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Abstract. The Budyko hypothesis has been widely used to describe precipitation partitioning at the catchment scale. Many 

empirical and analytical formulas have been proposed to describe the Budyko hypothesis. Based on dimensional analysis and 

mathematic reasoning, previous studies have given an analytical derivation, i.e., the Mezentsev-Choudhury-Yang (MCY) 

equation. However, few hydrological processes are involved in the derivation. Note that similar to electrical circuits and 10 

atmospheric motions, this study tried to give a new derivation of the Budyko hypothesis based on an analogy of the Ohms-

type approach and the homogeneity assumption. The derived equation has the same form as the MCY equation but has a 

more physical explanation than the mathematic reasoning proposed in previous studies. In addition, under conditions without 

the homogeneity constraint, a more general expression is 𝐸 =
𝑃(𝑏+𝑘𝐸0)

[𝑃𝑛+(𝑏+𝑘𝐸0)𝑛]1/𝑛, where E, E0 and P are evaporation, potential 

evaporation and precipitation, respectively, and n, k and b are constants. 15 

1 Introduction 

The mean annual water-energy balance equation describes the long-term relationship of actual evaporation (E) with 

precipitation (P) and potential evaporation (E0) at the catchment scale. This equation is widely used in ecological, 

climatological, and socioeconomic applications (Greve et al., 2015). Additionally, this equation has been proved to be a 

powerful tool to assess changes in catchment water balance as a function of climate change [Roderick and Farquhar, 2011; 20 

Yang and Yang, 2011; Renner et al., 2012; van der Velde et al.,2013; Greve et al., 2015). 

Many attempts were made to formulate the mean annual water-energy balance according to observations from different 

catchments (Schreiber, 1904; Ol’dekop, 1911; Budyko, 1958; Pike, 1964). Based on previous studies, Budyko (1974) 

proposed a hypothesis on the mean annual water-energy balance, i.e., the Budyko hypothesis, which was expressed 

mathematically as follows: 25 

𝐸 = 𝑓(𝐸0, 𝑃) ,            (1) 

with the boundary conditions: 

𝐸 → 𝑃 as 𝐸0 → ∞ 
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𝐸 → 𝐸0 as 𝑃 → ∞,           (2) 

which are commonly referred to as “dry condition” and “wet condition”. Initially, the function was suggested without any 

parameters, indicating no capacity to control the impact of different catchment characteristics on the water-energy balance. 

Later, considering the effects of landscape characteristics, an adjustable parameter was introduced to describe the impacts of 

catchment characteristics on the water-energy balance (Choudhury, 1999; Zhang et al., 2001). 5 

In addition, many studies have attempted to achieve an analytical equation based on mathematical reasoning. First, Bagrov 

(1953) introduced a derivative of the mean annual water-energy balance, dE/dP=1−(E/E0)n, and Mezentsev (1955) assumed 

m=(n+1)/n, giving a modification of dE/dP=[1−(E/E0)n]m and obtaining an integration of 

𝐸 = 𝑃𝐸0/(𝑃𝑛 + 𝐸0
𝑛)1/𝑛 .           (3) 

However, the meaning of m=(n+1)/n was not given by Mezentsev (1955). Then, Fu (1981) assumed that the derivative of E 10 

with respect to P (or E0) could be expressed as a function of the variables E0 − E and P (or P − E and E0), i.e., 

𝜕𝐸

𝜕𝑃
= 𝑓(𝐸0 − 𝐸, 𝑃) ,           (4) 

𝜕𝐸

𝜕𝐸0
= 𝑓(𝑃 − 𝐸, 𝐸0).           (5) 

Furthermore, he derived one analytical solution by dimensional analysis and mathematical reasoning (Fu, 1981; Zhang et al., 

2004) as follows: 15 

𝐸

𝑃
= 1 +

𝐸0

𝑃
− [(1 + (

𝐸0

𝑃
)𝑤)]1/𝑤,                      (6) 

