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Abstract: Urban flooding exposure is generally investigated with the assumption of stationary disasters and disaster-bearing 

bodies during an event and thus cannot satisfy the increasingly elaborate modeling and management of urban floods. In this 10 

study, a comprehensive method was developed to simulate dynamic exposure to urban flooding considering residents’ travel 

behavior. First, a flood simulation was conducted using the LISFLOOD-FP model to predict the spatiotemporal distribution 

of flooding. Second, an agent-based model was used to simulate residents’ movements during the urban flooding period. 

Finally, to study the evolution and patterns of urban flooding exposure, the exposure of the population, roads, and buildings to 

urban flooding was simulated using Lishui, China, as a case study. The results indicated evident spatiotemporal variations in 15 

urban flooding and population distribution. The exposure increased with increasing rainfall and flooding severity. The urban 

area near the Oujiang River was the most severely flooded and indicated the highest exposure of the population, roads, and 

buildings. Furthermore, the impacts of flooding on roads were greater than those on the population and buildings. This study 

presents the first fully formulated method for dynamic urban flood exposure simulation with high spatiotemporal resolution. 

The quantitative results of this study can provide fundamental information for determining urban flood disaster vulnerability, 20 

assessing socioeconomic losses, managing urban disaster risk, and establishing emergency response plans. 

1 Introduction 

Storm flooding has become increasingly frequent and severe with the intensification of climate change and the rising frequency 

of extreme weather events (Dankers and Feyen, 2008; Hammond et al., 2015). Urban floods are major natural disasters in 

many cities around the world and seriously threaten human life and social and economic activities (Gain et al., 2015). 25 

Effectively coping with floods and their adverse effects is an important part of disaster prevention, mitigation, and risk 

management (Atta-Ur-Rahman, 2014). Non-engineering measures, such as exposure assessment, are currently the main way 

of managing urban flooding risk (Chen et al., 2015). Exposure refers to the presence of people, livelihoods, environmental 

services and resources, infrastructure, or economic, social, or cultural assets in areas that could be adversely affected by natural 

disasters (IPCC, 2012). Urban flood disasters involve the adverse effects of heavy rain and other factors on city systems in 30 
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disaster-prone environments. These events consist of three elements: disaster-causing factors, disaster-prone environments, 

and disaster-bearing bodies (Shi, 1996).  

Exposure has dynamic characteristics because of the dynamic evolution of urban floods and disaster-bearing bodies. Therefore, 

the characteristics of flood disasters and building environments, as well as the distribution of population and socioeconomic 

resources are the key factors in evaluating urban flood exposure. The methods for evaluating exposure to urban flooding at a 5 

certain time or period vary due to changes in disaster-bearing bodies, study areas, and data acquisition methods, among others. 

(Röthlisberger et al., 2017). Index-based methods are commonly used for comprehensive exposure evaluation (Mahe et al., 

2005; Mansur et al., 2016; Guo et al., 2014). The exposure index method is to select the natural, social, economic and other 

evaluation indices from the characteristics of the disaster-bearing bodies to establish the evaluation index system, determine 

the index weights by the analytic hierarchy process and expert scoring method, construct the evaluation system by using 10 

mathematical model, and obtain the exposures of the disaster-bearing bodies (Nasiri et al., 2016). Statistical methods based 

on historical disaster data are also used (Moel et al., 2011). 

With respect to spatial considerations, the currently implemented method for estimating disaster exposure adopts 

administrative boundaries of socioeconomic data, which are organized as research units (Yin, 2009). Natural elements with 

higher spatial resolutions are compromised due to the lower spatial resolution of human elements, such as population (Yang et 15 

al., 2013). Consequently, a comprehensive and sophisticated geographic research unit has not been established, resulting in 

simulation results applicable only to macro planning and decision making. The estimation of disaster exposure therefore needs 

to incorporate greater spatial heterogeneity and resolution. 

Besides enhancement of the spatial scale, dynamic temporal simulation of disaster exposure has gained increasing attention. 

Specifically, the dynamic evolution of disaster exposure at the macro timescale considers exposure distribution and its variation 20 

during different development periods (Weis et al., 2016). This method is relatively mature and has yielded abundant research 

results. At the micro timescale, disaster-causing factors and disaster-bearing bodies represented by populations vary constantly. 

On one hand, spatiotemporal changes in disaster-causing factors (e.g., rainfall) result in corresponding dynamic changes in the 

characteristics of urban flood disasters (e.g., water depth and velocity). On the other hand, daily travel activities of urban 

residents, such as commuting between residential and work or study areas, cause a dynamic spatiotemporal distribution of the 25 

population. Exposure to urban flooding changes dramatically over a short period of time. To avoid or reduce disaster risks, 

casualties, and property losses, different individuals are likely to adopt different adaptive behaviors, such as delaying or 

canceling travel plans, whereas the government is likely to adopt organizational actions such as issuing warnings and 

evacuating residents (Wan and Wang, 2017; Parker et al., 1995). The dynamic simulation of exposure therefore requires 

dynamic space–time simulation of variations in the disaster event, disaster-bearing bodies, and their interactions. Modeling of 30 

the temporal and spatial changes in natural disasters mainly uses the disaster system simulation method, and hydrological or 

hydrodynamic models are typically used to simulate flood disasters (Werren et al., 2016). The change simulation of the 

disaster-bearing body (e.g., the population) can use the method based on individual space–time mark data (Liang et al., 2015) 

and the agent-based model (ABM) (Kang et al., 2012). Although the former can acquire human position and moving track 
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data, it cannot identify the purpose of human activities, and human disaster response behavior cannot be simulated. The ABM 

can simulate not only the population distribution but also the interaction among the population (as disaster victims), hazard 

factors, and disaster-prone environments (Yin, et al., 2016b). Previous studies have used the ABM to simulate human responses 

to disasters, which, in turn, have been used in natural disaster risk research (Johnstone, 2012; Huang et al., 2015). Nevertheless, 

the simulation results do not reflect the exposure characteristics of the disaster-bearing bodies and their dynamic changes 5 

(Dawson et al., 2011). 

