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The authors of this paper seek a method that decomposes a time series of monthly means into 
three components, one of which might contain a trend component, the second representative 
of the annual cycle, and the third representing the remaining stochastic month-to-month 
variability, with the decomposition being performed in such a way that the pair-wise covariance 
between the three components is zero.  They propose an analysis of variance that achieves this 
objective. Competing decomposition methods are briefly assessed and found not to produce 
components with zero pairwise covariance (i.e., are uncorrelated), although the author’s 
calculations suggest that the covariances obtained using these methods are small in most cases 
in the examples considered.  
 
First, it is not obvious that the three methods considered correspond to three identical models 
for the month-to-month variation in precipitation – and indeed, it seems that the models 
cannot be the same. A challenge from the outset is that it is not clear what parts of model (1) 
are stochastic, and which are fixed, although for all three it seems that the component Pm(t) 
represents the annual cycle, and thus has the property Pm(t)= Pm(t+12). I would conclude then 
that Pm(t) is deterministic rather than stochastic, so the notion of variance and covariance 
(between random variables) doesn’t quite seem to fit the bill.  
 
For the first variant of the model, discussed in 4.1, the component Pa(t) is take to be a linear 
trend. Since the entire observational record is considered, it seems that for this method at 
least, Pa(t) is deterministic, and thus again, the notion of variance and covariance between 
random variables does not apply. In this case, what is being fitted is a variant of model (1) with 
a deterministic linear trend, a fixed annual cycle, and residual stochastic variability. There are 
probably a number of ways this could be fitted other than by estimating components 
sequentially – and perhaps an ANOVA formulation is one of those better ways, but this should 
be judged in terms of the relative efficiency of parameter estimates obtained via different 
methods as opposed to whether the apparent covariance between components is zero.  
 
The second variant of the model, discussed in 4.2, uses a crude low pass filter to obtain Pa(t). 
This is rather different from a trend formulation, because the filter will pass both any 
deterministic change in level over time (assuming that such changes only occur on long time 
scales) and stochastic variability at time scales that the filter allows to pass. Note that the 
moving average filter does not cut off smoothly with frequency (it has messy “side lobes” that 
leak high frequency variance), resulting in contamination of the low frequency component by 
higher frequency “noise”. Thus, this variant of model (1) has in mind trend plus stochastic low-
frequency variability as one component, the annual cycle as a second component, and 
stochastic high-frequency variability as a third component. Variability and covariance of the first 
and third terms make sense, in so much as deterministic trend is not present in the first term. 
Clearly this is a different animal from that considered in the first variant of the model. Both the 
first term is different, and the nature of the variability that is retained in the third term is 
different. 
 



The third variant of the model, discussed in Section 5, apparently uses a 2-factor ANOVA model 
to decompose a timeseries of monthly means into an annual effect (with a different level for 
each year), a month effect (with a different level for each of the 12 months of the year, thus 
representing the annual cycle), and a residual component. The interpretation of this type of 
model requires consideration of whether year and month effects are fixed or random. In this 
case, I would assume that year effects are random, and month effects are fixed, since they are 
common to all years. The partitioning of variability in an ANOVA analysis is done in such a way 
that, under the assumption of the Gaussian distribution and iid residual variability, the three 
variance components that result are statistically independent. This is all standard stuff, and I’m 
not sure that the long appendix is required to make essentially this point. From a climatological 
perspective, the interpretation of this variant of model (1) is not very different from that of the 
second variant of the model considered in section 4.2. The annual component presumably has 
deterministic trend and low frequency stochastic components, the annual cycle is deterministic, 
and the residual has higher frequency stochastic variability. 
 
Again, differences between these methods, and the underlying variants of model (1) that are 
implicit in these methods, should be considered in terms of the different objectives of the 
methods (a different variant of model (1) implies a somewhat different objective), and whether 
one method produces better estimates (from a statistical perspective) of model parameters 
and properties rather than rather arbitrarily focusing on a single aspect, the covariance of 
component estimates.  
 
One final note concerning a statement that appears on line 90 of the manuscript – zero 
covariance is synonymous with independence ONLY if the monthly time series values are 
Gaussian (i.e., normally) distributed. It seems very evident from the figures in the supplement 
that this is certainly not the case at Cobar (Lerida), e.g., see Figs S3d and S5d. While less 
pronounced, the similar figures for the other two locations also show some evidence of skewed 
residuals, and hence a departure from the Gaussian assumption. 