Yang et al. (2008) suggested a more general assumption that E can be described as an implicit function of P, E0 and E, i.e., 

E=E(P, E0, E) (equation (5) in Yang et al., 2008), together with the boundary conditions, namely, a 0-order boundary 

condition similar to equation (2) and a 1-order boundary condition as follows: 
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 ,          (7) 20 

Furthermore, Yang et al. (2008) analytically derived a solution for the Budyko hypothesis that was similar to the formula 

derived by Mezentsev (1955) and suggested by Choudhury (1999) (equation (3)) and was therefore called the Mezentsev-

Choudhury-Yang (MCY) equation. Recently, Zhou et al. (2015) gave a general derivation of all kinds of Budyko functions 

by introducing a generator function: 
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𝑔(𝜑) =
𝜕𝐸

𝜕𝑃
𝜕𝐸

𝜕𝐸0

𝑃

𝐸0
=

𝐹(𝜑)−𝜑𝐹′(𝜑)

𝜑𝐹′(𝜑)
,          (8) 

where φ=E0/P and F(φ)=E/P. Then, they obtained the MCY equation by choosing g(φ)=φn and solving equation (8). 

Notably, the differential equations proposed in those studies are not very rigorous and do not reflect sufficient hydrological 

understanding. 

In physics, the hydrological cycle shapes energy balances and interacts strongly with atmospheric motion and transport 5 

(Kleidon et al, 2013). Fluxes displayed in the hydrological cycle, such as evaporation and precipitation, could be described 

by thermodynamics. Accordingly, thermodynamic principles, such as the principle of maximum entropy production (MEP) 

(McDonnell et al., 2007; Kleidon and Schymanski, 2008; Kleidon, 2009, 2010 a,b; Zehe and Sivapalan, 2009; Schaefli et al., 

2011) and Carrot Limit (Kleidon et al, 2013), are widely used to understand the hydrological cycle. Kleidon and Schymanski 

(2008) reviewed the hydrological applications of MEP and proposed the expressions for entropy production. Wang et al. 10 

(2015) introduced their expressions to study catchment water balance and developed a two-parameter equation approaching 

the Budyko hypothesis, as follows: 

𝐸

𝑃
=

1+𝜑𝜀−𝜀+𝜑
𝐸0
𝑃

√(1+𝜑𝜀−𝜀+𝜑
𝐸0
𝑃

)
2

−4𝜑𝜀(1+𝜑−𝜀)
𝐸0
𝑃

2𝜀(1+𝜑−𝜀)
 ,        (9) 

where 𝜀 represents the initial evaporation ratio and 𝜑 represents the ratio of the continuing evaporation conductance to the 

runoff conductance. Zhao et al. (2016) further derived a general catchment water balance expression unifying catchment 15 

water balance equations at different time scales. However, Westhoff et al. (2016) pointed out that, the results of Wang et al. 

(2015) had some contradictions with Westhoff and Zehe (2013). 

Thus, in this paper, focusing on the subsequent transportation processes of the precipitated water over a certain catchment; 

we define a catchment network and assume that fluxes (including vapor transportation and phase transition) can be estimated 

according to an Ohms-type approach. Furthermore, we propose a model for water vapor transportation in the catchment 20 

network and derive the mean annual water-energy balance equation. Section 2 gives the basic assumptions and a conceptual 

framework, Section 3 gives the main derivation, and the discussion and conclusions are given in Section 4 and Section 5, 

respectively. 

2 Ohms-type approach  

In a catchment, there are two kinds of water phase transition, namely evaporation, condensation of the water vapor to 25 

precipitation. Water vapor enters a certain catchment through atmospheric motion, and then condenses as the precipitation. 

Part of the liquid water would evaporate as evaporation, the other part of the liquid water will confluence as runoff. 

Subsequently, water vapor from evaporation can be precipitated in the same catchment or transported to other catchments 
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due to atmospheric motion. We assume that the water phase transition and transportation can be approached using an Ohms-

type law. 