Therefore, the objectives of this study were to develop a novel method using the LISFLOOD-FP model and an ABM to 

simulate the exposure of urban populations, roads, and buildings to flooding under varying conditions and to implement the 

method as a case study in a real city. Several scenarios, including diverse flooding types and various responses of residents to 

flooding, were considered in this regard. Additionally, dynamic features of the real world were incorporated to improve the 10 

micro exposure analysis. Exposure simulation is a useful tool for estimating disaster vulnerability and assessing losses, and 

the quantitative results under different scenarios of this study are likely to benefit relevant government agencies in assessing 

risk, issuing warnings, and planning emergency responses to urban natural disasters. In particular, considering the dynamic 

distribution of the population during a flood disaster, a more reasonable migration measure can be taken to minimize casualties. 

2 Study area and data sources 15 

Lishui City, Zhejiang Province, China, was used as the study area because of the availability of the required data and flooding 

history. The urban district of Lishui is a largely hilly and mountainous area, and the Oujiang River traverses its southern and 

eastern parts. The study area is located in the central district of Lishui, covers an area of 43.4 km2, and has a population of 

approximately 71,673 (Fig. 1). The frequency of heavy rainstorms and persistent concentrated rainfall events rises sharply in 

May and June during the Meiyu flood period, which often results in flood disasters. On August 20, 2014, a heavy rainfall event 20 

lasting a few days produced a 50-year flood in Lishui and caused considerable loss of property. 

The datasets used in this study included a digital elevation model and river, road, building, population, and observation data 

consisting of river discharge and water level. Travel survey data were used to determine daily routines. Additionally, traffic 

flow and water accumulation data were used for validation. Table 1 describes the sources and uses of the datasets. 

We randomly selected 500 residents in the study area to participate in a questionnaire survey on daily activities. We collected 25 

data on their social characteristics to distinguish population types. There were 100 people under 18 years of age, 300 middle-

aged people (18-60 years), and 100 elderly people (>60 years). Employed people and males accounted for 55% and 50%, 

respectively. Lastly, 14% of the population had received higher education. The distribution of the above social characteristics 

was close to the actual population distribution in the study area. 
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3 Methods 

This study comprised three aspects: disaster simulation, human activity simulation, and dynamic exposure assessment (Fig. 2). 

The first step included fluvial and pluvial flooding simulation based on the LISFLOOD-FP model. The simulation of human 

activity subsequently used ABM to obtain the spatiotemporal distribution of the population under different scenarios. Finally, 

the developed model was combined with the results of the previous two steps to assess the dynamic exposure of the population, 5 

roads, and buildings to urban flooding. 

3.1 Flood models 

There is a wide variety of existing hydrological or hydrodynamic models that are capable of simulating fluvial or pluvial 

flooding, including the Storm Water Management Model (SWMM) (Rossman, 2015), LISFLOOD (Bates and De Roo, 2000), 

MIKE-SHE (DHI, 2000), MIKE-11 (Havnø et al., 1995), MOUSE (Lindberg et al., 1989), HEC-RAS (Brunner, 2008), and 10 

HEC-HMS (Charley et al., 1995). LISFLOOD-FP (Bates et al., 2013) is a coupled 1D/2D hydraulic model based on a raster 

grid and was designed for research purposes at the University of Bristol, United Kingdom. LISFLOOD-FP uses a square grid 

as the computational grid to simulate 1D river and 2D floodplain hydraulic changes. The applicability of the model has been 

verified by several studies (Horritt and Bates, 2002; Bates and De Roo, 2000). Therefore, the LISFLOOD-FP model was 

chosen for the simulation of fluvial and pluvial flooding in this study.  15 

Floodplain flows were described in terms of continuity and momentum equations discretized over a grid of square cells, which 

allowed the model to represent 2D dynamic flow fields for the floodplain. It assumed that the flow between two cells was 

simply a function of the free surface height difference between these cells: 
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where ℎ𝑖,𝑗 is the free surface height of water at node (i,j), ∆𝑥 and  ∆𝑦 are the cell dimensions, n is the effective grid scale 

Manning’s friction coefficient for the floodplain, and 𝑄𝑥 and 𝑄𝑦  describe the volumetric flow rates between the floodplain 

cells in the 𝑥 and 𝑦 directions, respectively. The flow depth, ℎ𝑓𝑙𝑜𝑤 , represents the depth through which water can flow between 

two cells, and d is  the difference between the highest free surface height of water in the two cells and the highest bed elevation. 

The types of flooding simulated in this study included pluvial and fluvial floods. Due to the lack of hourly rainfall observation 25 

data, we used designed rainfall data for pluvial flood simulation. Synthetic rainfall data for a return period of 50 years were 

simulated using the Chicago hyetograph method (CHM) (Cen et al., 1998). The rainfall data were determined using the 

rainstorm intensity formula (Eq. (3)), rainfall duration time (T), and peak position (r).  

