
Response to Reviewer 1
Abbreviations:

AR Author Response (Johannes Horak)

RC Reviewer Comment

RC: In their manuscript Horak et al. assess the skill of the Intermediate Complexity Atmospheric 
Research Model (ICAR) for downscaling mean precipitation amount, in a domain located over the South 
Island of New Zealand. Model evaluation is performed using established techniques, a range of 
observational datasets and two skill scores. Their main findings are: (a) ICAR provides additional skill 
over the main Alpine ridge, while results over coastal stations are deteriorated. (b) Added value is 
typically largest for stable upstream flow, impinging on the ridge at a 90◦ angle. These results seem 
related to the model’s roots, which is built on linear theory of orographic precipitation. C1

The article is generally well written and suited for publication in HESS (also for GMD). I particularly 
appreciated its modest and plain language. All review criteria are met, and I did not detect major scientific
flaws, considering the manuscripts scope.

AR:
We thank the reviewer for his effort, and are very appreciative of the detailed comments and 
criticism of our manuscript. We took every comment very seriously and adjusted the manuscript 
accordingly.

Our efforts to address one comment regarding the flow-linearity analysis led to the discovery of an
error in the underlying data set. We redid the entire analysis with the correct data and updated the 
affected parts in the methods section and in the discussion. However, the essential characteristics 
of the results have not changed.

Please find a detailed response to every comment below.

Corrections to the manuscript independent of the RCs:

P5L8: We found that the list of fields contained in the forcing file was incomplete. We added the 
two missing fields, the sentence now reads:

“The assembled ICAR forcing file contains ERAI zonal and meridional winds U and V, potential 
temperature Θ, pressure p, specific humidity qv , cloud liquid water mixing ratio qc , cloud ice 
water mixing ratio qi and surface pressure p0 at each 6 h forcing time step and every grid point 
within the domain.”

P32L14: The list of employed open-source libraries was incomplete. We added the missing 
library. The sentence now reads: 

“numpy (van der Walt et al., 2011), pandas (McKinney et al., 2010), xarray (Hoyer and Hamman,
2017), matplotlib (Hunter, 2007), cartopy (Met Office, 2010) and salem (Maussion et al., 
2019).”



Minor Comments
RC: (1) P2L8: “While dynamic downscaling results in a self-consistent set of atmospheric
fields, the computational cost required for the fine spatial and temporal grid spacing is
high, especially for long-term simulations or sensitivity studies.” This sentence would benefit from 
perspective. For example, for a similar computational domain we would achieve about 240 simulation 
days per day when running COSMO on a single node, equipped with a P100 GPU (Leutwyler et al., 
2016; Fuhrer et al., 2018, I am not implying that you should cite my studies, but used then because I 
know the numbers by heart). How does ICAR compare these benchmarks?

AR:
The South Island of New Zealand ICAR simulations with 12 vertical levels, for instance, when run
on one node of NCAR’s Cheyenne cluster (with 36 2.3-GHz Intel Xeon E5-2697V4 Broadwell 
cores) have a ratio of about 10.5 simulated years per day (on average 200 core hours per 
simulated year). The following barplot shows the average number of core hours required by ICAR
to simulate one year for the South Island of New Zealand domain in dependence of the number of
vertical levels.

While we did not run WRF simulations for our study, Gutmann et al. 2016 did so. They found, 
that, depending on (but not only) the number of vertical levels and chosen microphysics 
parametrisation, ICAR speeds up simulations by a factor of 140. E.g. one simulated year for the 
Colorado domain as specified in Gutmann et al. (2016) and a WRF setup as given in Rasmussen 
(2014) required ~40,000 core hours (if the simulation were run on one CPU core only). ICAR, on
the other hand, completes the simulation after ~300 core hours.