2.1 Definitions and assumptions 

First, we focus on the phase transition and transportation of water and propose a catchment network (Figure 1). As shown 

in Figure 1, Catchment A1 is a chosen catchment for water balance analysis. P1 is the atmospheric water vapor that forms 5 

precipitation over Catchment A1. E1 is the evaporation of Catchment A1 that then precipitates on Catchment A1 and other 

catchments, which are denoted by Catchment A2,j (j=1, 2, 3,…). The precipitation originating from E1 and falling on 

Catchment A2,j is denoted by P2,j. The sum of P2,j (j=1, 2, 3,…) is denoted by P2. Notably, P2,j is just the part of the 

precipitation falling on Catchment A2,j. Next, P2,j (j=1, 2, 3,…) partitions into two parts, namely, evaporation E2 and runoff 

R2. Similarly, E2 is all the evaporation originating from P2,j (j=1, 2, 3,…), and it precipitates on Catchment A3,j (j=1, 2, 3,…). 10 

Here, we track only the transformation and transportation of the vapor P1, and these processes can be simplified as shown in 

Figure 2. Finally, P1 is divided into runoff Ri (i=1, 2, ..., n) and evaporation En. E1 is part of P1, i.e. 𝐸1 = 𝑘1𝑃1, with 𝑘1 < 1. 

Similarly, 𝐸2 = 𝑘2𝐸1 = 𝑘1𝑘2𝑃1, with 𝑘2 < 1. Finally, 𝐸𝑛 = ∏ 𝑘𝑖
𝑛
𝑖=1 𝑃1, with  𝑘𝑖 < 1. Therefore, when 𝑛 → ∞, there is En →

0  and 𝑃1 = ∑ 𝑅𝑖
𝑛
𝑖=1 .In other words, the initial water vapor of precipitation P1 completely transforms into runoff after 

numerous precipitation-evaporation-precipitation transformations. 15 

The generalized flux is defined as the potential difference divided by the resistance and is a function of flux. That is, all the 

generalized fluxes here are driven by some kind of potential difference or potential gradient. In addition, some essential 

assumptions are given as: 

Assumption 1: The mathematical form of the generalized flux is a positive single-value increasing function with respect to 

the absolute amount of water flux within the water movement process during a certain period. 20 

Assumption 2: The mathematical form of the generalized flux does not vary with different water movement processes 

within a catchment and between catchments. 

Assumption 3: The potential of liquid water is assumed to be zero. 

Hence, in a certain catchment, water vapor condenses to precipitation, and then, part of the precipitation evaporates, while 

runoff is formed from the other part of the precipitation. Over a long duration and by ignoring the water storage change, the 25 

catchment water balance can be expressed as 

𝐸1 = 𝑃1 − 𝑅1 ,            (10) 

where 𝐸1 is the evaporation from Catchment A1, 𝑃1 is the water vapor which will form as precipitation over Catchment A1, 

and R1 is the runoff from Catchment A1. 

The resistance of the water vapor movement or transportation process 𝜂 can be expressed as 30 

𝜂 =
∆𝑈

𝑓(𝑥)
 ,            (11) 
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where ∆𝑈 represents the potential difference and 𝑓(𝑥) represents the generalized flux, which is defined as a function of flux 

(such as precipitation, evaporation and runoff, denoted by x) in the transportation and transformation processes. However, 

equation (11) is a trivial relationship similar to Ohms Law in electromagnetics (where ∆𝑈  represents voltage, 𝑓(𝑥) 

represents electrical current, and 𝜂 represents electrical resistance) and Darcy’s Law in hydrodynamics (where ∆𝑈 represents 

water head loss, 𝑓(𝑥) represents discharge, and 𝜂 represents a resistance parameter). 5 

 

2.2 Physical reasoning 

We focus on the precipitation partition over Catchment A1. In Figure 3, Node B represents Catchment A1, and Node A 

represents the atmosphere over Catchment A1. Catchment A2 represents a group of catchments where the water vapor from E1 

can precipitate. Similarly, Node D represents Catchment A2, and Node C represents the atmosphere over Catchment A2. P1 10 

(gaseous state) is the water vapor that precipitate on Catchment A1. Over a long duration, the net water vapor flux transported 

from Node A to Node B equals P1−E1 (R1), that from Node A to Node C equals E1, and that from Node C to Node D equals 

R2 (liquid state). Consequently, according to the definition, the generalized flux between Nodes A and B is f(R1), that 

between Nodes A and C is f(E1), and that between Nodes C and D is f(R2). 

