
Response to Reviewer 1
Abbreviations:

AR Author Response (Johannes Horak)

RC Reviewer Comment

RC: In their manuscript Horak et al. assess the skill of the Intermediate Complexity Atmospheric 
Research Model (ICAR) for downscaling mean precipitation amount, in a domain located over the South 
Island of New Zealand. Model evaluation is performed using established techniques, a range of 
observational datasets and two skill scores. Their main findings are: (a) ICAR provides additional skill 
over the main Alpine ridge, while results over coastal stations are deteriorated. (b) Added value is 
typically largest for stable upstream flow, impinging on the ridge at a 90◦ angle. These results seem 
related to the model’s roots, which is built on linear theory of orographic precipitation. C1

The article is generally well written and suited for publication in HESS (also for GMD). I particularly 
appreciated its modest and plain language. All review criteria are met, and I did not detect major scientific
flaws, considering the manuscripts scope.

AR:
We thank the reviewer for his effort, and are very appreciative of the detailed comments and 
criticism of our manuscript. We took every comment very seriously and adjusted the manuscript 
accordingly.

Our efforts to address one comment regarding the flow-linearity analysis led to the discovery of an
error in the underlying data set. We redid the entire analysis with the correct data and updated the 
affected parts in the methods section and in the discussion. However, the essential characteristics 
of the results have not changed.

Please find a detailed response to every comment below.

Corrections to the manuscript independent of the RCs:

P5L8: We found that the list of fields contained in the forcing file was incomplete. We added the 
two missing fields, the sentence now reads:

“The assembled ICAR forcing file contains ERAI zonal and meridional winds U and V, potential 
temperature Θ, pressure p, specific humidity qv , cloud liquid water mixing ratio qc , cloud ice 
water mixing ratio qi and surface pressure p0 at each 6 h forcing time step and every grid point 
within the domain.”

P32L14: The list of employed open-source libraries was incomplete. We added the missing 
library. The sentence now reads: 

“numpy (van der Walt et al., 2011), pandas (McKinney et al., 2010), xarray (Hoyer and Hamman,
2017), matplotlib (Hunter, 2007), cartopy (Met Office, 2010) and salem (Maussion et al., 
2019).”



Minor Comments
RC: (1) P2L8: “While dynamic downscaling results in a self-consistent set of atmospheric
fields, the computational cost required for the fine spatial and temporal grid spacing is
high, especially for long-term simulations or sensitivity studies.” This sentence would benefit from 
perspective. For example, for a similar computational domain we would achieve about 240 simulation 
days per day when running COSMO on a single node, equipped with a P100 GPU (Leutwyler et al., 
2016; Fuhrer et al., 2018, I am not implying that you should cite my studies, but used then because I 
know the numbers by heart). How does ICAR compare these benchmarks?

AR:
The South Island of New Zealand ICAR simulations with 12 vertical levels, for instance, when run
on one node of NCAR’s Cheyenne cluster (with 36 2.3-GHz Intel Xeon E5-2697V4 Broadwell 
cores) have a ratio of about 10.5 simulated years per day (on average 200 core hours per 
simulated year). The following barplot shows the average number of core hours required by ICAR
to simulate one year for the South Island of New Zealand domain in dependence of the number of
vertical levels.

While we did not run WRF simulations for our study, Gutmann et al. 2016 did so. They found, 
that, depending on (but not only) the number of vertical levels and chosen microphysics 
parametrisation, ICAR speeds up simulations by a factor of 140. E.g. one simulated year for the 
Colorado domain as specified in Gutmann et al. (2016) and a WRF setup as given in Rasmussen 
(2014) required ~40,000 core hours (if the simulation were run on one CPU core only). ICAR, on
the other hand, completes the simulation after ~300 core hours.

To clarify and lend perspective we added a sentence to P2L22-26 that references the findings of 
the Gutmann 2016 paper in the context of ICARs computational frugality. We also replaced the 
erroneously used term “linear theory of orographic precipitation” with the correct term “linear 
mountain wave theory”. Please be aware that the updated paragraph includes changes made due 
to another comment as well (shown as non-bold, orange text):

“The Intermediate Complexity Atmospheric Research model (ICAR; Gutmann et al., 2016) offers
a computationally frugal and physics-based alternative that does not rely on measurements with 
linear mountain wave theory as its theoretical foundation. In comparison to other downscaling 



approaches of intermediate complexity (e.g. Sarker, 1966; Rhea, 1977; Smith and Barstad, 2004; 
Georgakakos et al., 2005), ICAR is a more general atmospheric model that requires fewer 
simplifying assumptions about the state of the atmosphere, such as spatial and temporal 
homogeneity of the background flow. Furthermore, in contrast to the linear theory of orography 
precipitation (LOP; Smith and Barstad, 2004), ICAR considers a detailed vertical structure of the 
atmosphere and employs a complex microphysics scheme as opposed to the characteristic 
timescales for cloud water conversion and hydrometeor fallout of the LOP. With regards to 
dynamical downscaling, in particular the Weather Research and Forecasting model, 
Gutmann et al. (2016) have shown that ICAR may reduce the required computational time 
for one simulated year for a domain in the Western United States by a factor of at least 
140.”

RC: (2) P2L12: “to a lesser extent, to dynamic downscaling as well” I don’t fully understand
the statement in this fragment. Please elaborate on the stationary assumptions in
dynamical downscaling, and how precisely this is overcome in ICAR.

AR:
If, for instance, a dynamical downscaling model is calibrated with measurements this indicates 
that not all parameters or variables may be inferred from theory or first principles. It follows 
that the parameters (or even a specific choice of a parametrization over another) determined by 
the calibration period may not necessarily apply to other periods with altered conditions equally
as well. For global climate models, for instance, Maraun et al. (2017) note that “Often, a 
realistic behaviour is achieved only by tuning the model.“
This applies to ICAR as well if empirical parameters of a physical process (i.e. parameters of 
the microphysics parametrization) are calibrated with measurements. Therefore, dynamical 
downscaling and intermediate complexity downscaling are both affected by the stationarity 
assumption if calibrated with measurements. We removed the part of the sentence to avoid 
insinuating that ICAR, when calibrated with measurements, somehow overcomes the stationarity 
assumption. The sentence now reads (removed text crossed out):

“Even more problematic, as soon as observation-based training or tuning is applied, the 
assumption of stationarity is introduced for statistical downscaling and, to a lesser extent, to 
dynamic downscaling as well, which may not hold under a changing climate (Maraun, 2013; 
Gutmann et al., 2012).”

RC: (3) Section 2.1: Adding a few plain language sentences how ICAR works and how the
approach differs from dynamical downscaling would aid the wider audience. Additionally, a concise 
summary about linear theory of orographic precipitation and how it is incorporated into ICAR would 
help. I had to read Gutman et al. (2016) to understand this Section.

AR:
We rephrased the first and second paragraph of Section 2.1. (P3L11-16 and P3L17-21) to give a 
better overview of the basic functionality of ICAR, and its main difference from dynamical 
downscaling. The first paragraph (formerly at P3L11-16) now reads:

“ICAR (Gutmann et al., 2016) is a three-dimensional atmospheric model based on linear 
mountain wave theory. As input ICAR requires a digital elevation model and a forcing 
dataset with 4-D atmospheric variables generated by, for instance, a coupled atmosphere-
ocean general circulation model or an atmospheric reanalysis such as ERA-Interim. The 
forcing dataset should at least contain the horizontal wind components, pressure, 
temperature and water-vapor mixing ratio, with the possibility to additionally include 



hydrometeor fields, incoming long and short-wave radiation or the skin temperature of 
water bodies. ICAR employs linear mountain wave theory to calculate the wind field from 
the topography information and the horizontal wind components to avoid a numerical 
solution of the Navier-Stokes equations of motion, the core of dynamical downscaling
models. With this wind field, ICAR advects atmospheric quantities, such as temperature 
and moisture as supplied by the forcing dataset at the domain boundaries. In its standard 
setup ICAR applies the Thompson microphysical scheme (Thompson et al., 2008), a double 
moment scheme in cloud ice and rain and a single moment scheme for the remaining 
quantities to compute the mixing ratios of water vapor, cloud water, rain, cloud ice, 
graupel and snow.”

The second paragraph (formerly at P3L17-21) now reads:

“The classic approach of linear mountain wave theory predicts the wind field based on the 
topography and the background state of the atmosphere. (Sawyer, 1962; Smith, 1979). 
With the background state known, its perturbation due to topography is given by a set of 
analytical equations (Barstad and Grønås, 2006). However, linear theory does not take into 
account interactions among waves or waves and turbulence, nor transient and non-linear 
phenomena such as time-varying wave amplitudes, gravity wave breaking or low-level 
blocking and flow splitting. A basic discussion of the limitations implicit to these 
assumptions can be found in Nappo (2012). In ICAR, the atmospheric background state is 
given by the forcing dataset. This yields a time sequence of steady state wind fields between 
which ICAR interpolates linearly. A detailed description of the model is given in Gutmann 
et al. (2016).”

RC: (4) Section 4.1: Maybe it would be good to discuss the known biases for mean precipitation in ERAI
and outline weather it is difficult to beat it.

AR:
A general statement about the performance of ERAI and how hard it is to beat is difficult to make 
since it depends, among other things, on the particular region of the world that is investigated and 
the specific factors that influence the local climate. Skill scores alone, in terms of percentage 
improvement, cannot fully account for how accurate a model is if nothing more is known about 
the reference model. For this reason we based our evaluation not on skill scores alone. We 
investigated the ICAR and ERAI precipitation time series at the weather stations as well and 
compared them directly to measurements. In our region ERAI simulates occurrence well and 
reproduces the measured time series but underestimates the precipitation magnitude (see Figure 
4). This is in stark contrast to, for instance, the Peruvian Andes, another region we are currently 
investigating. Here ICAR skill scores are positive as well but precipitation occurrence and 
magnitude is not reproduced at all at some locations. The reason for the positive scores is that the 
performance of ERAI at these sites is worse. While ICAR is able to correct a little bit towards the 
measurements, this does not imply that the generated time series are realistic.

For a definitive assessment whether ERAI is difficult to beat, it is necessary to compare ERAI 
precipitation time series to those of measured at sites of interest. However, this was not the 
intended aim of the manuscript presented. Nonetheless we believe that Figure 4 gives a 
representative overview of the capabilities of ERAI with regards to modelling the 24h 
accumulated precipitation at the sites investigated within the study domain. While the timing of 
precipitation events is generally well captured by ERAI this is not the case for the magnitudes of 
the precipitation events.



RC: (5) Section 4.3 (a) Unfortunately, the chosen calibration period overlaps with the analysis period and
employs the same stations. Cross-validation with other periods or station replacement would make the 
arguments more robust.

AR:
We agree with this assessment. Unfortunately even though ICAR is computationally more efficient
than dynamic downscaling, performing, for instance, leave-p-out cross-validation would require 
extensive computational resources. However, the results suggest that the calibration period (2014-
2015) is representative of the full study period (2007-2017) with regards to the presented 
calibration method. For the simulations with 12 vertical levels, the mean MSE of ICAR shows 
only little variation on whether the MSE is calculated for the calibration period, the entire study 
period or the study period excluding the calibration period. 

To address this comment we added an additional paragraph to Section 4.3, an additional Panel to 
Figure 2 and an additional paragraph to the Discussion. 

The new paragraph in Section 4.3 and the adapted Figure 2:

“The mean MSE over all alpine weather stations is almost constant when calculated either 
for the reference period (2014-2015), the full study period (2007-2017) or the reduced study
period, where the reference period is excluded from the time series (2007-2013 and 2015-
2017), see Fig. 4c. This result indicates that the reference period is representative of the full
study period.“

The new paragraph that we added to the discussion:



“In this study, the chosen reference period (2014-2015) overlaps with the study period 
(2007-2017). While ICAR is computationally more efficient than dynamic downscaling, 
performing, for instance, leave-p-out cross-validation would require extensive 
computational resources. However, the results suggest that the reference period is 
representative of the full study period with regards to the presented calibration method: 
For simulations with the model top set at 4 km, the mean MSE over all alpine weather 
stations of ICAR shows only little variation on whether the MSE is calculated for the 
reference period, the study period or the study period excluding the reference period (see 
Fig. 2c). Furthermore, the variation between the mean MSEs for simulations with different 
model top settings (Fig. 2b) is larger than the variation between different evaluation 
periods (Fig. 2c).“

RC: (b) “Potential reasons for the observed behavior are discussed in Sect. 5.” ! That statement is a bit 
misleading, since in Section 5 you only say that the question remains open.

AR:
Thank you for bringing this to our attention. The second part of the discussion that is concerned 
with this statement is located in a different paragraph in the discussion section (see P31L11-13). 
We rearranged the discussion section and included a only recently discovered potential cause 
(numerical artifact from model top treatment), the corresponding paragraph now reads:

“The sensitivity studies leading to the choice of the model top at 4 km have shown that the model 
top elevation greatly influences precipitation amounts and in turn the obtained mean squared 
errors, see Fig. 2. It is not immediately obvious though why precipitation amounts decrease (not 
shown) and the MSEs deteriorates for higher model tops. Potential reasons are influences of 
divergences in the forcing wind field on the ICAR wind field or numerical artifacts arising 
from the treatment of the model top in ICAR. However, further research is necessary to 
develop a better understanding of this issue and its causes. Subsequently future studies 
could focus on finding a method that allows the estimation of the model top elevation best suited 
for a domain without relying on measurements, as well as on investigating the influence of the 
choice of the forcing data type (i.e. global or regional reanalyses, GCMs, weather forecast models)
and the spatial grid resolution thereof on ICAR dynamics and skill.”

RC: (c) I am skeptic if the results at 2.5 km and 4 km are substantially different from each other.

AR:
One major difference between the two runs is that the simulations with a model top at 2.5 km cut 
off the atmosphere within layers that transport a significant amount of moisture within the domain.
This entails a less faithful representation of the moisture content of the atmosphere and may in 
part lead to unphysical artifacts in the moisture distribution due to the way the model top is treated
by ICAR. However, more research is necessary to quantify and understand this effect and how it 
affects the distribution of precipitation and moisture throughout the domain. While MSEs at 
alpine sites are similar but lower for simulations with a model top at 4.0 km, a particularly adverse
effect is observed with regards to precipitation occurrence (HSS scores with P24h > 1 mm). Here, a
distinct score decrease is observed at all except one weather station if the model top is set to 2.5 
km or lower.



RC: (d) A devil’s advocate could argue that ICARCP mainly improves skill over ICAR because
the latter underestimate precipitation amount (see P30L27). I.e., could the same skill be achieved by 
adding random noise with the right magnitude?

AR:
We tested this hypothesis and found that the addition of random noise to ICAR precipitation time 
series is not able to achieve the same mean skill as ICARCP. Moreover, even adding random noise 
only to days where ICAR predicts non-zero precipitation (semi-random noise) does not lead to a 
higher skill than is achieved by ICARCP.

RC: Does ICAR beat ERAI too?

AR:
We added an additional panel to Figure 2 that indicates the mean SSMSE at alpine weather stations 
achieved for each model top setting during the calibration period. ICAR is able to outperform 
ERAI for model tops at 1.5 km, 2.5 km and 4.0 km.

The updated Figure 2, the additional panel referenced above is panel b:



RC: Please elaborate (here or in Section 2.6) to justify your choice to add interpolated conv. precip. from
ERAI

AR:
ICAR is not able to model convective precipitation by itself in the setup used. Since ERAI does 
simulate convective precipitation and store the value in a separate field it seems a reasonable 
choice to use this additional information provided by the forcing dataset to improve the 
precipitation fields and time series simulated by ICAR. This is elaborated in Section 2.6, P5L18-
20. Furthermore, it is a common technique to use convective or large scale precipitation from the 
forcing dataset this way, compare, for instance Roth et al. (2018) or other studies where the 
downscaled precipitation is a composite of precipitation generated by the downscaling model and 
the forcing for types of precipitation the applied model cannot account for (Jarosch et al. 2012; 
Weidemann et al. 2013 and Paeth et al. 2017).

To clarify we added these references to the manuscript. Please note that the updated paragraph 
contains an additional sentence added due to another RC (orange, non-bold text). Section 2.6 
P5L24 now reads:

“where in the following the P(t) time series is referred to as ICARCP and PI(t) as ICAR. This is a
common technique that allows to include types of precipitation not accounted for by the 
downscaling model (e.g. Jarosch et al., 2012; Weidemann et al., 2013; Paeth et al., 2017; 
Roth et al., 2018). Table 1 shows the mean annual precipitation at each site for ICARCP and 
ERAI, as well as the ratio of ERAI convective precipitation to ERAI total precipitation.” 

RC: (6) Section 4.7 Why is the underlying dataset changed to NCEP/NCAR?

AR:



The cluster analysis yielding the weather-patterns was not performed by us but by Kidson (2000), 
who employed the NCEP/NCAR dataset. We rephrased for clarity, it now reads:

“For the underlying cluster analysis, Kidson (1994a) employed the NCEP/NCAR 40-year 
reanalysis dataset (Kalnay et al., 1996) between January 1958 and June 1997 was employed.”

RC: (7) Section 5 (a) 1st paragraph: It might be worthwhile to elaborate on how these
results relate to linear theory of orographic precipitation.

AR:
The linear theory of orographic precipitation (LOP) is, while connected to ICAR via the common 
basis of linear mountain-wave theory, not directly related to the results presented here. One 
fundamental difference is that the LOP, unless adapted as in, for instance, Jarosch (2012), is only 
able to consider a homogeneous background state across the entire domain. Similarly, unless 
adapted as in Barstad and Schüller (2011), information about the vertical structure of the 
atmosphere is, compared to ICAR, very basic. Another key difference is the use of a complex 
microphysics scheme (Thompson, 2008) in ICAR, while the LOP considers characteristic 
timescales for cloud water conversion and hydrometeor fallout. A comparison between the LOP 
and ICAR would be of interest, but outside of the scope of our manuscript.

To highlight the differences between the two models we modified P2L22-26 in the introduction. 
We also replaced the erroneously used term “linear theory of orographic precipitation” with the 
correct term “linear mountain wave theory”. Please be aware that the updated paragraph includes 
changes made due to another comment as well (orange, non-bold text). The updated paragraph 
now reads:

“The Intermediate Complexity Atmospheric Research model (ICAR; Gutmann et al., 2016) offers
a computationally frugal and physics-based alternative that does not rely on measurements with 
linear mountain wave theory as its theoretical foundation. In comparison to other downscaling 
approaches of intermediate complexity (e.g. Sarker, 1966; Rhea, 1977; Smith and Barstad, 2004; 
Georgakakos et al., 2005), ICAR is a more general atmospheric model that requires fewer 
simplifying assumptions about the state of the atmosphere, such as spatial and temporal 
homogeneity of the background flow. Furthermore, in contrast to the linear theory of 
orography precipitation (LOP; Smith and Barstad, 2004), ICAR considers a detailed 
vertical structure of the atmosphere and employs a complex microphysics scheme as 
opposed to the characteristic timescales for cloud water conversion and hydrometeor fallout
of the LOP. With regards to dynamical downscaling, in particular the Weather Research and 
Forecasting model, Gutmann et al. (2016) have shown that ICAR may reduce the required 
computational time for one simulated year for a domain in the Western United States by a factor 
of at least 140.”

RC: (b) P30L6: “Therefore these two instances are considered as outliers.” I think there is a problem here

AR:
Following up other suggestions of the reviewer led us to discover that some ERAI grid points used
for the flow linearity analysis were at the wrong locations (too close to the coast). We corrected 
this and redid the entire analysis. With the updated plots the added value of ICAR over ERAI for 
higher flow linearity and atmospheric stability is now more evident and the corresponding outliers 
have vanished. For more details see comment “P19L15: Cloud you add these regions to Fig. 1?” 
farther below.



Suggestions for optional extensions
RC: (1) Downscaling low-resolution global climate simulations (rather than re-analysis), along major 
mountain ridges could more evidently illustrate the added value of the approach.

AR:
We agree that this would indeed be a worthwhile analysis, it is outside of the scope of the 
presented manuscript. Additionally, some of the presented methods appear to be difficult to apply 
to global climate simulations, in particular the weather pattern analysis and the dependency of 
model performance on flow linearity.

RC: (2) From an application/user point of view, employing the outlined techniques to obtain
higher-resolution fields is still a somewhat cumbersome procedure. It will therefore only be performed 
operationally if the added value is rather substantial. Therefore it would be interesting to see the added 
value over low-resolution precipitation climatologies such as, e.g., GPCC or GPCP..

AR:
We agree that this is a potentially fruitful avenue for further investigations. However, generally 
dynamic and statistical downscaling methods alike are generally tested for whether they actually 
improve over the employed forcing dataset (e.g. Jarosch 2012, or, for a review, Torma et al. 
2015). ICAR is a relatively new model and, as mentioned in the introduction, this has not been 
established yet at the weather station level.

Technical Comments
Technical comments

RC: P1L1: climate downscaling => downscaling techniques

AR: rephrased as suggested.

RC: P1L7: the eleven-year period from 2007 to 2017 => an eleven-year period, ranging from 2007 until 
2017

AR: rephrased as suggested.