To clarify and lend perspective we added a sentence to P2L22-26 that references the findings of 
the Gutmann 2016 paper in the context of ICARs computational frugality. We also replaced the 
erroneously used term “linear theory of orographic precipitation” with the correct term “linear 
mountain wave theory”. Please be aware that the updated paragraph includes changes made due 
to another comment as well (shown as non-bold, orange text):

“The Intermediate Complexity Atmospheric Research model (ICAR; Gutmann et al., 2016) offers
a computationally frugal and physics-based alternative that does not rely on measurements with 
linear mountain wave theory as its theoretical foundation. In comparison to other downscaling 



approaches of intermediate complexity (e.g. Sarker, 1966; Rhea, 1977; Smith and Barstad, 2004; 
Georgakakos et al., 2005), ICAR is a more general atmospheric model that requires fewer 
simplifying assumptions about the state of the atmosphere, such as spatial and temporal 
homogeneity of the background flow. Furthermore, in contrast to the linear theory of orography 
precipitation (LOP; Smith and Barstad, 2004), ICAR considers a detailed vertical structure of the 
atmosphere and employs a complex microphysics scheme as opposed to the characteristic 
timescales for cloud water conversion and hydrometeor fallout of the LOP. With regards to 
dynamical downscaling, in particular the Weather Research and Forecasting model, 
Gutmann et al. (2016) have shown that ICAR may reduce the required computational time 
for one simulated year for a domain in the Western United States by a factor of at least 
140.”

RC: (2) P2L12: “to a lesser extent, to dynamic downscaling as well” I don’t fully understand
the statement in this fragment. Please elaborate on the stationary assumptions in
dynamical downscaling, and how precisely this is overcome in ICAR.

AR:
If, for instance, a dynamical downscaling model is calibrated with measurements this indicates 
that not all parameters or variables may be inferred from theory or first principles. It follows 
that the parameters (or even a specific choice of a parametrization over another) determined by 
the calibration period may not necessarily apply to other periods with altered conditions equally
as well. For global climate models, for instance, Maraun et al. (2017) note that “Often, a 
realistic behaviour is achieved only by tuning the model.“
This applies to ICAR as well if empirical parameters of a physical process (i.e. parameters of 
the microphysics parametrization) are calibrated with measurements. Therefore, dynamical 
downscaling and intermediate complexity downscaling are both affected by the stationarity 
assumption if calibrated with measurements. We removed the part of the sentence to avoid 
insinuating that ICAR, when calibrated with measurements, somehow overcomes the stationarity 
assumption. The sentence now reads (removed text crossed out):

“Even more problematic, as soon as observation-based training or tuning is applied, the 
assumption of stationarity is introduced for statistical downscaling and, to a lesser extent, to 
dynamic downscaling as well, which may not hold under a changing climate (Maraun, 2013; 
Gutmann et al., 2012).”

RC: (3) Section 2.1: Adding a few plain language sentences how ICAR works and how the
approach differs from dynamical downscaling would aid the wider audience. Additionally, a concise 
summary about linear theory of orographic precipitation and how it is incorporated into ICAR would 
help. I had to read Gutman et al. (2016) to understand this Section.

AR:
We rephrased the first and second paragraph of Section 2.1. (P3L11-16 and P3L17-21) to give a 
better overview of the basic functionality of ICAR, and its main difference from dynamical 
downscaling. The first paragraph (formerly at P3L11-16) now reads:

“ICAR (Gutmann et al., 2016) is a three-dimensional atmospheric model based on linear 
mountain wave theory. As input ICAR requires a digital elevation model and a forcing 
dataset with 4-D atmospheric variables generated by, for instance, a coupled atmosphere-
ocean general circulation model or an atmospheric reanalysis such as ERA-Interim. The 
forcing dataset should at least contain the horizontal wind components, pressure, 
temperature and water-vapor mixing ratio, with the possibility to additionally include 



hydrometeor fields, incoming long and short-wave radiation or the skin temperature of 
water bodies. ICAR employs linear mountain wave theory to calculate the wind field from 
the topography information and the horizontal wind components to avoid a numerical 
solution of the Navier-Stokes equations of motion, the core of dynamical downscaling
models. With this wind field, ICAR advects atmospheric quantities, such as temperature 
and moisture as supplied by the forcing dataset at the domain boundaries. In its standard 
setup ICAR applies the Thompson microphysical scheme (Thompson et al., 2008), a double 
moment scheme in cloud ice and rain and a single moment scheme for the remaining 
quantities to compute the mixing ratios of water vapor, cloud water, rain, cloud ice, 
graupel and snow.”