1) Net water vapor flux is transported into Node A via Path P1 in the form of total precipitation.  15 

2) Water exists in a gas state in Nodes A and C and a liquid state in Nodes B and D. Thus, Path A→B represents the phase 

transition of vapor in the process of condensation. Path A→C represents the vapor transportation driven by the potential 

difference 𝑈2 − 𝑈1. 

3) The potential difference between B and D is zero since the potential of liquid water is zero. The potential difference 

driving the phase transition of condensation is equal to the potential difference between the vapor and liquid water. The 20 

potential difference between A and D (∆𝑈𝐴𝐷) and equals that between A and B (∆𝑈𝐴𝐵), since the potentials of B and D are 

zero. 

Two additional corollaries are as follows: 

(a) Corollary 1: There are similar resistances during Path A→B and Path C→D since they are the chase transition from 

vapor to liquid. Therefore, 𝜂1 and 𝜂3 have similar values when assuming the same temperature. 25 

𝜂1 = 𝜂3 ,            (12) 

(b) Corollary 2: There are sufficient occurrences of water transportation as 𝑛 → ∞, which lead to 𝜂𝐴𝐵 = 𝜂𝐶𝐷. Note that 

𝜂𝐴𝐵 ≠ 𝜂1. Here, 𝜂𝐴𝐵 is the net resistance of all the possible roads between Node A and Node B, including Path A→B 

and Path A→C→D→B. Similarly, 𝜂𝐶𝐷 is the resistance of all possible roads between Nodes C and D. 

Thus, we have a general equation: 30 

𝜂𝐴𝐷 = 𝜂𝐶𝐷 + 𝜂2 ,            (13) 
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According to equation (11), the resistances can be estimated as 𝜂𝐴𝐵 =
∆𝑈𝐴𝐵

𝑓(𝑃1)
 and 𝜂𝐴𝐷 =

∆𝑈𝐴𝐷

𝑓(𝐸1)
. Consequently, the equation 

𝜂𝐶𝐷 = 𝜂𝐴𝐵 leads to 

𝜂𝐶𝐷 = 𝜂𝐴𝐵 =
∆𝑈𝐴𝐵

𝑓(𝑃1)
 ,           (14) 

Because ∆𝑈𝐴𝐷=∆𝑈𝐴𝐵 , we can obtain 

𝜂𝐴𝐷 =
∆𝑈𝐴𝐷

𝑓(𝐸1)
=

∆𝑈𝐴𝐵

𝑓(𝐸1)
 ,           (15) 5 

According to the boundary condition, 𝐸1 → 𝐸0 and 𝑅1 → ∞ when 𝑃1 → ∞. This condition indicates that much more water is 

draining via Path R1 than evaporating via Path E1, which means 𝜂1 ≪ 𝜂2 and 𝜂3 ≪ 𝜂2. In addition, the resistance of 𝜂𝐶𝐷 < 𝜂3 

since 𝜂𝐶𝐷 is a result of the parallel of 𝜂3 and the resistance of the remaining part. Thus, 𝜂2 + 𝜂𝐶𝐷 < 𝜂2 + 𝜂3. The boundary 

condition 𝑃1 → ∞ yields that 𝜂𝐴𝐷 = 𝜂2 + 𝜂𝐶𝐷 → 𝜂2, i.e., 

𝜂𝐴𝐷 = 𝜂2 ,            (16) 10 

Substitution of equation (15) into equation (16) leads to 

𝜂2 =
∆𝑈𝐴𝐵

𝑓(𝐸1)
=

∆𝑈𝐴𝐵

𝑓(𝐸0)
 ,           (17) 

