
Rainfall Estimates on a Gridded Network (REGEN) - A global
land-based gridded dataset of daily precipitation from 1950–2016
Steefan Contractor1,2, Markus G. Donat1,3,4, Lisa V. Alexander1,3, Markus Ziese5, Anja
Meyer-Christoffer5, Udo Schneider5, Elke Rustemeier5, Andreas Becker5, Imke Durre6, and Russell S.
Vose6

1Climate Change Research Centre, UNSW Sydney, Australia
2ARC Centre of Excellence for Climate System Science
3ARC Centre of Excellence for Climate Extremes
4Barcelona Supercomputing Center, Barcelona, Spain
5Global Precipitation Climatology Centre, Deutscher Wetterdienst, Offenbach Germany
6National Centers for Environmental Information, National Oceanic and Atmospheric Administration, Asheville NC, USA

Correspondence: Steefan Contractor (s.contractor@unsw.edu.au)

Abstract. We present a new global land-based daily precipitation dataset from 1950 using an interpolated network of in situ

data called Rainfall Estimates on a GriddEd Network - REGEN. We merged multiple archives of in situ data including two

of the largest archives, the Global Historical Climatology Network - Daily (GHCN-Daily) hosted by National Centres of En-

vironmental Information (NCEI), USA and one hosted by the Global Precipitation Climatology Centre (GPCC) operated by

Deutscher Wetterdienst (DWD). This resulted in an unprecedented station density compared to existing datasets. The station5

timeseries were quality controlled using strict criteria and flagged values were removed. Remaining values were interpolated to

create area average estimates of daily precipitation for global land areas on a 1◦×1◦ latitude-longitude resolution. Besides the

daily precipitation amounts, fields of standard deviation, Kriging error and number of stations are also provided. We also pro-

vide a quality mask based on these uncertainty measures. For those interested in a dataset with lower station network variability

we also provide a related dataset based on a network of long-term stations which interpolates stations with a record length of10

at least 40 years. The REGEN datasets are expected to contribute to the advancement of hydrological science and practice by

facilitating studies aiming to understand changes and variability in several aspects of daily precipitation distributions, extremes,

and measures of hydrological intensity. Here we document the development of the dataset and guidelines for best practices for

users with regards to the two datasets.

Copyright statement.15

1 Introduction

Earth’s climate is changing leading to spatial and temporal variations in precipitation. These changes in precipitation are

strongly linked to social, economic and environmental prosperity due to the role precipitation plays in global food production
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and maintaining biodiversity. Theoretical expectations are that the global hydrological cycle would intensify in a warmer

climate, associated with increases in mean and extreme precipitation (whereby mean/total precipitation would increase at lower

rate than extreme precipitation due to energetic constraints (Allen and Ingram, 2002)). In addition to changes in precipitation

due to climate change, precipitation is also characterised by strong variability in many regions. Reliable observations are

necessary to understand these short- and long-term changes and to evaluate climate models which help understand the processes5

driving these changes. Hence in some ways gridded observations of the past also help us to better plan for and adapt to these

changes in the future.

All observations have errors, for example, gauge-based precipitation measurements are subject to undercatch, wind related

errors, evaporation loss, wetting loss, splash in/out errors and tipping errors (see McMillan et al. (2012) for details). However,

alternatives to gauge-based measurements such as satellite observations, model reanalysis products and radar-based observa-10

tions have additional limitations. Reanalysis products assimilate observations and models to create a synthesised estimate of

the state of the earth system. They are often misused as observations but in fact inherit issues from the incomplete observations

and imperfect models and are based on complex assimilation techniques. Furthermore, none of the reanalysis products assimi-

late surface precipitation observations (MERRA2 however incorporates satellite infrared and microwave measurements) and as

such are not representative of reality. This is evidenced by the classification of precipitation as the least reliable class by Kalnay15

et al. (1996). Renalyses also contain temporal inhomogeneities due to the changing amount of assimilated observations over

time (Compo et al., 2006). According to Lorenz and Kunstmann (2012) even the state-of-the-art reanalyses are unsuitable for

climate trend and long-term water budget analysis. Radar estimates provide high spatial and temporal resolution estimates of

rainfall over local regions, however these estimates can be inaccurate compared to rain gauges (Krajewski et al., 2010; Villarini

and Krajewski, 2010; McKee and Binns, 2016), and very few national networks of radar observations exist.20

Satellite products have become available in recent years. These datasets are gridded and boast a global/quasi-global coverage.

The Tropical Rainfall Measuring Mission (TRMM) 3B42 (Huffman et al., 2007), Global Precipitation Climatology Projects

1 Degree Daily (GPCP-1DD) (Huffman et al., 2001), Climate Hazards Group InfraRed Precipitation with Stations (CHIRPS)

(Funk et al., 2015) and the Precipitation Estimates from Remotely Sensed Information using Artificial Neural Networks -

Climate Data Record (PERSIANN-CDR) (Ashouri et al., 2014) are some examples of popular satellite based precipitation25

products. These satellite based datasets, however, use complex algorithms to derive precipitation estimates from indirect ra-

diation measurements resulting in large uncertainties in precipitation estimates. For example GPCP-1DD measures infrared

reflectivity of clouds to infer the cloud thickness and then estimates precipitation rates based on the poor relationship between

clouds and rainfall (Kidd and Levizzani, 2011). This estimate is also adjusted based on monthly gauge observations, however,

the uncertainties remain high. In general satellite products perform well in the tropics where the rain rates are higher but strug-30

gle with snow and ice and on complex terrain (Bytheway and Kummerow, 2013; Tian and Peters-Lidard, 2010; Contractor

et al., 2015). New satellite missions and technology will be able to overcome these shortcomings over time. For example, the

recently launched Global Precipitation Measurement (GPM) mission is an international satellite mission that aims to improve

the detection of light rain and snowfall as well as provide quantitative estimates of precipitation particle size distribution (Hou

et al., 2014). The biggest limitation of satellite products, however, is also their brevity. It was only after Tropical Rainfall35
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Measurement Mission (TRMM) in 1997 where we entered an era of multi-sensor measurements across multiple satellites to

produce a globally consistent and complete map of precipitation (Tian and Peters-Lidard, 2010). Thus the satellite products do

not allow for an analysis of global rainfall changes that effectively separates the natural variability from anthropogenic climate

change. Very recently, datasets that blend together precipitation estimates from multiple sources such as gauge observations,

satellite observations and even reanalyses have become available. Examples include MSWEP V2 (Beck et al., 2019), CHIRPS5

(Funk et al., 2015) and Shen et al. (2014). These datasets offer very high spatial and temporal resolution data with a reasonable

long temporal record. However, these datasets may exhibit increased temporal variability due to the incorporation of various

observational sources over time and do not include as many in situ station observations as the gauge-only datasets.