The second paragraph (formerly at P3L17-21) now reads:

“The classic approach of linear mountain wave theory predicts the wind field based on the 
topography and the background state of the atmosphere. (Sawyer, 1962; Smith, 1979). 
With the background state known, its perturbation due to topography is given by a set of 
analytical equations (Barstad and Grønås, 2006). However, linear theory does not take into 
account interactions among waves or waves and turbulence, nor transient and non-linear 
phenomena such as time-varying wave amplitudes, gravity wave breaking or low-level 
blocking and flow splitting. A basic discussion of the limitations implicit to these 
assumptions can be found in Nappo (2012). In ICAR, the atmospheric background state is 
given by the forcing dataset. This yields a time sequence of steady state wind fields between 
which ICAR interpolates linearly. A detailed description of the model is given in Gutmann 
et al. (2016).”

RC: (4) Section 4.1: Maybe it would be good to discuss the known biases for mean precipitation in ERAI
and outline weather it is difficult to beat it.

AR:
A general statement about the performance of ERAI and how hard it is to beat is difficult to make 
since it depends, among other things, on the particular region of the world that is investigated and 
the specific factors that influence the local climate. Skill scores alone, in terms of percentage 
improvement, cannot fully account for how accurate a model is if nothing more is known about 
the reference model. For this reason we based our evaluation not on skill scores alone. We 
investigated the ICAR and ERAI precipitation time series at the weather stations as well and 
compared them directly to measurements. In our region ERAI simulates occurrence well and 
reproduces the measured time series but underestimates the precipitation magnitude (see Figure 
4). This is in stark contrast to, for instance, the Peruvian Andes, another region we are currently 
investigating. Here ICAR skill scores are positive as well but precipitation occurrence and 
magnitude is not reproduced at all at some locations. The reason for the positive scores is that the 
performance of ERAI at these sites is worse. While ICAR is able to correct a little bit towards the 
measurements, this does not imply that the generated time series are realistic.

For a definitive assessment whether ERAI is difficult to beat, it is necessary to compare ERAI 
precipitation time series to those of measured at sites of interest. However, this was not the 
intended aim of the manuscript presented. Nonetheless we believe that Figure 4 gives a 
representative overview of the capabilities of ERAI with regards to modelling the 24h 
accumulated precipitation at the sites investigated within the study domain. While the timing of 
precipitation events is generally well captured by ERAI this is not the case for the magnitudes of 
the precipitation events.



RC: (5) Section 4.3 (a) Unfortunately, the chosen calibration period overlaps with the analysis period and
employs the same stations. Cross-validation with other periods or station replacement would make the 
arguments more robust.

AR:
We agree with this assessment. Unfortunately even though ICAR is computationally more efficient
than dynamic downscaling, performing, for instance, leave-p-out cross-validation would require 
extensive computational resources. However, the results suggest that the calibration period (2014-
2015) is representative of the full study period (2007-2017) with regards to the presented 
calibration method. For the simulations with 12 vertical levels, the mean MSE of ICAR shows 
only little variation on whether the MSE is calculated for the calibration period, the entire study 
period or the study period excluding the calibration period. 

To address this comment we added an additional paragraph to Section 4.3, an additional Panel to 
Figure 2 and an additional paragraph to the Discussion. 

The new paragraph in Section 4.3 and the adapted Figure 2:

“The mean MSE over all alpine weather stations is almost constant when calculated either 
for the reference period (2014-2015), the full study period (2007-2017) or the reduced study
period, where the reference period is excluded from the time series (2007-2013 and 2015-
2017), see Fig. 4c. This result indicates that the reference period is representative of the full
study period.“

The new paragraph that we added to the discussion:



“In this study, the chosen reference period (2014-2015) overlaps with the study period 
(2007-2017). While ICAR is computationally more efficient than dynamic downscaling, 
performing, for instance, leave-p-out cross-validation would require extensive 
computational resources. However, the results suggest that the reference period is 
representative of the full study period with regards to the presented calibration method: 
For simulations with the model top set at 4 km, the mean MSE over all alpine weather 
stations of ICAR shows only little variation on whether the MSE is calculated for the 
reference period, the study period or the study period excluding the reference period (see 
Fig. 2c). Furthermore, the variation between the mean MSEs for simulations with different 
model top settings (Fig. 2b) is larger than the variation between different evaluation 
periods (Fig. 2c).“

RC: (b) “Potential reasons for the observed behavior are discussed in Sect. 5.” ! That statement is a bit 
misleading, since in Section 5 you only say that the question remains open.

