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Abstract: 1	

Many time series observations in hydrology and climate show large seasonal variations and it has long been 2	

common practice to separate the original data into trend, seasonal and random components. We were interested 3	

in using that decomposition approach as a basis for understanding variability in hydro-climatic time series. For 4	

that purpose, it is desirable that the trend, seasonal and random components are independent so that the variance 5	

of the original time series equals the sum of the variances of the three components. We show that the resulting 6	

decomposition with the trend component traditionally estimated either as a linear trend or a moving average 7	

does not produce components that are independent. Instead we introduce the rarely adopted two-way ANOVA 8	

model into studies of hydro-climatic variability and define the trend as equal to the annual anomaly. This 9	

traditional approach produces a decomposition with three independent components. We then use global land 10	

precipitation data to demonstrate a simple application showing how this decomposition method can be used as a 11	

basis for comparing hydro-climatic variability. We anticipate that the three-part decomposition based on the 12	

two-way ANOVA approach will prove useful for future applications that seek to understand the space-time 13	

dimensions of hydro-climatic variability. 14	

 15	

Keywords: Time series; Decomposition; Independent component; Climate variability. 16	
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1 Introduction 17	

Many climatic and hydrologic time series contain large seasonal oscillations and it has long been standard 18	

practice to consider such time series as being composed of three components that include a long-term trend, a 19	

seasonal cycle (or seasonal oscillation) and a random component (Kendall et al., 1983, p. 429; von Storch and 20	

Zwiers, 1999). In practice the trend component is usually removed first using an approach such as (linear) trend 21	

removal (e.g., Kedem and Fokianos, 2002) or sometimes a moving average might be used (e.g., Adhikari and 22	

Agrawal, 2013). Other trend removal techniques are possible (e.g. higher order polynomial, exponential, etc.) 23	

depending on the nature of the time series. Once the trend component has been removed, the mean seasonal 24	

cycle is calculated and the remaining part of the original time series is assigned to the random component. The 25	

details are well known. 26	

 27	

Applications of the time series decomposition vary but are usually directed towards analysis and forecasting. 28	

One possible application of the three-part decomposition described above, that is yet to be fully explored in the 29	

climatic and hydrologic sciences is to provide a basis for understanding the variability of a time series. To give 30	

an example, assume we have a monthly precipitation time series that has been decomposed into the above-noted 31	

three components. Once done we can ask how much of the overall variability is due to each of the three parts. 32	

Given that the precipitation time series is the sum of three components, then it follows that the total variance of 33	

the time series is simply the sum of the variances of the three components plus three additional terms that 34	

account for the covariances. If the three covariances were all zero, then the partitioning of the total variation 35	

between the components is greatly simplified since the total variance is just the sum of the variances of the three 36	

separate components. A time series decomposition with that property would potentially provide an extremely 37	

useful basis for preparing a climatology of the variability as opposed to a climatology of the mean. For example, 38	

imagine a precipitation time series. By decomposing the original time series into three independent components 39	

we could use a ternary diagram to display, in a single diagram, how the variability is partitioned between those 40	

three components. 41	

 42	

The aim of this study is to investigate whether it is possible to identify a time series decomposition approach 43	

that separates a time series into the long-term trend along with seasonal and random components, where the 44	

covariances between the three components are all zero. In other words, the decomposition is such that the three 45	
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components are independent. We use monthly precipitation data for various case studies but the underlying 46	

results are equally applicable to other variables (e.g., temperature, runoff, evapotranspiration, etc.). The paper 47	

begins by adopting the standard three-part decomposition described above where we adopt two widely-used 48	

methods to estimate the long-term trend. The first subtracts a linear trend while the second represents the trend 49	

as a moving average. We find that neither of these much-used approaches produces a time series decomposition 50	

with independent components. We then introduce a decomposition method based on the traditional two-way 51	

ANOVA model (e.g., Miller and Kahn, 1962; Sun et al., 2010) where the covariances are all zero. While the 52	

traditional two-way ANOVA model has been widely used in the analysis of scientific experiments it has 53	

received little attention for the analysis of hydro-climatic variability. To demonstrate the application, this 54	

approach is then applied to global land precipitation data to produce maps of the variability with the aim of 55	

showing the potential of the approach. 56	

 57	

2 Precipitation Data 58	

 59	

We use monthly rainfall data from site observations collected by the Australian Bureau of Meteorology 60	

(http://www.bom.gov.au/). We selected three sites to show a variety of different precipitation time series (Fig. 61	

S1). The first is at Darwin Airport (12.42 °S, 130.89 °E, data period: 1941-2017) located in northern Australia. 62	

The precipitation at Darwin Airport has a distinct wet-dry season combined with a long-term upward trend in 63	

precipitation. The results for Darwin Airport are reported in the main text. In the supporting material we show 64	

results at two further sites with very different rainfall characteristics. The second site, Donnybrook (33.57 °S, 65	