RC: P1L9: diagnosed=> assessed

AR: rephrased as suggested.

RC: P1L14: In the abstract, I would use a more general term for “flow of higher linearity”

AR: Exchanged “flow of higher linearity” for “flow linearity”.

RC: P1L17: tuning => calibration (tuning has a negative connotation). Same applies to the rest of the 
manuscript.

AR: Exchanged tuning for fitting variations of calibration throughout the manuscript.

RC: P2L21: Maybe add weather generators to the discussion?

AR: While weather generators are functionally different from regression models, they do fall in 
the statistical downscaling category.



RC: P2L31: due => emerging from

AR: Rephrased accordingly

RC: P3L23: storing => stores

AR: Corrected accordingly

RC: P4L5: no data are => no observations are

AR: Rephrased accordingly

RC: P5L7: ERAI have => ERAI employs (I think ERA-Interim reanalysis is singular). 

AR: Corrected accordingly

RC: P4L11 P5L19: “convective precipitation from the ERAI” Add the name of the field. Also, add a 
reference to your Table 1.

AR: Name and ID of the ERAI field was added and we referenced Table 1 at the end of the 
paragraph. Please note that the updated text as shown below includes an additional sentence due to
another RC (orange, non-bold text).

Section 2.6 now reads:

The ICAR configuration for this study, as described in Sect. 2.2, is able to model orographic 
precipitation and, at least in part, precipitation driven by the synoptic scale. To account for 
convective precipitation, convective precipitation from ERAI (field name: cp, parameter ID: 
143), PCP, is resampled to the ICAR timestep and bilinearly interpolated in space to the sites of 
interest and then added to the ICAR precipitation time series PI:

P(t) = PI(t) + PCP(t),                                                            (1)

where in the following the P(t) time series is referred to as ICARCP and PI (t) as ICAR. This is a 
common technique that allows to include types of precipitation not accounted for by the 
downscaling model (e.g. Jarosch et al., 2012; Weidemann et al., 2013; Paeth et al., 2017; Roth et 
al., 2018). Table 1 shows the mean annual precipitation at each site for ICARCP and ERAI, 
as well as the ratio of ERAI convective precipitation to ERAI total precipitation.

RC: P6L5: New Zealand

AR: We rephrased the first sentence.

RC: P6L7: ranges => maybe “ridges”?

AR: We rephrased the paragraph, it now reads:

“This study focuses on the Southern Alps of New Zealand located in the southwestern Pacific 
Ocean. The Southern Alps are oriented southwest-northeast and run almost parallel to the 
western coast of the South Island. They are approximately 800 km long and 60 km wide, extend 
across a latitude range from 41° S to 46° S and consist of a series of ranges and basins (Barrell et 
al., 2011).”

RC: P7L12: In case of => For 



AR: Rephrased as suggested.

RC: P9L10: Move sentence “ The aim is not a downscaling ...” to end of paragraph

AR: Moved to the end of the paragraph.

RC: P9L27: HSS is defined as The HSS

AR: Rephrased as suggested

RC: P12L4: I relate “occurrence” to precipitation frequency. Maybe better use magnitude?

AR: The HSS for thresholds of P24h > 1mm may be seen as an indicator of whether ICARCP is 
better able to model the frequency/occurrence of wet or dry days in comparison to ERAI. Higher 
tresholds, on the other hand, are more indicative of whether ICARCP improves the frequency of 
larger precipitation events over ERAI. We exchanged occurrence for frequency for better clarity.

RC: P15L5: For lazy or tiered readers it might be helpful to re-state that VCSR are the observations.

AR: Rephrased to “The observation and expert-judgment based VCSR, ICAR, ICARCP and 
ERAI”

RC: P16L6ff: Maybe indicate which months these seasons are (DJF..)?

AR: We added abbreviations of the months that are associated with each season to the second 
paragraph of Section 4.5 and the caption of Figure 5:

“The seasonal variations of precipitation as derived from the VCSR data set (Fig. 5b-e) are best 
reproduced by ICARCP (Fig. 5l-o). However, the improvements over the corresponding ICAR 
patterns 5g-j) are small and the remainder of this paragraph applies to ICAR and ICARCP alike. 
When comparing VCSR and ICARCP the similarities are largest for winter (JJA, Fig. 5h and 
5m) and summer (DJF, Fig. 5e and 5o). The differences increase for the remaining seasons, with 
the Southern Alps being particularly affected. For autumn (MAM), VCSR shows the precipitation
as below average (Fig. 5b) while ICARCP indicates above average precipitation (Fig. 5l). For 
spring (SON), on the other hand, VCSR shows an increase in precipitation throughout the 
Southern Alps (Fig. 5d) but ICARCP shows the central part of the Southern Alps as drier than on 
average (Fig. 5n).”

Figure 5. The top four panels show patterns of P24h averaged over 2007–2016 for VCSR (left), 
ICAR (second column), ICARCP (third column) and ERAI (right) over the South Island of New 
Zealand and surrounding ocean. Rows two to five show seasonal deviations of the all-year average 
patterns, for autumn (MAM, second row), winter (JJA, third row), spring (SON, fourth row) and
summer (DJF, bottom). Each panel shows the coastline and the 1000 m MSL contour line of the 
topography.

RC: P19L15: Cloud you add these regions to Fig. 1?

AR: We want to explicitly thank the reviewer for this comment as it revealed that some ERAI 
gridpoints used to determine the flow linearity were not within the test region (they were closer to 
the coast) and that the length of the test regions was erroneously stated as 1000 km when it should
be 500 km. With the new test regions, furthermore, the maximum value of κ where still enough 
data points remained in the near stable category to calculate SSMSE is 375·10-5 s-1. 



However, the characteristics of the results remain essentially the same, with only minor effects on 
their discussion and presentation.

This entails the following changes in Section 4.6 and in the discussion:

P19L13: testregion dimensions corrected:
“... and is about 200 km wide, 500 km long and 1500 m high”

P19L6-7: the upper limit of κ has changed:
“…the value of κ is varied between 25 · 10−5 s−1 and 375 · 10−5 s−1 in steps of 25 · 10−5 s−1.”

P20L15: the number of days that fulfill the defined criteria has changed and we adjusted the text 
according to a criticism of reviewer 2:
“Of the 4018 days in the eleven-year study period, 1847 fulfill the criteria stated above. A 
detailed overview of the distribution of these days among the three categories in dependence of κ 
is given in Table 3.”

P20L17-23: we updated the description of the results:
“The results from Table 3 summarized in Fig. 7 show, that stable atmospheric conditions and 
Froude numbers larger or equal to unity lead to an increase in median scores for sites in complex 
topography. This behavior is observed for SSMSE where the score median increases from 0.33 to 
0.58 and, for P24h > 25 mm and P24h > 50 mm in case of HSS. For P24h > 1 mm the maximum 
median score is found for stable conditions and F < 1, with the F ≥ 1 regime even yielding a
negative median score.”

P21: Table 3 was updated and filled with the correct values.

P22: Figure 7 was updated and now shows the correct values.



P29-30L34-10: We updated the discussion and included additional Figures to reduce the amount of times
secondary results are not shown (as per request of Reviewer 2):

ICAR was found to perform better for upstream flows with Froude numbers larger than unity. This result 
is not unexpected, since linear theory is the theoretical foundation for ICAR. Therefore, flows of higher 
linearity lead to increased SSMSE and HSS for thresholds of 25 mm and 50 mm. These results hold even 
if the method for classifying near-stable or stable days is changed. For instance, using N 2 ≤ 0 as 
classification criterion for near-stable days and N 2 > 0 for stable days leads to similar results (see Fig. 
A2). For SSMSE (see Fig. 7a) the spread of scores derived from varying κ for near-stable days is 
large enough to include the median score of the stable days with F < 1. Nonetheless, this is only 
true for κ = 200 · 10−5 s, in all other cases stable days with F < 1 always score higher than near 
stable days. Stable days with F ≥ 1, in comparison, always achieve a higher score than the other 
two categories. A potential issue with the methodology is the small number of cases in the stable regime 
with F ≥ 1 compared to the two other classes (see Table 3). However, P24h on stable days with F ≥ 1 is 
three to seven times as high as P24h during the other two classes (see Fig. A3). Therefore, while 
comparably small in number, stable days with F ≥ 1 contribute above-average amounts of precipitation to 
the climatology, highlighting the importance of the improvement in skill for this category.

P6: Figure 1 with the test regions included now is:

RC: P29L9-17: (a) Maybe move this Paragraph to Section 3.2?



AR: While we agree that Section 3.2. would be a fitting place for paragraph P29L9-L17 as well, 
in this manuscript the uncertainties associated with precipitation measurements are only brought 
up in the Discussion section. To void unnecessary zig-zag and keep the logical flow of the 
discussion intact, as proposed by Mensh (2017), we decided to leave the paragraph at its current 
location.

RC: (b) Does undercatch not affect HSS(P>50)?

AR: Undercatch does affect HSS(P>50) as well and, as detailed in paragraph P29L9-17, is 
expected to affect both, the performance of ICARCP and ERAI.

RC: P29L9-33: I would move the caveats to another place such that the paragraph currently starting at 
L34 follows after the current L8.

AR: We agree that the discussion would benefit from a more rigid structure. We therefore moved 
the general discussion of results up so that it now begins after L8. The caveats are now discussed 
subsequent to the general discussion of results.

RC: P30L21-24: Could you elaborate why you think this issue is a likely candidate?

AR: We expanded the corresponding paragraph to elaborate further.

It now reads: “A potential cause for the observed negative correlation is, that the reflection 
of mountain waves at the interfaces between atmospheric layers can impact the distribution
of orographic precipitation (Barstad and Schüller, 2011). Siler and Durran (2015) found, 
for instance, that wave reflection at the tropopause may either strengthen or weaken low-
level windward ascent, which in turn affects the amount and distribution of orographic 
precipitation. The outcome was found to depend on the ratio of the tropopause height to 
the vertical wavelength of the mountain waves. Since ICAR currently does not account for 
wave reflection, its implementation could therefore lead to improvements in this regard.”

RC: Table 1: Outline in caption where the uncertainty estimates come from (+/- 0.1).

AR: We added a short outline to the caption:

“List of weather stations used in this study sorted by their elevation. The table lists station number,
elevation z, latitude (lat), longitude (lon), name, average distance downwind of the main crest of 
the Southern Alps (Δ) based on westerly and northwesterly flow, mean annual precipitation P
with the standard deviation both calculated for the years where data was available at the 
respective weather station, fraction of convective precipitation in ERAI annual sum fcp, length of
the time series (l) and number of days removed due to missing entries or failed quality checks 
(dm). The superscript following the station name indicates the data provider:  NCD (1), NIWA (2) 
and University of Otago (3). Precipitation data for Larkins and Potts were lineary extrapolated to 
a full year. Δ was not considered for coastal weathers stations and no values were assigned for 
Mahanga and Larkins since they lie north and south, respectively, of the main alpine crest.”

RC: Figure 2: Are these MSE of the annual sums (Add to the caption)? Maybe add the mean values so 
the results can be put into perspective. 

AR: Figure 2 shows the average over all the MSE of P24h calculated at each alpine weather 
stations.



RC: Table 2: These are mm/day (e.g. RMSE (mm)), correct?

AR: Correct, we adjusted the units in the column headers for clarity, the header now looks like 
this:

Figure 5: 

RC: (a) NIWA (top-left) -> VCSR

AR: We exchanged the column header “NIWA” for “VCSR”

RC: (b) Maybe mean magnitude over land to panels?

AR: We considered the suggestion and decided not to add the mean magnitude over land to the 
panels. The reasons are that the mean magnitude over land is never specifically referenced or 
discussed in the text and that the panels mainly showcase the high resolution precipitation 
patterns. Adding text would, furthermore, conceal part of the patterns.

RC: Figure 6: Why do the no. samples (circles) differ among the various thresholds in HSS? Explain in 
the caption.

AR:  We added the following sentence to the caption of Figure 6 to explain the reason:

“At some weather stations no days with P24h > 25 mm and P24h > 50 mm were observed or 
simulated during certain seasons, therefore no HSS scores could be calculated.”
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Response to Reviewer 2
Abbreviations:

AR Author Response (Johannes Horak)

RC Reviewer Comment

RC: This manuscript assesses the added value of ICAR relative to coarse reanalysis for estimating 
precipitation in complex topography. Not yet widely evaluated, ICAR is a promising tool for a range of 
applications. The methods in this study are robust and the conclusions are important. The manuscript 
should be a valuable contribution to the literature.

AR:
We thank the reviewer for his or her time spent on providing valuable and important feedback to 
the manuscript. We carefully considered all points that were brought up and incorporated the 
appropriate changes to the manuscript. Please find our detailed responses below.

Correction to the manuscript independent of the RCs:
P5L8: We found that the list of fields contained in the forcing file was incomplete. We added the 
two missing fields, the sentence now reads:

“The assembled ICAR forcing file contains ERAI zonal and meridional winds U and V, potential 
temperature Θ, pressure p, specific humidity qv , cloud liquid water mixing ratio qc , cloud ice 
water mixing ratio qi and surface pressure p0 at each 6 h forcing time step and every grid point 
within the domain.”

P32L14: The list of employed open-source libraries was incomplete. We added the missing 
library. The sentence now reads: 

“numpy (van der Walt et al., 2011), pandas (McKinney et al., 2010), xarray (Hoyer and Hamman,
2017), matplotlib (Hunter, 2007), cartopy (Met Office, 2010) and salem (Maussion et al., 
2019).”

Comments
RC: 1. In terms of the manuscript structure, it seems a bit unusual to have a combined “Methods and 
Results” section (4). I can see why the manuscript was structured as it is, but I wonder if it could be 
rationalised at all. Could there be benefits from a more “traditional” separation of methods and results? 
For example, the major sections could go something like: 1. Introduction 2. Study Area and Data 3. 
Methods 3.1 ICAR Overview and Setup 3.2 Evaluation Strategy 3.3 Skill Scores and Significance Tests 
3.4 Flow Linearity (explaining how flow linearity and stability are calculated) 3.5 Weather Patterns 
(explaining dataset with figure of weather patterns) 4. Results (as currently structured but removing the 
methods now described in the previous section) 5. Discussion 6. Conclusions. This is just a possibility; 
there could be a better way. 

AR:



We agree that in this sense the structuring of the manuscript follows a more non-traditional 
approach. A separation of methods and results has its advantages, however, we are of the opinion 
that this format lends itself better to manuscripts that focus on one or two central methods. The 
manuscript in discussion, in comparison, introduces six different methods employed to investigate 
different aspects of the ICAR simulations. Here, combining methods and results allows for a more 
fluid reading experience while still enabling non-linear reading where readers may jump from 
method to method or result to result. This optimizes the logical flow by avoiding zig-zagging as 
suggested by Mensh, 2017.

RC: I would also suggest checking the manuscript for repetition and trying to minimise the amount of 
“referencing forward” (i.e. sometimes it is not necessary to say “X will be discussed in Section Y”).

AR: We checked the manuscript for the aforementioned repetitions and removed the forward 
referencing where possible.

P5L8: We removed the forward reference “(defined in Sect. 3)”

P7L16-17: We removed the forward reference “see Sections 4.7 and 4.8.”

P12L5-6: We removed the forward reference “The performance of individual stations is 
discussed separately in Sect. 5.”
P13L15-16:  We removed the forward reference “The potential factors contributing to the 
observed underestimations are discussed in Sect. 5.”
P27L12: We removed the forward reference “The performance of individual stations is 
discussed in Sect. 5.”

RC: 2. One specific point on structure is that the optimal model top height is stated in Section 2.3, before 
the results from the sensitivity test are presented. This should be avoided I think. It is already stated in the
relevant part of the results section (i.e. on model top sensitivity) that the remainder of the evaluation uses 
the optimal model top.

AR:

We agree and removed this forward reference. The last line of the paragraph now reads:

“Therefore, a sensitivity analysis was conducted to identify the optimal elevation of the 
model top for this study.”

RC: 3. Also regarding the model top sensitivity, it would be interesting to contextualise the variation in 
ICAR performance shown in Figure 2 by providing the equivalent MSE for ERAI. This could be as a 
horizontal line on Figure 2 or just stated in the text. I.e., even for the model tops leading to larger errors, 
do they still outperform ERAI overall?

AR:

Figure 2 shows the mean MSE of ICAR and ICARCP over all alpine weather stations. Indicating 
the mean MSE of ERAI over all alpine weather stations does not necessarily indicate whether 
ICAR, on average, outperforms ERAI. To highlight this we added an additional panel to Figure 2 
that shows the SSMSE averaged over all alpine weather stations for ICAR and ICARCP.



ICAR is able to outperform ERAI at model top settings of 1.5 km, 2.5 km and 4.0 km, while 
ICARCP additional shows added value over ERAI for a model top set at 5.7 km.

The updated Figure 2, the additional panel referenced above is panel b:

RC: 4. It is mentioned in the discussion (P29 L19-20) that higher model tops lead to lower precipitation. 
Does this apply across the full range of model tops tested?

AR:
The statement refers to the mean bias observed for simulations with a given model top at alpine 
weather stations and applies to model tops greater or equal to 1.5 km. The simulations with model 
tops at 2.5 km and 1.5 km are, on average, wetter than those with a model top at 4 km, while the 
0.7 km model top runs are, in that regard, similarly wet with respect to the 4.0 km simulations.

However, due to preliminary work outside of the scope of this article we suspect that the 
increased wetness associated with lower model tops is due to numerical artifacts. Further research 
is necessary to converge towards a definitive answer.

RC: Would there be any value in adding a second panel to Figure 2 showing mean bias for the different 
model tops? I.e. given that ICAR is generally low-biased for the Alpine stations, does a 2.5 km model top 
lead to reduced bias (even if the MSE is little different from 4 km)? Or does ICAR become high-biased 
with a 2.5 km top?

AR:



ICAR is, on average, too dry for all model top settings tested with respect to alpine weather 
stations. While simulations with 1.7 km and 2.5 km are wettest, preliminary work shows a strong 
indication that this behavior is due to numerical artifacts associated with the treatment of the 
model top. Furthermore, as indicated in the discussion (P29L26-27), it is currently not well 
understood why the precipitation decreases for higher model tops. Therefore, we are of the 
opinion that an additional panel showing the mean biases for different model tops would 
(currently) not be of added value.

RC: 5. In several places in the manuscript, results are discussed but the corresponding figures/tables are 
“not shown”. This includes the relationship between model top and precipitation magnitude mentioned 
above, as well as seasonal averages at Alpine station locations (P16 L13-18). The latter case I found 
confusing initially, as the ERAI seasonality is reasonable-ish in Figure 5 but criticised in the text based on
station locations (P16 L17-18). I would suggest considering whether some of the “not shown” 
figures/tables should be put into a supplement or whether references to them are necessary.

AR: While revising the manuscript we greatly reduced the amount of times secondary results are 
not shown. We added the corresponding Figures to the appendix and added references to them 
instead of the previously used “not shown”. The locations in the manuscript are:

P10L27, P16L14, P16L17, P27L7, P27L10, P30L2, P30L9

RC: 6. It may be useful to provide the season definitions used in Section 4.5 (i.e. which months).

AR: We added abbreviations of the months that are associated with each season to the second 
paragraph of Section 4.5 (P16L6-10) and the caption of Figure 5. Please note that the updated 
caption of Figure 5 includes an additional sentence due to another RC (orange, non-bold text):

“The seasonal variations of precipitation as derived from the VCSR data set (Fig. 5b-e) are best 
reproduced by ICARCP (Fig. 5l-o). However, the improvements over the corresponding ICAR 
patterns 5g-j) are small and the remainder of this paragraph applies to ICAR and ICARCP alike. 
When comparing VCSR and ICARCP the similarities are largest for winter (JJA, Fig. 5h and 
5m) and summer (DJF, Fig. 5e and 5o). The differences increase for the remaining seasons, with 
the Southern Alps being particularly affected. For autumn (MAM), VCSR shows the precipitation
as below average (Fig. 5b) while ICARCP indicates above average precipitation (Fig. 5l). For 
spring (SON), on the other hand, VCSR shows an increase in precipitation throughout the 
Southern Alps (Fig. 5d) but ICARCP shows the central part of the Southern Alps as drier than on 
average (Fig. 5n).”

Figure 5. The top four panels show patterns of P24h averaged over 2007–2016 for VCSR (left), 
ICAR (second column), ICARCP (third column) and ERAI (right) over the South Island of New 
Zealand and surrounding ocean. Rows two to five show seasonal deviations of the all-year average 
patterns, for autumn (MAM, second row), winter (JJA, third row), spring (SON, fourth row) and
summer (DJF, bottom). Each panel shows the coastline and the 1000 m MSL contour line of the 
topography. High resolution plots are available in Horak et al. (2018).

RC: 7. The panels in Figure 5 are quite small so it is difficult to make out much of the detail. The overall 
improvement of ICAR over ERAI is clear though. It would be interesting to see a version of the figure 
zoomed in on the Alpine range, but perhaps this could be in future work.