𝑖 =
𝐴(1+𝑐 log 𝑃)

167(𝑡+𝑏)𝑛
,                                                                                                                                                                             (3) 



5 

 

where 𝑖 is the rainfall intensity (mm min-1), 𝑃 is the return period, and t is the time. The parameters 𝐴, 𝑏, 𝑐 and 𝑛 are related 

to the characteristics of the local rainstorm and need solutions. 𝐴 is the rainfall parameter, i.e., the design rainfall (mm) for 1 

minute at a 10-year return period, 𝑐 is the rainfall variation parameter (dimensionless), 𝑏 is the rainfall duration correction 

parameter, i.e., the time constant (minutes) that can be added to convert the curve into a straight line after logarithmic 

calculation of the two sides of the rainstorm intensity formula, and 𝑛 is the rainstorm attenuation index, which is related to the 5 

return period. The “r” value refers to the relative rainfall peak time, i.e., a value from 0 to 1, where 0 means the maximum 

rainfall at the beginning of the rainfall event, and 1 means the maximum rainfall at the end of the rainfall event. To simulate 

the 2014 flood, we fixed r at 0.2 based on the assumption that the peak is located at the one-fifth point of the design hyetograph. 

Additionally, the rainfall duration was 6 hours (6 am to 12 pm), and the accumulated rainfall was nearly 148 mm. The 

parameters 𝐴, 𝑏, 𝑐 and 𝑛 were estimated from the rainstorm intensity formula for Lishui City obtained from the “Zhejiang City 10 

Rainstorm Intensity Formula Table” published by the Hangzhou Municipal Planning Bureau (Table 2). The rainfall simulation 

results are shown in Fig. 3(a). The river discharge and water level input data for fluvial flood simulation used observational 

data from Lishui’s 50-year flood in 2014, provided by the Liandu Hydrological Station (Fig. 3(b)). The river discharge data 

for the Daxi and Haoxi rivers on August 20, 2014 were obtained from the Xiaobaiyan and Huangdu stations, respectively, and 

the observational data for water levels at the outlets were those for the Kaitan Dam. 15 

3.2 ABM 

Several modeling techniques, often collectively referred to as social simulation, have been successfully used to represent the 

behaviors of humans and organizations. These include event and fault trees, Bayesian networks, microsimulation, cellular 

automata, system dynamics, and ABMs. Research methods based on ABMs have been gradually introduced into the field of 

natural disaster risk assessment. ABM is considered most suitable for addressing challenges associated with simulating the 20 

complexity and dynamic variability of population exposure to flooding because of its capacity to capture interactions and 

dynamic responses in a spatial environment (Dawson et al., 2011). 

An ABM is a computational method for simulating the actions and interactions of autonomous decision-making entities in a 

network or system to subsequently assess their effects on the system as a whole. Individuals and organizations represent agents. 

Each agent individually assesses its situation and makes decisions based on a set of rules. Agents may execute various 25 

behaviors appropriate for the system component they represent e.g., production or consumption. Therefore, an ABM consists 

of a system of agents and the relationships between them. Even a simple ABM can exhibit complex behavior patterns, because 

a series of simple interactions between individuals may result in more complex system-scale outcomes that could not have 

been predicted just by aggregating individual agent behaviors. 

The ABM was developed as a concept in the late 1940s, and substantial applications were realized with the emergence of high-30 

powered computing. Such applications include those in political sciences (Axelrod, 1997), management and organizational 

effectiveness, and social network behavior (Sallach and Macal, 2001; Gilbert and Troitzsch, 2005). In recent years, it has been 

introduced to the geosciences and other fields to provide novel ideas for the study of modern geography, including land use 
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simulation and planning as well as residential choice and space differentiation (Benenson et al., 2002). The urban flood disaster 

system is a typical complex “natural and social” system. The use of ABM to simulate space–time distributions of populations 

is expected to quantify the dynamic exposure of populations to urban flood disasters. For example, Dawson et al. (2011) 

proposed a dynamic ABM for flood event management to evaluate population vulnerability under different storm surge 

conditions, dam break scenarios, flood warning times, and evacuation strategies. 5 

3.3 Spatiotemporal simulation of population distribution 

Individual travels were simulated using ABM by defining the activity patterns of different types of residents to subsequently 

obtain the distribution of the population at each moment. The ABM of residents’ travels established in this study included two 

core elements of agents and activities, and two basic elements of blocks and networks. 

Residents were independent individuals with subjectivity. This study abstracted them as agents. Only a limited number of 10 

agent classifications were used to reduce the number of agent types. The types of agents were classified according to the social 

characteristics of the residents. Age and gender characteristics mainly affect the ability of people to respond to disasters. The 

self-help abilities of minors under 18 years of age and residents older than 60 years are generally poor. In the event of natural 

disasters, they are generally categorized as the objects of help. The middle-aged group (18–60 years old) generally has greater 

physical strength with a better ability to cope with disasters. Unemployed people are more vulnerable to natural disasters. On 15 

one hand, their living environments and resistance to disasters are poor; on the other hand, their economic conditions are 

limited, which impedes recovery after the disaster and seriously affects their daily life in the short term. Education level is 

related to the possibility of an individual receiving early warning information. Individuals with higher education levels are 

more likely to respond to early warning information and are more aware of disasters than those with low education levels are 

(Terti et al., 2015; Shabou et al., 2017). Additionally, different travel modes have different effects on the activity patterns of 20 

people and on exposure levels when disasters occur. Therefore, the agent types were divided according to age, gender, 

employment status, education level, and travel mode. 