AR:
Thank you for bringing this to our attention. The second part of the discussion that is concerned 
with this statement is located in a different paragraph in the discussion section (see P31L11-13). 
We rearranged the discussion section and included a only recently discovered potential cause 
(numerical artifact from model top treatment), the corresponding paragraph now reads:

“The sensitivity studies leading to the choice of the model top at 4 km have shown that the model 
top elevation greatly influences precipitation amounts and in turn the obtained mean squared 
errors, see Fig. 2. It is not immediately obvious though why precipitation amounts decrease (not 
shown) and the MSEs deteriorates for higher model tops. Potential reasons are influences of 
divergences in the forcing wind field on the ICAR wind field or numerical artifacts arising 
from the treatment of the model top in ICAR. However, further research is necessary to 
develop a better understanding of this issue and its causes. Subsequently future studies 
could focus on finding a method that allows the estimation of the model top elevation best suited 
for a domain without relying on measurements, as well as on investigating the influence of the 
choice of the forcing data type (i.e. global or regional reanalyses, GCMs, weather forecast models)
and the spatial grid resolution thereof on ICAR dynamics and skill.”

RC: (c) I am skeptic if the results at 2.5 km and 4 km are substantially different from each other.

AR:
One major difference between the two runs is that the simulations with a model top at 2.5 km cut 
off the atmosphere within layers that transport a significant amount of moisture within the domain.
This entails a less faithful representation of the moisture content of the atmosphere and may in 
part lead to unphysical artifacts in the moisture distribution due to the way the model top is treated
by ICAR. However, more research is necessary to quantify and understand this effect and how it 
affects the distribution of precipitation and moisture throughout the domain. While MSEs at 
alpine sites are similar but lower for simulations with a model top at 4.0 km, a particularly adverse
effect is observed with regards to precipitation occurrence (HSS scores with P24h > 1 mm). Here, a
distinct score decrease is observed at all except one weather station if the model top is set to 2.5 
km or lower.



RC: (d) A devil’s advocate could argue that ICARCP mainly improves skill over ICAR because
the latter underestimate precipitation amount (see P30L27). I.e., could the same skill be achieved by 
adding random noise with the right magnitude?

AR:
We tested this hypothesis and found that the addition of random noise to ICAR precipitation time 
series is not able to achieve the same mean skill as ICARCP. Moreover, even adding random noise 
only to days where ICAR predicts non-zero precipitation (semi-random noise) does not lead to a 
higher skill than is achieved by ICARCP.

RC: Does ICAR beat ERAI too?

AR:
We added an additional panel to Figure 2 that indicates the mean SSMSE at alpine weather stations 
achieved for each model top setting during the calibration period. ICAR is able to outperform 
ERAI for model tops at 1.5 km, 2.5 km and 4.0 km.

The updated Figure 2, the additional panel referenced above is panel b:



RC: Please elaborate (here or in Section 2.6) to justify your choice to add interpolated conv. precip. from
ERAI

AR:
ICAR is not able to model convective precipitation by itself in the setup used. Since ERAI does 
simulate convective precipitation and store the value in a separate field it seems a reasonable 
choice to use this additional information provided by the forcing dataset to improve the 
precipitation fields and time series simulated by ICAR. This is elaborated in Section 2.6, P5L18-
20. Furthermore, it is a common technique to use convective or large scale precipitation from the 
forcing dataset this way, compare, for instance Roth et al. (2018) or other studies where the 
downscaled precipitation is a composite of precipitation generated by the downscaling model and 
the forcing for types of precipitation the applied model cannot account for (Jarosch et al. 2012; 
Weidemann et al. 2013 and Paeth et al. 2017).

To clarify we added these references to the manuscript. Please note that the updated paragraph 
contains an additional sentence added due to another RC (orange, non-bold text). Section 2.6 
P5L24 now reads:

“where in the following the P(t) time series is referred to as ICARCP and PI(t) as ICAR. This is a
common technique that allows to include types of precipitation not accounted for by the 
downscaling model (e.g. Jarosch et al., 2012; Weidemann et al., 2013; Paeth et al., 2017; 
Roth et al., 2018). Table 1 shows the mean annual precipitation at each site for ICARCP and 
ERAI, as well as the ratio of ERAI convective precipitation to ERAI total precipitation.” 