Observations have shown spatially varying changes in mean precipitation across the globe (Trenberth, 2011; Hartmann

et al., 2013) and robust increases in extreme precipitation across various regions and in the global average (Groisman et al.,10

2005; Westra et al., 2013; Donat et al., 2016). These global analyses of observed precipitation changes were based on datasets

of monthly precipitation accumulations (such as Climatic Research Unit’s CRU TS (Harris et al., 2014; Mitchell and Jones,

2005), Global Precipitation Climatology Centre’s GPCC Full Data Monthly (Becker et al., 2013; Schneider et al., 2015),

Global Historical Climatology Network’s GHCN-Monthly (Peterson and Vose, 1997), Global Precipitation Climatology Project

GPCP-Monthly (Adler et al., 2003; Huffman et al., 1997) and the Smith et al. (2012) dataset), or datasets providing indices15

representing specific aspects of extreme precipitation (such as GHCNDEX (Donat et al., 2013a), HadEX (Alexander et al.,

2006) and HadEX2 (Donat et al., 2013b)). Availability of daily precipitation data, however, would allow analysis of precipi-

tation at different parts of the distribution, and for a wider range of temporal aggregations. A daily resolution dataset would

also enable a more robust estimate of the extremes since monthly datasets average out the extremes and dampen the variability

in daily observations. Existing gauge-based quasi-global gridded datasets of daily precipitation are short (such as CPC Global20

Precipitation dating back to 1979 (Chen and Xie, 2008; Xie et al., 2007; Chen et al., 2008) and GPCC Full Data Daily V1

which dates back to 1988 (Schamm et al., 2015). An updated version, GPCC Full Data Daily V2018, was released in June

2018, covering now from 1982 to 2016) and therefore do not allow for robust analysis of long-term variability or trends. The

main reason for this is the lack of data sharing between countries which results in poor spatial coverage earlier in time. Even

in cases where meteorological organisations have agreements in place with countries to obtain gauge data (such as GPCC on25

behalf of Deutscher Wetterdienst - DWD), the length of their analysis is limited due to the lack of high quality data extend-

ing back in time. To reach a high level of quality, the GPCC applies a quality control procedure with manual inspection of

questionable values, which is very time consuming but preserves the real extremes in the data. Many regional or continental

scale products are also available which are produced by local meteorological organisations or researchers who have a more

complete set of daily gauge data available to them and thus have longer temporal records. Examples of such datasets include30

E-OBS for Europe (Haylock et al., 2008), CPC for United States (Chen and Xie, 2008; Xie et al., 2007; Chen et al., 2008),

AWAP for Australia (Jones et al., 2009), APHRODITE for Asia (Yatagai et al., 2012), CLARIS for South America (Menendez

et al., 2010), as well as national and regional products for UK (Perry and Hollis, 2005), Spain (Herrera et al., 2012), Germany

(Rauthe et al., 2013), Switzerland (Frei and Schär, 1998; Isotta et al., 2013), Norway (Lussana et al., 2018), India (Rajeevan

et al., 2006) and Middle East (Yatagai et al., 2008).35
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Spatially regular gridded data, rather than irregular station data, facilitate many studies (such as climate variability studies

investigating connections between regional or global precipitation phenomena and large scale changes) that are not spatially

biased. Furthermore, climate models also rely on gridded data. Gridded datasets are needed for initialising, forcing and vali-

dating global and regional climate models. Since the models also produce outputs representative of area averages (Osborn and

Hulme, 1998) as opposed to point based processes, gridded datasets are also necessary to evaluate them. Finally, gridded ob-5

servations can provide a reasonable estimates in regions where local station data are unavailable but stations within the typical

length scales of precipitation systems in that region may be present.

Given all the limitations of existing datasets noted above, our aim here was to create a new long-term global land-based

dataset with increased raw station density back to the mid-twentieth century. In this study we present the data and methods

used to create such a dataset called Rainfall Estimates on a Gridded Network (REGEN) and evaluate it against existing daily10

and monthly, global and regional products. We also describe how uncertainty estimates are calculated and finally provide

guidelines for how to best use (and not use) the dataset.

2 Data and Methods

REGEN was created by acquiring daily station precipitation data from various sources, quality controlling them using an auto-

mated algorithm and merging them into a single archive, which was then interpolated with ordinary block Kriging. We created15

two related datasets, the first dataset (REGEN AllStns V1-2019) interpolated the entire station network referred to hence-

forth as REGEN and the second dataset (REGEN LongTermStns V1-2019) interpolated only the long-term stations referred to

henceforth as REGEN40YR. Stations considered long-term here are those with at least 40 complete years of data, described in

more detail in 2.4. Both datasets cover the period 1950–2016. In this section the various raw data sources, automated quality

control, automated station matching algorithm and the interpolation method are described.20

2.1 Raw Gauge Data

The raw station data for REGEN has 3 sources:

1. the Global Precipitation Climatology Centre (GPCC), operated by Deutscher Wetterdienst (DWD) (approximately 100,000

stations),

2. the Global Historical Climatology Network - Daily (GHCN-Daily) version 3.22-upd-2017092104: stations hosted by25

National Centers for Environmental Information (NCEI) in USA (Menne et al., 2012) (103,635 stations), and

3. Other: Argentina and Russian stations (approximately 1000 stations).

The total number of stations interpolated each day in REGEN range from a minimum of 35,460 to a maximum of 56,190,

with an average of 50,530 (figure 1a). Regionally, the number of stations per day doubles in North America after 2000 and

decreases substantially in South America from the late 1990s. There are no Chinese stations in 1950 and there is a large drop30
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(a) (b)

Figure 1. Final (interpolated), quality-controlled number of stations over time by (a) region and (b) source. Figure 4c shows a map of the

regions. Due to the varying station network over time, the total number of stations over the entire temporal domain sums to 135,178 stations.

The numbers in black, blue and green in (b) refer to the average number of stations from GPCC, GHCN and Other sources respectively.

in stations in India in 1970 affecting the total number of stations per day in Asia. Stations in Africa are sparse throughout the

time period of REGEN, however there are still more stations compared to other existing global rainfall products. However,

this highlights a very important issue regarding the sharing of meteorological data between countries. Global datasets of

observations are limited by the amount of station data available. Regions of poor station coverage are most abundant in Africa

and Asia because of limited capability or readiness of countries to share data, despite the World Meteorological Organisation5

(WMO) data policy encouraging free and unrestricted exchange of meteorological data and products. Therefore, even the in

situ data held by GPCC can only be distributed in the form of derived products such as the gridded dataset described in this

article. We encourage maintainers and providers of data to advocate for increased and more open sharing of meteorological

data within their organisations.

The majority of the underlying station data for REGEN is sourced from the stations hosted by GPCC (figure 1b). Note10

that figure 1b does not show the actual number of stations in GHCN-Daily or Other archives, but rather the number of daily

records from stations in GHCN-Daily or Other that were unique with respect to the stations in the GPCC archive. Due to the

large overlap between the archives, the number of stations from GHCN-Daily is higher when fewer stations from GPCC are

available. There is a gradual increase in stations from GPCC until 1990 and a steep decline after 2010. All quality controlled

station data hosted by GPCC are eventually archived in a relational database (henceforth referred to as GPCC data base),15

however, there were additional ASCII data files for various countries that were not processed at the time of the analysis

(henceforth referred to as GPCC ASCII data files).