Activities were classified as work, study, recreation, shopping, at-home, and travel. An activity pattern consisted of a series of 

activities to describe the spatiotemporal distribution of the agent. The location and scope of an agent were restricted to blocks 

and networks. Different types of agents had different activity patterns, and the same agent type could also have different 25 

activity patterns in different scenarios. The travel survey data were used according to the demographic properties of the agent 

to generate synthetic daily routines. To capture the variability in the travel survey and the uncertainties in behavior, synthetic 

daily routines were described in probabilistic terms. Figure 4 presents an example of the synthetic daily routine of an agent 

with the following demographic characteristics: male agent, aged 18–60 years, and employed. In this example, the agent started 

the day at 8 am on a weekday and had a 0.8 probability of going straight to work, going home, and so on. 30 

The study area was discretized into several blocks to improve the spatial resolution of the exposure results. The major factors 

that affect the flood exposure included rivers, roads, land use, and buildings. The discretization procedure was conducted with 

GIS tools (intersection and editing tools of the ArcGIS software) (Lü et al., 2018). Blocks were activity places for agents and 
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represented the smallest unit of exposure. This study divided blocks into five categories: residential area, school, company, 

recreational area, and others. Additionally, residential areas were subdivided into classes I, II, III, and IV according to the type 

of building. 

In this study, the network referred to roads and restricted the spatial travel scope of an intelligent agent. Rural roads, highways, 

and urban roads (including main roads, sub-trunk roads, and their branches) were included in the network. The route selection 5 

criteria were defined once the different activities from each individual’s schedule were located, and road section attributes 

were specified. Although various factors are involved in the route choice process, several studies have indicated that 

minimizing travel time is the principal criterion for selecting routes (Papinski et al., 2009; Ramming, 2001; Bekhor et al., 

2006). Here, a simple but effective shortest path method was used. The classical Dijkstra algorithm is a single-source shortest 

path algorithm that provides trees of minimal total length and time in a connected set of nodes (Dijkstra, 1959). The activity 10 

pattern attributions concerned only the starting times and durations of the activity sequences, thus indicating that the travel 

duration for each individual was computed based on the distance between the different activity locations. Therefore, the 

implemented schedules may be distorted compared to the assigned schedules in terms of travel duration (Terti et al., 2015). 

We obtained the departure and destination block of each stage according to the activity patterns, and then calculated the shortest 

path consisting of a series of road sections. At each moment, the block in which the agent was located was calculated, e.g., if 15 

an agent was on the road, according to the variation in speed of its walking or riding on a bus or in a car, the road section where 

it was located was calculated. The same was done during flooding, except that the activity patterns were different. 

3.4 Impacts of disasters on resident activities 

This study accounted for the adaptability or adjustment behavior of residents to a disaster during the disaster event. The type 

of activity and its sensitivity to disaster affected the residents’ disaster response behavior. Recreation and shopping activities 20 

were easier to cancel and postpone than work and study were (Cools et al., 2010). The sensitivities of residents to disasters 

depended on their socioeconomic characteristics and risk factors such as disaster-related (i.e., flood-related) knowledge and 

experience. People with higher education levels are more knowledgeable about disasters and are more likely to receive early 

warning information and take effective measures (Terti et al., 2015). Additionally, it is easier for workers to ignore the risks 

of a disaster (Ruin et al., 2007; Drobot et al., 2007). Therefore, this study accounted for the impacts of education level on the 25 

response behavior of residents to disaster events. 

The impacts of a disaster on population distribution were determined by defining different activity patterns and their changing 

probabilities. Figure 5 indicates activity patterns during different disaster scenarios for employed adult men who had received 

higher education. The “bad weather” scenario was similar to the “daily activity” pattern. For instance, changes in travel 

probability during “bad weather” due to a rainstorm reflected the adaptive behavior of residents. The “warning” scenario 30 

assumed that the government had issued early warning information at 8 a.m., the schools had suspended classes on weekdays, 

and the resident responses were stronger than those to the “bad weather” scenario, resulting in greater differences in activity 

patterns. 
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3.5 Dynamic exposure assessment 

Dynamic exposure was calculated based on the simulations of spatiotemporal distributions of the population and flooding. 

Therefore, the exposure at each moment was calculated according to the population distribution and flood data at that time. 

Based on the data availability, this study focused only on three types of disaster-bearing bodies, namely population, roads, and 

buildings. 5 

Population exposure generally refers to the population exposed to the impacts of disaster events and is characterized by 

regional population size or population density. This study selected the exposed population and accounted for vulnerable groups 

and road users. Among these, age was the primary factor impacting vulnerability. Specifically, the young (people under the 

age of 18 years) and the elderly (people over the age of 60 years) were the vulnerable groups. 

As the basic skeleton of a city, roads are not only the media for daily travel of passengers and freight transportation but also 10 

disaster-bearing bodies (Yin, et al., 2016a), as they are vulnerable to flood disasters. This study selected the number and lengths 

of exposed roads to reflect road exposure. 

Finally, the aggravation of urban flooding has made flooded buildings more common in urban areas, resulting in loss of 

internal property and construction structure. The dynamic state of building exposure is related to the safety of both the building 

and the nearby population. In this study, the area of the exposed building and depth of accumulated water in the building were 15 

considered building exposure. 

3.6 Scenario design 

The daily behaviors of people are characterized by certain patterns with regard to daily, weekly, monthly, and annual cycles. 

Rainstorm (“bad weather”) and disaster response measures adopted by an organization (“warning”) are likely to affect people’s 

daily behaviors. Therefore, 12 scenarios, representing different flooding types and human activities, were designed in this 20 

study (Table 3). S1, S2, S7, and S8 were control groups that indicated human activity with no rain and no warning, while the 

rest of the scenarios were experimental groups. 