AR: We added higher resolution plots of all the patterns to the data repository 
(https://doi.org/10.5281/zenodo.1135131) and indicated this in the caption of Figure 5 by adding 
the sentence:

“High resolution plots are available in Horak et al. (2018).”
RC: 8. Figure 3b has a spelling error - “coastal”.

AR: We corrected the spelling error.

RC: 9. The boxplots for near-stable conditions in Figure 7c and 7d are quite different. What could be the 
reason for this?

AR: A question of Reviewer 1 led us to the discovery that some gridpoints were erroneously used 
for the flow linearity analysis. After redoing the analysis Figure 7c and 7d are more similar to each
other. However, even in the updated version it is evident that the spread of scores in the “near 
stable” category is much larger than that in “stable” conditions. This is potentially attributable to 
the kappa threshold employed to distinguish between near stable and stable atmospheric 
conditions. If the threshold is set low, days that could reasonably be classified as stable (by 
investigating potential temperature profiles, for instance) are moved to the near stable category, 
leading to higher scores there. This behavior is observed for all skill measures employed.

RC: 10. There are a few places where the wording and grammar could be a little bit tighter. For example,
sometimes “trend” is used when something like “pattern” might be better. There are other examples too, 
such as the first three sentences of the paragraph beginning on L15 on P20. The manuscript is generally 
fairly well written, but I would suggest that the authors check the wording and grammar throughout when 
making revisions.

AR: We reread the manuscript and, while making revisions, adjusted the text in cases where 
wording and grammar seemed problematic. See, for instance:

P3L27: We fixed a spelling error: “To avoid unstable atmospheric conditions present in the...”

P12L4: We fixed the grammar and spelling: “at this threshold ICARCP performs very similarly to 
ERAI, and that ICARCP does not improve on modeling the frequency of precipitation.”

P26L12: We exchanged “trend” for “behavior”

The paragraph starting at P20L15 now reads: “Of the 4018 days in the eleven-year study period, 
1847 fulfill the criteria stated above. A detailed overview of the distribution of these days 
among the three categories in dependence of κ is given in Table 3. The results from Table 3 ...”

RC: 11. In the abstract and discussion it is mentioned that ICAR can reduce MSE by up to 53%. If this is
the maximum reduction, what is the mean/median? This may be worth including to give the “overall” 
picture.

AR: We rephrased the sentence in the abstract and discussion. In the abstract the rephrased 
sentence now reads:

“Furthermore, ICAR is found to provide added value over its ERA-Interim reanalysis forcing data
set for alpine weather stations, improving mean squared errors (MSE) by up to 53 % and 30 % 
on median.”

https://doi.org/10.5281/zenodo.1135131


In the discussion the updated sentence now is:

“At alpine sites in complex topography ICARCP is then able to reduce mean squared errors in 
comparison to its ERAI forcing dataset by up to 53 % and 30 % on median.”

RC: 12. It could be mentioned again in the discussion/conclusion that a comparison of ICAR and WRF 
(or a similar model) might also be interesting for this study area. This might help us to understand some 
of the possible factors limiting ICAR performance discussed in Section 5. It would also give an idea of 
the relative performance gain from using WRF (if any) in a different climatic context to that tested in 
Gutmann et al. (2016).

AR: We agree that this might be of interest. However, ICAR is still a relatively new model. 
Preliminary work outside of the scope of this article gives us reason to suspect that other factors, 
such as numerical artifacts at the model top, might currently limit or influence the performance of 
ICAR. Before a meaningful comparison to a dynamic downscaling model can be made, it is 
necessary to develop a better understanding of these issues and how they can be overcome (or 
avoided) in future versions of ICAR.
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Response to Reviewer 3
Abbreviations:

AR Author Response (Johannes Horak)

RC Reviewer Comment

RC: Overview This well-written manuscript details a comparison between ERA-Interim and ICAR at 
generating precipitation over New Zealand’s south island. They find that ICAR adds value over ERA 
Interim at most alpine locations, but not at coastal stations. They additionally tease apart ICAR 
performance during different flow regimes (identified by the Froude number) and during different weather
regimes (identified through synoptic patterns). The work is useful and complete, and I have only minor 
comments, enumerated below.

AR:
We thank the reviewer for her or his time and the detailed comments and criticism of our 
manuscript! We reflected on each point and modified the manuscript accordingly, please find the 
detailed answers below!

Correction to the manuscript independent of the RCs:
P5L8: We found that the list of fields contained in the forcing file was incomplete. We added the 
two missing fields, the sentence now reads:

“The assembled ICAR forcing file contains ERAI zonal and meridional winds U and V, potential 
temperature Θ, pressure p, specific humidity qv , cloud liquid water mixing ratio qc , cloud ice 
water mixing ratio qi and surface pressure p0 at each 6 h forcing time step and every grid point 
within the domain.”

P32L14: The list of employed open-source libraries was incomplete. We added the missing 
library. The sentence now reads: 

“numpy (van der Walt et al., 2011), pandas (McKinney et al., 2010), xarray (Hoyer and Hamman,
2017), matplotlib (Hunter, 2007), cartopy (Met Office, 2010) and salem (Maussion et al., 
2019).”

Specific Comments
RC: P. 3, l. 27-29: During my first read through of the manuscript this sentence made me question how 
this replacement of unstable locations/times with weakly stable locations/times impacts ICAR’s 
performance (since it’s very unphysical). Some comment here or perhaps in the introduction about 
application of ICAR during unstable conditions (referring to section 2.6, which is how it is handled in this
manuscript), and how/where this factor limits ICAR’s use, is warranted.

AR: We agree that an analysis of how ICAR performs under unstable/near stable conditions is 
necessary. For this reason, we conducted a detailed analysis of ICAR performance in dependence 
of the flow regime and atmospheric stability in Section 4.6. To avoid unnecessary zig-zagging as 
suggested by Mensh (2017) we did not include a forward reference since the Abstract and 



Introduction both mention the conducted analysis and the corresponding results (P1L14 and 
P3L6).

We also corrected the erroneously given value of 10-7 s-1 at P3L29 for the lower limit of N. The 
correct value now shown in the manuscript is 3.2 10-4 s-1.

RC: P. 5, l. 10: ‘6 h h’ the second h is a mistake

AR: We removed the additional h

RC: P. 5, l. 21-24: I found the way this is notated to be somewhat confusing. I think the reason the 
authors are using the nomenclature ‘ICARcp’ to replace P(t) (i.e., ICAR precipitation added to ERA 
Interim convective precipitation regridded through bilinear interpolation to the 4km grid) is because it’s 
basically ICAR plus convective precipitation. But this seems more complicated than necessary – why not 
use P(t) and Pi(t) throughout the text? If the authors insist on keeping ICARcp and ICAR then they 
should use this nomenclature in equation 1 and include a sentence explaining the nomenclature after the 
equation.

AR: We employed the variables P(t), PCP(t) and PI(t) in equation (1) to conform to Journal 
guidelines where the use of multi-letter variables is discouraged where possible. (see Section 
Mathematical requirements, Symbols and Equations, index b). However, the nomenclature 
ICARCP and ICAR was chosen to allow a reader skipping parts of the introduction to immediately 
identify the data source of a time series or precipitation map. Additionally, due to the length of 
the manuscript, choosing the nomenclature ICARCP over P(t) and ICAR over PI(t) avoids having 
to reestablish the variable definition all over again to remind the reader of the meaning of the 
variable.

RC: P. 7 l. 12: ‘In case of the coastal weather stations,...’ is awkward.

AR: We rephrased the sentence. Please note that the corrected version includes another adaption 
due to a comment by reviewer 4 (orange, non-bold text). The sentence now reads: “At coastal 
weather stations, records from the New Zealand National Climate Database (NCD, 
https://cliflo.niwa.co.nz) were employed.”

RC: P. 8, caption of Table 1, last sentence: ‘north respectively south’ should read ‘north and south, 
respectively’

AR: We rephrased the sentence to: “Δ was not considered for coastal weathers stations and no 
values were assigned for Mahanga and Larkins since they lie north and south, respectively, of 
the main alpine crest.”

RC: P. 12, l. 4: ‘performs very similar’ should read ‘performs very similarly’

AR: We rephrased accordingly and fixed a spelling error in precipitation: “Since only small 
negative scores are found and the median score is 0.01 for all alpine stations, this indicates, that at 
this threshold ICARCP performs very similarly to ERAI, and that ICARCP does not improve on 
modeling the frequency of precipitation.”

RC: P. 13: Fig 3 panel b: coastal is misspelled in title.

AR: We corrected the spelling.



RC: P. 14, table 2 caption, last sentence, asterisk is misspelled.

AR: We corrected the spelling.

RC: P. 16, l. 16-17: It’s unclear to me exactly what this sentence is describing since the figure is not 
shown; does this mean that the amplitude of the seasonal cycle is too small in ICAR or more generally 
that ICAR underestimates climatological precipitation at some locations? More discussion is warranted 
and perhaps this figure should be included in the manuscript.

AR: 

We included an additional figure and rephrased for clarity. P16L4 now more specifically indicates 
that this paragraph is about the seasonal precipitation patterns, while the paragraph starting at 
P16L13 is concerned with results at the weather station level. Answering the reviewer’s questions: 
Both statements are true for the alpine weather stations investigated. On average ICARCP 
understimates the amplitude of the seasonal cycle and the climatological precipitation at the 
weather stations situated in the Southern Alps. However, in contrast to ERAI, which predicts 
spring to be the wettest season and autumn as the driest, ICARCP is able to reproduce the 
characteristics of the measured seasonal cycle (e.g., winter as the driest season and summer and 
spring similarly wet).

P16L4 now reads: “The seasonal variations of precipitation patterns as derived from the VCSR 
data set (Fig. 5b-e) are best reproduced by ICARCP (Fig. 5l-o).”

P16L13 now includes a reference to the additional Figure added to the Appendix instead of
‘not shown’: “Seasonal averages of daily accumulated precipitation  derived from 
measurements at the alpine weather stations show winter as the driest season, summer as the 
wettest and the transitional seasons in between (see Fig. A1).”

Additional Figure and caption:



RC: P. 16, l 23-24: Is there any reason to think that the correspondence in seasonal errors between ICAR
and ERA-I (i.e., that both have largest errors in summer and smallest in winter) is causal? That is, since 
ERA-Interim provides lateral boundary conditions for ICAR?

AR: While this is a possibility we are of the opinion that, at least for winter, this correspondence 
is mostly due to a characteristic of the mean squared error. E.g. since ICAR and ICARCP generally
underestimate measured precipitation it follows that the potential magnitude of the MSE is 
reduced for winter since it is the driest season. During summer, however, it seems feasible that 
convective events that are missed by ICAR (which cannot model convective precipitation) and by 
ERAI alike (which potentially misses them due to the coarse grid spacing) contribute to the 
increase. This would apply to ICARCP as well since it incorporates convective precipitation from 
ERAI.

RC: P. 17, Figure 5: masking the ICAR and ERAI values over the ocean would be less distracting (since 
there is no ‘truth’ over the ocean, anyways).

AR: While it is not possible to compare ICAR precipitation over the ocean to the VCSR, we still 
see value in showing the precipitation patterns over the ocean. It showcases the behavior of the 
model there, i.e. that precipitation is indeed generated even though there is no topography present.
To reference this behavior and the choice not to mask values above the ocean in the manuscript 
we added an additional sentence to the paragraph starting at P15L8:

“While above the ocean no data is available for the VCSR, the results clearly show that 
ICAR is able to generate precipitation with seasonal variation above the ocean where no 
topography is present (Fig. 5f-j).”

RC: P. 19, l. 11: What percentage of the crest of the southern Alps is over 1500m?

AR: If the elevations of all points used for the definition of the Alpine Crest in Figure 1 are 
extracted from the SRTM digital elevation model (3 arcsecond grid-spacing), approximately 97% 
of the crest lie above an elevation of 1500 m MSL.

RC: Based on Fig. 1 it seems closer to 1000m would be a somewhat more appropriate height to use in the
calculation of Froude number; 

AR: The average elevation of the Southern Alps is 1100 m MSL if the area east and west of the 
alpine crest up to a distance of 0.5° is averaged over (corresponding to the approximate width of 
the Southern Alps of 60 km referenced in Section 3.1).

RC: are the results pertaining to the Fr<1 and Fr>1 cases sensitive to this mountain height?

AR: Choosing a lower value for H would shift days from the Fr < 1 regime to the Fr >= 1 regime 
(see equation 4) and vice-versa for higher values of H. The observed characteristics of ICAR 
remain the same even if instead of H = 1500 m, H = 1000 m or H = 1750 m is chosen. However, 



for H = 1750 m the number of cases in the Fr >= 1 regime is too low to calculate meaningful 
scores.

RC: P. 25, second sentence in Fig 9 caption: This sentence is poorly worded.

AR: We reworded the first two sentences in the caption: “Box and whisker plot of SSMSE 
calculated for all alpine weather station in dependence of the synoptic weather pattern (x-axis; 
Kidson, 2000). The regime associated with each weather pattern is indicated by color 
shadings in the lower part of the plot.”

RC: P. 26, l. 12-13: This sentence is poorly worded.

AR: We rephrased and split the sentence in two: “Furthermore, at Ivory, the trend found in 
the measurements is correctly reproduced by ICARCP and ERAI. The absolute amounts of 
precipitation are, while underestimated, better modeled by ICARCP.”

RC: P. 29. L18-23: Can the authors speculate why there is this sensitivity to model top height?

AR: The authors are currently investigating this sensitivity and hope to present answers in a 
follow-up study. We currently speculate that the behavior may be caused by divergences and 
convergences in the forcing wind field (see Section 5. discussion P31L10-12) and, at lower model 
top settings, by numerical artifacts due to the way the model top is treated. However, further 
research is necessary.

RC: P. 29, L. 21: ‘estimation the model’ is missing ‘of’

AR: We inserted the missing ‘of’.

RC: P. 30, L. 9-13: This paragraph should be expanded for clarity (i.e., rather than saying ‘solution to 
issue (iv) it would be helpful to repeat the description of the issues).

AR: We restated issue (iv) in the referenced paragraph (P31L9-13) and added reference to the 
relevant Figures.

“At a model top setting of 4 km above topography, seeder-feeder interaction between 
synoptic clouds and orographically lifted moist air may mostly be eliminated. Increasing 
the model top is an apparent solution to this issue. However, the sensitivity study in Sect. 4.3 
showed, that this does not lead to a decrease in the MSE of ICAR or ICARCP (Fig. 2a), nor does 
it increase model skill for time series at the alpine weather stations (Fig. 2b).”

References
Mensh, B., & Kording, K. (2017). Ten simple rules for structuring papers. PLoS computational 
biology, 13(9), e1005619.



Response to Reviewer 4
Abbreviations:

AR Author Response (Johannes Horak)

RC Reviewer Comment

RC: I have not been able to complete a proper review of this manuscript due to other more pressing time 
commitments. In lieu of a full review, I have a few minor comments that can be easily addressed by the 
authors:

AR:

We thank the reviewer for the comments on the manuscript. We went through them and adapted 
the manuscript accordingly.

Correction to the manuscript independent of the RCs:
P5L8: We found that the list of fields contained in the forcing file was incomplete. We added the 
two missing fields, the sentence now reads:

“The assembled ICAR forcing file contains ERAI zonal and meridional winds U and V, potential 
temperature Θ, pressure p, specific humidity qv , cloud liquid water mixing ratio qc , cloud ice 
water mixing ratio qi and surface pressure p0 at each 6 h forcing time step and every grid point 
within the domain.”

P32L14: The list of employed open-source libraries was incomplete. We added the missing 
library. The sentence now reads: 

“numpy (van der Walt et al., 2011), pandas (McKinney et al., 2010), xarray (Hoyer and Hamman,
2017), matplotlib (Hunter, 2007), cartopy (Met Office, 2010) and salem (Maussion et al., 
2019).”

Specific Comments

RC: 1. The VCS gridded data set is a thin-plate spline based gridded observation set using a mean rain 
surface as a covariate. This surface is derived using "expert judgement" from observations and elevation, 
not from "physics-based regional climate modelling" as stated on line 3 page 7.

AR: We rephrased the corresponding sentence accordingly, it now reads:

“While the VCSR does not necessarily represent the actual distribution of precipitation (Tait et 
al., 2012), and may miss precipitation events (Tait and Turner, 2005), it serves as an 
approximation to an observational gridded dataset and is based on observations and expert 
judgement.”

RC: 2. For the NCD database, a link https://cliflo.niwa.co.nz could be included.



AR: We included a link to the NCD database. The sentence at P7L12 now reads: “At coastal 
weather stations, records from the New Zealand National Climate Database (NCD, 
https://cliflo.niwa.co.nz) were employed. “

RC: 3. The caption for Figure 4 has the elevation of Albert Burn as 120m it should be 1280m.

AR: We corrected the caption of Figure 4.
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Abstract. The coarse grid spacing of global circulation models necessitates the application of climate downscaling
::::::::::
downscaling

:::::::::
techniques to investigate the local impact of a changing global climate. Difficulties arise for data sparse regions in complex

topography which are computationally demanding for dynamic downscaling and often not suitable for statistical downscaling

due to the lack of high quality observational data. The Intermediate Complexity Atmospheric Research Model (ICAR) is a

physics-based model that can be applied without relying on measurements for training and is computationally more efficient5

than dynamic downscaling models. This study presents the first in-depth evaluation of multi-year precipitation time series

generated with ICAR on a 4× 4km2 grid for the South Island of New Zealand for the
::
an

:
eleven-year period,

:::::::
ranging

:
from

2007 to
:::
until

:
2017. It focuses on complex topography and evaluates ICAR at 16 weather stations, eleven of which are situated

in the Southern Alps between 700m MSL and 2150m MSL. ICAR is diagnosed
:::::::
assessed with standard skill scores and the

effect of model top elevation, topography, season, atmospheric background state and synoptic weather patterns on these scores10

are investigated. The results show a strong dependence of ICAR skill on the choice of the model top elevation, with the

highest scores obtained for 4km above topography. Furthermore, ICAR is found to provide added value over its ERA-Interim

reanalysis forcing data set for alpine weather stations, improving mean squared errors (MSE)
::
by

:
up to 53%

:::
and

:::::
30%

:::
on

::::::
median. It performs similarly during all seasons with an MSE minimum during winter, while flow of higher linearity and

atmospheric stability were found to increase skill scores. ICAR scores are highest during weather patterns associated with15

flow perpendicular to the Southern Alps and lowest for flow parallel to the alpine range. While measured precipitation is

underestimated by ICAR, these results show the skill of ICAR in a real-world application, and may be improved upon by

further observational tuning
:::::::::
calibration

:
or bias correction techniques. Based on these findings ICAR shows the potential to

generate downscaled fields for long term impact studies in data sparse regions with complex topography.
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1 Introduction

Global circulation models (GCM) generate atmospheric datasets on spatiotemporal grids that, especially in complex topogra-

phy, are too coarse to investigate the local impact of a changing global climate. To bridge the gap between local and GCM

scales, a variety of downscaling methods and techniques exist (Christensen et al., 2007), roughly characterizable as dynamic

downscaling (e.g. Hill, 1968; Rasmussen et al., 2014), statistical downscaling (e.g. Klein et al., 1959; Benestad et al., 2008) or5

as intermediate complexity downscaling (e.g. Sarker, 1966; Smith and Barstad, 2004; Gutmann et al., 2016).

While dynamic downscaling results in a self-consistent set of atmospheric fields, the computational cost required for the fine

spatial and temporal grid spacing is high, especially for long-term simulations or sensitivity studies. The drawback of statistical

downscaling is the associated requirement of high quality measurements for model training, rendering it less applicable to data

sparse regions. Even more problematic, as soon as observation-based training or tuning
::::::::
calibration

:
is applied, the assumption10

of stationarity is introduced for statistical downscaling and, to a lesser extent, to dynamic downscaling as well, which may not

hold under a changing climate (Maraun, 2013; Gutmann et al., 2012). Both classes are, overall, therefore not ideally suited

for the long-term study of the regional effects of a changing global climate. These problems are particularly amplified in

glacierized areas, which are often located in hard-to-access, remote regions and complex topography. For such regions weather

station deployment and maintenance is often impractical or too expensive, resulting in a scarcity of continuous measurements15

and inapplicability of statistical downscaling approaches. In case of dynamic downscaling the correct representation of the

influence of complex topography on local weather and climate leads to a high computational cost. This cost is further increased

by the long response times of glaciers to climatic changes, which are on the order of several decades (Raper and Braithwaite,

2009). Process-based glacier models therefore require long-term information about the state of the atmosphere above the glacier

to investigate the impact of a changing global climate.20

The Intermediate Complexity Atmospheric Research model (ICAR; Gutmann et al., 2016) offers a computationally frugal

and physics-based alternative that does not rely on measurements with the linear theory of orographic precipitation
:::::
linear

::::::::
mountain

::::
wave

::::::
theory as its theoretical foundation. In comparison to other downscaling approaches of intermediate complexity

(e.g. Sarker, 1966; Rhea, 1977; Smith and Barstad, 2004; Georgakakos et al., 2005), ICAR is a more general atmospheric model

that requires fewer simplifying assumptions about the state of the atmosphere, such as spatial and temporal homogeneity of25

the background flow.
:::::::::::
Furthermore,

::
in

:::::::
contrast

::
to

:::
the

:::::
linear

::::::
theory

::
of

:::::::::
orography

::::::::::
precipitation

:::::::::::::::::::::::::::
(LOP; Smith and Barstad, 2004)

:
,
:::::
ICAR

::::::::
considers

::
a
:::::::
detailed

:::::::
vertical

:::::::
structure

:::
of

:::
the

::::::::::
atmosphere

:::
and

::::::::
employs

:
a
::::::::

complex
:::::::::::
microphysics

:::::::
scheme

::
as

::::::::
opposed

::
to

:::
the

:::::::::::
characteristic

:::::::::
timescales

:::
for

:::::
cloud

:::::
water

::::::::::
conversion

:::
and

:::::::::::
hydrometeor

::::::
fallout

::
of

::::
the

::::
LOP.