Substitution of equations (13), (14) and (17) into equation (13) leads to 

1

𝑓(𝐸)
=

1

𝑓(𝐸0)
+

1

𝑓(𝑃)
 ,           (18) 

3 Derivation of the mean annual water-energy balance equation  15 

According to Hankey et al. (1971), the homogeneity of the Budyko function is expressed as: 

𝐸 = 𝐸(𝑃, 𝐸0) ,            (19) 

Garrison (2017) showed that equation (19) follows the Euler relation: 

𝐸 =
𝜕𝐸

𝜕𝑃
𝑃 +

𝜕𝐸

𝜕𝐸0
𝐸0 ,           (20) 

The Euler relation indicates the homogeneity of the Budyko function. Combining the Euler relation with the result of the 20 

Ohms-type model (18), we shall be able to derive a Budyko function. 

Note that if using 𝐹(𝑥) =
1

𝑓(𝑥)
 to substitute f(x) in (18), we can obtain: 

𝐹(𝐸) = 𝐹(𝑃) + 𝐹(𝐸0) ,           (21) 

Taking partial derivatives of both sides with respect to P and E0 obtains the following: 
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{
𝐹′(𝐸)

𝜕𝐸

𝜕𝑃
= 𝐹′(𝑃)

𝐹′(𝐸)
𝜕𝐸

𝜕𝐸0
= 𝐹′(𝐸0)

⟹ {

𝜕𝐸

𝜕𝑃
=

𝐹′(𝑃)

𝐹′(𝐸)

𝜕𝐸

𝜕𝐸0
=

𝐹′(𝐸0)

𝐹′(𝐸)

,         (22) 

Substituting the two partial derivatives from equation (18) into equation (21), we obtain: 

𝐹′(𝐸)𝐸 = 𝐹′(𝑃)𝑃 + 𝐹′(𝐸0)𝐸0,          (23) 

By comparing equations (21) and (23), a solution for 𝐹(𝑥) can be easily determined if 𝐹′(𝑥)𝑥 = 𝑚𝐹(𝑥): 

𝐹(𝑥) = 𝑐𝑥𝑚 ⇒ 𝑓(𝑥) =
1

𝑐
𝑥−𝑚,          (24) 5 

We assume that f(x) must be a positive single-value increasing function; thus, 𝑐 > 0 and 𝑚 < 0. 

To simplify the result: 

𝐹𝑓(𝑥) = 𝑎𝑥𝑛,            (25) 

where 𝑎, 𝑛 > 0. 

Then, we can substitute equation (25) into equation (18) and obtain 10 

 
1

𝐸𝑛 =
1

𝑃𝑛 +
1

𝐸0
𝑛,                                                                                                                                                                   (26) 

Equation (26) can be transformed into 𝐸 =
𝑃𝐸0

(𝑃𝑛+𝐸0
𝑛)1/𝑛, which has the same form as the MCY equation. 

4 Discussions  

4.1 Generalized flux 

Flux is generally defined as the quantity that passes through the surface (Maxwell, 1873). There are several forms of flux, 15 

such as momentum flux (N·s·m-2·s-1), heat flux (J·m−2·s−1), mass flux (kg·m−2·s−1), and electric flux (N·C−1). Flux can be 

estimated as the potential difference divided by resistance, and for example in Darcy’s law, the water flux (Q) can be 

estimated as 𝑄 = 𝐽 𝑟⁄ , where 𝐽 is the hydraulic slope and 𝑟 is the resistance. An alternate form of Darcy's law is 𝑣 = 𝐽 𝑟 ,⁄ , 

where v is the velocity (or the flux density) and 𝑟, = 𝑟 𝐴⁄  (where A represents sectional area). In this study, we defined the 

generalized flux as a function of the flux, i.e., f(x), where x represents some form of flux. The generalized flux can be used to 20 

describe a more general relationship between fluxes and potential differences. For example, under turbulent conditions, 𝑣2 +