4 Results 

4.1 Model implementation and parameter setting 

As an important spatial data management and analysis technology, GIS plays a crucial role in the dynamic exposure analysis 25 

of urban floods. Because of the simplicity, readability, and extensibility of the Python programming language, an increasing 

number of research institutes are adopting it for development. Therefore, the model was developed using the Visual Studio 

Code software (Visual studio code, 2018) and Python programming language (Python, 2018). The development of the 

graphical user interface (GUI), GIS module, and drawing module was realized by Qt (Qt, 2018), Geopandas (Geopandas, 

2018), and Matplotlib (Matplotlib, 2018), respectively. 30 
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4.1.1 Block generation 

Blocks are irregular vector units whose size represents spatial resolution. Therefore, the spatial resolution of the results is 

related to the study area and data. In this study, the study area was divided into 237 blocks based on the method introduced in 

Sect. 3.3, with a minimum area of 2731.64 m2. The block types and their spatial distributions are shown in Figs. 6 and 7, 

respectively. Most of the blocks in the study area were categorized as residential areas, whereas blocks of recreational areas 5 

and others (which indicated rivers) were few and concentrated. 

4.1.2 Parameter setting 

To reduce the number of agent types, only a limited number of agent classes were used. The distribution of population 

characteristics for Liandu District is shown in Table 4. The agents were divided into 18 types for daily (non-disaster) scenarios 

(S1, S2, S7, and S8) and 24 types for disaster scenarios (all other scenarios) based on the influence of education level on 10 

individual disaster response behavior (Fig. 8). 

The census did not identify individuals according to address, and at the start of each simulation, an agent population with the 

same distribution of age, gender, employment, education level, and travel mode was therefore randomly located within the 

residential area for the case study. The synthetic daily routines were described in probabilistic terms to capture the variability 

in the travel survey and uncertainties in behavior. The probabilities of agents’ daily activities were generated based on the 15 

travel survey. We estimated the probabilities of all the activities of the population groups under investigation. 

4.1.3 Exposure threshold 

Although flood fatalities have a number of causes, such as physical trauma, heart attack, or electrocution, drowning accounts 

for two-thirds of such fatalities (Jonkman and Kelman, 2005). Previous research has established that the probability of death 

or serious injury as a result of exposure to flooding is dominated by floodwater depth and velocity (Abt et al., 1989; Karvonen 20 

et al., 2000; Lind et al., 2004; Jonkman and Penning‐Rowsell, 2008). Additionally, the rate of water level rise can play an 

important role in this regard. However, other factors, such as age, fitness level, height, and weight of the individual, are 

important for determining their vulnerability to disasters. A comprehensive review of the flood-related casualty data and 

methods for assessing the risk of death or serious harm to people caused by flooding is provided by the Department for 

Environment Food and Rural Affairs and Environment Agency (2003) and Jonkman and Penning‐Rowsell (2008). In this 25 

study, rather than predicting mortality (which is subject to random factors in addition to those mentioned previously), exposure 

to floodwater depths of 25 cm or greater under relatively fast flowing (2.5 m s-1 or greater) conditions was established as the 

threshold for the most vulnerable people (DEFRA and Environment Agency, 2003). This provided a conservative estimate of 

individuals vulnerable to floodwater rather than an estimate of mortality (Dawson et al., 2011). 

Since building steps (thresholds) exert a blocking effect on shallow flooding, they are likely to reduce the degree of flooding 30 

by restricting flood water to the outside of the building, thereby reducing the exposure of the building. Therefore, this study 
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assigned the height of building steps to corresponding block types according to the Chinese architectural design standards and 

actual conditions of the study area (Table 5). It should be noted that the block type “Other” constituted rivers and did not 

contain buildings. Therefore, the exposure of buildings was determined according to the depth of the flood and the height of 

building steps. The depth of the water entering the building was the difference between the depth of the flood and the height 

of steps. 5 

4.2 Flood simulation 

The temporal resolution of the flood simulation results was unified with other output results for 30 minutes. Figure 9 indicates 

the accumulated water depths and velocities of pluvial and fluvial floods in the study area. The pluvial and fluvial floods 

exerted significant impacts, and the urban area near the Oujiang River was the most severely flooded. Water also accumulated 

in the inner areas of the city, mainly on roads, in the case of pluvial flood disasters. The variations in water depth and velocity 10 

for eight severely flooded areas (including blocks and roads) are presented in Fig. 10. Spatiotemporal variations in flooding 

were observed. Figures 9 and 10 show that water depth was the main factor that caused life and property losses, whereas water 

velocity had little or no effect. 

The flood simulation results were indirectly validated by actual water accumulation points. During the 50-year flood in 2014, 

the city had 10 flooded roads and 18 water accumulation points. The actual hydrological points selected according to the study 15 

area and urban flooding results simulated by the prototype system are indicated in Fig. 11.To avoid overlap with the simulated 

water accumulation results for roads, the actual flooding points in the figure only included road junctions, and the entirety of 

Gucheng road (the Lutang to Dayou Street section) and Liyang Street (which connected the senior middle school to the Sanyan 

temple section) was represented by corresponding intersection points. Figure 11 indicates that both the simulation results and 

actual water accumulation points were mainly distributed along the river. The simulated water accumulation area (Fig. 11(a)) 20 

included roads in the center of the city and was larger than the actual flooding area. This difference could be attributed to 

different definitions of “water accumulation.” The simulation results presented in Fig. 11 included all areas where the 

accumulated water depth during the flooding period was greater than 15 cm. The actual water accumulation point was defined 

as one experiencing rainfall of greater than 50 mm over a 24-hour period. Additionally, it was characterized by the water 

accumulation depth of the road reaching 15 cm (the meteorological department issued a blue rainstorm warning at this level), 25 

the water withdrawal time reaching 1 hour, and the water accumulation scope value being greater than 50 m2. Certain gaps 

existed between the observational data and the actual river discharge since the observation station was far from the study area. 