RC: (6) Section 4.7 Why is the underlying dataset changed to NCEP/NCAR?

AR:



The cluster analysis yielding the weather-patterns was not performed by us but by Kidson (2000), 
who employed the NCEP/NCAR dataset. We rephrased for clarity, it now reads:

“For the underlying cluster analysis, Kidson (1994a) employed the NCEP/NCAR 40-year 
reanalysis dataset (Kalnay et al., 1996) between January 1958 and June 1997 was employed.”

RC: (7) Section 5 (a) 1st paragraph: It might be worthwhile to elaborate on how these
results relate to linear theory of orographic precipitation.

AR:
The linear theory of orographic precipitation (LOP) is, while connected to ICAR via the common 
basis of linear mountain-wave theory, not directly related to the results presented here. One 
fundamental difference is that the LOP, unless adapted as in, for instance, Jarosch (2012), is only 
able to consider a homogeneous background state across the entire domain. Similarly, unless 
adapted as in Barstad and Schüller (2011), information about the vertical structure of the 
atmosphere is, compared to ICAR, very basic. Another key difference is the use of a complex 
microphysics scheme (Thompson, 2008) in ICAR, while the LOP considers characteristic 
timescales for cloud water conversion and hydrometeor fallout. A comparison between the LOP 
and ICAR would be of interest, but outside of the scope of our manuscript.

To highlight the differences between the two models we modified P2L22-26 in the introduction. 
We also replaced the erroneously used term “linear theory of orographic precipitation” with the 
correct term “linear mountain wave theory”. Please be aware that the updated paragraph includes 
changes made due to another comment as well (orange, non-bold text). The updated paragraph 
now reads:

“The Intermediate Complexity Atmospheric Research model (ICAR; Gutmann et al., 2016) offers
a computationally frugal and physics-based alternative that does not rely on measurements with 
linear mountain wave theory as its theoretical foundation. In comparison to other downscaling 
approaches of intermediate complexity (e.g. Sarker, 1966; Rhea, 1977; Smith and Barstad, 2004; 
Georgakakos et al., 2005), ICAR is a more general atmospheric model that requires fewer 
simplifying assumptions about the state of the atmosphere, such as spatial and temporal 
homogeneity of the background flow. Furthermore, in contrast to the linear theory of 
orography precipitation (LOP; Smith and Barstad, 2004), ICAR considers a detailed 
vertical structure of the atmosphere and employs a complex microphysics scheme as 
opposed to the characteristic timescales for cloud water conversion and hydrometeor fallout
of the LOP. With regards to dynamical downscaling, in particular the Weather Research and 
Forecasting model, Gutmann et al. (2016) have shown that ICAR may reduce the required 
computational time for one simulated year for a domain in the Western United States by a factor 
of at least 140.”

RC: (b) P30L6: “Therefore these two instances are considered as outliers.” I think there is a problem here

AR:
Following up other suggestions of the reviewer led us to discover that some ERAI grid points used
for the flow linearity analysis were at the wrong locations (too close to the coast). We corrected 
this and redid the entire analysis. With the updated plots the added value of ICAR over ERAI for 
higher flow linearity and atmospheric stability is now more evident and the corresponding outliers 
have vanished. For more details see comment “P19L15: Cloud you add these regions to Fig. 1?” 
farther below.



Suggestions for optional extensions
RC: (1) Downscaling low-resolution global climate simulations (rather than re-analysis), along major 
mountain ridges could more evidently illustrate the added value of the approach.

AR:
We agree that this would indeed be a worthwhile analysis, it is outside of the scope of the 
presented manuscript. Additionally, some of the presented methods appear to be difficult to apply 
to global climate simulations, in particular the weather pattern analysis and the dependency of 
model performance on flow linearity.

RC: (2) From an application/user point of view, employing the outlined techniques to obtain
higher-resolution fields is still a somewhat cumbersome procedure. It will therefore only be performed 
operationally if the added value is rather substantial. Therefore it would be interesting to see the added 
value over low-resolution precipitation climatologies such as, e.g., GPCC or GPCP..

AR:
We agree that this is a potentially fruitful avenue for further investigations. However, generally 
dynamic and statistical downscaling methods alike are generally tested for whether they actually 
improve over the employed forcing dataset (e.g. Jarosch 2012, or, for a review, Torma et al. 
2015). ICAR is a relatively new model and, as mentioned in the introduction, this has not been 
established yet at the weather station level.