𝑏𝑣 = 𝐽 𝐾1⁄  (Forchheimer, 1901), i.e., the generalized flux f(x)=𝑥2 + 𝑏𝑥. In other words, flux has a linear relationship with 

potential difference, while generalized flux can describe a nonlinear relationship between a given flux and potential 

difference. Equation (25) defines the generalized flux of water flux at the catchment scale, and parameter n was reported 

from 0.4 to 3.8 (with a mean of 1.3) for 210 catchments across China (Yang et al., 2014). This equation indicates a nonlinear 25 

relationship, except for n=1. In addition, the mean value of 1.3 is larger than 1, and the catchment water balance is 
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speculated to have some similarity with the behavior of groundwater flow. Remarkably, some catchments have an n value of 

less than 1. Therefore, the mechanism behind the nonlinear relationship needs further study. 

4.2 Physical understanding of the Budyko hypothesis 

According to the Ohms-type approach, the partition of precipitation into evaporation and runoff is dependent on the two 

resistances 𝜂1 and 𝜂2. Resistance 𝜂1 is related to the condensation processes of water vapor. Resistance 𝜂1 can be estimated 5 

as 𝜂1 = ∆𝑈𝐴𝐵 𝑓(𝑃 − 𝐸)⁄ . In this study, we assumed that the potential of liquid water is zero, so the potential of water vapor 

is 𝜆 under the simplest condition (n = 1), 𝜂1 = 𝜆 𝑎⁄ , whereas when n does not equal 1, 𝜂1 has a sophisticated form similar to 

Darcy’s law under turbulent conditions. Additionally, resistance 𝜂2  can be estimated as 𝜂2 = ∆𝑈𝐴𝐵 𝑓(𝐸0)⁄  according to 

equation (11). Remarkably, there is an implicit assumption that 𝑓(𝑥)  is homogeneous in the horizontal and vertical 

directions. If 𝑓(𝑥) is not homogeneous, we denote 𝜑(𝐸0) = ∆𝑈𝐴𝐵 𝜂2⁄ , and we can speculate 𝜑(𝑥) = 𝑏 + 𝑘𝑓(𝑥) (where 𝑏 10 

and 𝑘 are constants) since 𝜑(𝑥) should have the same dimension as 𝑓(𝑥). Thus, 
1

𝐸𝑛 =
1

𝑃𝑛 +
1

(𝑏+𝑘𝐸0)𝑛, i.e., 

𝐸 =
𝑃(𝑏+𝑘𝐸0)

[𝑃𝑛+(𝑏+𝑘𝐸0)𝑛]1/𝑛,           (27) 

When b = 0, equation (27) can be simplified as 𝐸 =
𝑘𝑃𝐸0

[𝑃𝑛+(𝑘𝐸0)𝑛]1/𝑛, which is the same as that proposed by Zhou et al. (2015) 

(equation (21)). 

This study proposed a catchment network in which the initial water vapor precipitated over Catchment A1 can be completely 15 

transformed into runoff after infinite iterations of the precipitation-evaporation process. In the Ohms-type approach, as 

shown in Figure 3, we assumed that the resistances 𝜂1 and 𝜂2 have the same forms, which means that the generalized flux 

𝑓(𝑥) = 𝑎𝑥𝑛  has the same values of a and n for Catchments A1 and A2. As is well known, n represents the catchment 

characteristics (Yang et al., 2008). Therefore, Catchments A1 and A2 have similar characteristics under these conditions. The 

vapor that evaporated from Catchment A1 possibly precipitated over the adjacent catchments, which leads to similar n values. 20 

Under the condition that Catchments A1 and A2 have different characteristics, a large difference in n occurs, which will leads 

to a more complicated form. Therefore, further study on the Ohms-type approach is still required. 