Hence, the results indicated that the simulated water accumulation area during the fluvial flood (Fig. 11(b)) was smaller than 

that of the actual situation. 

4.3 Simulation of the spatiotemporal population distribution 30 

The spatial and temporal resolutions of the modeling results could be adapted to the study area. The area of the minimum block 

was 2731.64 m2. The temporal resolution of the results was 30 minutes, which could be set to 10 minutes or even 1 minute 
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according to need. Additionally, no accurate traffic model was used to simulate agents’ movements on roads. On one hand, it 

was for improving efficiency. On the other hand, we did not pay attention to high temporal resolution human movements (e.g., 

with precision to 1 minute or 1 second). We only focused on the population distribution for a specific period of time, and the 

temporal resolution requirement of human activities was therefore low.  

The spatiotemporal distribution of the population was simulated based on six scenarios: (1) daily, weekday (S1, S7), (2) daily, 5 

weekend (S2, S8), (3) bad weather, weekday (S3, S9), (4) bad weather, weekend (S4, S10), (5) warning, weekday (S5, S11), 

and (6) warning, weekend (S6, S12). Figure 12 indicates the population variation for blocks and roads for the six scenarios. 

Figure 12(a) shows that, among the three weekend scenarios, the population in the playground (Block 77) changed more than 

that in the company (Block 113). Figure 12(b) indicates that the population on the roads was volatile, and the morning peak 

hour over the weekend was delayed by 1 hour in comparison to that on weekdays. The population distribution in the study area 10 

is shown in Fig. 13. The population was unevenly distributed and concentrated in recreational and residential areas over the 

weekend. However, the population distribution on weekdays was relatively uniform. The concurrent population distribution 

for the six scenarios changed significantly over the weekend, whereas the distribution on weekdays changed little. 

Figures 12 and 13 indicate that the population change patterns were different for different blocks types. The daily routines of 

several people started from the residential area (home) in the morning, was followed by school or company blocks on weekdays 15 

and recreational areas over weekends, and concluded with a return to the residential area at night. During the occurrence of 

rainstorms or the reception of warning messages, different types of people reacted differently (continuing, postponing, or 

cancelling routine activities). Vulnerable people, such as the elderly and children, and sensitive people, such as the homeless, 

were more likely to cancel travel plans. Additionally, recreational activities were more likely to be canceled than were study 

and work activities. 20 

The reliability of the simulation of the spatiotemporal population distribution was indirectly verified by using traffic flow data. 

Due to the lack of data for 2014, we used traffic flow data from June 24 to July 7, 2017. The simulated total number of residents 

passing the four intersections (such as the junction of the Liqing and Huayuan roads) and the actual measured traffic flow at 

the intersections during the morning and evening peak hours on weekdays and weekends are shown in Fig. 14. The traffic flow 

data in Fig. 14 are multi-day average results. 25 

In theory, the simulated value should be much larger than the measured value since the former indicates the number of people, 

whereas the latter represents the number of cars and buses. However, as indicated in Fig. 14, the simulated value was close to 

the measured value. This could be attributed to the assumption that the study area was closed and the simulated population 

was the number of permanent residents, excluding the migrant population. In reality, the number of migrants in the urban area 

during the daytime is large owing to its geographical location. This study simplified human activities when simulating the 30 

spatiotemporal distribution of the population, resulting in a small number of pedestrians on the road. However, both the 

simulated and measured values were essentially similar with regard to changes in their trends. Therefore, the simulation method 

for the spatiotemporal distribution of the population is feasible, and the results are reliable. 



12 

 

4.4 Dynamic exposure assessment 

Figure 15 presents the population exposure variation for two selected areas. The difference between pluvial and fluvial flood 

scenarios could be attributed to differences in the changes and degrees of water accumulation. Figure 15(a) indicates that 

population exposure was the highest for the daily scenario, followed by the bad weather and minimum warning scenarios. 

However, as indicated in Fig. 15(b), the population was most exposed to both weekend and weekday warning scenarios. This 5 

is attributed to the assumption that the disaster response behavior adopted by residents was to reduce travel, i.e., the refuge of 

residents was the residential area. The response was not based on the exposure of the residential area. Therefore, when 

residential areas, such as Block 6, were exposed to floods, the residents chose to reduce travel, resulting in an increase in the 

population in residential areas and consequently increasing the population exposure. According to the analysis of the 12 

scenarios, the government departments can carry out disaster prevention and mitigation measures for areas with high 10 

population exposure, such as evacuation prior to the disaster and initiation of key rescue operations during the disaster. The 

method proposed in this study can help to determine vulnerable populations and road users in the exposed blocks. Because we 

considered vulnerable people and road users when we constructed the population groups (agents), we could obtain similar 

information from the results of vulnerable populations and road users in the exposed blocks, such as the exposed population. 

Such information is of great practical significance. 15 

Figure 16 presents variations in the road and building exposures of two selected areas with serious flooding. The road and 

building exposures for the study area are presented in Fig. 17. It can be concluded that road and building exposures during 

pluvial and fluvial floods also varied with flood depth. The exposed road length of the block fluctuated, whereas the building 

was either entirely exposed or not exposed. Furthermore, the area of the road affected by pluvial and fluvial floods was greater 

than that of the buildings. As indicated in Fig. 17, exposed buildings were present in only a few areas (blocks), whereas roads 20 

were affected in several areas. Buildings were least exposed due to high thresholds or the number of building steps designed 

and built in recent years, whereas roads and population were severely affected by floods. 