Technical Comments
Technical comments

RC: P1L1: climate downscaling => downscaling techniques

AR: rephrased as suggested.

RC: P1L7: the eleven-year period from 2007 to 2017 => an eleven-year period, ranging from 2007 until 
2017

AR: rephrased as suggested.

RC: P1L9: diagnosed=> assessed

AR: rephrased as suggested.

RC: P1L14: In the abstract, I would use a more general term for “flow of higher linearity”

AR: Exchanged “flow of higher linearity” for “flow linearity”.

RC: P1L17: tuning => calibration (tuning has a negative connotation). Same applies to the rest of the 
manuscript.

AR: Exchanged tuning for fitting variations of calibration throughout the manuscript.

RC: P2L21: Maybe add weather generators to the discussion?

AR: While weather generators are functionally different from regression models, they do fall in 
the statistical downscaling category.



RC: P2L31: due => emerging from

AR: Rephrased accordingly

RC: P3L23: storing => stores

AR: Corrected accordingly

RC: P4L5: no data are => no observations are

AR: Rephrased accordingly

RC: P5L7: ERAI have => ERAI employs (I think ERA-Interim reanalysis is singular). 

AR: Corrected accordingly

RC: P4L11 P5L19: “convective precipitation from the ERAI” Add the name of the field. Also, add a 
reference to your Table 1.

AR: Name and ID of the ERAI field was added and we referenced Table 1 at the end of the 
paragraph. Please note that the updated text as shown below includes an additional sentence due to
another RC (orange, non-bold text).

Section 2.6 now reads:

The ICAR configuration for this study, as described in Sect. 2.2, is able to model orographic 
precipitation and, at least in part, precipitation driven by the synoptic scale. To account for 
convective precipitation, convective precipitation from ERAI (field name: cp, parameter ID: 
143), PCP, is resampled to the ICAR timestep and bilinearly interpolated in space to the sites of 
interest and then added to the ICAR precipitation time series PI:

P(t) = PI(t) + PCP(t),                                                            (1)

where in the following the P(t) time series is referred to as ICARCP and PI (t) as ICAR. This is a 
common technique that allows to include types of precipitation not accounted for by the 
downscaling model (e.g. Jarosch et al., 2012; Weidemann et al., 2013; Paeth et al., 2017; Roth et 
al., 2018). Table 1 shows the mean annual precipitation at each site for ICARCP and ERAI, 
as well as the ratio of ERAI convective precipitation to ERAI total precipitation.

RC: P6L5: New Zealand

AR: We rephrased the first sentence.

RC: P6L7: ranges => maybe “ridges”?

AR: We rephrased the paragraph, it now reads:

“This study focuses on the Southern Alps of New Zealand located in the southwestern Pacific 
Ocean. The Southern Alps are oriented southwest-northeast and run almost parallel to the 
western coast of the South Island. They are approximately 800 km long and 60 km wide, extend 
across a latitude range from 41° S to 46° S and consist of a series of ranges and basins (Barrell et 
al., 2011).”

RC: P7L12: In case of => For 



AR: Rephrased as suggested.

RC: P9L10: Move sentence “ The aim is not a downscaling ...” to end of paragraph

AR: Moved to the end of the paragraph.

RC: P9L27: HSS is defined as The HSS

AR: Rephrased as suggested

RC: P12L4: I relate “occurrence” to precipitation frequency. Maybe better use magnitude?

AR: The HSS for thresholds of P24h > 1mm may be seen as an indicator of whether ICARCP is 
better able to model the frequency/occurrence of wet or dry days in comparison to ERAI. Higher 
tresholds, on the other hand, are more indicative of whether ICARCP improves the frequency of 
larger precipitation events over ERAI. We exchanged occurrence for frequency for better clarity.

RC: P15L5: For lazy or tiered readers it might be helpful to re-state that VCSR are the observations.

AR: Rephrased to “The observation and expert-judgment based VCSR, ICAR, ICARCP and 
ERAI”

RC: P16L6ff: Maybe indicate which months these seasons are (DJF..)?