4.3 Derivation of the mean annual water-energy balance equation 

Equation (18) can be considered a new constraint on the water-energy balance. The form of the generalized flux determines 

the mathematical form of the mean annual water-energy balance equation. According to equation (22), 25 

𝑔(𝜑) =
𝐹′(𝑃)𝑃

𝐹′(𝐸0)𝐸0
,            (28) 

where 𝑔(𝜑) is the generator function in Zhou et al. (2015) and 𝜑 =
𝐸

𝑃
. Assuming that 𝐹′(𝑃) and 𝐹′(𝐸0) have the same 

mathematical form, only the MCY equation satisfies the constraint of equation (18). Thus, we can draw a similar conclusion 
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to that by Zhou et al. (2015), i.e., the MCY function is the best function among the existing Budyko functions to improve our 

understanding of hydrological cycles. 

This study derived the mean annual water-energy balance equation by using the Euler relationship to represent the 

homogeneity of the Budyko function. Additionally, the derivation can be drawn following Zhou et al. (2015), which 

introduced homogeneity by using a generator function, and additional details are provided in the Appendix. 5 

5 Conclusions  

Previous studies have analytically derived the mean annual water-energy balance mainly by mathematical reasoning, such as 

Fu (1981), Yang et al. (2008), and Zhou et al. (2015). Remarkably, this study proposed a catchment network to describe 

water transportation and transformation and assumed water fluxes can be estimated by using an Ohms-type approach. 

Furthermore, the MCY equation 𝐸 =
𝑃𝐸0

(𝑃𝑛+𝐸0
𝑛)1/𝑛  can be derived to approach the Budyko function according to the 10 

homogeneity assumption expressed as the Euler relationship (Hankey et al., 1971) or a generator function (Zhou et al., 

2015). In addition, without the homogeneity assumption, this study derived a general form 𝐸 =
𝑃(𝑏+𝑘𝐸0)

[𝑃𝑛+(𝑏+𝑘𝐸0)𝑛]1/𝑛, where b and 

k are constants.  
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Appendix. Derivation of the MCY equation based on the generator function 

Based on equation (18), the derivatives of 
1

𝑓(𝐸)
 with respect to P and E0 can be expressed as follows: 20 

𝜕(
1

𝑓(𝐸)
)

𝜕𝐸0
= −

1

𝑓(𝐸0)2

𝜕𝑓(𝐸0)

𝜕𝐸0
,           (A1) 

𝜕(
1

𝑓(𝐸)
)

𝜕𝑃
= −

1

𝑓(𝑃)2

𝜕𝑓(𝑃)

𝜕𝐸0
,           (A2) 

since 
𝜕(

1

𝑓(𝑃)
)

𝜕𝐸0
=

𝜕(
1

𝑓(𝐸0)
)

𝜕𝑃
= 0. In addition, the derivatives of 

1

𝑓(𝐸)
 can be expressed as 
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𝜕(
1

𝑓(𝐸)
)

𝜕𝐸0
= −

1

𝑓(𝐸)2

𝜕𝑓(𝐸)

𝜕𝐸

𝜕𝐸

𝜕𝐸0
,           (A3) 

𝜕(
1

𝑓(𝐸)
)

𝜕𝑃
= −

1

𝑓(𝐸)2

𝜕𝑓(𝐸)

𝜕𝐸

𝜕𝐸

𝜕𝑃
,           (A4) 

According to equations (A1) and (A3) and equations (A2) and (A4), we can obtain 

1

𝑓(𝐸)2

𝜕𝑓(𝐸)

𝜕𝐸

𝜕𝐸

𝜕𝐸0
=

1

𝑓(𝐸0)2

𝜕𝑓(𝐸0)

𝜕𝐸0
,          (A5) 

1

𝑓(𝐸)2

𝜕𝑓(𝐸)

𝜕𝐸

𝜕𝐸

𝜕𝑃
=

1

𝑓(𝑃)2

𝜕𝑓(𝑃)