5 Conclusions 

Urban flooding considerably impacts the daily lives of residents and not only affects commuting but also causes casualties and 

traffic congestion. This study proposed a method for determining high-resolution dynamic exposure to urban flooding. First, 25 

the spatiotemporal distributions of pluvial and fluvial floods were simulated by the LISFLOOD-FP model. Second, the 

responses of residents to bad weather and government measures (warnings) were incorporated to develop an ABM to simulate 

residents’ activities during flooding. Finally, urban exposure during different flood scenarios was comprehensively simulated 

and was based on the population and hydrological simulation results, road and building data, and the case study of the Lishui 

urban district. 30 

The method proposed can provide the government with high resolution dynamic exposure of the population, roads and 

buildings to flooding as well as information for urban vulnerability and loss assessment, and can support government disaster 
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risk management. It could further provide effective reference information for residents’ travels. This study comprised four 

main elements. First, different spatiotemporal distributions of water depth and velocity predictions were obtained using the 

LISFLOOD-FP model. Second, an ABM was used to simulate the spatiotemporal distributions of the population. Third, the 

impacts of pluvial and fluvial floods on buildings were found to be small, whereas those on roads and the population were 

greater. Finally, if residents reduced their travels (i.e., stayed at home), the exposure of the population in exposed residential 5 

areas increased. 

It should be noted that there is no comprehensive way of verifying the proposed method. This is because parameters of human 

behavior and psychological processes are difficult (or, to some extent, impossible) to obtain. In this study, the proposed method 

was verified indirectly. Actual traffic data for each road intersection were collected and compared with the simulated 

population results. Data for actual water accumulation points were also compared with the simulated water accumulation 10 

results. Nonetheless, the study had some limitations, e.g., considerable uncertainties regarding the use and design of the ABM. 

These included differences in the responses of residents of the same type to disasters in the same scenario. Therefore, this 

study simply attempted to reflect reality. Based on the survey data, we designed simplified activity patterns, which were 

consistent with the actual situation of the study area. Simplification of the behavior patterns and disaster responses of residents 

was inevitable, resulting in differences between the simulation results and reality. Our study focused on an explorative method, 15 

whereas the results were an application case. Due to the limitation of the study area and data, the current results were general 

and preliminary. The proposed method has many areas in need of improvement, such as the ABM design. Therefore, future 

studies should focus on optimizing the proposed method and practical case studies, which may produce more informative 

results. 

Data availability 20 

The geography, hydrological observation, and traffic flow data in Lishui city were provided by Lishui City Housing and Urban-

Rural Construction Bureau, Liandu Hydrological Station, and Lishui City Transportation Bureau, respectively. These data are 

not publicly available because of governmental restrictions. The 1 km grid population data are available online at 

http://www.geodata.cn (last access: March 2019). The population profile are available online at http://tjj.lishui.gov.cn (last 

access: March 2019). The water accumulation points are available online at http://www.zjjs.com.cn (last access: March 2019). 25 

Data provided by the local government and other model simulated data in this paper are available from the authors upon request 

(zhuxuehong816@163.com). 
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Figure captions 

Figure 1. Location of the study area in Lishui City (left) and a digital elevation model (DEM) indicating details of the study area 

(right).  

Figure 2. Overview of the dynamic exposure simulation of urban flooding. 

Figure 3. Rainfall simulation results based on the Chicago hyetograph method, and observational data used for fluvial flood 5 
simulation. 

Figure 4. Synthetic daily routine generated from the travel survey and census data for an employed male agent aged 18–60 years.  

Figure 5. Activity patterns for a highly educated, employed male agent aged 18–60 years during disaster scenarios. 

Figure 6. Number of different block types.  

Figure 7. Spatial distribution of blocks in the study area. 10 

Figure 8. Agent types for daily and disaster scenarios. Daily scenarios refer to S1, S2, S7, and S8 and the rest are disaster scenarios. 

Figure 9. Maps of accumulated water depths and velocities. “T” indicates time. 

Figure 10. Changes in the surface water depth (dep) and velocity (vel) for eight severely flooded areas. 

Figure 11. Map of the flooded area indicating the flooding simulation and real flood in 2014. Data for the flooded area were provided 

by Lishui City Housing and Urban-Rural Construction Bureau.Figure 12. Population changes in blocks and roads for the six 15 
scenarios. 

Figure 13. Population distribution for the six scenarios. “T” indicates time. 

Figure 14. Traffic flow and population simulation results during peak hours on weekdays and weekends. Traffic flow data were 

provided by the Lishui City Traffic Bureau. Real means measured value. LQ is Liqing Road, KF is Kaifa Road, HY is Huayuan 

Road, ZJ is Zijin Road, and LT is Lutang Street. 20 

Figure 15. Changes in population exposure of two blocks for the 12 scenarios. Block 168 was a recreational area, and Block 6 was a 

residential area. 

Figure 16. Changes in road and building exposure in severely flooded blocks. Exposed road length and building area represent road 

and building exposure, respectively. 