:::::
With

::::::
regards

:::
to

:::::::::
dynamical

:::::::::::
downscaling,

::
in

::::::::
particular

:::
the

:::::::
Weather

::::::::
Research

::::
and

::::::::::
Forecasting

::::::
model,

:::::::::::::::::::
Gutmann et al. (2016)

::::
have

::::::
shown

:::
that

::::::
ICAR

::::
may

:::::
reduce

:::
the

:::::::
required

::::::::::::
computational

::::
time

:::
for

::::
one

::::::::
simulated

::::
year

:::
for

:
a
::::::
domain

::
in
:::
the

:::::::
Western

::::::
United

::::::
States

::
by

:
a
::::::
factor

::
of

::
at

::::
least30

::::
140.

At the time of writing, ICAR has been evaluated in an idealized hill experiment, as well as by comparing monthly precipita-

tion fields generated by ICAR for Colorado, USA, with WRF output and an observation-based gridded dataset (Gutmann et al.,

2016). Furthermore, ICAR was employed to generate downscaled atmospheric fields as input for a glacier mass balance model
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to simulate meltwater runoff in the western Himalayas (Engelhardt et al., 2017). Recently Bernhardt et al. (2018) applied ICAR

to investigate differences in precipitation patterns and amounts for a domain in the European Alps due to
:::::::
emerging

:::::
from the

choice of the microphysics scheme and associated parameters. However, Gutmann et al. (2016) evaluated ICAR for season

totals and based on one year of precipitation data, while Bernhardt et al. (2018) only investigated a 7 month period.

This study conducts the first multi-year evaluation of ICAR, and compares ICAR precipitation fields to data from individual5

weather stations in different terrains. As a starting point for investigating the added value of ICAR, New Zealand is chosen. Here

the precipitation regime is strongly orographically influenced by the Southern Alps (Sturman and Wanner, 2001). The island

is isolated from major land masses and moist air from the surrounding ocean is advected toward the orographic ridge of the

Southern Alps at a predominantly right angle. Measurements from 16 weather stations within the study domain, eleven of which

are alpine stations located in complex topography, are used to quantify added value with regards to ERA-Interim interpolated10

to station location. Furthermore the model performance is diagnosed with respect to season, background atmospheric state and

synoptic weather patterns. Average and seasonal precipitation patterns are compared to an operational gridded rainfall data set.

Additionally, the influence of the choice of the model top height onto the downscaled results is discussed.

2 ICAR - description and setup

2.1 Overview15

ICAR (Gutmann et al., 2016) is a three-dimensional atmospheric model based on linear mountain wave theory, which predicts

:
.
::
As

:::::
input

::::::
ICAR

:::::::
requires

:
a
::::::

digital
::::::::
elevation

::::::
model

:::
and

::
a
:::::::
forcing

::::::
dataset

::::
with

::::
4-D

::::::::::
atmospheric

::::::::
variables

:::::::::
generated

:::
by,

:::
for

:::::::
instance,

:
a
:::::::
coupled

:::::::::::::::
atmosphere-ocean

::::::
general

:::::::::
circulation

::::::
model

::
or

::
an

::::::::::
atmospheric

::::::::
reanalysis

:::::
such

::
as

:::::::::::
ERA-Interim.

::::
The

::::::
forcing

::::::
dataset

:::::
should

::
at
:::::

least
::::::
contain

:::
the

:::::::::
horizontal

::::
wind

:::::::::::
components,

::::::::
pressure,

::::::::::
temperature

:::
and

:::::::::::
water-vapor

::::::
mixing

:::::
ratio,

::::
with

:::
the

::::::::
possibility

::
to

::::::::::
additionally

:::::::
include

::::::::::
hydrometeor

::::::
fields,

::::::::
incoming

::::
long

:::
and

:::::::::
short-wave

::::::::
radiation

::
or

:::
the

::::
skin

::::::::::
temperature

::
of

:::::
water20

::::::
bodies.

:::::
ICAR

:::::::
employs

::::::
linear

::::::::
mountain

::::
wave

::::::
theory

::
to

::::::::
calculate

:
the wind field based on the topography and the background

state of the atmosphere (Sawyer, 1962; Smith, 1979). Within this transient
:::
from

:::
the

::::::::::
topography

::::::::::
information

:::
and

:::
the

:::::::::
horizontal

::::
wind

::::::::::
components

::
to

:::::
avoid

::
a

::::::::
numerical

:::::::
solution

::
of

:::
the

::::::::::::
Navier-Stokes

::::::::
equations

::
of
:::::::
motion,

:::
the

::::
core

::
of

:::::::::
dynamical

:::::::::::
downscaling

::::::
models.

:::::
With

::::
this wind field, ICAR numerically advects atmospheric quantities, such as heat

::::::::::
temperature

:
and moisture as

supplied by a
:::
the forcing dataset at the model

::::::
domain

:
boundaries. In its standard setup ICAR employs

::::::
applies the Thompson25

microphysical scheme (Thompson et al., 2008), a double moment scheme in cloud ice and rain ,
::
and

::
a
:::::
single

:::::::
moment

:::::::
scheme

::
for

:::
the

:::::::::
remaining

::::::::
quantities

:
to compute the mixing ratios of water vapor, cloud water, rain, cloud ice, graupel and snow.

The classic approach of linear theory assumes a steady and horizontally uniform stable background state with first order

perturbations caused by, for instance, the topography. It
:::::::
mountain

:::::
wave

:::::
theory

:::::::
predicts

:::
the

:::::
wind

::::
field

:::::
based

::
on

:::
the

::::::::::
topography

:::
and

:::
the

::::::::::
background

::::
state

::
of

:::
the

:::::::::::
atmosphere.

:::::::::::::::::::::::
(Sawyer, 1962; Smith, 1979)

:
.
::::
With

:::
the

::::::::::
background

::::
state

:::::::
known,

::
its

:::::::::::
perturbation30

:::
due

::
to

::::::::::
topography

::
is

:::::
given

::
by

::
a

::
set

:::
of

::::::::
analytical

::::::::
equations

:::::::::::::::::::::::
(Barstad and Grønås, 2006).

:::::::::
However,

:::::
linear

:::::
theory

:
does not take

into account interactions among waves or waves and turbulence, nor transient
:::
and

:::::::::
non-linear phenomena such as time-varying
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wave amplitudes, gravity wave breaking or low level
:::::::
low-level

::::::::
blocking

:::
and

:
flow splitting. A basic discussion of the limitations

implicit to these assumptions can be found in Nappo (2012). Additionally, especially for large domains, a uniform background

state may not be an acceptable approximation.

ICARovercomes the latter drawback by calculating the perturbations for a predefined combination of atmospheric background

states for the entire domain and storing the results in a lookup table. Then, for each volume element in the domain, the5

perturbation corresponding to its background state , which
::
In

::::::
ICAR,

:::
the

::::::::::
atmospheric

::::::::::
background

::::
state

:
is given by the forcing

data set, is selected from this table by interpolating between the closest matches in the lookup table. This assembly routine is

carried out for every forcing timestep, yielding
::::::
dataset.

::::
This

:::::
yields

:
a time sequence of steady state wind fields between which

ICAR interpolates linearly. A detailed description of this process
:::
the

:::::
model

:
is given in Gutmann et al. (2016).

To avoid unstable atmospheric condition
::::::::
conditions

:
present in the forcing dataset or caused by the microphysics, ICAR10

enforces stability by ignoring imaginary values of the Brunt-Väisälä frequency and substituting them with a minimum positive

value of 10−7s−1
:::::::::::
3.2 · 10−4s−1. In the version of ICAR employed in this study, the reflection of mountain waves at the interface

of atmospheric layers is neglected.

2.2 Model setup

ICAR can be run without relying on measurements for observation-based tuning
:::::::::
calibrations. Therefore, it is of particular15

interest for data-absent, mountainous or glacierized regions (e.g. Pepin et al., 2015). This study aims at quantifying a baseline

performance of ICAR with default settings as it would be applied for a region where no data
::::::::::
observations

:
are available.

For individual sites, improvement is then possible by using data based tuning
:::::::::
performing

::::
data

:::::
based

:::::::::
calibration, as routinely

performed in regional climate model based downscaling. However, the model top of ICAR could not be adopted from default

settings (Horak et al., 2019), see Sect. 2.3. The ICAR configuration used in this study (configuration file available as download,20

see Horak et al., 2019) employs the wind field computation process as described in Sect. 2.1 and by Gutmann et al. (2016),

an upwind advection scheme to transport quantities within the wind field and the Thompson microphysics scheme. Coupling

between the surface and the atmosphere is neglected, i.e., no turbulent surface fluxes of heat, moisture and momentum are

considered. Atmospheric fields were downscaled to a 4× 4km2 horizontal grid and to an hourly time step.

2.3 Model top25

For dynamic downscaling models the position of the model top is a critical parameter. A higher model top implies, in principal,

a more faithful representation of atmospheric processes and physics that in turn leads to an increased computational cost while

a lower setting has the opposite effect. In light of these requirements the ICAR default setting of 5.7km above topography

as used in Gutmann et al. (2016) is comparatively low. Preliminary studies indicated that for a model top at 5.7km only a

small added value can be obtained for the South Island of New Zealand. Additionally, these preliminary studies showed that30

different choices for the model top elevation influenced the precipitation patterns and amounts throughout the study domain,

leading to significant changes in model skill. With the sensitivity study described in Sect. 4.3
:::::::::
Therefore,

:
a
:::::::::
sensitivity

:::::::
analysis

:::
was

:::::::::
conducted

::
to

:::::::
identify the optimal elevation of the model top for this studywas determined as 4km above topography.

:
.
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2.4 Digital elevation model

The model domain in this study, as depicted in Fig. 1, encompasses the entire South Island of New Zealand and a small section

of the North Island. The digital elevation model (DEM) employed was upscaled from the 1′× 1′ ETOPO1 Ice (Amante and

Eakins, 2009) DEM to 4× 4km2, corresponding to 205× 225 gridpoints. Since peaks represented by only one grid point

increase the wave energy in the high frequency part of the spectrum, leading to unphysical atmospheric perturbations, the5

topography was smoothed by a 3× 3 moving window algorithm (Guo and Chen, 1994, p.34). A similar type of smoothing,

which is common when using the weather research and forecasting pre-processing system, was performed in previous studies

employing ICAR (Gutmann et al., 2016; Engelhardt et al., 2017).

2.5 Forcing data and reference

In this study, ERA-Interim reanalysis data (ERAI; Dee et al., 2011) are used as the forcing data set for ICAR. Reanalysis data10

are obtained from computationally expensive state-of-the-art general circulation model re-forecasts constrained by quality-

controlled observations with a variational data assimilation procedure. Therefore, reanalysis data are of a particular relevance

for data-scarce high mountain regions around the globe, where the application of solely interpolation-based gridded historical

data sets is problematic. ERAI have
:::::::
employs

:
a horizontal grid spacing of 0.75 o× 0.75 o (globally), corresponding to approx-

imately 81× 110km2 within the study domain(defined in Sect. 3), and extends to the 0.1hPa pressure level in the vertical.15

The assembled ICAR forcing file contains ERAI zonal and meridional winds U and V , potential temperature Θ, pressure p,

specific humidity qv ,
:::::
cloud

:::::
liquid

:::::
water

::::::
mixing

::::
ratio

:::
qc,

:::::
cloud

:::
ice

:::::
water

::::::
mixing

:::::
ratio

::
qi and surface pressure p0 at each 6h h

forcing time step and every grid point within the domain.

ERA interim reanalysis data were also used as ICAR forcing in the study of Bernhardt et al. (2018). Bernhardt et al. (2018),

however, evaluated only the precipitation sum over a seven month period. They emphasize the importance of mountain weather20

station networks to allow for a more detailed evaluation of ICAR. Gutmann et al. (2016) used the North American Regional

Reanalysis (NARR), which has a 32km grid spacing (Mesinger et al., 2006). Engelhardt et al. (2017) use output from the

Norwegian Earth System Model (NorESM), downscaled to a grid spacing of 25km by the regional climate model REMO, as

ICAR input for a simulation period from 2006 to 2099. In this study, ERAI are preferred over regional reanalysis data sets

because of their global availability and thus more widespread applicability.25

2.6 Convective precipitation

The ICAR configuration for this study, as described in Sect. 2.2, is able to model orographic precipitation and, at least in part,

precipitation driven by the synoptic scale. To account for convective precipitation, convective precipitation from the ERAI

reanalysis
:::::
ERAI

:::::
(field

:::::
name:

:::
cp,

:::::::::
parameter

::::
ID:

:::::
143), PCP, is resampled to the ICAR timestep and bilinearly interpolated in

space to the sites of interest and then added to the ICAR precipitation time series PI:30

P (t) = PI(t) +PCP(t), (1)
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where in the following the P (t) time series is referred to as ICARCP and PI(t) as ICAR.
:::
This

::
is

:
a
::::::::
common

::::::::
technique

:::
that

::::::
allows

::
to

::::::
include

::::
types

::
of
:::::::::::
precipitation

:::
not

::::::::
accounted

:::
for

::
by

:::
the

:::::::::::
downscaling

:::::
model

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Jarosch et al., 2012; Weidemann et al., 2013; Paeth et al., 2017; Roth et al., 2018)

:
.
:::::
Table

:
1
::::::
shows

:::
the

:::::
mean

::::::
annual

:::::::::::
precipitation

::
at

::::
each

::::
site

:::
for

:::::::
ICARCP::::

and
::::::
ERAI,

::
as

::::
well

::
as

::::
the

::::
ratio

::
of

::::::
ERAI

:::::::::
convective

::::::::::
precipitation

::
to

:::::
ERAI

::::
total

:::::::::::
precipitation.

5

test regions

Figure 1. The South Island of New Zealand. Shown are the coast (black line), the topography above an elevation of 1000mMSL (gray

shading), glacierized areas (blue shading)and
:
, the approximate location of the main alpine crest (red line)

:::
and

::
the

:::::::
location

::
of

:::
test

::::::
regions

::::::
(dashed

::::::
outlines)

::::::::
northwest

:::
and

::::::::
southeast

::
of

::
the

::::::::
mainland

::::
used

:
to
::::::::

determine
::::
flow

:::::::
linearity. The alpine weather stations considered in the

evaluation of this study are indicated by white triangles, while coastal weather stations are represented by orange disks. The numbers next to

the markers are ordered from lowest to highest weather station elevation and may be used to look up additional information for each station

in Table 1.
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3 Study Domain and Observational Data

3.1 Overview

This study focuses on the Southern Alps on the South Island of New Zealand located in the southwestern Pacific Ocean. The

mountain range is
::::::::
Southern

::::
Alps

:::
are

:
oriented southwest-northeast and runs

::
run

:
almost parallel to the western coast of the

island. It is
::::
South

::::::
Island.

:::::
They

:::
are

:
approximately 800km long and 60km wide, extends

:::::
extend

:
across a latitude range from5

41o S to 46o S and consists
:::::
consist

:
of a series of ranges and basins (Barrell et al., 2011). Of New Zealand’s

::
the

:
3144 glaciers

::
of

::::
New

:::::::
Zealand

:
with a surface area larger than 10−2 km2, all except for 18 lie within the Southern Alps (Chinn, 2001). The

domain and glacierized areas are depicted in Fig. 1.

New Zealand’s climate is characterized as humid and maritime with prevailing westerly winds. The average precipitation

patterns are influenced by the Southern Alps, which act as a topographic barrier for these moist winds (Chinn, 2001). The10

resulting orographically influenced precipitation regime is characterized by a precipitation maximum of up to 14m yr−1 on the

western flanks close to the Main Divide of the Southern Alps. Along the west coast on average 5m yr−1 of precipitation are

observed while the plains east of the Main Divide receive less than 1m yr−1 (Griffiths and McSaveney, 1983; Henderson and

Thompson, 1999). Additionally, the strong westerly winds in the Southern Alps may lead to significant spillover, distributing

precipitation to leeward slopes (Chater and Sturman, 1998)15

3.2 Obervational Data

Precipitation time series from the weather stations in complex topography were supplied by the National Institute of Water and

Atmospheric Research of New Zealand (NIWA) and the University of Otago, New Zealand (Cullen and Conway, 2015). In case

of the
::
At

:
coastal weather stations, records from the New Zealand National Climate Database (NCD

:
, https://cliflo.niwa.co.nz)

were employed. The individual time series extend over an eleven year period, with the shortest time series covering 0.8 years20

and the longest 11 years. Details concerning the weather stations, accumulated annual precipitation and time series length are

listed in Table 1. Furthermore, Table 1 includes an average downwind distance ∆ from the main alpine crest of the Southern

Alps. It is calculated with regards to westerly and northwesterly flow, the wind directions associated with the largest mean

precipitation, see Sections 4.7 and 4.8.

Different instruments were employed to measure rainfall at the weather stations in the study region. At Christchurch, Inver-25

cargill and Kaikoura precipitation measurements were carried out with a tipping-bucket rain gauge, while different gauges were

employed at the remaining coastal stations: A standard rain gauge at Hokitika and a drop gauge at Wellington. Precipitation

at Mount Brewster was measured with a tipping-bucket rain gauge and data post-processing is described in detail by Cullen

and Conway (2015). Cullen and Conway (2015) identified the period for reliable precipitation data at the site as extending

approximately from the end of December until the end of April, during which it was adjusted for gauge undercatch. Outside30

of this period, Cullen and Conway applied a scaling function to extrapolate from rain gauge data at a site 30km southwest

of Brewster Glacier at 320m MSL. Precipitation at the alpine NIWA stations was measured with tipping-bucket rain gauges.

Heating systems were not installed, however, a wind shield was in place at Mueller Hut. The raw data available from the NCD

7
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Table 1. List of weather stations used in this study sorted by their elevation. The table lists station number, elevation z, latitude (lat), longitude

(lon), name, average distance downwind of the main crest of the Southern Alps (∆) based on westerly and northwesterly flow, mean annual

precipitation P̄
::::
with

::
the

:::::::
standard

:::::::
deviation

::::
both

::::::::
calculated

::
for

:::
the

::::
years

:::::
where

:::
data

::::
was

:::::::
available

:
at
:::
the

::::::::
respective

::::::
weather

:::::
station, fraction

of convective precipitation in ERAI annual sum fcp, length of the time series (l) and number of days removed due to missing entries or failed

quality checks (dm). The superscript following the station name indicates the data provider: NCD (1), NIWA (2) and University of Otago

(3). Precipitation data for Larkins and Potts were lineary extrapolated to a full year. ∆ was not considered for coastal weathers stations and

no values were assigned for Mahanga and Larkins since they lie north respectively
::
and

:
south,

::::::::::
respectively, of the main alpine crest.

No. z (m MSL) lat (o) lon (o) Name ∆ (km) P̄ (m yr−1) fcp (1) l (yr) dm (d)

measured ICARCP ERAI

Coastal Stations

1 0 -46.42 168.33 Invercargill1 1.0 ± 0.1 1.7 ± 0.1 1.1 ± 0.1 0.47 11.0 1

2 4 -41.33 174.80 Wellington1 0.8 ± 0.1 1.1 ± 0.1 0.8 ± 0.1 0.67 11.0 4

3 37 -43.49 172.53 Christchurch1 0.5 ± 0.1 0.8 ± 0.1 0.7 ± 0.1 0.78 11.0 1

4 39 -42.72 170.98 Hokitika1 2.8 ± 0.2 3.2 ± 0.3 1.6 ± 0.2 0.29 4.7 3

5 105 -42.42 173.70 Kaikoura1 0.6 ± 0.1 1.1 ± 0.1 0.7 ± 0.1 0.80 5.8 68

Alpine Stations

6 738 -42.95 171.57 Arthur Pass2 7 4.4 ± 0.5 2.3 ± 0.2 1.3 ± 0.1 0.27 6.5 9

7 765 -43.74 170.10 Aoraki/Cook2 7 4.1 ± 0.6 2.8 ± 0.3 1.5 ± 0.1 0.17 10.5 2

8 1280 -44.38 168.93 Albert Burn2 11 2.9 ± 0.2 1.6 ± 0.2 2.0 ± 0.2 0.28 3.2 2

9 1390 -43.13 170.91 Ivory2 -2 7.3 ± 0.5 5.7 ± 0.8 1.6 ± 0.1 0.41 6.4 22

10 1650 -44.08 169.43 Brewster3 0 6.0 ± 0.4 2.4 ± 0.2 1.7 ± 0.1 0.15 5.3 10

11 1655 -42.88 171.53 Philistine2 0 4.8 ± 0.6 4.1 ± 0.4 1.4 ± 0.1 0.42 5.4 6

12 1752 -43.29 171.00 Raikai2 12 2.1 ± 0.2 2.3 ± 0.2 1.5 ± 0.1 0.32 6.7 10

13 1818 -43.72 170.06 Mueller Hut2 3 5.1 ± 1.2 3.4 ± 0.4 1.6 ± 0.1 0.34 3.2 10

14 1925 -44.88 168.49 Larkins2 - 1.1 1.0 1.9 0.30 0.8 2

15 1955 -42.02 172.65 Mahanga2 - 2.2 ± 0.1 1.8 ± 0.1 1.2 ± 0.1 0.40 5.3 14

16 2128 -43.50 170.93 Potts2 35 2.0 0.9 1.6 0.41 0.9 2
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is provided by the Meteorological Service of New Zealand, NIWA and, in three cases, unidentified observing authorities. For

this study, all NIWA and NCD input data were subject to basic plausibility checks. They identified and flagged data points

exceeding 20 standard deviations from the mean, with negative values, or with excessive temporal persistence. Marked entries

were then manually reviewed and removed from the dataset if physically unreasonable values were found. The thus quality

controlled data were then used for further processing and resampled to daily accumulated precipitation P24h. Days that had gaps5

in their original time series were not considered for further analysis. The number of missing days is documented in Table 1.