Figure 2 shows that most of the station data in Central America, western South America, Europe, Africa, Middle East and

East Asia was sourced from GPCC.
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Figure 2. Distribution of stations color coded by source. "GPCC" refers to stations hosted by Deutsche Wetterdienst, "GHCN" refers to

stations hosted by National Centers for Environmental Information (NCEI), "Merged" refers to stations that have been identified as identical

in two or more archives resulting in a merger of the timeseries and finally "Other" refers to the Russian and Argentinian stations that were

added by us.

We summarise the spatial and temporal distribution of the station network comprising REGEN in figure 3. Each map in

figure 3 refers to a decade and shows for each grid the percentage of days in each decade with at least one station, based on

REGEN (figure 3a), REGEN40YR (figure 3b) and also GPCC’s Full Data Daily V1 (GPCC-FDD1; (Schamm et al., 2015))

for comparison (figure 3c). We compare REGEN’s station network with GPCC-FDD1’s because until REGEN, GPCC-FDD1

was the global dataset of daily precipitation with the highest station density. It can be seen that not only is REGEN’s station5

network density higher than GPCC-FDD1 in all the decades, but even the REGEN40YR station network with a much stricter

completeness criterion has more stations in all three comparable decades relative to GPCC-FDD1.

2.2 Quality Control

The quality control procedures used in REGEN were adopted from NCEI, part of National Oceanic and Atmospheric Ad-

ministration (NOAA) in USA (Durre et al., 2010). The quality control is done in two stages and climatologies generated in10

an auxiliary step are used in both stages. At the end of the quality control process all data are written in a common format
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identical to the GHCN-Daily format (see README file, ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt). For a thor-

ough account of the validation of each QC check including the respective false-positive rates, see Durre et al. (2010). The total

false-positive rate based on all checks is 1% (Durre et al., 2010).

The first quality control stage involves basic integrity checks such as checks for erroneous zeros, conflicts between multi-day

accumulations and daily reports, duplication of entire years or months, repetition or frequent occurrence of values, and world5

record exceedances. Only minor changes (to account for different data formats), were made to the original QC procedures from

Durre et al. (2010) before applying them. In addition, this test stage also checks for outliers by checking for gaps in tails of

distributions and checks for climatological outliers. The test also performs some temporal consistency checks by comparing

values with consecutive days to look for unrealistic spikes in precipitation. The second quality control stage does spatial

corroboration checks which determines if the value at each station is consistent with the values at neighbouring stations. For10

further information and detail on the quality control algorithms, refer to Durre et al. (2010). Data failing any tests at any point of

the quality control process are flagged (see GHCN-Daily README file (ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/readme.

txt) for a list of quality flags and their meanings). In order to ensure a high quality final dataset, all flagged data are removed

prior to interpolation. Although the QC procedures were designed to minimise the number of instances in which true extremes

are flagged as errors (Durre et al., 2010), it is possible that a few such extremes are among the flagged values that were withheld15

from the REGEN input data. Future versions of REGEN may consider methods for recognising and saving possible flagged

extremes.

All data sources (each country in the GPCC ASCII data, the GPCC data base and "Other" data) were quality controlled

individually before merging. Since our QC procedures are identical to the GHCN-Daily, we used the flags already included

with the GHCN-Daily data. The percentage of flagged records per year in the final merged input data average around 0.05-20

0.06% throughout the time period spiking to 0.1% around 2010 (figure 4a). This may be because the number of stations in

the final merged station network sourced from GHCN-Daily increase in time in the last decade of the temporal record while

the number of stations sourced from GPCC decrease. Since GPCC data are assumed to be of higher quality compared to

GHCN-Daily due to the manual quality control they are subjected to, the flag rate increases with time as well due to the higher

percentage of GHCN-Daily stations in the last decade of the final merged station network. In general we also see a trend of25

increasing missing months with time in all regions (figure 4b). A month is marked as missing if it contains fewer than 70%

of the possible number of daily data records. We chose a threshold of 70% as it was used by GPCC for creating their daily

gridded products (Schamm et al., 2014). Haylock et al. (2008) also use a similar threshold of 80%. As a result the percentage

of missing months is also an indicator of the completeness of the daily data records. The spike in missing month percentage in

South Asia is because there are no Indian stations available after 1970.30

2.3 Merger of GHCN-Daily, GPCC and other smaller data archives

Once the station data from various sources were quality controlled individually they were merged with each other in multiple

steps. First, the manually and automatically quality controlled data in GPCC’s data base were merged with ASCII data files

for various countries that at the time of the analysis were not integrated into the GPCC data base, to create a combined archive
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of quality controlled GPCC stations. This GPCC archive was then merged with GHCN-Daily archive and subsequently the

Argentinian and Russian data respectively.

For consistent comparison GPCC shifts data for certain countries so the daily amount always represents the day closest to

7am the day of the timestamp to 7am the next day, local time. For example, if the source in situ data timestamp represents the

day from 9am the previous day to 9am the day of the source timestamp, then the resulting GPCC timestamps are shifted a day5

back compared to the source timestamps. This results in climatologically consistent timestamps. In our case while merging the

GHCN data, we shifted the GHCN data timestamps identically to the way GPCC shifted their timestamps, for all countries

whose timestamps were shifted by GPCC. The countries for which the data are shifted a day back (e.g. data from 2nd Jan

are saved as 1st Jan) are listed in the Appendix. So far no countries’ data have been shifted forward. This data shifting is

important to keep in mind when comparing REGEN with regional datasets. For example when comparing REGEN with the10

precipitation from the Australian Water Availability Project regional dataset (AWAP; (Jones et al., 2009)) we shifted AWAP a

day backward. This may also result in inconsistent comparisons between REGEN and satellite datasets which represent UTC0

the day of the timestamp to UTC0 the next day, and also inconsistent comparisons across political borders where the timezone

changes. Figure 7b highlights this timestamp shifting by plotting the unshifted precipitation amount from AWAP averaged

across Australia during cyclone Yasi as a dashed line, and the shifted AWAP and REGEN estimates as solid lines. Note that15

some countries maintain a mix of manually monitored and automated weather stations which may represent precipitation over

differing 24h windows that may not be suitable for being shifted identically. For example, around 10% of observations in the

US and around 30 stations in the Netherlands are midnight observations, i.e. observations over the 24h period from midnight to

midnight UTC which are assigned to the day on which the observing period ends. Although these observations have not been

manually adjusted in this version of REGEN, they will be taken care of in the next iteration. Globally more countries may exist20

whose gauge observations may represent a mix of reporting times (due to the use of automatic weather stations for example),

however, without proper metadata about these reporting times it is not possible for us to adjust their timestamp accordingly.

The merging algorithm used is described below. Two stations were considered identical if:

1. The latitude and longitudes matched to three decimal places, and their elevation (to the nearest integer, if non-missing)

and World Meteorological Organisation (WMO) station IDs either match or are missing. Alternatively the stations were25

also considered a match if the WMO IDs were non-missing and matched and the latitude and longitude matched to one

decimal place.

2. If the coordinates were within 1 degree of each other and WMO IDs either matched or were missing and the correlation

between the timeseries that overlap was greater than 0.99 and the overlapping timeseries themselves had at least 365

daily data records with a minimum of 10 days with precipitation greater than 1mm. A search radius of 1 degree was30

necessary to allow for many stations to be compared with each other in order to account for possible inaccuracies in

station metadata (coordinates).