115.82 °E, data period: 1906-2017) is located in a winter-dominant precipitation regime in southwest Australia 66	

and shows a long-term decline in precipitation. The final site, Cobar (Lerida) (31.70 °S, 145.70 °E, data period: 67	

1883-1997) is located in the arid centre of New South Wales with precipitation highly variable from year to year 68	

but with no distinct seasonality and no long-term trend. 69	

 70	

In a later part of the paper, we use a gridded global precipitation dataset prepared by the Climatic Research Unit 71	

(CRU, TS4.01 database, monthly, 1901-2016, global 0.5° ´ 0.5°) (Harris et al., 2014), to give an example of 72	

how the two-way ANOVA model can be used to categorize and compare variability. 73	

 74	
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3 Statement of the Problem 75	

 76	

We use monthly precipitation time series (P(t)) for q years, and separate the time series into components that 77	

describe a long-term trend (Pa(t)), monthly means (Pm(t)) and a random residual component (Pr(t)), such that, 78	

a m r( ) ( ) ( ) ( )P t P t P t P t= + +          (1) 79	

By the usual variance law, the variance (s2) of P(t) is the sum of variances of each component plus the 80	

covariances (von Storch and Zwiers, 1999), 81	

a m r

2 2 2 2
a m a r m r2cov( , ) 2cov( , ) 2cov( , )P P P P P P P P P Ps s s s= + + + + +                  (2) 82	

We test traditional time series decomposition methods and seek a method where the three covariances in Eq. (2) 83	

are all zero. 84	

 85	

 86	

4 Evaluating Two Widely-Used Time Series Decomposition Methods 87	

 88	

In this section we use monthly time series for precipitation at Darwin to evaluate whether two widely-used 89	

methods produce decompositions where the individual components are independent (i.e., covariances are zero). 90	

The original data for Darwin cover the period 1941-2017, but we report the decomposition for the shorter period 91	

1942-2016 to account for the loss of data at either end due to the moving average procedure (section 4.2).  92	

 93	

4.1 Time Series Decomposition Using Linear Trend Removal 94	

On this approach the mean of the time series is first subtracted and a linear regression is fitted to the monthly 95	

anomalies. The resulting regression is then used to calculate the long-term trend component which is 96	

subsequently removed. The monthly means are then calculated and the random component is set equal to the 97	

remainder. The results for Darwin are shown in Fig. 1. (See Figs. S2, S3 for equivalent results at Donnybrook 98	

and Cobar.)   99	

 100	

The resulting variance-covariance matrix is shown in Fig. 1e. The overall (temporal) variance of the original 101	

time series is 33716.12 (mm mon-1)2. The results show that the variances of the three terms do sum to the total 102	
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temporal variance since the least squares estimation is used in the linear regression making the covariances all 103	

sum to zero. However, the individual covariances are not all zero. Actually, when the slope of the linear 104	

regression is not zero (not a constant time series), the covariances between three decomposed components are 105	

also not zero. 106	

 107	

4.2 Time Series Decomposition Using Moving Average Trend Removal 108	

On this approach the calculation is as before except that a moving average is used to represent the long-term 109	

trend component. In general, one could use a moving average of any period, e.g. months-years-decades. We use 110	

a 24 month moving average but the same general conclusions will hold for other periods. The results for Darwin 111	

are shown in Fig. 2. (See Figs. S4, S5 for equivalent results at Donnybrook and Cobar.) 112	

 113	

The resulting variance-covariance matrix is shown in Fig. 2e. Here, the covariances are substantial. For example, 114	

the covariance of the trend and monthly mean components (cov(Pa, Pm) = 864.00 (mm mon-1)2) is actually larger 115	

than the variance of trend component (
a

2
Ps = 581.34 (mm mon-1)2).  The conclusion is that the moving average 116	

method is not suitable for the intended purpose. 117	

 118	

4.3 Summary 119	

The above evaluation of two widely used traditional methods shows that while the covariances between the 120	

three components were generally (but not always, e.g. covariance value between moving average and monthly 121	

mean components in Fig. 2) small, they were not zero. In the next section, we show a three-part decomposition 122	

method with the desired property that the covariances between the three component are zero. 123	

 124	

5 Introducing a Time Series Decomposition Method based on a Two-way ANOVA Model  125	

 126	

On further investigation we realised that a traditional two-way analysis of variance (ANOVA) model (e.g., 127	

Miller and Kahn, 1962) which has been widely adopted in designing agricultural experiments (e.g., Clewer and 128	