To compare simulated precipitation patterns across the South Island of New Zealand to an observational dataset, the NIWA

virtual climate station gridded daily rainfall product (VCSR; Tait and Turner, 2005) is employed. The VCSR is an observa-

tion based data set interpolated to a horizontal grid spacing of 3 ′ or approximately 5km. It scales rainfall at high elevations

and remote locations using data from mesoscale model simulations. While the VCSR does not necessarily represent the actual10

distribution of precipitation (Tait et al., 2012), and may miss precipitation events (Tait and Turner, 2005), it serves as an approx-

imation to an observational gridded dataset and is based on observations and physics-based regional climate modeling
:::::
expert

::::::::
judgement.

4 Methods and Results

4.1 Evaluation Strategy15

In this study, ICARCP time series (see Sect. 2.6) are evaluated in terms of the added value over total precipitation from the ERAI

reanalysis. Added value in this context is used as in the investigation of regional climate model based downscaling, where it

is defined as the comparative performance of the regional climate model output to the global driving data (e.g. Di Luca et al.,

2015). The aim is not a downscaling method intercomparison (e.g. ICAR versus WRF; Gutmann et al., 2016). Similar studies

with a focus on quantifying the added value over the driving input have been performed for full dynamic downscaling (for a20

review see Torma et al., 2015). This way, our study serves as guidance whether at all, and, if so, under which conditions ICAR

can add value over ERAI with a particular focus on complex terrain.
::::
The

:::
aim

::
is
:::
not

::
a
::::::::::
downscaling

:::::::
method

::::::::::::::
intercomparison

::::::::::::::::::::::::::::::::::::::
(e.g. ICAR versus WRF; Gutmann et al., 2016)

:
.

The available data are grouped by selected criteria that are expected to affect the added value, in particular the topographic

complexity, seasons, flow linearity and the synoptic situation. Flow linearity is characterized by the inverse non-dimensional25

mountain height, in the following referred to as Froude number, calculated for test volumes upstream of the weather stations.

The synoptic situation is determined by weather patterns as employed in an operational weather pattern classification scheme.

4.2 Skill Scores and Significance Test

Mainly two scores are employed to quantify the added value of ICARCP over ERAI: the mean squared error (MSE) based skill

score SSMSE and the Heidke skill score HSS. The MSE based skill score (Wilks, 2011b, Chapter 8) is given by30

SSMSE = 1− MSE
MSEr

, (2)
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where MSE is the MSE of ICARCP P24h and MSEr is the MSE of P24h of the reference model (here, ERAI). This way, SSMSE

can be interpreted as percentage improvement (reduction of error) by ICARCP relative to ERAI.

The contingency table based Heidke Skill score (HSS; Wilks, 2011b, Chapter 8) is used to analyze events that are charac-

terized by either their occurrence or absence, such as, for instance, P24h exceeding a given threshold, and whether the tested

model is able to correctly diagnose the occurrences in comparison to a reference model. Thresholds investigated in this study5

are 1mm, 25mm and 50mm for 24h accumulated precipitation.
:::
The

:
HSS is defined as

HSS(r) =
r− rr

1.0− rr
(3)

where r is the proportion correct of ICARCP and rr that of the ERAI reference model. The proportion correct is given by

r = (a+ d)/n with n= a+ b+ c+ d. In this context a is the amount of times the event was forecast and observed to occur

(hits), b the number of events that were forecast but not observed (false hits), c the number of events that were not forecast but10

observed (false alarm or missed event), d the amount of times an event was neither forecast nor observed (correct misses) and

the total number of cases n.

The scores defined by equations 2 and 3 both yield values in the interval (−∞,1] and condense the information on whether

the tested model performs better with respect to a skill measure than a reference model into one number. A model exactly

reproducing the measurements corresponds to a score of 1, a score of 0 is achieved if the model performs equally well as the15

reference model, and lower scores are found if the model is outperformed by the reference model.

Moving block bootstrap (MBB) is employed to determine the significance of the skill scores (Wilks, 2011a, Chapter 5). The

procedure is similar to ordinary bootstrapping with the distinction that, instead of n individual observations, blocks of length L

are resampled. For the time series considered in this study values of L range between 1 and 9, with the autocorrelation structure

of the time series preserved within each block, and different blocks independent of each other. Each skill score is recalculated20

for 10000 MBBs of the original data, yielding a sampling distribution of the respective score. If the fifth percentile of this

distribution is positive, the score obtained from the original time series is considered significant.

4.3 Model top sensitivity study

The results of a sensitivity study used to determine the optimal position of the model top by varying the number of vertical

model levels are summarized in Fig. 2. Simulations for six different model top elevations were run for a two year reference25

period (2014-2015) and the MSE was calculated for the ICAR and ICARCP time series at all alpine weather stations. The

reference period was chosen as the time slice when a maximum of observational data was available, with measured time series

for nine out of eleven alpine weather stations (except for Potts and Larkins) being available during this period. The model top

setting yielding the lowest average MSE for the alpine stations was considered optimal.

The lowest average MSE for ICAR was found for a model top elevation of 2.5km above topography, while for ICARCP the30

minimum is at 4.0km, see Fig. 2
:
a. Setting the model top higher or lower quickly deteriorates model performance for ICAR

and ICARCP alike. Potential reasons for the observed behavior are discussed in Sect. 5. Furthermore, the sensitivity analysis

indicates that the majority of skill is already present in the ICAR time series. Nonetheless, the inclusion of ERAI convective

10



precipitation, as described in Sect 2.6, results in an additional reduction in MSE for the ICARCP time series at all simulated

model top settings. The results are similar when, instead of the mean MSE, the mean SSMSE is investigated (not shown
::
see

::::
Fig.

::
2b). The mean skill maxima for ICAR and ICARCP are again found at 2.0km and 4.5km

:::::
2.5km

:::
and

::::::
4.0km

:
respectively, with

ICARCP showing
::::::::
achieving

:
the highest mean skill of 0.24. All following analyses, unless stated otherwise, therefore focus on

the ICARCP time series obtained with a model top set to 4.0km above topography.5

:::
The

:::::
mean

::::
MSE

::::
over

:::
all

:::::
alpine

:::::::
weather

::::::
stations

::
is

:::::
almost

::::::::
constant

::::
when

:::::::::
calculated

:::::
either

::
for

:::
the

::::::::
reference

:::::
period

:::::::::::
(2014-2015),

::
the

::::
full

:::::
study

::::::
period

::::::::::
(2007-2017)

:::
or

:::
the

:::::::
reduced

:::::
study

::::::
period,

::::::
where

:::
the

::::::::
reference

::::::
period

::
is

::::::::
excluded

::::
from

:::
the

::::
time

::::::
series

:::::::::
(2007-2013

::::
and

:::::::::::
2015-2017),

:::
see

::::
Fig.

:::
2c.

::::
This

::::::
result

:::::::
indicates

::::
that

:::
the

:::::::::
reference

:::::
period

:::
is

:::::::::::
representative

:::
of

:::
the

::::
full

:::::
study

::::::
period.
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Figure 2. The average
::
(a) MSE

:::
(b)

:::::
SSMSE of ICAR and ICARCP time series from simulations for the reference period 2014-2015 at alpine

weather stations as a function of the chosen model top (in km above topography). Connecting lines serve as guides to the eye.
:::

Panel
:::
(c)

:::::
shows

::
the

:::::::::
distribution

::
of

:::
skill

:::::
scores

:::
for

::::::::
simulations

::::
with

:
a
:::::
model

::
top

:::
set

:::::
4.0km

:::::
above

::::::::
topography

::
at

:::::
alpine

::::::
weather

::::::
stations

::
for

:::
the

:::::::
reference

:::::
period

:::::::::
(2014-2015),

:::
the

:::
full

::::
study

::::::
period

:::::::::
(2007-2017)

:::
and

:::
the

::::::
reduced

::::
study

:::::
period

:::::
where

:::
the

:::::::
reference

:::::
period

:::
has

::::
been

:::::::
removed

::::
from

::
the

::::::
dataset

::::::::
(2007-2013

:::
and

::::::::::
2016-2017).

:::
The

:::::
lower

:::::::
boundary

::
of

::::
each

:::
box

:::::::
indicates

:::
the

:::
25th

::::::::
percentile,

:::
the

:::::
upper

:::::::
boundary

:::
the

:::
75th

::::::::
percentile

:::
and

:::
the

:::::
dashed

::::::::
horizontal

:::
line

:::
the

::::
mean.

::::::::
Whiskers

::::
show

::
the

::::::::
minimum

:::
and

::::::::
maximum

:::::
values

::
of

::
the

::::
data

:::
set.

4.4 Overall Performance of ICAR for Alpine and Coastal Weather Stations10

The performance of ICARCP at individual stations is presented in Table 2 and summarized in Fig. 3. For the alpine weather

stations, values of SSMSE calculated across the entire period when data is available (see Table 1 for details) indicate a median

SSMSE of 0.3, equivalent to a 30% reduction of error on median relative to ERAI for locations in complex alpine topography.
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Six out of eleven alpine stations have significant scores above zero, three are negative. Regarding the topographic situation (see

Fig. 1), six alpine weather stations are downwind of the main alpine ridge, with respect to the predominant wind directions. The

results indicate a negative correlation between SSMSE and the average distance downwind to the main alpine crest (∆), with the

weather stations farthest leeward (Albert Burn, Raikai and Potts) exhibiting, apart from Mahanga, the lowest scores observed.

No ∆ value was assigned to Mahanga since it is located to the north of the alpine crest and situated approximately 80km5

downwind from the coast. The topography to its west and northwest up until the coast is constituted by scattered mountain

ranges with elevations between 1000m and 1800m.

In terms of HSS at alpine stations, median scores above 0.14 are found for the P24h thresholds 25mm and 50mm respec-

tively, see Fig. 3b. The only weather stations with comparatively large negative scores are Mahanga and Raikai, the former

of which is located downstream of mountainous terrain and the latter the second farthest downwind of the main alpine crest.10

For days with P24h exceeding 1mm significant added value of ICARCP over ERAI is only found at two out of eleven loca-

tions. Since only small negative scores are found and the median score is 0.01 for all alpine stations, this indicates, that at this

threshold ICARCP performs very similar
::::::::
similarly to ERAI, and that ICARCP does not improve on modeling the occurrence

of precipitaton
::::::::
frequency

::
of

:::::::::::
precipitation. Table 2 contains additional information about the relative abundance of threshold

exceedances at each weather station. The performance of individual stations is discussed separately in Sect. 5.15

A direct comparison of measured and simulated P24h time series at the alpine stations Albert Burn and Ivory is shown in

Fig. 4. These two sites were selected since among alpine stations for the entire period SSMSE is lowest at Albert Burn and

highest at Ivory. During the year 2015 (second half shown) the skill difference is largest, with SSMSE yielding −0.39 and 0.58

respectively. The two weather stations are separated by a distance of about 210km and at almost the same elevation, with

Albert Burn at 1280m MSL and Ivory at 1390m MSL. However, Albert Burn is located 11km downstream of the main alpine20

ridge, while Ivory lies approximately 2km upstream of it according to the definition in Sect. 3.2. At both sites ICAR reproduces

the features of the measured precipitation time series, but in the case of Albert Burn it underestimates measured precipitation

amounts on average by almost 50% and, even at Ivory where ICAR performs best in terms of SSMSE, precipitation is still

underestimated by approximately 22%. The potential factors contributing to the observed underestimations are discussed in

Sect. 5.25

Figure 3b shows that for the coastal weather stations, no added value could be found as quantified by SSMSE and HSS for

the thresholds P24h > 25mm and P24h > 50mm. Slightly positive values for HSS at P24h > 1mm were found only for the

two sites Christchurch and Kaikoura, both of which are located along the east coast of the South Island of New Zealand. Since

ICAR is based on linear mountain wave theory this result is expected, since improvements for P24h are mainly deemed to

manifest themselves in complex topography. In the following, only stations in complex topography are considered.30
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Figure 3. Box and whisker plots of all assessed skill scores (x-axis) obtained for ICARCP with ERAI as reference. All skill scores were

calculated using the entire P24h time series available at each weather station for (a) alpine weather stations and (b) coastal weather stations.

The lower boundary of the box indicates the 25th percentile, the upper boundary the 75th percentile and the horizontal line the median.

Whiskers show the minimum and maximum values of the data set. The circles show the individual values of each skill measure for all

stations.
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Table 2. Time series characteristics for all the weather stations as well as a detailed overview of performance metrics for both ICARCP and

ERAI obtained for each individual site. Empty cells indicate that less than ten days were available for the calculation of the corresponding

score. An asteriks
::::::
asterisk (*) preceding a positive score denotes that the score is not significant with regards to the criteria laid out in Section

4.2.

No Name length (yr) days with P24h above (%) SSMSE (1) RMSE (mm day −1) bias (mm day −1) HSS (1)

1mm 25mm 50mm ICARCP ERAI ICARCP ERAI 1mm 25mm 50mm

Coastal Stations

1 Invercargill 11.0 42 0.8 0.0 -2.16 5 3 1.9 0.2 -0 -2.76 -

2 Wellington 11.0 29 1.3 0.2 -0.54 5 4 0.7 -0.0 -0.37 -0.27 -

3 Christchurch 11.0 21 0.7 0.0 -1.01 4 3 0.6 0.5 0.1 -0.39 -

4 Hokitika 4.7 46 10.3 2.7 -0.81 12 9 1.0 -3.2 -0.07 -0.33 -0.9

5 Kaikoura 5.8 23 1.2 0.3 -1.79 8 4 1.6 0.2 0.07 -1.96 -

Alpine Stations

6 Arthur Pass 6.5 43 16.1 7.8 0.42 18 24 -5.8 -8.6 *0.04 0.34 0.17

7 Aoraki/Cook 10.5 41 14.0 6.1 0.46 17 23 -3.4 -6.8 0.07 0.35 0.34

8 Albert Burn 3.2 49 11.2 3.0 -0.23 10 9 -3.6 -2.5 -0.03 -0.05 0.09

9 Ivory 6.4 53 20.4 13.2 0.53 30 44 -5.0 -16.4 -0.01 0.4 0.36

10 Brewster 5.3 45 25.0 11.9 0.21 22 24 -10.4 -11.9 -0.01 0.18 0.1

11 Philistine 5.4 52 14.3 7.6 0.43 21 28 -1.0 -8.8 -0.02 0.2 0.18

12 Raikai 6.7 44 6.8 2.2 *0.05 9 10 0.4 -1.9 *0.01 -0.14 *0.02

13 Mueller Hut 3.2 51 14.1 7.6 0.4 25 32 -4.0 -9.4 0 *0.11 0.3

14 Larkins 0.8 37 2.3 0.3 *0.3 5 6 -0.2 2.3 0.13 - -

15 Mahanga 5.3 43 7.2 2.7 -0.04 13 13 -1.4 -2.9 *0.04 -0.15 -0.15

16 Potts 0.9 39 5.9 2.1 -0.07 15 15 -3.0 -1.0 *0.11 0 -
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Figure 4. Observed and simulated example time series of P24h during the second half of 2015 at (a) Albert Burn and (b) Ivory. At these

sites the lowest and highest SSMSE were achieved, during 2015, SSMSE is −0.39 for Albert Burn and 0.58 for Ivory. Both sites are 210km

apart and located at elevations of 120m MSL
::::::::::
1280m MSL

:
and 1390m MSL respectively. While Albert Burn lies approximately 11km

downstream of the main alpine ridge, Ivory is located 1km upstream relative to the predominant westerlies and northwesterlies.

4.5 Seasonal Variations of ICAR Performance

Simulations with ICAR show the seasonal variation of precipitation across the South Island. Figure 5 illustrates the 10 year

mean daily precipitation P24h and seasonal differences to it as computed with four different methods: The
:::::::::
observation

::::
and

:::::::::::::
expert-judgment

::::::
based VCSR, ICAR, ICARCP and ERAI. For the weather station data in this study skill measures were

calculated for each season individually and are shown in Fig. 6.5

Overall, the average precipitation pattern of VCSR (Fig. 5a) is best captured by ICARCP (Fig. 5k). While ICAR and ICARCP

patterns are very similar, the former is, when compared to VCSR, too dry to the east of the Southern Alps, particularly between

approximately 44o S and 45o S. However, VCSR indicates larger amounts of precipitation, along the south-west and west coast

of the South Island, which are underestimated by ICAR and ICARCP. Furthermore VCSR shows a precipitation maximum in the

Southern Alps between 43–44o S with approximately 20–40mm day−1. While this maximum is found in ICAR and ICARCP10

patterns, it is confined to a smaller area and shifted westward, located along the 1000m MSL contour line in Fig. 5f and Fig.

5k. Nonetheless, the characteristics of the west-east precipitation profile observed on the South Island of New Zealand (e.g.

Henderson and Thompson, 1999) are captured by ICAR and ICARCP. This is, to some extent, also the case for ERAI (Fig. 5p),

albeit with much lower maxima and flatter west-east gradients.
:::::
While

:::::
above

:::
the

::::::
ocean

::
no

::::
data

::
is

::::::::
available

::
for

:::
the

:::::::
VCSR,

:::
the
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:::::
results

::::::
clearly

:::::
show

:::
that

::::::
ICAR

::
is

::::
able

::
to

:::::::
generate

:::::::::::
precipitation

::::
with

:::::::
seasonal

::::::::
variation

:::::
above

:::
the

:::::
ocean

::::::
where

::
no

::::::::::
topography

:
is
:::::::
present

::::
(Fig.

::::
5f-j).

:

The seasonal variations of precipitation
:::::::
patterns as derived from the VCSR data set (Fig. 5b-e) are best reproduced by

ICARCP (Fig. 5l-o). However, the improvements over the corresponding ICAR patterns 5g-j) are small and the remainder of

this paragraph applies to ICAR and ICARCP alike. When comparing VCSR and ICARCP the similarities are largest for winter5

(
:::
JJA, Fig. 5h and 5m) and summer (

::::
DJF,

:
Fig. 5e and 5o). The differences increase for the remaining seasons, with the Southern

Alps being particularly affected. For autumn
::::::
(MAM), VCSR shows the precipitation as below average (Fig. 5b) while ICARCP

indicates above average precipitation (Fig. 5l). For spring
:::::
(SON), on the other hand, VCSR shows an increase in precipitation

throughout the Southern Alps (Fig. 5d) but ICARCP shows the central part of the Southern Alps as drier than on average (Fig.

5n). ERAI, in comparison to VCSR, lacks the fine grid spacing needed to resolve local effects of the topography. However, the10

patterns roughly capture the seasonal variations of precipitation across the South Island although at a much lower magnitude

(Fig. 5q-t).

Seasonal averages of daily accumulated precipitation P24h(se) derived from measurements at the alpine weather stations

show winter as the driest season, summer as the wettest and the transitional seasons in between (not shown
::
see

::::
Fig.

::::
A1).

P24h(se) values as simulated by ICARCP also correctly show winter as the driest season, autumn in between and summer as15

the wettest season, with spring as wet as summer in ICARCP. However, P24h(se) values derived from ICARCP underestimate

seasonal averages derived from measurements by up to 37%(not shown). ERAI on the other hand is not able to reproduce this

pattern in the seasonal averages derived from measurements at all. Here, spring is the wettest season and autumn the driest.

Added value of ICARCP in terms of SSMSE is found for spring, summer and autumn with median values greater than 0.36.