Note that the above algorithm can result in false matches as nearby stations can be highly correlated, however this will

mainly be an issue in highly dense networks such as US. For the future version, a more quantitative measure of similarity
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between station time series will be used. Also note that WMO station IDs do not change after a station is relocated to a site in

the vicinity which can result in two stations in different locations merged together according to our criteria. On occasions where

precipitation amount from a station was different between multiple sources, we prioritised data from higher quality sources and

accepted values from these sources. The data qualities and hence priorities in descending order (highest quality first) are GPCC

data base, GPCC ASCII data files, Other data, GHCN-Daily data. This way if data from a higher quality source were missing,5

it was replaced with data from a matching station from a lower quality source but not vice versa. Note that this approach may

induce inhomogeneities in the raw station data.

2.4 Interpolation Method

Station data were interpolated using ordinary block Kriging, exactly as the method used by GPCC’s Full Data Daily V1

(GPCC-FDD1; (Schamm et al., 2015)) product. Ordinary block Kriging is a stochastic interpolation method which means10

it accounts for the statistical structure of precipitation in terms of the spatial autocorrelation function. The autocorrelation

function models the statistical relationship between the euclidean distances between the observations and their correlation. The

interpolation method calculates a weighted average of the nearest station values based on their distance to the grid point and

the autocorrelation function. This interpolation method was chosen by Schamm et al. (2014) after a comparison with various

different methods. It produces area average precipitation estimates implicitly by estimating the interpolated field at various15

points inside the grid box and then calculating their weighted sum. This results in estimates directly comparable to other forms

of data that produce area average estimates such as satellite products or climate models. More details of the interpolation

method, including the autocorrelation function and its parameters, equations to calculate kriging estimates and their numerical

implementation are described in Schamm et al. (2014) and Rubel (1996).

We interpolated ratios of the daily precipitation to the total monthly precipitation. If both the daily records and monthly20

totals were zero, the ratio was set to zero as well to ensure consistency with monthly datasets. The monthly totals for calcu-

lating daily ratios in the station timeseries were obtained by summing the daily station data as well. A month was considered

complete if it had at least 70% of non-missing days. The absolute values were retrieved post interpolation by superimposing

the interpolated ratios on the GPCC Full Data Monthly V2018 product (Ziese et al., 2018). This dataset was chosen because

it is a well established dataset recommended for historical precipitation, global water cycle and trend analysis (Becker et al.,25

2013; Schneider et al., 2014, 2017). Furthermore, GPCC-FDD1 also calculates ratios using an older version of this dataset

(GPCC Full Data Monthly V7 (Schneider et al., 2015); the newer version stops in 2016 whereas the older version stops in

2013) and it was readily available on the GPCC High Performance Computer (HPC) where the interpolation was performed.

This approach is commonly known as climatology aided interpolation (CAI) and has two advantages. Firstly CAI reduces the

influence of elevation and other variables (Hofstra et al., 2008) which allows us to interpolate with only latitude and longi-30

tude as input variables. Secondly, because monthly gridded datasets are often based on much more reliable and stable station

networks, especially in areas with problematic daily station coverage, the final absolute values may be more reliable in these

regions. A disadvantage of interpolating anomalies was that even if a daily record existed, it was not used for interpolation if

the monthly total was missing because of the completeness criteria. Finally, since we use GPCC Full Data Monthly V2018 to
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retrieve daily absolute precipitation values, our analysis is also limited to the temporal extent of this monthly dataset which is

currently up to the year 2016 (a previous version of REGEN, Version 1.0, used GPCC Full Data Monthly V7 and hence stops

in 2013). The interpolation parameters and auto-correlation function were also identical to the GPCC-FDD1 product and are

described in (Schamm et al., 2014). The interpolation scheme uses the nearest 4 to 10 stations for interpolation (the numbers

were chosen to have similar settings as the modified SPHEREMAP scheme utilised for the monthly analysis) and stations5

within 1 km are averaged to remove station duplicates as well as reduce the impact of such nearby stations on the estimate. For

complete coverage, however, the search radius is increased until the minimum station requirement is met. This means that for

these stations in data sparse regions, the search radius can be much bigger than the decorrelation length scale of 347 km which

is reflected in the Kriging error (see below). The decorrelation length scale is calculated from the autocorrelation function and

is indicative of the extent of a station’s influence.10

Besides the interpolated fields, three other fields characterising the underlying data or uncertainty are provided with the

dataset. These are

1. Kriging error. This is not an absolute error but rather can be interpreted as percentage of variance (Rubel, 1996). It is a

result of solving the Kriging equations and is dependent on the density of the observations and size of the grid (Schamm

et al., 2014).15

2. Yamamoto standard deviation. This can be interpreted as an absolute error as it is the variance between the estimate and

the observations used in interpolation, weighted by the Kriging weights (Yamamoto, 2000).

3. The field of number of stations inside each grid cell is also provided. Note that these are the actual number of observations

inside a grid box. Note that this is not the number of stations used for interpolation of that grid cell estimate as stations

outside the grid cell may be used for interpolation in some cases where density is low.20

The 1950–2016 average Kriging error (KE) and coefficient of variation (CoV), and the data quality mask based on KE and

CoV are shown for REGEN and REGEN40YR in figure 5. The CoV, defined as the ratio of the Yamamoto standard deviation

and the precipitation estimate, is a normalised measure of the variance at each grid cell. The Kriging error is largest in regions

with a low station density such as Greenland, Africa and South America and is larger for REGEN40YR compared to REGEN

as expected (figures 5a and 5b). Coefficient of variation, however, is comparable between REGEN and REGEN40YR. The25

largest CoV values (maximum of 2.33) are once again seen in Africa, South America, Greenland and Southeast Asia (figures

5c and 5d). This means that the variance between the grid cell estimate and the observations used for interpolation is more than

twice as large as the average precipitation for these grids. Grids with CoV greater than 1.9 make up less than 0.05% (22 all

together) of the grid cells with the mode of CoV being around 1.25. The resulting data quality mask based on Kriging error

and coefficient of variation for REGEN40YR has a smaller global land coverage with particularly sparse coverage in Africa,30

South America and Asia in both version of the dataset (figures 5e and 5f).

As mentioned earlier, we interpolated two different sets of underlying station data to create two related datasets. The first

interpolates all available station data while the second interpolates only the long term data defined by stations with at least
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forty complete years of data, where a year was considered complete if all twelve months were non-missing, i.e each month

had at least 70% non-missing days. The All station dataset (REGEN) is useful for those users who do not have access to a

regional precipitation product based on a high station density and would like an approximate estimate of precipitation as well

as for users interested in the best estimate (based on as many stations as possible) of precipitation amounts at each time step,

accepting that this may result in a decrease in temporal homogeneity. It is also useful for users seeking more complete fields5

of precipitation over global land areas and less interested in the uncertainties introduced due to station network variability.