Scarisbrick, 2001), would meet the criteria we set, i.e., the three components were independent.  Briefly, the 129	

temporal mean of the entire (monthly) time series is first subtracted and the anomaly for each year is calculated. 130	
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The long-term trend component in each month is calculated by evenly distributing the annual anomaly in each 131	

year to every month in the same year. Once the trend component is extracted from the original time series, the 132	

monthly means are calculated and the random component is set equal to the remainder. It should be noted that in 133	

the traditional two-way ANOVA model, the original time series is actually decomposed into four components, 134	

i.e., long-term mean (constant), net (or centred) annual and monthly components (that have zero means) and the 135	

residual component. In this study, we combine the long-term mean and centred monthly component in the two-136	

way ANOVA model to produce the monthly means component.  137	

 138	

The results for Darwin are shown in Fig. 3. (See Figs. S6, S7 for equivalent results at Donnybrook and Cobar.) 139	

The resulting variance-covariance matrix is shown in Fig. 3e. The covariances are all zero, which demonstrates 140	

that the overall temporal variance (Fig. 3a, 2
Ps = 33716.12 (mm mon-1)2) is the sum of the variances of the three 141	

independent components. (The same result holds at the Donnybrook and Cobar sites, see Figs. S6 and S7.)  We 142	

further include a mathematical proof (see Appendix) that the covariances are zero in all cases using this 143	

approach. We conclude that a time series decomposition based on the traditional two-way ANOVA model  has 144	

the desired properties. 145	

 146	

6 Variability in Global Precipitation 147	

 148	

We use a global land precipitation database to demonstrate an application of the traditional two-way ANOVA 149	

model decomposition described above.  The data are from the CRU database (monthly, 1901-2016, 0.5° ´ 0.5°) 150	

where we have calculated the overall temporal variance at each grid-box (Fig. 4a) as well as the percentages of 151	

the total variance due to the annual anomaly (Fig. 4b), monthly (Fig. 4c) and random (Fig. 4d) components. 152	

(The variances for each component are shown in Fig. S8.) 153	

 154	

Inspection of Fig. 4a shows that the largest temporal variance of precipitation is generally near the equator. In 155	

tropical Africa and South America, that variation is dominated by the monthly component (Fig. 4c) highlighting 156	

a key point that in these regions the random component of (monthly) precipitation is a relatively small fraction 157	

of the total precipitation. However, that result is not universal throughout the tropics. For example, several 158	

regions throughout South East Asia (e.g., Indonesia, Malaysia) show the opposite pattern with a low fraction of 159	
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the total variance due to the monthly (seasonal) component (Fig. 4c) and a correspondingly large fraction due to 160	

the random component. Presumably those parts of South East Asia would also be more drought-prone compared 161	

to tropical Africa and South America. Another key feature is that the fraction of the total variation explained by 162	

the annual (trend) component is small everywhere (Fig. 4b).  163	

 164	

To further demonstrate the utility of the approach, we use a ternary diagram to show the fractional partitioning 165	

of the total variance to the three components (Fig. 5). Note that this is only possible because the three 166	

components are independent. In future work we plan a much more comprehensive assessment of hydro-climatic 167	

variability using this approach.  168	

 169	

7 Discussion and Conclusion 170	

 171	

Decomposition of a time series into trend, seasonal and random components has long been used in many 172	

disciplines including studies in hydrology and climate. The emphasis in those studies is often on analysis and 173	

forecasting. However, we were interested in investigating variability and for that application the central attribute 174	

of the chosen decomposition method was whether the covariance between the three components would be zero. 175	

If that were to hold then the total variance would be the sum of the variances of the three components, which 176	

would eliminate the potential complexity arising from the covariance components. 177	

 178	

On investigation we found that the two most commonly-used methods for removing the trend (linear and 179	

moving average) will not generally produce components that are independent (Fig. 1, 2). Interestingly, in the 180	

example precipitation time series used here, the moving average approach often produced a covariance between 181	

the trend (24-month moving average) and monthly components that exceeded the variance of trend component 182	

(Figs 2, S4). That approach is clearly not suitable for our intended application. In contrast the linear trend often 183	

produced small covariances with the added feature that the covariance of the trend and monthly components 184	

(cov(Pa, Pm)) was the same magnitude but opposite sign from the covariance of annual and random components 185	

(cov(Pa, Pr)). This pattern occurs as a design feature of the linear regression method. In particular, the linear 186	

regression produces a trend component (Pa) and a remainder (Pm + Pr) that are independent by design (i.e., 187	

cov(Pa, Pm + Pr) = 0). This leads directly to the above-noted cancellation (i.e., cov(Pa, Pm) + cov(Pa, Pr) = 0), but 188	

the individual covariances are generally not zero. 189	
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 190	