AR: We added abbreviations of the months that are associated with each season to the second 
paragraph of Section 4.5 and the caption of Figure 5:

“The seasonal variations of precipitation as derived from the VCSR data set (Fig. 5b-e) are best 
reproduced by ICARCP (Fig. 5l-o). However, the improvements over the corresponding ICAR 
patterns 5g-j) are small and the remainder of this paragraph applies to ICAR and ICARCP alike. 
When comparing VCSR and ICARCP the similarities are largest for winter (JJA, Fig. 5h and 
5m) and summer (DJF, Fig. 5e and 5o). The differences increase for the remaining seasons, with 
the Southern Alps being particularly affected. For autumn (MAM), VCSR shows the precipitation
as below average (Fig. 5b) while ICARCP indicates above average precipitation (Fig. 5l). For 
spring (SON), on the other hand, VCSR shows an increase in precipitation throughout the 
Southern Alps (Fig. 5d) but ICARCP shows the central part of the Southern Alps as drier than on 
average (Fig. 5n).”

Figure 5. The top four panels show patterns of P24h averaged over 2007–2016 for VCSR (left), 
ICAR (second column), ICARCP (third column) and ERAI (right) over the South Island of New 
Zealand and surrounding ocean. Rows two to five show seasonal deviations of the all-year average 
patterns, for autumn (MAM, second row), winter (JJA, third row), spring (SON, fourth row) and
summer (DJF, bottom). Each panel shows the coastline and the 1000 m MSL contour line of the 
topography.

RC: P19L15: Cloud you add these regions to Fig. 1?

AR: We want to explicitly thank the reviewer for this comment as it revealed that some ERAI 
gridpoints used to determine the flow linearity were not within the test region (they were closer to 
the coast) and that the length of the test regions was erroneously stated as 1000 km when it should
be 500 km. With the new test regions, furthermore, the maximum value of κ where still enough 
data points remained in the near stable category to calculate SSMSE is 375·10-5 s-1. 



However, the characteristics of the results remain essentially the same, with only minor effects on 
their discussion and presentation.

This entails the following changes in Section 4.6 and in the discussion:

P19L13: testregion dimensions corrected:
“... and is about 200 km wide, 500 km long and 1500 m high”

P19L6-7: the upper limit of κ has changed:
“…the value of κ is varied between 25 · 10−5 s−1 and 375 · 10−5 s−1 in steps of 25 · 10−5 s−1.”

P20L15: the number of days that fulfill the defined criteria has changed and we adjusted the text 
according to a criticism of reviewer 2:
“Of the 4018 days in the eleven-year study period, 1847 fulfill the criteria stated above. A 
detailed overview of the distribution of these days among the three categories in dependence of κ 
is given in Table 3.”

P20L17-23: we updated the description of the results:
“The results from Table 3 summarized in Fig. 7 show, that stable atmospheric conditions and 
Froude numbers larger or equal to unity lead to an increase in median scores for sites in complex 
topography. This behavior is observed for SSMSE where the score median increases from 0.33 to 
0.58 and, for P24h > 25 mm and P24h > 50 mm in case of HSS. For P24h > 1 mm the maximum 
median score is found for stable conditions and F < 1, with the F ≥ 1 regime even yielding a
negative median score.”

P21: Table 3 was updated and filled with the correct values.

P22: Figure 7 was updated and now shows the correct values.



P29-30L34-10: We updated the discussion and included additional Figures to reduce the amount of times
secondary results are not shown (as per request of Reviewer 2):

ICAR was found to perform better for upstream flows with Froude numbers larger than unity. This result 
is not unexpected, since linear theory is the theoretical foundation for ICAR. Therefore, flows of higher 
linearity lead to increased SSMSE and HSS for thresholds of 25 mm and 50 mm. These results hold even 
if the method for classifying near-stable or stable days is changed. For instance, using N 2 ≤ 0 as 
classification criterion for near-stable days and N 2 > 0 for stable days leads to similar results (see Fig. 
A2). For SSMSE (see Fig. 7a) the spread of scores derived from varying κ for near-stable days is 
large enough to include the median score of the stable days with F < 1. Nonetheless, this is only 
true for κ = 200 · 10−5 s, in all other cases stable days with F < 1 always score higher than near 
stable days. Stable days with F ≥ 1, in comparison, always achieve a higher score than the other 
two categories. A potential issue with the methodology is the small number of cases in the stable regime 
with F ≥ 1 compared to the two other classes (see Table 3). However, P24h on stable days with F ≥ 1 is 
three to seven times as high as P24h during the other two classes (see Fig. A3). Therefore, while 
comparably small in number, stable days with F ≥ 1 contribute above-average amounts of precipitation to 
the climatology, highlighting the importance of the improvement in skill for this category.