For a model based on linear theory, a better performance may be expected during the winter half of the year, when convective20

available potential energy is lower and convective events are rarer. This is not reflected in the median of SSMSE for winter,

which is the lowest of all seasons with 0.08 and has the largest spread of values (see Fig. 6a). However, the seasonal variation

of the mean squared error (RMSE) for ICARCP shows a minimum during the winter season, see Fig. 6b. This, nonetheless,

is the case for ERAI as well, resulting in the lowest RMSEs of ERAI during winter compared to the other seasons. Since the

RMSE decrease during winter is larger for ERAI than it is for ICARCP, this results in a correspondingly lower value of SSMSE25

in comparison to the other seasons. For HSS the 1mm threshold shows almost no seasonal variation with low median scores

of less than 0.05 during all seasons. At the higher thresholds the pattern is different. For P24h > 25mm the highest scores

are found during autumn and summer with the lowest scores during the remaining seasons. At P24h > 50mm the seasonal

variation is stronger and shows less spread among the stations, with the highest median score during winter and summer and

the lowest scores during the transitional seasons. While ICAR most consistently provides added value at higher thresholds, site30

specific improvements are observed even at P24h > 1mm.
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Figure 5. The top four panels show patterns of P24h averaged over 2007–2016 for VCSR (left), ICAR (second column), ICARCP (third

column) and ERAI (right) over the South Island of New Zealand and surrounding ocean. Rows two to five show seasonal deviations of the

all-year average patterns, for autumn (
:::::
MAM,

:
second row), winter (

:::
JJA,

:
third row), spring (

::::
SON,

:
fourth row) and summer (

:::
DJF,

:
bottom).

Each panel shows the coastline and the 1000m MSL contour line of the topography.
::::
High

::::::::
resolution

:::
plots

:::
are

:::::::
available

::
in

::::::::::::::
Horak et al. (2019)

.
:
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Figure 6. Panel (a) shows values of SSMSE and HSS (from left to right) for all seasons (colors of the boxes) and panel (b) the root mean

squared errors RMSE of ICARCP and ERAI for all alpine stations. Each box and whisker plot is associated with a season, indicated by

box color, and a skill measure (x-axis). The lower boundary of each boxplot indicates the 25th percentile, its upper boundary the 75th

percentile and a black line the median. Whiskers show the minimum and maximum values of the data set. Circles on top of the boxes show

the individual values of each skill measure for all stations.
::
At

:::::
some

::::::
weather

::::::
stations

::
no

::::
days

::::
with

:::::::::::
P24h > 25mm

:::
and

:::::::::::
P24h > 50mm

::::
were

::::::
observed

::
or
::::::::
simulated

:::::
during

:::::
certain

:::::::
seasons,

:::::::
therefore

::
no

::::
HSS

:::::
scores

::::
could

::
be

::::::::
calculated.
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4.6 Sensitivity of ICAR performance to upstream flow linearity

As a model that is based on linear theory, ICAR is expected to perform best in cases where linear theory is a valid approximation

of the atmospheric flow at the sites of interest. An indicator of whether this is the case or not is the non-dimensional mountain

height (e.g. Smith, 1980), from here on referred to as Froude number F :

F =
Un

NH
. (4)5

Here Un denotes the horizontal wind speed perpendicular to the Southern Alps, N the Brunt-Väisälä frequency and H an

assumed homogenous ridge height of 1500m characterizing the Southern Alps. Values of F equal or larger than unity indicate

linear flow, while values of F closer to zero point towards non-linearity (Smith, 1980).

In order to derive Un andN , two volumes upstream of the west and east coast were defined, from which the properties of the

flow at an angle of 90±20o to the Southern Alps were extracted from ERAI daily averages. They are located 200km northwest10

and southeast of the west and east coast of the South Island, respectively to minimize the effect of the ERAI topography on the

flow. Each volume is oriented parallel to the corresponding coast and is about 200km wide, 1000km
::::::
500km long and 1500m

high, each containing 22 ERAI grid points. For northwesterly flow, properties were extracted from the volume to the northwest

of the western coast, and for southeasterlies from the volume southeast of the eastern coast.

Following the approach of Reinecke and Durran (2008), the Brunt-Väisälä frequency and wind speed perpendicular to the15

Southern Alps were calculated with the averaging method for each ERAI gridpoint in the volumes:

N =
1

H

H∫
0

N(z)dz (5)

Un =
1

H

H∫
0

Un(z)dz, (6)

where N and Un are the averages of the Brunt-Väisälä frequency and wind speed perpendicular to the Southern Alps respec-

tively, weighted by the thickness of the vertical levels. For a relative humidity RH below 90% the dry Brunt-Väisälä frequency20

was employed in equation (5), while for RH larger or equal to 90% the moist Brunt-Väisälä frequency Nm (Emanuel, 1994)

was used:

N2 =g
d lnθ

dz
, (7)

N2
m=

1

1 + qw

{
Γm

d

dz

[
(cp + clqw) lnθe

]
−
[
clΓm lnT + g

]dqw
dz

}
. (8)

Here g is the acceleration due to gravity, T the temperature, θ the potential temperature, θe the equivalent potential temperature,25

Γm the saturated adiabatic lapse rate, cp and cl the specific heats at constant pressure of dry air and liquid water, qs the saturation

mixing ratio, ql the liquid water mixing ratio and the total water content qw = qs + ql.

F was then calculated from the weighted averages ofN and Un at all grid points showing stable atmospheric conditions. The

imaginary part of the weighted average of the Brunt-Väisälä frequencyN i, was used as an indicator of whether the atmosphere
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at an ERAI grid point was stably stratified. For N i below a threshold κ the stratification was considered stable, while N i

larger or equal to κ was classified as near-stable. The nomenclature ”near-stable” is chosen over ”unstable” since vertical

potential temperature profiles indicated that the nonzero imaginary part of N i in the large majority of cases is caused by a

thin unstable layer close to the ocean surface, not representative of the conditions above and with a negligible effect on flow

linearity. To investigate the dependence of the results on the threshold choice, the value of κ is varied between 25 · 10−5 s−15

and 600 · 10−5 s−1
::::::::::::
375 · 10−5 s−1 in steps of 25 · 10−5 s−1. If more than half of the grid points in an upstream volume showed

near-stable conditions, flow for this day was classified accordingly. Otherwise the day was marked as having stable atmospheric

flow with an average Froude number F . Days when the volume to the northwest and the volume to the southeast both showed

flow towards the Southern Alps were excluded from the analysis. This procedure allowed to categorize all remaining days in

the eleven-year study period into days when atmospheric conditions upstream of the weather stations were either (i) near-stable10

(N i ≥ κ), (ii) stable with flow of low linearity (F < 1) or (iii) stable with flow of high linearity (F ≥ 1). All data from alpine

weather stations were then grouped by these categories and skill scores calculated to analyze ICAR performance with regard

to the atmospheric background state.

Of the 4018 days in the eleven-year study period, 3887 fulfill criteria (i) to (iii) specified aboveand depending on the choice

of κ a different number of days is assigned to each category
::::
1847

:::::
fulfill

:::
the

::::::
criteria

::::::
stated

:::::
above. A detailed overview over15

::
of the distribution of

::::
these

:
days among the three categories in dependence of κ is given in Table 3. The results from Table 3

summarized in Fig. 7 show, that stable atmospheric conditions and Froude numbers larger or equal to unity lead to an increase

in median scores for sites in complex topography. This behavior is observed for SSMSE where the score median increases

from 0.34 to 0.50
:::
0.33

::
to
:::::
0.58 and, for P24h > 25mm and P24h > 50mm in case of HSS. For P24h > 1mm the trend is less

pronounced and depends much more on the choice of κ. The score maximum in Fig. 7b of 0.5 for stable atmospheric conditions20

with F ≥ 1 was found to be non-significant (see Table 3) according to the criteria in Sect. 4.2. The spread of scores indicated

by the whiskers in Fig. 7 is discussed separately in Sect. 5
:::::::::
maximum

::::::
median

:::::
score

::
is

:::::
found

:::
for

:::::
stable

:::::::::
conditions

::::
and

::::::
F < 1,

::::
with

::
the

::::::
F ≥ 1

::::::
regime

::::
even

:::::::
yielding

:
a
:::::::
negative

:::::::
median

::::
score. Notably the analysis shows that ICARCP not only provides added

value over ERAI during stable days with high flow linearity, but during near-stable days and stable days with low flow linearity

as well.25
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Table 3. Skill measures calculated for the three categories of atmospheric flow (near-stable, stable with F < 1 and stable with F ≥ 1) and

number of days pertaining to each category in percent in dependence of κ. An asterisk preceding a score indicates that it was found to be

non-significant by applying the criteria defined in Sect. 4.2.

:
κ
:::::::::
(10−5 s−1)

::
25

: ::
50

: ::
75

: ::
100

: ::
125

: ::
150

: ::
175

: ::
200

: ::
275

: ::
300

: ::
375

:

days in each category (%)

:::
days

:::::::::
near-stable

:::
75.4

: ::
63

: :::
48.9

: :::
33.1

: :::
19.6

: :::
13.1

: ::
6.7

: ::
3.7

: ::
1.4

: ::
1.2

: ::
0.7

:

:::
days

::::::
stable,

:::::
F < 1

:::
21.6

: :::
32.3

: :::
44.3

: ::
58

: :::
70.3

: :::
76.3

: :::
81.8

: :::
84.5

: :::
86.2

: :::
86.4

: :::
86.9

:

:::
days

::::::
stable,

:::::
F ≥ 1

::
2.9

: ::
4.7

: ::
6.8

: ::
8.9

: ::
10

: :::
10.5

: :::
11.5

: :::
11.8

: :::
12.4

: :::
12.4

: :::
12.4

:

scores for near-stable days

:::::
SSMSE :::

0.33
: :::

0.34
: :::

0.29
: :::

0.22
: ::::

*0.27
: :::

0.32
: :::

0.43
: ::

0.5
: :::

0.34
: :::

0.35
: :::

-0.2
:

::::
HSS

::::::::::
P24h > 1mm

::::
*0.01

: ::::
*0.03

: ::::
*0.04

: ::::
*0.02

: ::::
*0.01

: :::
-0.02

: :::
-0.05

: :::
-0.03

: :::
-0.08

: :::
-0.11

:
-
:

::::
HSS

:::::::::::
P24h > 25mm

:::
0.17

: :::
0.13

: ::::
*0.04

: ::::
*0.01

: :::
-0.02

: :::
-0.08

: :::
*0.1

: ::::
*0.11

: :::
*0.1

: ::::
*0.12

:
-
:

::::
HSS

:::::::::::
P24h > 50mm

:::
0.17

: :::
0.12

: ::::
*0.11

: ::::
*0.07

: ::::
*0.12

: ::::
*0.21

: :::
0.33

:
-
:

-
:

-
:

-
:

scores for stable days with F < 1

:::::
SSMSE :::

0.49
: :::

0.47
: :::

0.47
: :::

0.47
: :::

0.47
: :::

0.46
: :::

0.46
: :::

0.46
: :::

0.47
: :::

0.47
: :::

0.46
:

::::
HSS

::::::::::
P24h > 1mm

:::
-0.02

: ::::
*0.03

: ::::
*0.02

: ::::
*0.03

: ::::
*0.02

: ::::
*0.03

: ::::
*0.03

: ::::
*0.03

: ::::
*0.03

: ::::
*0.03

: ::::
*0.03

:

::::
HSS

:::::::::::
P24h > 25mm

:::
0.41

: :::
0.38

: :::
0.38

: :::
0.37

: :::
0.37

: :::
0.36

: :::
0.36

: :::
0.36

: :::
0.36

: :::
0.36

: :::
0.36

:

::::
HSS

:::::::::::
P24h > 50mm

:::
0.33

: :::
0.32

: :::
0.32

: :::
0.31

: :::
0.31

: ::
0.3

: ::
0.3

: ::
0.3

: :::
0.31

: :::
0.31

: :::
0.31

:

scores for stable days with F ≥ 1

:::::
SSMSE :::

0.62
: ::

0.6
: :::

0.59
: :::

0.59
: :::

0.57
: :::

0.57
: :::

0.57
: :::

0.57
: :::

0.58
: :::

0.58
: :::

0.58
:

::::
HSS

::::::::::
P24h > 1mm

:::
-0.4

: :::
-0.25

: :::
-0.08

: :::
-0.07

: :::
-0.07

: :::
-0.07

: :::
-0.09

: :::
-0.09

: :::
-0.09

: :::
-0.09

: :::
-0.09

:

::::
HSS

:::::::::::
P24h > 25mm

:::
0.62

: :::
0.57

: :::
0.49

: :::
0.51

: ::
0.5

: ::
0.5

: :::
0.49

: :::
0.49

: :::
0.49

: :::
0.49

: :::
0.49

:

::::
HSS

:::::::::::
P24h > 50mm

::
0.5

: :::
0.51

: :::
0.47

: :::
0.45

: :::
0.44

: :::
0.45

: :::
0.44

: :::
0.44

: :::
0.45

: :::
0.45

: :::
0.45

:

near-stable days used for HSS score calculation (%)

:::
with

:::::::::::
P24h > 1mm

:::
29.4

: :::
21.9

: ::
17

: :::
12.7

: ::
8.3

: ::
6.3

: ::
3.6

: ::
2.3

: :
1
: ::

0.9
:

-
:

:::
with

::::::::::::
P24h > 25mm

::
9.1

: ::
6.3

: ::
4.8

: ::
3.5

: ::
2.5

: :
2
: ::

1.3
: ::

1.1
: ::

0.7
: ::

0.6
:

-
:

:::
with

::::::::::::
P24h > 50mm

::
4.2

: ::
2.9

: ::
1.9

: ::
1.3

: ::
0.9

: ::
0.7

: ::
0.5

:
-
:

-
:

-
:

-
:

stable days with F < 1 used for HSS score calculation (%)

:::
with

:::::::::::
P24h > 1mm

:::
16.5

: :::
23.8

: :::
30.3

: :::
38.2

: ::
44

: :::
46.3

: :::
49.3

: :::
50.6

: :::
51.5

: :::
51.7

: :::
52.2

:

:::
with

::::::::::::
P24h > 25mm

:
9
: ::

12
: :::

14.8
: :::

18.2
: :::

20.5
: :::

21.3
: :::

22.6
: :::

23.1
: :::

23.5
: :::

23.5
: :::

23.8
:

:::
with

::::::::::::
P24h > 50mm

::
5.4

: ::
6.9

: ::
8.3

: :::
10.1

: :::
11.4

: :::
11.7

: :::
12.4

: :::
12.7

: :::
12.9

: :::
12.9

: :::
13.2

:

stable days with F ≥ 1 used for HSS score calculation (%)

:::
with

:::::::::::
P24h > 1mm

::
2.8

: ::
4.5

: ::
6.3

: ::
8.2

: ::
9.3

: ::
9.6

: :::
10.4

: :::
10.7

: :::
11.2

: :::
11.2

: :::
11.2

:

:::
with

::::::::::::
P24h > 25mm

::
2.4

: ::
3.6

: ::
4.8

: ::
6.2

: ::
7.1

: ::
7.3

: ::
7.8

: :
8
: ::

8.5
: ::

8.6
: ::

8.5
:

:::
with

::::::::::::
P24h > 50mm

::
1.9

: :
3
: ::

3.8
: ::

4.8
: ::

5.5
: ::

5.7
: ::

6.1
: ::

6.2
: ::

6.6
: ::

6.7
: ::

6.6
:
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Figure 7. Dependence of SSMSE and HSS at alpine stations on atmospheric stability and the Froude number regime, calculated for all

available data for each value of κ (see Table 3). SSMSE is shown in (a) and HSS for thresholds (b) P24h > 1mm, (c) P24h > 25mm and

(d) P24h > 50mm. The x-axis indicates atmospheric stability and Froude number regime. The lower boundary of each boxplot indicates the

25th percentile, its upper boundary the 75th percentile and a black line the median. Whiskers show the minimum and maximum values of

the data set.

4.7 Weather Pattern Based Evaluation of ICAR

Kidson (1994a) developed a daily weather pattern classification scheme for New Zealand based on 24h mean sea-level pressure

fields. For the underlying cluster analysis
:
,
::::::::::::::
Kidson (1994a)

:::::::
employed

:
the NCEP/NCAR 40-year reanalysis dataset (Kalnay

et al., 1996) between January 1958 and June 1997 was employed.
:::::
1997. This analysis yielded twelve synoptic weather patterns

(Kidson, 2000) associated with three regimes: Trough, Zonal and Blocking. The Trough regime is characterized by troughs5

crossing New Zealand and above average precipitation countrywide; the Zonal regime by strong zonal flow to the south and

highs to the north with milder conditions in the south; and the Blocking regime by highs in the south leading to a dryer

southwest but wetter northeast. On average about 38% of days are classified as belonging to the Trough regime, 25% to the
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Zonal regime and 37% to the Blocking regime. Figure 8 gives an overview of the twelve synoptic weather patterns defined

for New Zealand and the associated regime. An operational pattern-classification of each day since 1948 is available from the

National Institute of Water and Atmospheric Research of New Zealand (NIWA).
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Figure 8. Synoptic weather patterns and their associated regimes for New Zealand. Each panel lists the pattern identifier and its relative

frequency in brackets next to it, while the contour lines depict the geopotential height (m) at 1000hPa. Reproduced from Kidson (2000),

copyright Royal Meteorological Society.
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Furthermore, these weather patterns have been linked to deviations of quantities, such as precipitation, from the climatological

mean (Kidson, 1994b, 2000). For instance, during the HW pattern precipitation is below average at all weather stations, while

during the TNW, T, HE and W patterns, when westerlies and northwesterlies dominate and orographic lifting in the Southern

Alps is favored, precipitation at all alpine weather stations is above average, see, for example, Sect. 4.8. This allows for

the investigation of whether a downscaling model is able to represent these departures correctly, offering a link between the5

synoptic situation and local weather anomalies.

Figure 9 shows a distinct dependence of SSMSE on the synoptic weather pattern. Highest median scores with values above

0.29 in terms of SSMSE are achieved for the weather patterns TNW, T, H and W. Three of these patterns (TNW, T and W)

are associated with distinct westerly and northwesterly flow, facilitating orographic lifting along the Southern Alps. However,

the HE pattern, for which similar conditions may be expected, only yields a median SSMSE of 0.15. This comparatively small10

median value is due to very low scores found for the three weather stations Potts, Raikai and Mahanga. Raikai and Potts

are farthest downwind of the main alpine ridge and Mahanga is the weather station farthest downwind of the coast with

approximately 80km of mountainous terrain in between, where downwind is as defined in Sect. 3.2. Particularly low median

scores are found for the patterns HW and NE, where flow parallel to the Southern Alps dominates. Consistent with the results

from Sect. 3, no added value of ICARCP over ERAI was found in terms of HSS for P24h > 1mm, even though there is a small15

variation with weather pattern (not shown). For the higher thresholds not enough data were available to calculate HSS for every

weather pattern.
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Figure 9. Box and whisker plot of SSMSE calculated for all alpine weather station in dependence of the synoptic weather pattern

(Kidson, 2000)
::::::::::::::::
(x-axis; Kidson, 2000). The

:::::
regime

::::::::
associated

::::
with

::::
each

::::::
weather

::::::
pattern

::
is

:::::::
indicated

::
by

:
color shadings in the lower part

of the plotindicate the regime, the weather patterns listed on the x-axis are associated with. The lower bound of each box marks the 25th

percentile of the data, the upper bound the 75th and the black horizontal line the median. The whiskers indicate minimum and maximum

values in the data set, except for the HW pattern where two data points outside the plot limit are indicated by an arrow and their corresponding

values written above.

4.8 Weather pattern based variations of precipitation

It has been noted by Kidson (1994b) that the local climate in New Zealand shows variability in dependence of the synoptic

weather patterns. In this section, the capability of ICAR to capture the average 24h accumulated precipitation amount at each

weather station (ws) calculated for each of the weather patterns (wp) is investigated. To this end averages of P24h simulated

by ICAR and ERAI are calculated individually for each weather pattern and each of the weather stations P24h(ws,wp) and5

compared to the observations.

26



T SW TNW TSW H HNW W HSE HE NE HW R
weather pattern

0

10

20

30

40

50

60

P 2
4h

(w
s,

wp
) (

m
m

)

ERAI ICARCP measured

Figure 10. P24h(ws,wp) as a function of weather pattern (wp) and weather station (ws) at weather station Ivory for measurements (black

pentagons), ICAR simulations (orange disks) and the ERAI reanalysis (blue squares). Ivory is situated at an elevation of 1390m MSL and,

on average, approximately 2km upstream of the main alpine ridge with regard to northwesterlies and westerlies. The connecting lines serve

as guides to the eye.

Figure 10 shows measured and modeled values of P24h(ws,wp) for the weather station Ivory. It is located at an elevation of

1390m MSL and lies approximately 2km upstream of the main alpine ridge with respect to westerly and northwesterly flow

(see Sect. 3.2). Ivory is strongly affected by precipitation caused by orographic lifting, leading to local precipitation maxima

during the T, TNW, W and HE patterns. For Ivorythe trend
:::::::::::
Furthermore,

::
at

:::::
Ivory,

:::
the

::::::::
behavior

:
found in the measurements

is correctly reproduced by ICARCP and ERAI, the .
::::
The absolute amounts of precipitation are, while underestimated, better5

modeled by ICARCP. To analyze how well the simulated values of P24h(ws,wp) correlate with measurements, the coefficient

of determination weighted by weather pattern frequency, r2, (Wilks, 2011b, Chapter 5) between the observed and modeled

values of P24h(ws,wp) are calculated for all weather stations and shown in Fig. 11a. To investigate the added value of ICARCP

over ERAI in modeling measured amounts of P24h(ws,wp), SSMSE is calculated and the results are summarized in Fig. 11b.