In contrast the classic two-way ANOVA model separates a time series into trend, monthly and residual 191	

components and was designed to preserve independence among those three components. However, that classic 192	

method has not, to our knowledge, generally adopted to investigate the variability in the hydro-climatic time 193	

series. Our numerical results (Fig. 3, S6, S7) and mathematical proof (Appendix) that the three components are 194	

independent demonstrate the utility of this method in decomposing a time series for studies on variability. One 195	

important point is that the seasonal component (here defined as monthly) repeats over all years of the time series. 196	

Hence caution is needed in applying this approach when it is known that the amplitude of the seasonal 197	

component is changing with time, such as for example, as has been observed for the seasonal cycle of 198	

atmospheric CO2 (Zeng et al., 2014; Piao et al., 2017). 199	

 200	

As an application, we applied the two-way ANOVA model to explore the variability in global precipitation. The 201	

temporal variance of precipitation is clearly separated into distinct regimes. In one regime, the total variance is 202	

dominated by the monthly means (seasonal component) while the other regime is dominated by the random 203	

(residual) component. This separation shows good agreement with previous studies based on different 204	

approaches that investigate the predictability of precipitation (Jiang et al., 2016 and 2017). In particular, those 205	

regions with a high predictability of precipitation also have a high fraction of the total variance that is due to the 206	

seasonal component. We expect that a separation of the variance based on this approach will prove useful for 207	

many other applications, especially in studies seeking to understand hydro-climatic variability. 208	

 209	

Data availability 210	

The monthly rainfall data from site observations can be accessed through the Australian Bureau of Meteorology 211	

(http://www.bom.gov.au/). The global precipitation data is downloaded from the University of East Anglia 212	

Climate Research Unit (CRU): http://data.ceda.ac.uk.  213	
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Appendix: Mathematical Results 256	

 257	

A.1 Independence of the Three Components Using the Two-way ANOVA Model  258	

 259	

Here we show a mathematical derivation of each of the three components based on the two-way ANOVA model 260	

(Section 5 in main text). We use that derivation to demonstrate that the three covariances (Eq. (2) in main text) 261	

all equal zero. 262	

 263	

A.1.1 Definition of Pa(t), Pm(t) and Pr(t) 264	

We express the original monthly time series P(t) having dimensions of q years and p (=12) months, as a two-265	

dimensional array, 266	

P = zlk⎡⎣ ⎤⎦q × p                                                                                             (A1) 267	

with [1, ]l qÎ  represents order of year, [1, ]k pÎ  represents order of month. Using the matrix subscripts, the 268	

original time series P(t) can be expressed as,  269	

P(t) = [z11,!, z1k ,! ,z1p
pmonth

" #$$ %$$
, 1st year

&

zl1,!, zlk ,! ,zlp
pmonth

" #$$ %$$
, l th year

&

zq1,!, zqk ,! ,zqp
pmonth

" #$$ %$$
] q th year

                                             (A2) 270	

 271	
We define ua(l) as the mean in the lth year, 272	

ua (l) =
zlk

k=1

p

∑
p
, l ∈[1,q]                                                    (A3) 273	

and um(k) as the mean of the kth month, 274	

um(k) =
zlk

l=1

q

∑
q
, k ∈[1, p]                                                 (A4) 275	

With P(t)  the mean of original time series P(t) defined as, 276	
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                                              P(t) =
zlk

k=1

p

∑
l=1

q

∑
q × p

                                                                                           (A5) 277	

we note that P(t)  is equal to ua (l) . To show that, we first calculate ua (l)   as, 278	

ua (l) =
ua (l)

l=1

q

∑
q

                                                             (A6) 279	

Combining that with Eq. (A3) and comparing the result with Eq. (A5) we have, 280	

ua (l) =

zlk
k=1

p

∑
pl=1

q

∑
q

=
zlk

k=1

p

∑
l=1

q

∑
q × p

= P(t)                                            (A7) 281	

Similarly, we calculate  um(k)  as, 282	

um(k) =
um(k)

k=1

p

∑
p

                                                     (A8) 283	

Combining Eq. (A8) with Eq. (A4) and comparing the result with Eq. (A5) we have, 284	

um(k) =

zlk
l=1

q

∑
qk=1

p

∑
p

=
zlk

k=1

p

∑
l=1

q

∑
q × p

= P(t)                                         (A9) 285	

 286	
To define the annual component Pa(t) of the decomposition, we first calculate the annual mean in each year, and 287	
using Eq. (A3) we have. 288	

Pannualmean (l) = zlk
k=1

p

∑ = p × ua (l)                                          (A10) 289	

Then the anomaly in the lth year is calculated as, 290	

ΔPannualmean (l) = Pannualmean (l)− Pannualmean (l)

= p × ua (l)− p × ua (l)

= p × ua (l)− ua (l)( )
                                          (A11) 291	

Since ua (l) equals P(t)  (see Eq. (A7)), it follows that Eq. (A11) can be expressed as, 292	