P6: Figure 1 with the test regions included now is:

RC: P29L9-17: (a) Maybe move this Paragraph to Section 3.2?



AR: While we agree that Section 3.2. would be a fitting place for paragraph P29L9-L17 as well, 
in this manuscript the uncertainties associated with precipitation measurements are only brought 
up in the Discussion section. To void unnecessary zig-zag and keep the logical flow of the 
discussion intact, as proposed by Mensh (2017), we decided to leave the paragraph at its current 
location.

RC: (b) Does undercatch not affect HSS(P>50)?

AR: Undercatch does affect HSS(P>50) as well and, as detailed in paragraph P29L9-17, is 
expected to affect both, the performance of ICARCP and ERAI.

RC: P29L9-33: I would move the caveats to another place such that the paragraph currently starting at 
L34 follows after the current L8.

AR: We agree that the discussion would benefit from a more rigid structure. We therefore moved 
the general discussion of results up so that it now begins after L8. The caveats are now discussed 
subsequent to the general discussion of results.

RC: P30L21-24: Could you elaborate why you think this issue is a likely candidate?

AR: We expanded the corresponding paragraph to elaborate further.

It now reads: “A potential cause for the observed negative correlation is, that the reflection 
of mountain waves at the interfaces between atmospheric layers can impact the distribution
of orographic precipitation (Barstad and Schüller, 2011). Siler and Durran (2015) found, 
for instance, that wave reflection at the tropopause may either strengthen or weaken low-
level windward ascent, which in turn affects the amount and distribution of orographic 
precipitation. The outcome was found to depend on the ratio of the tropopause height to 
the vertical wavelength of the mountain waves. Since ICAR currently does not account for 
wave reflection, its implementation could therefore lead to improvements in this regard.”

RC: Table 1: Outline in caption where the uncertainty estimates come from (+/- 0.1).

AR: We added a short outline to the caption:

“List of weather stations used in this study sorted by their elevation. The table lists station number,
elevation z, latitude (lat), longitude (lon), name, average distance downwind of the main crest of 
the Southern Alps (Δ) based on westerly and northwesterly flow, mean annual precipitation P
with the standard deviation both calculated for the years where data was available at the 
respective weather station, fraction of convective precipitation in ERAI annual sum fcp, length of
the time series (l) and number of days removed due to missing entries or failed quality checks 
(dm). The superscript following the station name indicates the data provider:  NCD (1), NIWA (2) 
and University of Otago (3). Precipitation data for Larkins and Potts were lineary extrapolated to 
a full year. Δ was not considered for coastal weathers stations and no values were assigned for 
Mahanga and Larkins since they lie north and south, respectively, of the main alpine crest.”

RC: Figure 2: Are these MSE of the annual sums (Add to the caption)? Maybe add the mean values so 
the results can be put into perspective. 

AR: Figure 2 shows the average over all the MSE of P24h calculated at each alpine weather 
stations.



RC: Table 2: These are mm/day (e.g. RMSE (mm)), correct?

AR: Correct, we adjusted the units in the column headers for clarity, the header now looks like 
this:

Figure 5: 

RC: (a) NIWA (top-left) -> VCSR

AR: We exchanged the column header “NIWA” for “VCSR”

RC: (b) Maybe mean magnitude over land to panels?

AR: We considered the suggestion and decided not to add the mean magnitude over land to the 
panels. The reasons are that the mean magnitude over land is never specifically referenced or 
discussed in the text and that the panels mainly showcase the high resolution precipitation 
patterns. Adding text would, furthermore, conceal part of the patterns.

RC: Figure 6: Why do the no. samples (circles) differ among the various thresholds in HSS? Explain in 
the caption.

AR:  We added the following sentence to the caption of Figure 6 to explain the reason:

“At some weather stations no days with P24h > 25 mm and P24h > 50 mm were observed or 
simulated during certain seasons, therefore no HSS scores could be calculated.”
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