𝜕𝐸0
,           (A6) 5 

Dividing equation (A5) by equation (A6) obtains 

𝜕𝐸/𝜕𝑃

𝜕𝐸/𝜕𝐸0
=

𝜕𝑓(𝑃)/𝜕𝑃

𝜕𝑓(𝐸0)/𝜕𝐸0
∙

𝑓(𝐸0)2

𝑓(𝑃)2 ,           (A7) 

Based on the Budyko hypothesis, a general function 𝑔(∅) is given by Zhou et al. (2015) as 

𝑔(∅) =
𝜕𝐸/𝜕𝑃

𝜕𝐸/𝜕𝐸0
∙

𝑃

𝐸0
,           (A8) 

where ∅ = 𝐸0/𝑃, and 0 < 𝑔(∅) < +∞, 𝑔′(∅) > 0. Therefore, based on equations (A7) and (A8), we can obtain another 10 

form of the general function given by 

𝑔(∅) =
𝜕𝐸/𝜕𝑃

𝜕𝐸/𝜕𝐸0
∙

𝑃

𝐸0
,           (A9) 

A general property of 𝑔(∅) was derived by Zhou et al. (2015) as follows since the constraints on evaporation due to 

available water and energy are symmetrical. 

𝑔(∅) ∙ 𝑔 (
1

∅
) = 1,            (A10) 15 

We assume ℎ(𝑥) is an odd function, and 𝑔(∅) can be represented as 

𝑔(∅) = 𝑒ℎ(𝑙𝑛∅)             (A11) 

and an easy form of ℎ(𝑥) is ℎ(𝑥) = 𝑘𝑥, 𝑘 > 0. Thus, we can obtain one form of the general function: 

𝑔(∅) = ∅𝑛            (A12) 

where 𝑛 = 𝑏𝑗 > 0 𝑎𝑛𝑑 𝑛 ∈ 𝑅. Therefore, we can obtain 20 

(
𝐸0

𝑃
)𝑛+1 =

𝜕𝑓(𝑃)/𝜕𝑃

𝜕𝑓(𝐸0)/𝜕𝐸0
∙

𝑓(𝐸0)2

𝑓(𝑃)2           (A13) 

and the case: 
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𝜕𝑓(𝑃)

𝜕𝑃
∙

𝑃𝑛+1

𝑓(𝑃)2 =
𝜕𝑓(𝐸0)

𝜕𝐸0
∙

𝐸0
𝑛+1

𝑓(𝐸0)2          (A14) 

As 𝑓 is only the function with respect to one variable, the left hand side of equation (A14) can be equal to a constant number 

as follows: 

𝜕𝑓(𝑃)

𝜕𝑃
∙

𝑃𝑛+1

𝑓(𝑃)2 = 𝑐𝑜𝑛𝑠𝑡 = 𝑎            (A15) 

that is, 5 

𝜕𝑓(𝑥)

𝜕𝑥
∙

𝑥𝑛+1

𝑓(𝑥)2 = 𝑐𝑜𝑛𝑠𝑡 = 𝑎            (A16) 

𝑑 (
1

𝑓(𝑥)
) = 𝑑(

𝑎

𝑛𝑥𝑛)           (A17) 

𝑓(𝑥) =
𝑛𝑥𝑛

𝑎
            (A18) 

Based on equations (A18) and (A1), the MCY equation is represented as: 

1

𝐸𝑛 =
1

𝑃𝑛 +
1

𝐸0
𝑛            (A19) 10 

or the form we are familiar with: 

𝐸 =
𝑃𝐸0

(𝑃𝑛+𝐸0
𝑛)1/𝑛

            (A20) 
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Figure 1: A conceptual diagram for water vapor transportation and transformation processes within a catchment network. 
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Figure 2: Water vapour transformation within a catchment network. 
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Figure 3: One conceptual network model describing water transportation within a catchment and between catchments over a long 

duration. The arrows represent the path and direction of water movement. Note that Catchment A2 represents a group of 

catchments in which the water vapor that evaporated from Catchment A1 might precipitate. 
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