REGEN40YR is useful for users conducting a climate scale analysis of precipitation such as looking at changes in various

precipitation indices over several decades, since the use of long term stations minimises artificial variability of grid cell values

due to network variations. Users must use a dataset (REGEN or REGEN40YR) that is suitable to their needs in conjunction

with a quality mask (described below).10

We provide a quality mask for both datasets where the masked grids are of lower quality. The masks were prepared based

on the Kriging error and coefficient of variation. Figures 5e and 5f shows the data quality masks for the two REGEN datasets.

A grid cell was left unmasked if it either contained at least 60% days in every decade from 1950 to 2016 (7 in total) with at

least one station, or both the grid cell coefficient of variation and Kriging error were under the 95th percentile threshold of the

1950–2016 average coefficient of variation and 1950–2016 average Kriging error respectively. For ease of use we provide a15

single mask for the entire data period, however, we recognise that the coefficient of variation, Kriging error and number of

stations per grid vary over time, meaning a different mask could be calculated for each day. Such a mask would keep all grid

cells with at least one station in addition to all grid cells with the coefficient of variation and Kriging error within the 95th

percentile of all the grids on the day. A possible recommended use case for the unmasked (high quality) grids of REGEN

would be the evaluation of or comparison with another dataset (such as a satellite product) or climate model output.20

3 Results and Evaluation

In this section we evaluate REGEN and REGEN40YR with existing monthly and daily precipitation datasets by showing

comparisons of maps and timeseries.

3.1 Comparison with global gridded datasets of monthly precipitation

Traditonally, global trends in historical precipitation are analysed with monthly datasets since no other suitable long-term daily25

datasets existed (e.g. Hartmann et al. (2013)). Here we reproduce the trend comparison from Hartmann et al. (2013) while

including REGEN. Annual precipitation anomalies are compared in figure 6 between REGEN, REGEN40YR, GPCC Full

Data Monthly Version 7 (GPCC; (Schneider et al., 2015)), CRU TS v4.01 (CRU; (Mitchell and Jones, 2005)) and GHCN

Monthly Version 2 dataset (GHCN; (Peterson and Vose, 1997)). Anomalies were calculated by subtracting the average of total

annual precipitation from 1950–2010 from the total annual precipitation for each dataset respectively. The variability in annual30

precipitation totals between REGEN and the other datasets is very similar, especially when compared to GPCC-FDD1 and

CRU. GHCN has higher variability in many years compared to the other datasets including REGEN and REGEN 40YR.
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3.2 Comparison with regional gridded datasets of daily precipitation

Regional gridded datasets of daily precipitation are often created by local meteorological organisations and as such are of-

ten based on a much denser station network than global datasets (compare for e.g. Herrera et al. (2012) and Haylock et al.

(2008)) and an interpolation method optimised for the local regions. Furthermore, the local organisations also have a much

better understanding of the station metadata. The result is a dataset with long temporal records ideal for analysing individual5

events and precipitation extremes. REGEN’s skill in capturing individual significant precipitation events is highlighted by a

comparison of timeseries of daily totals from various events between REGEN, REGEN40YR and other commonly used re-

gional datasets available for Europe, USA, Australia and Asia (figure 7). There is good agreement between the daily timeseries

from REGEN, REGEN40YR and both 0.25 degree and 1 degree (regridded from 0.25 degree version using CDO remapcon2)

versions of E-Obs Version 16 (Haylock et al., 2008) (note that E-Obs also uses CAI with global Kriging to interpolate the10

daily anomalies) for the events of the "Great flood of 1968" in Southeast England (Jackson, 1977) (figure 7a). Precipitation

shown is spatially averaged over Ireland, Southern England, Northern France, Belgium and Netherlands with the events oc-

curring in mid-September. In Australia, the precipitation events around the landfall of Cyclone Yasi in 2011 are compared

between REGEN, REGEN40YR and the Australian Water Availability Project (AWAP) (Jones et al., 2009) dataset which is

the most commonly used dataset of daily precipitation. Since the in situ data for Australia was shifted a day back during the15

production of REGEN, the AWAP daily averages were also shifted a day backward for this comparison and the agreement

is high between the three datasets. Similarly, daily precipitation timeseries averaged over the Philippines during the Tropical

storm Thelma in 1991 are shown in figure 7c. In this case we compare REGEN and REGEN40YR against APHRODITE

(Yatagai et al., 2012), which is the longest running freely available dataset of daily precipitation in Asia at the moment, and

SA-Obs V1 (van den Besselaar et al., 2017). REGEN and especially REGEN40YR contain a lot fewer stations compared to20

APHRODITE and SA-Obs in this region (figure 7c) which results in much larger differences in estimates between the datasets

(figures 7a and 7b). REGEN captures the daily variability in APHRODITE well on most days however the long term version

(REGEN40YR) with a lot fewer stations (due to the strict completeness criteria) exhibits larger differences, substantially over-

estimating compared to APHRODITE on November 1st and November 9th. On the other hand, REGEN40YR captures more of

the variability of SA-Obs compared to REGEN, especially November 3rd onward. Interestingly, the spike on October 27th is25

present in APHRODITE, REGEN and REGEN40YR but not in SA-Obs and the spike on November 8th is present in SA-Obs,

REGEN and REGEN40YR but not in APHRODITE. Finally based on a comparison of daily rainfall rates during tropical storm

Amelia that made landfall in southern United States, there is also good agreement between REGEN, REGEN40YR and CPC

CONUS (Chen and Xie, 2008; Xie et al., 2007; Chen et al., 2008) (figure 7d).

As a more detailed comparison, we calculated the difference in daily estimates between REGEN and the five regional30

datasets mentioned above (CPC CONUS, E-Obs V16, AWAP, APHRODITE, and SA-Obs). The five regional datasets were

all regridded to the same 1 degree grid as REGEN and daily differences were calculated for each corresponding grid over the

respective temporal periods of each regional dataset (CPC CONUS - 1950–2006, E-Obs V16 - 1950–2016, AWAP - 1950–2015,

APHRODITE - 1950–2007, SA-Obs V1 - 1981–2014). Temporal correlations between REGEN and the respective regional
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Regional Dataset Regional Dataset REGEN Stations REGEN40YR (Long Term)

Name Stations in Region Stations in Region

APHRODITE Daily Max 8000+ 8551 (daily max 4985) 1539 (daily max 1743)

SA-Obs V1.0 7956 2527 64

E-Obs V16 17,468 28,338 11,261

CPC CONUS ∼28,500 42,229 3940

AWAP Daily Max ∼7500 12,993 (daily max 7509) daily max of 3909

Table 1. Total number of stations interpolated by five regional datasets and the corresponding number of stations in each region interpolated

by REGEN and REGEN40YR datasets over the entire time period of each respective regional datasets (CPC CONUS - 1950–2006, E-Obs

V16 - 1950–2016, AWAP - 1950–2015, APHRODITE - 1950–2007, SA-Obs V1 - 1981–2014).

datasets were also calculated at each grid. The mean difference between REGEN and CPC CONUS is positive in eastern

United States and negative in the west (figure 8a), the standard deviation (SD) of the daily difference is high in coastal areas

(figure 8b), and the temporal correlation is high everywhere (figure 8c). The mean difference between REGEN and E-Obs V16

is positive in most regions across the E-Obs domain (figure 8d), the SD of the difference is higher in the South and in Iceland

compared to the northern parts of the E-Obs domain (figure 8e), and the temporal correlations are higher in regions of high5

station density (such as central Europe, UK and Scandinavia) compared to low station density regions (such as Northern Africa

and Turkey) (figure 8f). The mean difference between REGEN and AWAP is positive in northern and central Australia and

negative elsewhere (figure 8g), the SD of the difference is high in the northern and eastern coastal areas of Australia (figure

8h), and the temporal correlation is high everywhere except for the low station density regions of central Australia (figure 8i).