With the exception of the weather station Potts, ICARCP is able to represent the fluctuation of P24h(ws,wp) as a function of10

weather pattern, with r2 higher than 0.9 (see Fig. 11a). ICARCP shows clear improvement over ERAI at five of eleven weather

stations, a similar performance to ERAI at four and a worse performance at two. Particularly noteworthy is the underperfor-

mance in comparison to ERAI at the alpine weather station Potts and, far less pronounced, at weather station Larkins. Both

are located downstream of the main alpine ridge but only at Potts does ICARCP not correctly anticipate decreased precipitation

during the HW and TNW
:::::
TSW, as well as an increase in precipitation during the W pattern (not shown

:::
Fig

:::
A4j).15

Generally ICARCP is able to model measured amounts of P24h(ws,wp) well at all other alpine weather stations (see Fig. 11b)

with a median SSMSE of 0.74, except for Albert Burn and Potts. At Albert Burn it underestimates measured and ERAI modeled

values of P24h(ws,wp) during all patterns (not shown
:::
Fig

::::
A4a). Albert Burn is located approximately 11km downwind of the
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main alpine ridge with respect to westerlies and northwesterlies. The lowest score is found at the alpine weather station Potts.

The performance of individual stations is discussed in Sect. 5.
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Figure 11. Panel (a) shows the coefficient of determination r2 between modeled and measured P24h(ws,wp) calculated for each alpine

weather station for ICARCP (orange disks) and ERAI (blue squares). Panel (b) shows the SSMSE of ICARCP over ERAI in modeling

P24h(ws,wp) at alpine weather stations. The connecting lines serve as guides to the eye.

28



5 Discussion

The model top leading to the smallest mean MSE of ICARCP over all alpine weather stations was determined with a sensi-

tivity study at 4km above topography. At alpine sites in complex topography ICARCP is then able to reduce mean squared

errors in comparison to its ERAI forcing dataset by up to 53%
:::
and

::::
30%

:::
on

:::::::
median. While ICARCP models the occurrence

of days with a maximum accumulated precipitation of 1mm similarly well as ERAI, significant improvements are found for5

P24h > 25mm and P24h > 50mm. Overall the mean daily precipitation pattern produced by ICARCP was found to be in agree-

ment with the pattern derived from the observation-based gridded data set VCSR, with the seasonal variation being mostly

captured by ICARCP. The results indicate that ICARCP performs best during stable atmospheric conditions with flow of high

linearity, however, added value over ERAI is found for stable days with low flow linearity and near-stable days as well. A clear

dependence of skill on the synoptic situation was found, with weather patterns associated with cross-alpine flow leading to10

higher scores than weather patterns with flow parallel to the alpine range.

Precipitation measurements and particularly those in complex topography are associated with uncertainties. Different factors

such as wetting, wind, freezing or equipment failure in the harsh conditions (Henderson and Thompson, 1999) may introduce

errors, such as undercatch, into the results. Wind has been recognized as the main cause of undercatch (e.g. Groisman and Legates, 1995; Yang et al., 1999; Yang and Ohata, 2001)

, which affects alpine weather stations in particular. The effect is most pronounced for large, solid precipitation and increases15

with latitude and elevation (Goodison et al., 1989; Groisman and Legates, 1995). Cullen and Conway (2015), for instance, estimate

the undercatch at Mount Brewster during summer with 25%, while Kerr et al. (2011) lists annual undercatch at alpine sites in

the Southern Alps with up to 20%. However, the impact of undercatch on the results presented here is expected to be small

since these errors have an adverse effect not only on the performance of ICARCP but also the ERAI reference model.

The sensitivity studies leading to the choice of the model top at 4km have shown that the model top elevation greatly20

influences precipitation amounts and in turn the obtained mean squared errors, see Fig. 2. It is not immediately obvious though

why precipitation amounts decrease (not shown) and the MSEs deteriorates for higher model tops. Further studies are required

to find a method that allows the estimation the model top elevation best suited for a domain without relying on measurements,

as well as to investigate the influence of the choice of the forcing data type (global or regional reanalyses, GCMs, weather

forecast models) and the spatial grid resolution thereof on ICAR dynamics and skill.25

In the analysis presented, standard verification scores based on point matches between model and observation were employed

(see Sect. 4.2). Nonetheless, these verification scores are susceptible to small spatial shifts in the ICARCP precipitation field

that cannot be produced by the coarse scale reference model. Therefore, this effect may potentially over-penalize ICARCP in

comparison to the much coarser ERAI field (Theis et al., 2005; Ebert, 2008). An over-penalization of ICAR in comparison to

ERAI is suggested by the precipitation pattern comparisons shown Fig. 5. Here the observation-based gridded dataset VCSR30

and ICARCP are generally in good agreement, with ICARCP reproducing most seasonal variations. As noted in section 4.5, for

instance, a precipitation maximum in the VCSR pattern (Fig. 5a) that is located within the Southern Alps is shifted westward in

the ICARCP pattern (Fig. 5k) and is, due the coarser grid-spacing, not present in ERAI at all (and Fig. 5p). A variety of methods

29



have been proposed to overcome this problem and future evaluations of ICAR generated atmospheric fields could incorporate

these methods in their evaluation procedures (e.g. Ebert, 2009).

ICAR was found to perform better for upstream flows with Froude numbers larger than unity. This result is not unexpected,

since linear theory is the theoretical foundation for ICAR. Therefore, flows of higher linearity lead to increased SSMSE and

HSS for thresholds of 25mm and 50mm. These results hold even if the method for classifying near-stable or stable days is5

changed. For instance, using N2 ≤ 0 as classification criterion for near-stable days and N2 > 0 for stable days leads to similar

results (not shown). However, for
:::
see

:::
Fig.

::::
A2).

::::
For SSMSE and HSS at the 50mm threshold (see Fig. 7aand Fig. 7d) the spread

of scores derived from varying κ for near-stable days is large enough to include the median score of the stable days with

F ≥ 1
:::::
F < 1. Nonetheless, in only two (κ= 275 · 10−5 s and κ= 300 · 10−5 s) out of 17 cases the calculated SSMSE is larger

for near-stable days than that for stable dayswith high flow linearity. For HSS at P24h > 50mm this is never the case. Therefore10

these two instances are considered as outliers
:::
this

::
is

::::
only

::::
true

:::
for

::::::::::::::
κ= 200 · 10−5 s,

::
in

:::
all

::::
other

:::::
cases

::::::
stable

::::
days

::::
with

::::::
F < 1

::::::
always

::::
score

::::::
higher

::::
than

::::
near

:::::
stable

::::
days.

::::::
Stable

::::
days

::::
with

::::::
F ≥ 1,

::
in

::::::::::
comparison,

::::::
always

:::::::
achieve

:
a
::::::
higher

::::
score

::::
than

:::
the

:::::
other

:::
two

:::::::::
categories. A potential issue with the methodology is the small number of cases in the stable regime with F ≥ 1 compared

to the two other classes (see Table 3). However, P24h on stable days with F ≥ 1 is five
::::
three

:::
to

:::::
seven times as high as P24h

during the other two classes (not shown
:::
see

::::
Fig.

:::
A3). Therefore, while comparably small in number, stable days with F ≥ 115

contribute above-average amounts of precipitation to the climatology, highlighting the importance of the improvement in skill

for this category.

Negative values of SSMSE were found for the alpine weather stations Albert Burn, Mahanga and Potts, while non signif-

icant positive scores were found at Raikai and Larkins. The time series of Potts and Larkins are the shortest of all weather

stations, spanning 0.9 years and 0.8 years respectively, potentially contributing to the negative or non-significant positive score20

respectively. Potts, additionally, is the weather station with the largest difference between weather station elevation and ICAR

grid cell elevation, with the ICAR grid cell located 741m lower. While the aforementioned issues may deteriorate scores at

individual stations, it is also possible that the downwind distribution of moisture by ICAR differs from expectations. This is

indicated by a slight negative correlation of score value with the average distance downwind from the main alpine crest (as

defined in Sect. 3.2) which is found for SSMSE and HSS at the 25mm and 50mm thresholds. The correlation is strongest for25

SSMSE with −0.65 and weakest for the HSS with P24h > 50mm with −0.50. Mahanga and Larkins are the weather stations

farthest downwind from the coast, with mountainous topography in between. Albert Burn, Raikai and Potts are the weather

stations farthest downwind of the main alpine crest. A potential cause for the observed negative correlation is, that the reflec-

tion of mountain waves at the interfaces between atmospheric layers can have a significant impact on
::::::
impact

:::
the

::::::::::
distribution

::
of

:::::::::
orographic

:::::::::::
precipitation

:::::::::::::::::::::::
(Barstad and Schüller, 2011)

:
.
::::::::::::::::::::
Siler and Durran (2015)

:::::
found,

:::
for

::::::::
instance,

::::
that

::::
wave

:::::::::
reflection

::
at30

::
the

::::::::::
tropopause

::::
may

:::::
either

:::::::::
strengthen

::
or

:::::::
weaken

:::::::
low-level

:::::::::
windward

::::::
ascent,

:::::
which

:::
in

:::
turn

::::::
affects

:
the amount and distribution

of precipitation (Siler and Durran, 2015). The implementation of mountain wave reflections in ICAR
:::::::::
orographic

:::::::::::
precipitation.

:::
The

:::::::
outcome

::::
was

:::::
found

::
to

::::::
depend

:::
on

:::
the

::::
ratio

::
of

:::
the

:::::::::
tropopause

:::::
height

::
to

:::
the

::::::
vertical

::::::::::
wavelength

::
of

:::
the

::::::::
mountain

::::::
waves.

:::::
Since

:::::
ICAR

:::::::
currently

:::::
does

:::
not

::::::
account

:::
for

:::::
wave

::::::::
reflection,

:::
its

:::::::::::::
implementation could therefore lead to improvements in this regard.
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The mean SSMSE of ICARCP at alpine weather stations is 0.3. While ICARCP provides added value over ERAI it nonetheless

systematically underestimates precipitation at all alpine weather stations except for Raikai (see Table 1 and Table 2). This un-

derestimation increases with higher model top settings and is independent of the average distance of the site up- or downwind of

the main alpine ridge (with respect to northwesterlies and westerlies). Different issues may contribute to this underestimation:

(i) Potentially ERAI is too dry in the study region and therefore not enough moisture is advected across the boundary of the5

nested ICAR domain. (ii) Since the coupling between surface and atmosphere is neglected in the ICAR setup employed for this

study, parts of the ocean within the ICAR domain cannot contribute moisture to the airflow upwind of the South Island of New

Zealand. (iii) Non-linear amplification of waves could amplify updrafts in comparison to updrafts predicted by linear theory,

increasing orographic precipitation correspondingly. (iv) The low model top setting at 4km above topography, determined as

optimal by a sensitivity study, may largely eliminate potential seeder feeder
:::::::::::
seeder-feeder interaction between synoptic clouds10

and orographically lifted moist air. This effect is expected to play a crucial role for the formation of heavy rainfall on the South

Island of New Zealand (Purdy and Austin, 2003). (v) Convergences and divergences in the ERAI data set influence updrafts

and downdrafts in the ICAR wind field, leading, for instance, to synoptic precipitation in ICAR. However, these divergences

may also dampen the updrafts calculated with linear theory, thereby reducing the precipitation computed by ICAR. (vi) The

reflection of mountain waves is neglected by the version of ICAR used in this study. However, Siler and Durran (2015) have15

shown that the reflection of mountain waves has a significant impact on the amount and distribution of precipitation. Further

studies are needed to quantify the influence of issues (i)–(vi) and identify their relevance for the observed underestimation. A

possible ad hoc solution to the underestimation is the application of a bias-correction field estimated from a regional climate

model to the ICAR precipitation fields (e.g. Engelhardt et al., 2017).

An apparent solution to issue (iv)would be to increase the elevation
:::::
While

:::
the

::::::
relative

:::::::::
variability

::
of

::::::
average

:::::
daily

::::::::::
precipitation20

:::::::
amounts

::::::
related

::
to

:::::::
synoptic

:::::::
weather

:::::::
patterns,

::::::::::::
P24h(wp,ws),

:::
are

:::::::::
reproduced

::::::::
similarly

::::
well

::::
both

::
by

:::::::
ICARCP:::

and
:::::
ERAI

::::
(see

::::
Fig.

::::
11a),

:::::::
absolute

::::::::
amounts

::
of

:::::::::::
P24h(wp,ws)

:::
are

::::::
largely

:::::::::::::
underestimated

::
by

::::::
ERAI

:::
(up

::
to

::
on

:::::::
average

:::::::
17mm).

::::
This

::::::::::::::
underestimation

:
is
:::

far
::::
less

::::::::::
pronounced

::
in

::::::
ICAR,

::::::::
resulting

::
in

::
a
::::::
median

::::::
SSMSE:of the model top. However, the sensitivity study in Sect. 4.3

showed, that this does not lead to a decrease in the MSE of ICAR or
::::
0.74

::::
when

::::::::
modeling

::::::::::::
P24h(wp,ws)

::::
(see

:::
Fig.

::::
11b)

:

::::::::::
Precipitation

::::::::::::
measurements

:::
and

::::::::::
particularly

:::::
those

::
in

:::::::
complex

::::::::::
topography

::
are

:::::::::
associated

::::
with

:::::::::::
uncertainties.

::::::::
Different

::::::
factors25

::::
such

::
as

:::::::
wetting,

:::::
wind,

:::::::
freezing

::
or

:::::::::
equipment

::::::
failure

::
in

:::
the

:::::
harsh

:::::::::
conditions

::::::::::::::::::::::::::::
(Henderson and Thompson, 1999)

::::
may

::::::::
introduce

:::::
errors,

::::
such

::
as

::::::::::
undercatch,

:::
into

:::
the

::::::
results.

:::::
Wind

:::
has

::::
been

:::::::::
recognized

::
as
:::
the

:::::
main

::::
cause

:::
of

:::::::::
undercatch

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g. Groisman and Legates, 1995; Yang et al., 1999; Yang and Ohata, 2001)

:
,
:::::
which

::::::
affects

:::::
alpine

:::::::
weather

:::::::
stations

::
in

::::::::
particular.

::::
The

:::::
effect

::
is

::::
most

::::::::::
pronounced

:::
for

:::::
large,

:::::
solid

::::::::::
precipitation

::::
and

::::::::
increases

::::
with

::::::
latitude

:::
and

::::::::
elevation

:::::::::::::::::::::::::::::::::::::::::::
(Goodison et al., 1989; Groisman and Legates, 1995).

::::::::::::::::::::::
Cullen and Conway (2015)

:
,
::
for

::::::::
instance,

:::::::
estimate

::
the

::::::::::
undercatch

::
at

::::::
Mount

:::::::
Brewster

::::::
during

:::::::
summer

::::
with

:::::
25%,

:::::
while

:::::::::::::::
Kerr et al. (2011)

:::
lists

::::::
annual

:::::::::
undercatch

::
at

::::::
alpine

::::
sites

::
in30

::
the

::::::::
Southern

:::::
Alps

::::
with

::
up

:::
to

:::::
20%.

::::::::
However,

:::
the

::::::
impact

::
of

::::::::::
undercatch

::
on

:::
the

::::::
results

::::::::
presented

::::
here

::
is
::::::::

expected
::
to

:::
be

:::::
small

::::
since

:::::
these

:::::
errors

::::
have

:::
an

:::::::
adverse

:::::
effect

:::
not

::::
only

:::
on

:::
the

::::::::::
performance

:::
of ICARCP time series at

::
but

::::
also

:::
the

::::::
ERAI

::::::::
reference

::::::
model.

:

::
In

:::
this

:::::
study,

:::
the

::::::
chosen

::::::::
reference

:::::
period

::::::::::
(2014-2015)

::::::::
overlaps

:::
with

:::
the

:::::
study

::::::
period

::::::::::
(2007-2017).

::::::
While

:::::
ICAR

::
is

:::::::::::::
computationally

::::
more

:::::::
efficient

:::::
than

::::::::
dynamic

:::::::::::
downscaling,

::::::::::
performing,

::::
for

::::::::
instance,

:::::::::
leave-p-out

::::::::::::::
cross-validation

::::::
would

::::::
require

:::::::::
extensive35
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:::::::::::
computational

:::::::::
resources.

::::::::
However,

:::
the

::::::
results

:::::::
suggest

:::
that

:
the

:::::::
reference

::::::
period

::
is

:::::::::::
representative

:::
of

:::
the

:::
full

:::::
study

::::::
period

::::
with

::::::
regards

::
to

:::
the

::::::::
presented

::::::::::
calibration

:::::::
method:

:::
For

::::::::::
simulations

::::
with

::::
the

:::::
model

:::
top

:::
set

::
at
:::::
4km,

::::
the

:::::
mean

::::
MSE

:::::
over

::
all

:
alpine

weather stations . The reason for the deteriorating performance with increasing model top height is potentially found in issue

(v), the influence
:
of

::::::
ICAR

:::::
shows

:::::
only

::::
little

::::::::
variation

::
on

:::::::
whether

::::
the

::::
MSE

::
is
:::::::::
calculated

:::
for

:::
the

::::::::
reference

:::::::
period,

:::
the

:::::
study

:::::
period

::
or

:::
the

:::::
study

::::::
period

::::::::
excluding

:::
the

::::::::
reference

:::::
period

::::
(see

::::
Fig.

:::
2c).

:::::::::::
Furthermore,

:::
the

::::::::
variation

:::::::
between

:::
the

:::::
mean

:::::
MSEs

:::
for5

:::::::::
simulations

::::
with

::::::::
different

:::::
model

::::
top

::::::
settings

:::::
(Fig.

:::
2b)

::
is

:::::
larger

::::
than

:::
the

::::::::
variation

:::::::
between

::::::::
different

:::::::::
evaluation

::::::
periods

:::::
(Fig.

:::
2c).

:

:::
The

:::::::::
sensitivity

::::::
studies

:::::::
leading

::
to

:::
the

::::::
choice

:::
of

:::
the

::::::
model

:::
top

::
at
:::::
4km

::::
have

::::::
shown

::::
that

:::
the

::::::
model

:::
top

::::::::
elevation

:::::::
greatly

::::::::
influences

:::::::::::
precipitation

::::::::
amounts

:::
and

:::
in

::::
turn

:::
the

::::::::
obtained

:::::
mean

:::::::
squared

::::::
errors,

:::
see

::::
Fig.

::
2.
::

It
::

is
::::

not
:::::::::::
immediately

:::::::
obvious

::::::
though

:::
why

:::::::::::
precipitation

:::::::
amounts

::::::::
decrease

:::
(not

::::::
shown)

::::
and

:::
the

:::::
MSEs

::::::::::
deteriorates

:::
for

:::::
higher

::::::
model

::::
tops.

:::::::
Potential

:::::::
reasons

:::
are10

::::::::
influences

:
of divergences in the forcing wind field on the ICAR wind field . Future research

::
or

:::::::::
numerical

::::::
artifacts

::::::
arising

:::::
from

::
the

:::::::::
treatment

::
of

:::
the

:::::
model

:::
top

::
in

::::::
ICAR.

::::::::
However,

::::::
further

:::::::
research

::
is
::::::::
necessary

:::
to

::::::
develop

::
a
:::::
better

::::::::::::
understanding

::
of

:::
this

:::::
issue

:::
and

::
its

:::::::
causes.

:::::::::::
Subsequently

:::::
future

::::::
studies

:
could focus on developing a method to prepare the forcing wind field in a way that

minimizes the negative effects on the ICAR wind field
::::::
finding

:
a
:::::::
method

:::
that

::::::
allows

:::
the

:::::::::
estimation

::
of

:::
the

::::::
model

:::
top

::::::::
elevation

:::
best

:::::
suited

:::
for

::
a

::::::
domain

:::::::
without

::::::
relying

::
on

:::::::::::::
measurements,

::
as

::::
well

::
as

::
on

:::::::::::
investigating

:::
the

::::::::
influence

::
of

:::
the

:::::
choice

:::
of

::
the

:::::::
forcing15

:::
data

::::
type

::::
(i.e.

:::::
global

:::
or

:::::::
regional

:::::::::
reanalyses,

::::::
GCMs,

:::::::
weather

:::::::
forecast

:::::::
models)

::::
and

:::
the

:::::
spatial

::::
grid

:::::::::
resolution

::::::
thereof

::
on

::::::
ICAR

::::::::
dynamics

:::
and

::::
skill.

While the relative variability of average daily precipitation amounts related to synoptic weather patterns, P24h(wp,ws),

are reproduced similarly well both by
::
In

:::
the

:::::::
analysis

::::::::
presented,

::::::::
standard

:::::::::
verification

::::::
scores

:::::
based

:::
on

::::
point

:::::::
matches

::::::::
between

:::::
model

::::
and

:::::::::
observation

:::::
were

::::::::
employed

::::
(see

:::::
Sect.

