°S, purple = northern tropical 23.5°N to 10.0°N and green 336 

= northern temperate 50.0°N to 23.5°S. Analyses are restricted to the area 50.0°N to 50.0°S because of the bounds of 337 

data validity in the TRMM and TRMM-RT precipitation data products (Table 2). 338 
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a. 

 

 
b. 

 

 
 343 

Fig. 2: Uncertainty in the precipitation inputs to the eartH2Observe ensemble models: (a) Uncertainty in precipitation 344 

extreme highs and (b) Uncertainty in precipitation extreme lows (standard deviation (SD) taken across the 345 

precipitation products) in units of (occurrence of extreme events per year). Areas of consistently very low precipitation 346 

are masked in grey. Note that only isolated global areas exceeded 4 events/yr, so the scale is restricted to 0-4 347 

events/yr. 348 

 349 

 350 



 351 

 352 

a. CMORPH 

 

b. GSMaP 

 

c. TRMM 

 

d. TRMM-RT 

 
e. CMORPH 

 

f. GSMaP 

 

g. TRMM 

 

h. TRMM-RT 

 

 
Fig. 3: Increase in extreme precipitation event occurrence in relation to MSWEP. Subtracting extreme high event occurrence rates in the MSWEP precipitation input from the 353 

rates in the CMORPH precipitation input gives map (a), and (b) to (d) are the same calculation using GSMaP, TRMM and TRMM-RT instead of CMORPH. (e) to (h) is the 354 

same calculation, but for extreme low event occurrence (i.e. the averages of the upper and lower rows are effectively the maps Fig. 2a and Fig. 2b, respectively). The clear 355 

lines at 50°N (TRMM, TRMM-RT) and 60°N (CMORPH, GSMaP) show the bounds of data validity for these products (Table 2). Note that only isolated global areas exceeded 356 

4 events/yr, so the scale is restricted to -4 to +4 events/yr. 357 
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Fig. 4: Values of log10(αX,j), where αX,j is the scaled data uncertainty in variable X (eqn 1). (log10(αX,j)<0 indicates 
uncertainty in the predicted variable X attributable to the data is less than the variability in the input precipitation 
forcing data; >0 indicates uncertainty in the predicted variable X is greater), where X is evapotranspiration (a, c, 
e, f) or runoff (b, d, g, h) and j refers to either high extremes (a, b, e, g) or low extremes (c, d, f, h). Points on the 
scatter plots are coloured according to latitudinal zones (Fig. 1). Because of the density of overlapping points, 5 

only the envelope of points for each latitudinal zone is shown and the points with the highest uncertainty 
(uncertainty DIU ≥ (2/3)*(global maximum of DIU) ). Linear regression lines for each latitudinal zone indicate the 
trend as precipitation increases within each zone (all regressions were significant at the 1% level). Maps (e-h) 
show the corresponding spatial distributions of log10(αX,j) values for each variable, with the colour scales 
corresponding to the vertical axis on scatter plot (a). 10 
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Fig. 5: Values of log10(βX,j), where βX,j is the scaled model uncertainty in variable X (eqn 2). (log10(βX,j)<0 indicates 
model uncertainty in the predicted variable X is less than the variability in the input precipitation forcing data; >0 
indicates model uncertainty in the predicted variable X is greater), where X is evapotranspiration (a, c, e, f) or 
runoff (b, d, g, h) and j refers to either high extremes (a, b, e, g) or low extremes (c, d, f, h). Points on the scatter 
plots are coloured according to latitudinal zones (Fig. 1). Because of the density of overlapping points, only the 5 

envelope of points for each latitudinal zone is shown and the points with the highest uncertainty (uncertainty DIU 
≥ (2/3)*(global maximum of DIU) ). Linear regression lines for each latitudinal zone indicate the trend as 
precipitation increases within each zone (all regressions were significant at the 1% level). Maps (e-h) show the 
corresponding spatial distributions of log10(βX,j) values for each variable, with the colour scales corresponding to 
the vertical axis on scatter plot (a). 10 
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Fig. 6: Values of log10(εX,j), where εX,j is the total uncertainty in variable X (eqn 3), where X is evapotranspiration 
(a, c, e, f) or runoff (b, d, g, h) and j refers to either high extremes (a, b, e, g) or low extremes (c, d, f, h). Points 
on the scatter plots are coloured according to latitudinal zones (Fig. 1). Because of the density of overlapping 
points, only the envelope of points for each latitudinal zone is shown and the points with the highest uncertainty 
(uncertainty DIU ≥ (2/3)*(global maximum of DIU) ). Linear regression lines for each latitudinal zone indicate the 5 

trend as precipitation increases within each zone (all regressions were significant at the 1% level). Maps (e-h) 
show the corresponding spatial distributions of log10(εX,j) values for each variable, with the colour scales 
corresponding to the vertical axis on scatter plot (a). 
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Fig. 7: Global mean values (averaged over 50°S to 50°N) from scatter plots in Fig. 4, Fig. 5 and Fig. 6. Plots 
show (a) all values, (b) values from dry environments with mean annual precipitation <1000 mm/yr only and (c) 
values from wet environments ≥6000 mm/yr only. Bar heights are ε values (scaled total uncertainty), with  5 

showing α values (scaled data uncertainty) and  β (scaled model uncertainty); error bars show SE. 
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