Note that similar to figure 7b the AWAP daily data had to be shifted a day backward once again for a more suitable comparison.10

The mean of the daily difference between REGEN and APHRODITE is positive in most regions, and both the mean and SD

of difference showing higher values on the west coast of the Indian peninsula, the maritime continent and the high elevation

Himalayan regions (figure 8j,8k). The temporal correlation between REGEN and APHRODITE is high in continental Asia and

low in the maritime continent (figure 8l). Finally, the mean difference between REGEN and SA-Obs is positive in most regions

of the SA-Obs domain with larger values of both the mean and SD of the difference in the maritime continent. Conversely,15

the temporal correlation between REGEN and SA-Obs is high in Northern Australia and low in the maritime continent. High

differences between REGEN and all regional datasets are observed in coastal areas. Note that it is possible that this is an

artefact of the regridding of the regional datasets to a 1 degree resolution.

A comparison of the number of stations interpolated by each of the five regional datasets mentioned above (APHRODITE,

SA-Obs V1, E-Obs V16, CPC CONUS and AWAP), and the corresponding stations interpolated by REGEN and REGEN40YR20

in the respective regions of each datasets is shown in 1. In some cases, due a lack of available information, the daily maximum

number of stations has been listed as opposed to the total number of stations for the entire time periods. In these cases, we also
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provide the daily maximum number of stations interpolated by REGEN and REGEN40YR. REGEN and REGEN40YR inter-

polate less stations compared to APHRODITE and SA-Obs. This is particularly striking in Southeast Asia where REGEN40YR

which interpolates only 64 stations compared to 7956 interpolated by SA-Obs. On the other hand REGEN interpolates more

stations compared to E-Obs and CPC CONUS. Note that some of these stations, especially in the US, may be duplicates missed

by our merging algorithm. Finally, there is little difference in the station network interpolated by REGEN and AWAP.5

3.3 Case study over Sub-Saharan Africa

Based on the maps of Kriging error (figures 5a and 5b) the most data sparse regions of REGEN are Africa, South America,

Greenland and northern Russia. Despite the sparsity of data, REGEN can still be useful to get estimates of daily rainfall in

some parts of these regions. We use the country of Benin in sub-Saharan Africa as an example. Benin has a tropical climate

receiving the majority of rainfall around the summer months of June-August (JJA). In the summer of 2008 Benin experienced10

catastrophic flooding events displacing around 150,000 people (WHO, 2010). The flooding started with heavy rainfall in the

last week of July (IRIN, 2008). The timeseries of daily rainfall from 1950 to 2013 highlights 2008 as a year with the third

highest rainfall on record based on REGEN (figure 9a) with the highest being in 1957. On comparison of the daily rainfall

timeseries between 1957 and 2008 (figure 9b), the anomalous rainfall in late June and late July is apparent, even compared to

1957. This highlights REGEN’s effectiveness in capturing the daily rainfall even in some parts of Sub-Saharan Africa. Note15

that the region of Benin is of higher quality compared to surrounding regions as it is not masked in the data quality mask (figure

5e).

3.4 Comparison with existing global datasets of daily precipitation

Finally, in this section the only other existing global gridded gauge-based datasets of daily precipitation are compared. The

temporally averaged annual total, annual maximum precipitation, trends in annual total and trends in annual maxima are20

compared against NOAA Climate Prediction Center’s (CPC) Unified Gauge-Based Analysis of Daily Precipitation (CPC-

Global) (Chen and Xie, 2008; Xie et al., 2007; Chen et al., 2008) and GPCC Full Data Daily V1 (GPCC-FDD1) (figure 10).

For comparability CPC-Global whose native resolution is 0.5 degrees was regridded to 1 degree to match the GPCC-FDD1 and

REGEN. The temporal coverage of CPC-Global and GPCC-FDD1 is 1979–2017 and 1988–2013 respectively. The temporal

averaging and comparison was therefore done over 1988–2013 which is the longest common period between the three datasets.25

As expected REGEN is more similar to GPCC-FDD1 and REGEN40YR compared to CPC-Global for both the means and

trends of both indices. This is because REGEN and GPCC-FDD1 use the same interpolation method and for the most part even

the same underlying data. The largest differences between the three datasets arise in data sparse regions in the high latitudes,

Africa, South East Asia, and the high altitude regions in western South America. The spatial variability of the differences in

annual total and annual maxima trends is higher compared to the spatial variability of differences in averages of the annual30

totals and annual maxima. Due to the lack of long term stations in Saharan Africa, differences in all four indices between

REGEN and the long term station based REGEN40YR are larger compared to differences between REGEN and GPCC-

FDD1 in northern Africa. Herold et al. (2016) showed CPC-Global produces lower annual totals compared to an ensemble of
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observational datasets including GPCC-FDD1, satellite products and reanalyses. This is consistent with our results since the

difference in annual totals between REGEN and CPC-Global are positive in majority of global land areas with the exception

of northern North America and northern Africa.

Temporal and spatial correlation between REGEN and GPCC-FDD1 (figures 12a and 12b) are also higher compared to

temporal and spatial correlation between REGEN and CPC-Global (figures 12c and 12d). Correlations between REGEN and5

CPC may be lower in parts where the underlying stations were shifted a day backward (see Appendix). Indeed, based on

correlations between REGEN lagged +1 days and CPC (A1), the correlations are higher compared to 12d in and around the

countries where data was shifted a day back (eg. Vietnam, Brazil, Uruguay, Peru, Suriname, Netherlands, Norway, Ukraine

and Turkey). Correlations do not change compared to 12d in all regions where REGEN raw station data are not shifted. The

spatial and temporal correlation between REGEN and GPCC-FDD1 is even higher than the correlation between REGEN and10

REGEN40YR (figures 12e and 12f) because REGEN’s station network is more similar to GPCC-FDD1 than REGEN40YR.

The areas with poor temporal correlation between REGEN and REGEN40YR correspond to areas with low station density

such as the high latitudes, Africa and South America. Compared to the field correlation between REGEN and GPCC-FDD1,

the correlation between REGEN and REGEN40YR is also more variable. This may be because the lower station density

results in an increase in daily variability in interpolated fields. The drop in field correlation between REGEN and GPCC-FDD115

around 2010 corresponds to the higher percentage of GHCN stations in the last years (figure 1b). There is also a decline in

field correlation over time between REGEN and REGEN40YR which may be related to the decline in the number of long-term

stations over time. The temporal correlation between REGEN and CPC-Global is highest in USA, Australia, East Asia and a

small part of Europe. These regions all correspond to regions with good station density throughout the time period.