::::
4.2).

:::::::::::
Nonetheless,

:::::
these

::::::::::
verification

:::::
scores

:::
are

::::::::::
susceptible

::
to

:::::
small

::::::
spatial20

::::
shifts

::
in
:::
the

:
ICARCP and ERAI (see Fig. 11a) , absolute amounts of P24h(wp,ws) are largely underestimated by ERAI (up to

on average 17mm). This underestimation is far less pronounced in ICAR , resulting in a median SSMSE of 0.74 when modeling

P24h(wp,ws) (see Fig. 11b)
::::::::::
precipitation

::::
field

::::
that

::::::
cannot

:::
be

::::::::
produced

::
by

:::
the

::::::
coarse

:::::
scale

::::::::
reference

::::::
model.

:::::::::
Therefore,

::::
this

:::::
effect

::::
may

:::::::::
potentially

:::::::::::
over-penalize

:::::::
ICARCP::

in
::::::::::

comparison
:::

to
:::
the

:::::
much

::::::
coarser

:::::
ERAI

:::::
field

::::::::::::::::::::::::::
(Theis et al., 2005; Ebert, 2008)

:
.
:::
An

::::::::::::::
over-penalization

::
of

::::::
ICAR

::
in

::::::::::
comparison

::
to

:::::
ERAI

::
is
:::::::::
suggested

::
by

:::
the

:::::::::::
precipitation

::::::
pattern

:::::::::::
comparisons

::::::
shown

::::
Fig.

::
5.25

::::
Here

:::
the

:::::::::::::::
observation-based

:::::::
gridded

::::::
dataset

::::::
VCSR

:::
and

::::::::
ICARCP :::

are
::::::::
generally

::
in

:::::
good

:::::::::
agreement,

::::
with

:::::::
ICARCP:::::::::::

reproducing

::::
most

:::::::
seasonal

:::::::::
variations.

:::
As

:::::
noted

::
in

::::::
section

::::
4.5,

:::
for

:::::::
instance,

::
a

::::::::::
precipitation

:::::::::
maximum

::
in

:::
the

::::::
VCSR

::::::
pattern

::::
(Fig.

:::
5a)

::::
that

::
is

::::::
located

:::::
within

:::
the

::::::::
Southern

::::
Alps

::
is
::::::
shifted

::::::::
westward

::
in
:::

the
::::::::
ICARCP ::::::

pattern
::::
(Fig.

:::
5k)

::::
and

::
is,

:::
due

:::
the

:::::::
coarser

:::::::::::
grid-spacing,

:::
not

::::::
present

::
in

:::::
ERAI

::
at

::
all

::::
(and

::::
Fig.

::::
5p).

:
A
::::::
variety

:::
of

:::::::
methods

::::
have

::::
been

::::::::
proposed

::
to

::::::::
overcome

::::
this

:::::::
problem

:::
and

:::::
future

::::::::::
evaluations

::
of

:::::
ICAR

::::::::
generated

::::::::::
atmospheric

:::::
fields

:::::
could

::::::::::
incorporate

::::
these

::::::::
methods

::
in

::::
their

:::::::::
evaluation

:::::::::
procedures

:::::::::::::::
(e.g. Ebert, 2009).

:
30

::
At

:
a
::::::
model

:::
top

:::::
setting

::
of

:::::
4km

:::::
above

::::::::::
topography,

:::::::::::
seeder-feeder

:::::::::
interaction

:::::::
between

:::::::
synoptic

::::::
clouds

:::
and

::::::::::::
orographically

:::::
lifted

::::
moist

:::
air

::::
may

::::::
mostly

::
be

:::::::::
eliminated.

:::::::::
Increasing

:::
the

:::::
model

:::
top

::
is

::
an

::::::::
apparent

::::::
solution

::
to

::::
this

:::::
issue.

::::::::
However,

::
the

:::::::::
sensitivity

:::::
study

::
in

::::
Sect.

:::
4.3

:::::::
showed,

::::
that

:::
this

::::
does

:::
not

::::
lead

::
to

::
a

:::::::
decrease

::
in

:::
the

:::::
MSE

::
of

:::::
ICAR

::
or

:::::::
ICARCP:::::

(Fig.
:::
2a),

:::
nor

:::::
does

:
it
:::::::
increase

::::::
model

:::
skill

::
at
::::::
alpine

:::::::
weather

::::::
stations

:::::
(Fig.

:::
2b).

:
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6 Conclusions

In this study, simulations with ICAR were found to provide added value over ERAI for 24h accumulated precipitation on the

South Island of New Zealand for alpine weather stations. In contrast to the almost consistently positive results found for the

alpine weather stations, ICAR provides no added value over ERAI for coastal weather stations. A comparison of average and

seasonal precipitation patterns of an operational gridded rainfall data set with ICAR showed good agreement. Grouping the5

available data according to Froude number revealed that stable atmospheric conditions with higher degree of flow linearity lead

to higher skill scores, and that ICAR provides added value over ERAI even for days with near-stable conditions and stable days

with lower flow linearity. A grouping according to the synoptic situation showed that values of SSMSE are generally high for

weather patterns associated with flow approximately perpendicular to the alpine range, such as the T, TNW and W patterns,

and lowest for weather patterns exhibiting flow parallel to the Southern Alps (NE and HW). While ICAR in principle does10

not require observations for tuning
::
to

::
be

:::::::::
calibrated, the model top for this study was determined with a sensitivity analysis.

All other settings could be adopted from default. With the adjusted model top, however, consistent added value for stations in

complex topography was found, with a reduction of the median error by 30%. Clear improvement may be expected on further

site-specific tuning
::::::::
calibration

:
to observations as routinely performed in regional climate model based downscaling. Further

research on how ICAR fields are influenced by the forcing data set will be necessary.15

Data availability. The data sets, ICAR configuration, DEM and forcing files the presented results are based on are available as download

from a zenodo repository (Horak et al., 2019). Due to licensing restrictions VCSR data is not included in the repository.
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Appendix A
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Figure A1.
:::
Box

:::
and

::::::
whisker

:::
plot

::
of
:::

the
:::::
mean

::::
daily

:::::::::
precipitation

::::::
(y-axis)

:::
for

::::
each

:::::
season

:::::::
P24h(se)

::
at
:::::
alpine

::::::
weather

::::::
stations

::
as
::::::::
measured

:
or
::::::::

calculated
:::
by

::::::
ICARCP :::

and
:::::
ERAI

::::::
(x-axis).

:::
All

::::::
amounts

::::
were

::::::::
calculated

::::
using

:::
the

:::::
entire

:::
P24h::::

time
::::
series

:::::::
available

::
at

::::
each

::::::
weather

::::::
station.

:::
The

::::
lower

::::::::
boundary

:
of
:::
the

:::
box

:::::::
indicates

:::
the

:::
25th

::::::::
percentile,

:::
the

::::
upper

::::::::
boundary

::
the

::::
75th

:::::::
percentile

:::
and

:::
the

::::::::
horizontal

:::::
dashed

:::
line

:::
the

:::::
mean.

:::::::
Whiskers

::::
show

:::
the

:::::::
minimum

:::
and

::::::::
maximum

:::::
values

::
of

::
the

::::
data

:::
set.
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Figure A2.
:::::::::
Dependence

::
of

:::::
SSMSE:::

and
::::
HSS

::
at

:::::
alpine

::::::
stations

::
on

:::
the

::::::
Froude

::::::
number

::::::
regime,

:::::::
calculated

:::
for

::
all

:::::::
available

::::
data.

::::
The

::::
state

::
of

::
the

:::::::::
atmosphere

::
is

:::::::
classified

::
as

::::
stable

:::
for

::::::
N2 > 0

:::
and

::::
near

::::
stable

:::
for

:::::::
N2 ≤ 0.

:::
The

:::::
x-axis

:::::::
indicates

:::::::::
atmospheric

::::::
stability

:::
and

::::::
Froude

::::::
number

:::::
regime,

:::::::::
connecting

::::
lines

::::
serve

::
as

::::
guide

::
to

:::
the

:::
eye.

:::
Not

::::::
enough

:::
data

:::::
points

:::::
where

:::::::
available

::
to

:::::::
calculate

:::::
scores

::
for

::::
near

::::
stable

:::::::::
conditions.

34



near stable stable
F < 1

stable
F 1

20

40

60

80

P 2
4h

 (m
m

 d
ay

1 )

Figure A3.
:::
Box

:::
and

:::::::
whisker

:::
plot

::
of

:::
the

:::::
mean

::::
daily

::::::::::
precipitation

::
at

:::::
alpine

::::::
stations

::::::
(y-axis)

::
in
:::::::::
dependence

:::
of

:::::::::
atmospheric

::::::
stability

::::
and

:::::
Froude

::::::
number

:::::
regime

:::::::
(x-axis).

:::
The

:::::
lower

:::::::
boundary

::
of

:::
the

:::
box

:::::::
indicates

::
the

::::
25th

::::::::
percentile,

::
the

:::::
upper

:::::::
boundary

:::
the

:::
75th

::::::::
percentile

:::
and

:::
the

:::::::
horizontal

:::
line

:::
the

::::::
median.

::::::::
Whiskers

::::
show

::
the

::::::::
minimum

:::
and

::::::::
maximum

:::::
values

::
of

::
the

::::
data

:::
set.
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Figure A4.
::::::::::
P24h(ws,wp)

::
as

:
a
:::::::

function
::
of

::::::
weather

::::::
pattern

::::
(wp)

:::
and

::::::
weather

::::::
station

::::
(ws)

:
at
:::

all
:::::
alpine

::::::
weather

::::::
stations

:::
for

:::::::::::
measurements

::::
(black

:::::::::
pentagons),

:::::
ICAR

:::::::::
simulations

::::::
(orange

::::
disks)

:::
and

:::
the

:::::
ERAI

:::::::
reanalysis

::::
(blue

:::::::
squares).

::::
The

::::::::
connecting

::::
lines

::::
serve

::
as

:::::
guides

::
to

::
the

::::
eye.
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North American regional reanalysis, Bulletin of the American Meteorological Society, 87, 343–360, https://doi.org/10.1175/BAMS-87-3-

343, 2006.15

Met Office: Cartopy: a cartographic python library with a Matplotlib interface, Exeter, Devon, http://scitools.org.uk/cartopy, 2010.

Nappo, C. J.: The Linear Theory, in: An Introduction to Atmospheric Gravity Waves, edited by Nappo, C. J., vol. 102 of International

Geophysics, pp. 29 – 56, Academic Press, https://doi.org/10.1016/B978-0-12-385223-6.00002-1, 2012.

::::
Paeth,

:::
H.,

::::::::
Pollinger,

::
F.,

::
M

:
ä
:::
chel,

:::
H.,

:::::
Figura,

:::
C.,

:::::
Wahl,

::
S.,

:::::::
Ohlwein,

:::
C.,

:::
and

:::::
Hense,

:::
A.:

:::
An

::::::
efficient

:::::
model

:::::::
approach

:::
for

:::
very

::::
high

::::::::
resolution

::::::::
orographic

::::::::::
precipitation,

:::::::
Quarterly

::::::
Journal

::
of

::
the

:::::
Royal

::::::::::::
Meteorological

::::::
Society,

:::
143,

:::::::::
2221–2234,

:
https://doi.org/10.1002/qj.3080

:
,
::::
2017.

:
20

Pepin, N., Bradley, R., Diaz, H., Baraër, M., Caceres, E., Forsythe, N., Fowler, H., Greenwood, G., Hashmi, M., Liu, X., et al.: Elevation-

dependent warming in mountain regions of the world, Nature Climate Change, 5, 424, https://doi.org/10.1038/nclimate2563, 2015.

Purdy, J. and Austin, G.: The role of synoptic cloud in orographic rainfall in the Southern Alps of New Zealand, Meteorological Applications,

10, 355–365, https://doi.org/DOI:10.1017/S1350482703001087, 2003.

Raper, S. C. and Braithwaite, R. J.: Glacier volume response time and its links to climate and topography based on a conceptual model of25

glacier hypsometry, The Cryosphere, 3, 183, https://doi.org/10.5194/tc-3-183-2009, 2009.

Rasmussen, R., Ikeda, K., Liu, C., Gochis, D., Clark, M., Dai, A., Gutmann, E., Dudhia, J., Chen, F., Barlage, M., et al.: Climate change im-

pacts on the water balance of the Colorado headwaters: high-resolution regional climate model simulations, Journal of Hydrometeorology,

15, 1091–1116, https://doi.org/10.1175/JHM-D-13-0118.1, 2014.

Reinecke, P. A. and Durran, D. R.: Estimating topographic blocking using a Froude number when the static stability is nonuniform, Journal30

of the Atmospheric Sciences, 65, 1035–1048, https://doi.org/10.1175/2007JAS2100.1, 2008.

Rhea, J. O.: Orographic Precipitation Model for Hydrometeorological Use, Ph.D. thesis, Colorado State University, 1977.

::::
Roth,

:::
A.,

:::::
Hock,

::
R.,

:::::::
Schuler,

::
T.

::
V.,

:::::::
Bieniek,

:
P.
:::

A.,
:::::
Pelto,

:::
M.,

:::
and

::::::::::
Aschwanden,

:::
A.:

::::::::
Modeling

:::::
winter

:::::::::
precipitation

::::
over

:::
the

:::::
Juneau

:::::::
Icefield,

:::::
Alaska,

:::::
using

:
a
::::
linear

:::::
model

::
of

::::::::
orographic

::::::::::
precipitation,

:::::::
Frontiers

::
in

::::
Earth

:::::::
Science,

::
6,

::
20,

:
https://doi.org/10.3389/feart.2018.00020,

:::::
2018.

35

Sarker, R.: A dynamical model of orographic rainfall, Monthly Weather Review, 94, 555–572, https://doi.org/10.1175/1520-

0493(1966)094<0555:ADMOOR>2.3.CO;2, 1966.

40

https://doi.org/10.1002/joc.3370140703
https://doi.org/10.1002/(SICI)1097-0088(20000315)20:3%3C299::AID-JOC474%3E3.0.CO;2-B
https://doi.org/10.1175/1520-0469(1959)016%3C0672:OPOFDM%3E2.0.CO;2
https://doi.org/10.1175/JCLI-D-12-00821.1
https://doi.org/10.5281/zenodo.2605265
https://doi.org/10.5281/zenodo.2605265
https://doi.org/10.5281/zenodo.2605265
https://doi.org/10.1175/BAMS-87-3-343
https://doi.org/10.1175/BAMS-87-3-343
https://doi.org/10.1175/BAMS-87-3-343
http://scitools.org.uk/cartopy
https://doi.org/10.1016/B978-0-12-385223-6.00002-1
https://doi.org/10.1002/qj.3080
https://doi.org/10.1038/nclimate2563
https://doi.org/DOI:10.1017/S1350482703001087
https://doi.org/10.5194/tc-3-183-2009
https://doi.org/10.1175/JHM-D-13-0118.1
https://doi.org/10.1175/2007JAS2100.1
https://doi.org/10.3389/feart.2018.00020
https://doi.org/10.1175/1520-0493(1966)094%3C0555:ADMOOR%3E2.3.CO;2
https://doi.org/10.1175/1520-0493(1966)094%3C0555:ADMOOR%3E2.3.CO;2
https://doi.org/10.1175/1520-0493(1966)094%3C0555:ADMOOR%3E2.3.CO;2


Sawyer, J.: Gravity waves in the atmosphere as a three-dimensional problem, Quarterly Journal of the Royal Meteorological Society, 88,

412–425, https://doi.org/10.1002/qj.49708837805, 1962.

Siler, N. and Durran, D.: Assessing the Impact of the Tropopause on Mountain Waves and Orographic Precipitation Using Linear Theory

and Numerical Simulations, Journal of the Atmospheric Sciences, 72, 803–820, https://doi.org/10.1175/JAS-D-14-0200.1, https://doi.org/

10.1175/JAS-D-14-0200.1, 2015.5

Smith, R. B.: The influence of mountains on the atmosphere, Advances in Geophysics, 21, 87–230, https://doi.org/10.1016/S0065-

2687(08)60262-9, 1979.

Smith, R. B.: Linear theory of stratified hydrostatic flow past an isolated mountain, Tellus, 32, 348–364,

https://doi.org/10.3402/tellusa.v32i4.10590, 1980.

Smith, R. B. and Barstad, I.: A Linear Theory of Orographic Precipitation, Journal of the Atmospheric Sciences, 61, 1377–1391,10

https://doi.org/10.1175/1520-0469(2004)061<1377:ALTOOP>2.0.CO;2, 2004.

Sturman, A. and Wanner, H.: A comparative review of the weather and climate of the Southern Alps of New Zealand and the European Alps,

Mountain Research and Development, 21, 359–369, 2001.

Tait, A. and Turner, R.: Generating multiyear gridded daily rainfall over New Zealand, Journal of Applied Meteorology, 44, 1315–1323,

https://doi.org/10.1175/JAM2279.1, 2005.15

Tait, A., Sturman, J., and Clark, M.: An assessment of the accuracy of interpolated daily rainfall for New Zealand, Journal of Hydrology

(New Zealand), pp. 25–44, 2012.

Theis, S. E., Hense, A., and Damrath, U.: Probabilistic precipitation forecasts from a deterministic model: a pragmatic approach, Meteoro-

logical Applications, 12, 257–268, https://doi.org/10.1017/S1350482705001763, 2005.

Thompson, G., Field, P. R., Rasmussen, R. M., and Hall, W. D.: Explicit forecasts of winter precipitation using an improved20

bulk microphysics scheme. Part II: Implementation of a new snow parameterization, Monthly Weather Review, 136, 5095–5115,

https://doi.org/10.1175/2008MWR2387.1, 2008.

Torma, C., Giogi, F., and Coppola, E.: Added value of regional climate modeling over areas characterized by complex terrain—Precipitation

over the Alps, Journal of Geophysical Research: Atmospheres, 120, 3957–3972, https://doi.org/10.1002/2014JD022781, 2015.

van der Walt, S., Colbert, S. C., and Varoquaux, G.: The NumPy Array: A Structure for Efficient Numerical Computation, Computing in25

Science Engineering, 13, 22–30, https://doi.org/10.1109/MCSE.2011.37, 2011.

:::::::::
Weidemann,

::
S.,

::::::
Sauter,

::
T.,

::::::::
Schneider,

:::
L.,

:::
and

::::::::
Schneider,

:::
C.:

:::::
Impact

::
of

:::
two

:::::::::
conceptual

:::::::::
precipitation

::::::::::
downscaling

::::::
schemes

:::
on

::::::::::
mass-balance

:::::::
modeling

::
of

::::
Gran

::::::
Campo

::::::
Nevado

:::
ice

::::
cap,

::::::::
Patagonia,

::::::
Journal

::
of

:::::::::
Glaciology,

:::
59,

:::::::::
1106–1116,

:
https://doi.org/10.3189/2013JoG13J046

:
,

::::
2013.

:

Wilks, D.: Chapter 5 - Frequentist Statistical Inference, in: Statistical Methods in the Atmospheric Sciences, edited by Wilks, D. S., vol. 10030

of International Geophysics, pp. 133 – 186, Academic Press, https://doi.org/10.1016/B978-0-12-385022-5.00005-1, 2011a.

Wilks, D. S.: Statistical Methods in the Atmospheric Sciences, vol. 100 of International Geophysics, Academic press, 2011b.

Yang, D. and Ohata, T.: A bias-corrected Siberian regional precipitation climatology, Journal of Hydrometeorology, 2, 122–139,

https://doi.org/10.1175/1525-7541(2001)002<0122:ABCSRP>2.0.CO;2, 2001.

Yang, D., Ishida, S., Goodison, B. E., and Gunther, T.: Bias correction of daily precipitation measurements for Greenland, Journal of Geo-35

physical Research: Atmospheres, 104, 6171–6181, https://doi.org/10.1029/1998JD200110, 1999.

41

https://doi.org/10.1002/qj.49708837805
https://doi.org/10.1175/JAS-D-14-0200.1
https://doi.org/10.1175/JAS-D-14-0200.1
https://doi.org/10.1175/JAS-D-14-0200.1
https://doi.org/10.1175/JAS-D-14-0200.1
https://doi.org/10.1016/S0065-2687(08)60262-9
https://doi.org/10.1016/S0065-2687(08)60262-9
https://doi.org/10.1016/S0065-2687(08)60262-9
https://doi.org/10.3402/tellusa.v32i4.10590
https://doi.org/10.1175/1520-0469(2004)061%3C1377:ALTOOP%3E2.0.CO;2
https://doi.org/10.1175/JAM2279.1
https://doi.org/10.1017/S1350482705001763
https://doi.org/10.1175/2008MWR2387.1
https://doi.org/10.1002/2014JD022781
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.3189/2013JoG13J046
https://doi.org/10.1016/B978-0-12-385022-5.00005-1
https://doi.org/10.1175/1525-7541(2001)002%3C0122:ABCSRP%3E2.0.CO;2
https://doi.org/10.1029/1998JD200110