ΔPannualmean (l) = p × ua (l)− P(t)( )                                          (A12) 293	
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We evenly distribute the annual mean anomaly in lth year (see Eq. (A12)) to all p months in the same year to 294	
define Pa(t) as,  295	

Pa (t) = [ua (1)− P(t),! ,ua (1)− P(t)
pmonth

! "##### $#####
, 1st year

%

ua (l)− P(t),! ,ua (l)− P(t)
pmonth

! "#### $####
, l th year

%

ua (q)− P(t),!,ua (q)− P(t)
pmonth

! "##### $#####
] q th year

                              (A13) 296	

 297	
We obtain the monthly mean component Pm(t) by repeating um(k) (see Eq. (A4)) for all q years as follows, 298	

Pm(t) = [um(1),! ,um(k),! ,um( p)
pmonth

" #$$$$ %$$$$
, 1st year

&

um(1),! ,um(k),! ,um( p)
pmonth

" #$$$$ %$$$$
, l th year

&

um(1),! ,um(k),! ,um( p)
pmonth

" #$$$$ %$$$$
] q th year

                              (A14) 299	

 300	
With P(t), Pa(t) and Pm(t) now all defined, Pr(t) is the residual component, 301	

Pr (t) = P(t)− Pa (t)− Pm(t)                                          (A15) 302	

and substituting from Eqs. (A2), (A13) and (A14) we have, 303	
 304	

Pr (t)= [z11 − ua (1)− um(1)+ P(t),!,z1k − ua (1)− um(k)+ P(t),!,z1p − ua (1)− um( p)+ P(t)
pmonth

" #$$$$$$$$$$$$$$$ %$$$$$$$$$$$$$$$
, 1st year

&

zl1 − ua (l)− um(1)+ P(t),!,zlk − ua (l)− um(k)+ P(t),!,zlp − ua (l)− um( p)+ P(t)
pmonth

" #$$$$$$$$$$$$$$$ %$$$$$$$$$$$$$$$
, l th year

&

zq1 − ua (q)− um(1)+ P(t),!,zqk − ua (q)− um(k)+ P(t),!,zqp − ua (q)− um( p)+ P(t)
pmonth

" #$$$$$$$$$$$$$$$$ %$$$$$$$$$$$$$$$$
] q th year

305	

        (A16) 306	
 307	
A.1.2 Mean of Pa(t), Pm(t) and Pr(t) 308	
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To calculate the covariance, we require the three components (see section A.1.1) and the mean of each 309	
component. We calculate the means in this section and the covariances follow in a later section.  310	
 311	
For Pa(t) we take the mean of Eq. (A13), 312	

Pa (t) =
p × (ua (l)

l=1

q

∑ − P(t))

q × p
=

ua (l)
l=1

q

∑
q

− P(t) = ua (l)− P(t)                       (A17) 313	

We previously found in Eq. (A7) that ua (l) equals P(t) , and Eq. (A17) becomes, 314	

Pa (t) = ua (l)− P(t) = 0                                                 (A18) 315	

 316	
For Pm(t) we take the mean of Eq. (A14), 317	

Pm(t) =
q × um(k)

k=1

p

∑
q × p

=
um(k)

k=1

p

∑
p

= um(k)                               (A19) 318	

As um(k)  equals P(t)  (see Eq. (A9)), then it follows that Pm(t)  equals P(t) , 319	

Pm(t) = um(k) = P(t)                                                 (A20) 320	

 321	
For Pr(t) we take the mean of Eq. (A15), 322	

Pr (t) = P(t)− Pa (t)− Pm(t)                                           (A21) 323	

As Pa (t) equals zero (see Eq. (A18)) and with Pm(t)  equal to P(t) (see Eq. (A20)), we show that Pr (t)  324	

equals zero, 325	

Pr (t) = P(t)− Pa (t)− Pm(t) = P(t)− 0− P(t) = 0                            (A22) 326	

 327	
A.1.3 Covariance Between the Three Decomposed Components 328	

Using the above results, we now calculate the (three) covariances (see Eq. (2), main text). We use the sample 329	
covariance but note that the results also hold for the population covariance. 330	
 331	
The first (sample) covariance between Pa(t) and Pm(t) is defined by, 332	

cov Pa (t),Pm(t)( ) =
Pa (t)− Pa (t)( ) Pm(t)− Pm(t)( )( )

k=1

p

∑
l=1

q

∑
q × p −1

                          (A23) 333	
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Combining Eqs. (A13) and (A18) for the first bracketed term along with Eqs. (A14) and (A20) for the second 334	