4 Summary, limitations and best practice recommendations for users20

We present a new gauge-based dataset of gridded daily precipitation with a grid resolution of 1◦ × 1◦, global land coverage,

and temporal coverage from 1950 to 2013 called REGEN. REGEN was produced by interpolating quality controlled in situ

daily rainfall timeseries data using ordinary block Kriging. The interpolation method for REGEN is identical to GPCC-FDD1

(another gridded dataset of daily precipitation from 1988–2016). REGEN also uses all the in situ daily data used by GPCC-

FDD1 but expands on this raw data by combining it with GHCN-Daily and raw data from other sources. This resulted in25

an extended in situ daily precipitation network with coverage back to 1950. The raw data were subjected to comprehensive

automated control procedures identical to the one used by the GHCN-Daily dataset and all suspicious data were removed,

interpolating only the high quality data. We used climatologically aided interpolation (CAI) which involved interpolating ratios

of daily totals and monthly totals and retrieving absolute values by superimposing gridded monthly precipitation fields on the

interpolated anomalies. This approach results in more reliable estimates in regions with sparse daily in situ data network and30

a comparatively denser monthly in situ data network. CAI also reduces the influence of variables such as elevation, distance

to the coast etc. which allows us to interpolate using only the latitude and longitude as input variables. The gridded monthly

fields used to retrieve the absolute daily precipitation rates came from GPCC Full Data Monthly V7 dataset.
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REGEN is currently the longest dataset of daily precipitation based on gauge-only records with global land coverage making

it ideal for any global analysis at climatological scales. We therefore hope it will contribute to the advancement of hydrological

science and practice by enabling a number of studies aiming to understand changes and variability in several aspects of daily

precipitation distributions, including precipitation extremes, and measures of hydrological intensity. So far the only datasets

that allowed global climatological scale analyses of precipitation were monthly datasets or gridded ETCCDI indices, however,5

the monthly datasets tend to average out the extremes, in turn losing their usefulness when it comes to high impact phenomena

related to intense rainfall at shorter timescales. REGEN due to its daily temporal resolution fills this data gap. REGEN like

GPCC-FDD1 also provides various uncertainties related to the daily gridded fields which include the Yamamoto standard

deviation which is indicative of the proximity of the estimated fields to the raw stations values, the Kriging error which is

indicative of the density of stations inside the grid cell and finally also the exact number of stations inside each grid cell.10

Based on these measures a quality mask for REGEN that combines all three uncertainty information indicating the high quality

grid cells (with low uncertainties) is also presented. Users of REGEN should use the quality mask in all cases except when

spatial completeness is of utmost importance. Alongside REGEN (that interpolates all station data) another related dataset that

minimises artefacts due to station network variability by interpolating only the long-term stations (i.e. stations with at least 40

years of complete data) is also produced. Both datasets include bespoke data quality masks. As a result, although the station15

density is lower in the long-term version, users can use its quality mask to restrict their analysis to higher quality areas. For

analyses sensitive to the station network variability the long term station version with the high quality mask would be the most

suitable. Note, however, due to the lower station density, the long term station version may be less suitable for investigating

individual events or short timeseries. The All station version on the other hand would be more suitable for analysis where a

complete global coverage is important but temporal homogeneity is of lower priority. In any analysis it is recommended to use20

the data quality mask, however, in regions where no other daily datasets are available (such as parts of Africa), REGEN may

provide a suitable rough estimate of precipitation even in lower quality grids.

REGEN has been compared with global monthly and daily, and regional daily gridded datasets of precipitation. The annual

precipitation anomalies have been shown to resemble those from the other monthly datasets and the spatial fields of annual

totals and maxima as well as their trends more closely resemble GPCC-FDD1 than CPC. Even the daily timeseries of individual25

events of significant precipitation resemble the respective regional datasets closely in Europe, Australia and USA. The larger

inconsistencies between the long term REGEN data and APHRODITE in Asia are indicative of the lower station densities

in REGEN in this region. Also note that there is almost no raw in situ daily data in mainland China in 1950. As such any

analysis focusing on China using this dataset should not go further back than 1951. Finally, note that despite our best efforts

to homogenise station data before interpolating, because the raw data are sourced ultimately from various countries with30

different measurement practices (such as time of measurement, use of units, quality control and homogenisation steps etc.),

inhomogeneities across political borders are possible (Trewin, 2010).

Rainfall is highly variable and a 1 degree spatial resolution (roughly 10,000 sq km) dataset such as REGEN is unlikely to

contain the information necessary for many typical local-to-regional rainfall applications. However, we note the actual rainfall

amounts in gridded datasets are subject to large uncertainties anyway (Herold et al., 2016), whereas estimates of variability35
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are more robust. We therefore believe REGEN will prove itself valuable for climatological applications including studies of

climate variability and long-term changes in daily precipitation intensity and extremes, as it provides long temporal coverage

of quasi-global daily precipitation observations. The biggest strength of REGEN is the long temporal coverage of quasi-global

daily precipitation observations. Regional datasets are often developed by national meteorological organisations and often have

access to significantly more data than shared with Global archives such as GHCN-Daily and GPCC. For example the Spanish5

Meteorological Agency (AEMET) itself manages roughly over 9000 stations (Herrera et al., 2012) which is almost the same

number of stations as those used by E-Obs for the entirety of Europe (around 12,000 guages at its maximum). Furthermore,

Herrera et al. (2012) only used the high quality stations which accounted for roughly 30% of total stations available from the

Spanish Meteteorological Agency (AEMET). Often the respective meteorological organisation also have the resources to more

thoroughly and in some cases even manually quality control the raw data. As a result, regional datasets (where available) may10

provide more accurate precipitation estimates than REGEN.

At the moment REGEN is not an operational product, meaning the analysis for REGEN was done as a single instance and

there are currently no plans to update it regularly, such as on an annual or biennial basis.

Figure 13 reflects REGEN’s strengths by showing annual totals and maxima and trends over the high quality regions over

the entire 63 year record of REGEN. Both the total annual precipitation and annual maxima based on REGEN are reasonable15

with higher totals and maxima in the known wet regions such as the tropics and lower totals and maxima in the known dry

regions such as Saharan Africa (figures 13a and 13b). Trends in total precipitation based on REGEN (figure 13c) are also

comparable to the trends in total precipitation shown in the IPCC’s 5th Assessment report (figure 2.29, Hartmann et al. (2013)).

The total annual precipitation, annual maxima and respective trends in the two indices based on the long term REGEN data

(REGEN40YR) (figures 13e, 13f, 13g and 13h) are also very similar to REGEN which suggests that the effects of station20

variations appear negligible at this scale (for trends and averages over 1950–2013) for the high quality grids. The trend maps

shown in figure 13 have been masked based on the quality masks as shown in figures 5e and 5f.

REGEN provides precipitation estimates comparable to those from the currently most reliable datasets such as GPCC-FDD1.

With a temporal coverage 152% longer than that of GPCC-FDD1’s and a similar global land coverage, REGEN is highly

suitable for analysing climate change. We recognise that observations are not the "truth" but rather just our best estimates of25

it. REGEN and its variant REGEN40YR (which minimises station network variability) are therefore accompanied by various

uncertainty estimates as well as a quality mask, allowing users a firm handle of the observational uncertainties in their analysis.