bracketed term in the numerator we can rewrite Eqs. (A23) as, 335	

cov Pa (t),Pm(t)( )=
ua (l)− P(t)− ua (l)− P(t)− 0( ) um(k)− um(k)( )⎛

⎝
⎞
⎠

k=1

p

∑
l=1

q

∑
q × p −1

=
ua (l)− ua (l)( ) um(k)− um(k)( )( )

k=1

p

∑
l=1

q

∑
q × p −1

       (A24) 336	

For the first part of the numerator ua (l)− ua (l)( ) in Eq. (A24), there is no change for the summation over 337	

index k and therefore this term can be set as a constant for the second summation, and we have, 338	

cov Pa (t),Pm(t)( )=
ua (l)− ua (l)( ) um(k)− um(k)( )

k=1

p

∑⎛
⎝⎜

⎞
⎠⎟l=1

q

∑
q × p −1

                    (A25) 339	

Now that the summation has been separated into two terms, we note that the second summation in Eq. (A25) is 340	

zero. To show that, we note that the mean is the sum divided by number of samples (see Eq. (A8)), and the 341	

second summation can be written as, 342	

um(k)− um(k)( )
k=1

p

∑ = p ×
um(k)

k=1

p

∑
p

− um(k)

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

= p × um(k)− um(k)( )
= 0

                               (A26) 343	

It follows that the covariance between Pa(t) and Pm(t) must be zero, 344	

cov Pa (t),Pm(t)( )= 0                                                      (A27) 345	

 346	

The (sample) covariance between Pa(t) and Pr(t) is defined by, 347	

cov Pa (t),Pr (t)( ) =
Pa (t)− Pa (t)( ) Pr (t)− Pr (t)( )( )

k=1

p

∑
l=1

q

∑
q × p −1

                 (A28) 348	

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-601
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 7 December 2018
c© Author(s) 2018. CC BY 4.0 License.



17	
	

Then we calculate the covariance between Pa(t) and Pr(t) by introducing definitions of these two terms in Eq. 349	

(A13) and (A16), with the results from Eq. (A18) and (A22), i.e., Pa (t) and Pr (t)  both equal zero. With those 350	

substitutions, we have, 351	

cov Pa (t),Pr (t)( ) =
ua (l)− P(t)− 0( ) zlk − ua (l)− um(k)+ P(t)− 0( )( )

k=1

p

∑
l=1

q

∑
q × p −1

       (A29) 352	

As before, for the first part of the numerator ua (l)− P(t)( ) in Eq. (A29), there is no change for the 353	

summation over index k and therefore this term can be set as a constant for the second summation, and we have, 354	

cov Pa (t),Pr (t)( ) =
ua (l)− P(t)( ) zlk − ua (l)− um(k)+ P(t)( )

k=1

p

∑⎛
⎝⎜

⎞
⎠⎟l=1

q

∑
q × p −1

           (A30) 355	

Again the second summation in the numerator equals zero. To show that, we re-express the second summation 356	

in Eq. (A30) as, 357	

zlk − ua (l)− um(k)+ P(t)( )
k=1

p

∑ = zlk
k=1

p

∑ − p × ua (l)− um(k)
k=1

p

∑ + p × P(t)          (A31) 358	

and after further rearrangement we have, 359	

zlk − ua (l)− um(k)+ P(t)( )
k=1

p

∑ = p ×
zlk

k=1

p

∑
p

− ua (l)

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

− p ×
um(k)

k=1

p

∑
p

− P(t)

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

     (A32) 360	

The first term inside the first set of brackets equals ua (l) (see Eq. (A3)), and the first term inside the second set 361	

of brackets equals P(t) (see Eq. (A9)). With those substitutions, Eq. (A32) becomes, 362	

zlk − ua (l)− um(k)+ P(t)( )
k=1

p

∑ = p × 0− p × 0 = 0                    (A33) 363	

It follows that the covariance between Pa(t) and Pr(t) is zero, 364	

cov Pa (t),Pr (t)( ) = 0                                            (A34) 365	

 366	
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Finally, we calculate the covariance between Pm(t) and Pr(t), 367	

cov Pm(t),Pr (t)( ) =
Pm(t)− Pm(t)( ) Pr (t)− Pr (t)( )( )

k=1

p

∑
l=1

q

∑
q × p −1

                  (A35) 368	

With previous definitions of Pm(t) and Pr(t) (see Eq. (A14) and (A16)), and results from Eq. (A20) and (A22), 369	

i.e., Pm(t)  equals P(t) and Pr (t)  equals zero, we have, 370	

cov Pm(t),Pr (t)( ) =
um(k)− P(t)( ) zlk − ua (l)− um(k)+ P(t)− 0( )( )

k=1

p

∑
l=1

q

∑
q × p −1

      (A36) 371	

As before, for the first part of the numerator um(k)− P(t)( ) in Eq. (A36), there is no change for the 372	

summation over index l and therefore this term can be set as a constant for the first summation, and we have, 373	

cov Pm(t),Pr (t)( )=
um(k)− P(t)( ) zlk − ua (l)− um(k)+ P(t)( )

l=1

q

∑⎛
⎝⎜

⎞
⎠⎟k=1

p

∑
q × p −1

       (A37) 374	

Again the second summation of the numerator equals zero. To show that, we re-express the second summation 375	

in Eq. (A37) as, 376	

zlk − ua (l)− um(k)+ P(t)( )
l=1

q

∑ = zlk
l=1

q

∑ − q × um(k)− ua (l)
l=1

q

∑ + q × P(t)            (A38)	377	

and after further rearrangement we have, 378	

zlk − ua (l)− um(k)+ P(t)( )
l=1

q

∑ = q ×
zlk

l=1

q

∑
q

− um(k)

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

− q ×
ua (l)

l=1

q

∑
q

− P(t)

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

      (A39) 379	

The first term inside the first set of brackets equals um(k) (see Eq. (A4)), and the first term inside the second 380	

set of brackets equals P(t) (see Eq. (A7)). With those substitutions, Eq. (A39) becomes, 381	

zlk − ua (l)− um(k)+ P(t)( )
l=1

q

∑ = q × 0− q × 0 = 0                      (A40)	382	

It follows that the covariance between Pm(t) and Pr(t) is zero, 383	
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cov Pm(t),Pr (t)( ) = 0                                          (A41) 384	

 385	

In summary, all three covariance terms, cov Pa (t),Pm(t)( ) (see Eq. (A27)), cov Pa (t),Pr (t)( )  (see Eq. 386	

(A34)) and cov Pm(t),Pr (t)( )  (see Eq. (A41)) are shown to be equal to zero. 387	

 388	

In this study we have used 12 (monthly) periods per year. The same results would hold for other time 389	

periods, such as 4 seasons or 365 days per year.  390	

 391	

A.2 Variance of the Random Component  392	

While undertaking the mathematical analysis we noticed another interesting result, that the variance of the 393	

random component σ Pr (t )
2  can be expressed as the sum of the variances calculated for each of the individual 394	

months. We did not use this result, but we anticipate that it will be useful in further applications. For that 395	

purpose, we show the derivation here. 396	

 397	

A.2.1 Sample Variance 398	

 399	

The sample variance of residual component Pr(t) is defined by, 400	

σ Pr (t )
2 =

Pr (t)− Pr (t)( )2
l=1

q

∑
k=1

p

∑
q × p −1

                                          (A42) 401	

With previous definitions of Pr(t) (see Eq. (A16)), and results from Eq. (A22), i.e., Pr (t)  equals zero, we have, 402	

σ Pr (t )
2 =

zkl − ua (l)− um(k)+ P(t)( )2
l=1

q

∑
k=1

p

∑
q × p −1

                              (A43) 403	

 404	
We extract the residual component for each kth month and define it as Pr,k(t), 405	

Pr,k (t)= [zk1 − ua (1)− um(k)+ P(t),!,zkl − ua (l)− um(k)+ P(t),!,zkq − ua (q)− um(k)+ P(t)]
q year

" #$$$$$$$$$$$$$$$$ %$$$$$$$$$$$$$$$$
406	

        (A44) 407	
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To calculate the sample variance of Pr,k(t), we require its mean. For Pr,k(t) we take the mean of Eq. (A44), 408	

Pr,k (t) =
zkl − ua (l)− um(k)+ P(t)( )

l=1

q

∑
q

=
zkl

l=1

q

∑
q

−
ua (l)

l=1

q

∑
q

− um(k)+ P(t)

                             (A45) 409	

The first term in Eq. (A45) equals um(k)  (see Eq. (A4)) and the second term equals P(t)  (see Eq. (A7)). 410	

With those substitutions, we have, 411	

Pr,k (t) = um(k)− P(t)− um(k)+ P(t) = 0                                 (A46) 412	

 413	
Based on the above results, we now calculate the sample variance of Pr,k(t),  414	

σ Pr,k (t )
2 =

Pr,k (t)− Pr,k (t)( )2
l=1

q

∑
q −1

                                           (A47) 415	

With definitions of Pr,k(t) (see Eq. (A44)), and results from Eq. (A46), i.e., Pr ,k (t)  equals zero, we have, 416	

σ Pr,k (t )
2 =

zkl − ua (l)− um(k)+ P(t)− 0( )2
l=1

q

∑
q −1

                             (A48) 417	

To show the relation between σ Pr (t )
2  and σ Pr,k (t )

2
we calculate the sum of σ Pr,k (t )