Data availability. REGEN AllStns V1-2019 (REGEN) and REGEN LongTermStns V1-2019 (REGEN40YR) data has now been published

with unique Digital Object Identifiers (DOIs) https://dx.doi.org/10.25914/5ca4c380b0d44 & https://dx.doi.org/10.25914/5ca4c2c6527d2 re-

spectfully. Older versions of both datasets, REGEN AllStns V1.0 and REGEN LongTermStns V1.0, are also available (https://dx.doi.org/10.30

25914/5b9fa55a8298c and https://dx.doi.org/10.25914/5b9fa67fce5d6 respectively), however, we recommend users use the newer versions.

Both datasets can be acquired in netcdf format along with netcdfs of the quality masks via the Research Data Australia (RDA) web pages

https://researchdata.ands.org.au/rainfall-estimates-gridded-v1-2019/1408744 and https://researchdata.ands.org.au/rainfall-estimates-gridded-v1-2019/
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1408742 respectively. The RDA records contain further information about the datasets such as the dataset abstract, citation information, re-

lated organisations, grants, researchers and dataset managers (SC).

Dataset License and Rights. Non-Comercial License: CC-BY-NC-SA

Creative Commons - Attribution - Non Commercial - No Derivatives 4.0 International

http://creativecommons.org/licenses/by-nc-sa/4.0/legalcode5

Access to this dataset is free, the users are free to download this dataset and share it with others and adapt it as long as they credit the dataset

owners, provide a link to the license, and if changes were made, indicate it clearly and distribute their contributions under the same license

as the original, commercial use is not permitted.

Appendix A: List of countries for which the timestamps have been shifted a day back

The countries for which the data are shifted a day back (e.g. data from 2nd Jan are saved as 1st Jan) are Angola, Antarctica,10

Argentina, Australia, Azerbaijan, Bahamas, Bangladesh, Barbados, Benin, Bolivia, Botswana, Brazil, Bulgaria, Burkina Faso,

Cameroon, Chad, Chile, Costa Rica, Croatia, Denmark/Greenland, Ethiopia, French Polynesia, Gabon, Georgia, Indonesia,

Islands in the Indian Ocean (IOT), Ivory Coast, Japan, Kenya, Libya, Madagascar, Malawi, Mali, Marshall Islands, Mauritania,

Mozambique, Netherlands, Niger, Norway, Peru, Senegal, Slovenia, Solomon Islands, Sudan, Suriname, Tanzania, Tunisia,

Turkey, Ukraine, Uruguay, Vanuatu, Vietnam, Zambia, Zimbabwe.15
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Figure 3. Grids showing percentage of days with at least 1 station in each decade for (figure 3a) REGEN, (figure 3b) REGEN40YR and

(figure 3c) GPCC-FDD1. Gray areas indicate grids where no stations are present.
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Figure 4. Percentage of records that (figure 4a) failed one or more quality control tests and were flagged and (figure 4b) were not used as

input for interpolation due to missing monthly totals and hence missing anomaly values. Figure 4c shows a map of regions as used for figures

4b and 1a. 25
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Figure 5. Kriging error (KE)(figures 5a and 5b), Coefficient of variation (CoV) (figures 5c and 5d) defined by the ratio of the Yamamoto

standard deviation (Yamamoto, 2000) averaged over 1950-2016 and the daily precipitation averaged over 1950-2016, and masks based on

the KE and CoV (figures 5e and 5f) based on REGEN (left Column) and REGEN40YR (right column) data.
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Figure 6. Comparison of annual precipitation anomaly timeseries with monthly datasets. Anomalies were calculated relative to the average

of daily precipitation totals over the entire time period (1950-2016) for each dataset.
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(a) (b)

(c) (d)

Figure 7. Daily timeseries avearged over spatial regions of significant rainfall events. (figure 7a) Timeseries of daily rainfall during the great

flood of 1968 over Southeast England. (figure 7b) Timeseries of daily rainfall during Cyclone Yasi in northeast Australia in 2011. (figure

7c) Timeseries of daily rainfall during typhoon Thelma in Philippines in 1991. (figure 7d) Timeseries of daily rainfall during tropical storm

Amelia in US in 1978.
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Figure 8. Mean (first column; a, d, g, j, m) and standard deviation (second column; b, e, h, k, n) of the difference in daily values (mm/day),

and temporal correlation (third column, c, f, i, l, o) between REGEN and CPC CONUS (first row), REGEN and E-Obs V16 (second row),

REGEN and AWAP (third row), REGEN and APHRODITE (fourth row), and REGEN and SA-Obs V1 (fifth row) over the respective periods

of each regional dataset.
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(a) (b)

Figure 9. Timeseries of daily precipitation from REGEN averaged over Benin in Western Africa. Figure 9a shows the entire timeseries from

1950 to 2016 with the years containing the days with the highest three daily rainfall rates (1957, 1963 and 2008) shown in a darker shade.

Figure 9b shows a comparison of the timeseries of daily rainfall between 1957 (year containing the day with the record highest rainfall based

on REGEN) and 2008 (year during which the 2008 Benin floods occurred). Benin was chosen because of its good coverage of stations.
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Figure 10. Percentage difference in averaged total annual precipitation (first column; figures 10c, 10e and 10h), averaged maximum annual

precipitation (second column; figures 10d, 10f and 10g) between REGEN and GPCC (second row), REGEN and CPC (third row) and REGEN

and REGEN40YR (fourth row) data. The first row shows the absolute values of total annual precipitation (figure 10a) and annual maxima

(figure 10b) averaged over 1988 - 2013 (the longest common time period between the three datasets).
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Figure 11. Percentage difference in total annual precipitation trends (first column; figures 11c, 11e and 11g), and annual maximum precipi-

tation trends (second column; figure 11d, 11f and 11h) between REGEN and GPCC (second row), REGEN and CPC (third row) and REGEN

and REGEN40YR (fourth row) data. The first column shows the absolute values of total annual precipitation trends (figure 11a) and annual

maximum precipitation trends (figure 11b) averaged over 1988 - 2013 (the longest common time period between the three datasets).
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Figure 12. Spatial (field) correlation at each daily time-step (first column; figures 12a, 12c and 12e) and temporal correlation between

timeseries at each grid cell (second column; figures 12a, 12c and 12e) between REGEN and GPCC (first row), REGEN and CPC (second

row) and REGEN and REGEN40YR Long term (third row) data. Comparisons are over the entire common temporal period between each

dataset pair (1988–2013 for REGEN vs GPCC-FDD1, 1979–2016 for REGEN vs CPC, and 1950–2016 for REGEN vs REGEN40YR).
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Figure 13. Total annual precipitation (figures 13a and 13e), maximum annual precipitation (figures 13b and 13f) and respective trends

(PRCPtot; figures 13c and 13g and RX1DAY; figures 13d and 13h) averaged over 1950 to 2013 based on REGEN data (figures 13a, 13b, 13c

and 13d) and REGEN40YR data that only interpolates stations with at least forty complete years of data (figures 13e, 13f, 13g and 13h).34



Figure A1. Temporal correlations between REGEN and CPC, similar to figure 12d, but this time with CPC shifted a day backwards.
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