2
, 418	

σ Pr,k (t )
2

k=1

p

∑ =
zkl − ua (l)− um(k)+ P(t)( )2

l=1

q

∑
q −1k=1

p

∑

=
zkl − ua (l)− um(k)+ P(t)( )2

l=1

q

∑
k=1

p

∑
q −1

                          (A49) 419	

 420	
Comparing Eq. (A49) with Eq. (A43), we have, 421	
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σ Pr (t )
2 =

zkl − ua (l)− um(k)+ P(t)( )2
l=1

q

∑
k=1

p

∑
q × p −1

= q −1
q × p −1

× σ Pr,k (t )
2

k=1

p

∑
                   (A50) 422	

The result in Eq. (A50) indicates that sample variance of the random component σ Pr (t )
2  can be expressed as the 423	

sum of the sample variances calculated for each of the individual months. 424	
 425	
A.2.2 Population Variance 426	

The population variance of residual component Pr(t) is defined by, 427	

σ! Pr (t )
2

=
Pr (t)− Pr (t)( )2

l=1

q

∑
k=1

p

∑
q × p

                                          (A51) 428	

With definitions of Pr(t) in Eq. (A16), and results from Eq. (A22), i.e., Pr (t)  equals zero, we have, 429	

σ! Pr (t )
2

=
zkl − ua (l)− um(k)+ P(t)( )2

l=1

q

∑
k=1

p

∑
q × p

                              (A52) 430	

 431	
We now calculate the population variance of Pr,k(t),  432	

σ! Pr,k (t )
2

=
Pr,k (t)− Pr,k (t)( )2

l=1

q

∑
q

                                           (A53) 433	

With definitions of Pr,k (t) (see Eq. (A44)), and Pr,k (t) equals zero (see Eq. (A46)), we have, 434	

σ! Pr,k (t )
2

=
zkl − ua (l)− um(k)+ P(t)− 0( )2

l=1

q

∑
q

                             (A54) 435	

To show the relation between σ! Pr (t )
2

 and σ! Pr,k (t )
2

we calculate the sum of σ! Pr,k (t )
2

, 436	
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σ! Pr,k (t )
2

k=1

p

∑ =
zkl − ua (l)− um(k)+ P(t)( )2

l=1

q

∑
qk=1

p

∑

=
zkl − ua (l)− um(k)+ P(t)( )2

l=1

q

∑
k=1

p

∑
q

                                   (A55) 437	

 438	
Comparing Eq. (A52) with Eq. (A55), we have, 439	

σ! Pr (t )
2

=
zkl − ua (l)− um(k)+ P(t)( )2

l=1

q

∑
k=1

p

∑
q × p

= q
q × p

× σ! Pr,k (t )
2

k=1

p

∑

= 1
p
× σ! Pr,k (t )

2

k=1

p

∑

                                        (A56) 440	

The result in Eq. (A56) indicates that population variance of the random component σ! Pr (t )
2

 is the mean of the 441	

population variances calculated for each of the individual months. 442	
 443	
  444	
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 457	

Figure 1. Decomposition of monthly precipitation time series at Darwin (1942-2016) using linear trend removal. Panels 458	

show the (a) original observations (P), (b) linear trend (Pa), (c) monthly means (Pm), (d) residual random component (Pr) and 459	

the (e) variance-covariance matrix for the three components (Pa, Pm and Pr).  460	

  461	
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 462	
Figure 2. Decomposition of monthly precipitation time series at Darwin (1942-2016) using 24-month moving average trend 463	

removal. Panels show the (a) original observations (P), (b) 24-month moving average trend (Pa), (c) monthly means (Pm), (d) 464	

residual random component (Pr) and the (e) variance-covariance matrix for the three components (Pa, Pm and Pr).  465	

  466	
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 467	

Figure 3. Decomposition of monthly precipitation time series at Darwin (1942-2016) using the two-way ANOVA model. 468	

Panels show the (a) original observations (P), (b) annual anomaly (Pa), (c) monthly means (Pm), (d) residual random 469	

component (Pr) and the (e) variance-covariance matrix for the three components (Pa, Pm and Pr). 470	

  471	
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 472	
Figure 4. Variability of global land precipitation based on the CRU database (1901-2016) using the two-way ANOVA model. 473	

(a) Temporal variance ( 2
Ps ) and fractional contributions due to (b) annual (

a

2 2/P Ps s ), (c) monthly (
m

2 2/P Ps s ) and (d) random 474	

(
r

2 2/P Ps s ) variations. 475	

 476	
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 477	
Figure 5. Ternary diagram showing decomposition of the temporal variance ( 2

Ps ) into the three independent components 478	

using the two-way ANOVA model. Axes show fractional variance in the annual anomaly (
a

2
Ps ), monthly means (

m

2
Ps ) and 479	

residual (
r

2
Ps ) components.  480	

 481	
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