Figure 17. Map of road and building exposures. “T” indicates time. 25 
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Figure 1. Location of the study area in Lishui City (left) and a digital elevation model (DEM) indicating details of the study area 

(right).    
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Figure 2. Overview of the dynamic exposure simulation of urban flooding. 
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(a) Rainfall simulation data                                                          (b) Observational data 

Figure 3. Rainfall simulation results based on the Chicago hyetograph method, and observational data used for fluvial flood 

simulation.  
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Figure 4. Synthetic daily routine generated from the travel survey and census data for an employed male agent aged 18–60 years.  
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Figure 5. Activity patterns for a highly educated, employed male agent aged 18–60 years during disaster scenarios. 5 
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Figure 6. Number of different block types. I–IV represent the type of building.   
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Figure 7. Spatial distribution of blocks in the study area. 
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Figure 8. Agent types for daily and disaster scenarios. Daily scenarios refer to S1, S2, S7, and S8, and the rest are disaster scenarios.  
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(a) Water depth (pluvial flood, T = 15:00)                             (b) Water velocity (pluvial flood, T = 08:00) 

 

(c) Water depth (fluvial flood, T = 16:00)                              (d) Water velocity (fluvial flood, T = 16:00) 

Figure 9. Maps of accumulated water depths and velocities. “T” indicates time.  5 
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(a) Pluvial flood                                                                         (b) Fluvial flood 

Figure 10. Changes in the surface water depth (dep) and velocity (vel) for eight severely flooded areas.   

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0:00 2:00 4:00 6:00 8:00 10:0012:0014:0016:0018:0020:0022:00 0:00

W
at

er
 v

el
o

ci
ty

 (
m

 s
-1

)

W
at

er
 d

ep
th

 (
m

)

Time (hh:mm)

Block 6 (dep) Road 4 (dep)

Block 6 (vel) Road 24 (vel)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0:00 2:00 4:00 6:00 8:00 10:0012:0014:0016:0018:0020:0022:00 0:00

W
at

er
 v

el
o

ci
ty

 (
m

 s
-1

)

W
at

er
 d

ep
th

 (
m

)

Time (hh:mm)

Block 168 (dep) Road 2 (dep)

Block 161 (vel) Road 0 (vel)



30 

 

 

(a) Pluvial flood                                                                         (b) Fluvial flood 

Figure 11. Map of the flooded area indicating the flooding simulation and real flood in 2014. Data for the flooded area were provided 

by Lishui City Housing and Urban-Rural Construction Bureau. 

  5 
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(a) Block                                                                                     (b) Road 

Figure 12. Population changes in blocks and roads for the six scenarios. 
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(a) Daily, weekday (T = 09:00)                                    (b) Daily, weekend (T = 09:00) 

 

(c) Bad weather, weekday (T = 09:00)                        (d) Bad weather, weekend (T = 09:00) 

 5 

(e) Warning, weekday (T = 09:00)                              (f) Warning, weekend (T = 09:00) 

Figure 13. Population distribution for the six scenarios. “T” indicates time.  
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(a) Weekday                                                                               (b) Weekend 

Figure 14. Traffic flow and population simulation results during peak hours on weekdays and weekends. Traffic flow data were 

provided by the Lishui City Traffic Bureau. Real means measured value. LQ is Liqing Road, KF is Kaifa Road, HY is Huayuan 

Road, ZJ is Zijin Road, and LT is Lutang Street.  5 
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(a) Population exposure (Block 168)                                       (b) Population exposure (Block 6) 

Figure 15. Changes in population exposure of two blocks for the 12 scenarios. Block 168 was a recreational area, and Block 6 was a 

residential area.  
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(a) Exposed road length (Block 6)                                            (b) Exposed building area (Block 168) 

Figure 16. Changes in road and building exposures in severely flooded blocks. Exposed road length and building area represent 

road and building exposures, respectively.  

0

200

400

600

800

1000

0:00 2:00 4:00 6:00 8:00 10:0012:0014:0016:0018:0020:0022:00 0:00

E
x
p

o
se

d
 r

o
ad

 l
en

g
th

 (
m

)

Time (hh:mm)

Pluvial flood Fluvial flood

0

400

800

1200

1600

2000

0:00 2:00 4:00 6:00 8:00 10:0012:0014:0016:0018:0020:0022:00 0:00

E
x
p
o

se
d
 b

u
il
d

in
g
 a

re
a 

(m
2
)

Time (hh:mm)

Pluvial flood Fluvial flood



36 

 

 

(a) Road exposure (pluvial flood, T = 18:30)    (b) Road exposure (fluvial flood, T = 18:30) 

 

(c) Building exposure (pluvial flood, T = 18:30)  (d) Building exposure (fluvial flood, T = 18:30) 

Figure 17. Map of road and building exposure. “T” indicates time.  5 
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Table 1. Data used in this study.  

Data Source Time Use 

Digital elevation model Local government 2013 
Topography (regular square 

grids with a 5 m resolution) 

Basic geographic data Local government 2015 
Location of river, road and 

building 

Hydrological data Local government 20 Aug 2014 River discharge and water level 

1km grid population data 

National Earth System Science 

Data Sharing Infrastructure, 

National Science & 

Technology Infrastructure of 

China (http://www.geodata.cn) 

2010 
Number of residents in grid of 

the study area. 

Population profile 

Lishui Statistical Yearbook and 

Liandu Yearbook 

(http://tjj.lishui.gov.cn/sjjw/tjnj

/201511/t20151105_448284.ht

m) 

2014 

Gender profile, age profile, 

education level profile, 

employment profile and travel 

mode profile were used to 

classify agent groups. 

Travel survey data Field investigation 2018 

The social characteristics and 

daily activities of 500 residents 

in random survey 

Traffic flow data Local government 24 June 2017 to 7 July 2017 

The number of vehicles passing 

through a node within one hour 

at four intersections from 24 

June 2017 to 7 July 2017 in 

this area, 

Water accumulation points 

Local government 

(http://www.zjjs.com.cn/n17/n2

6/n44/n47/c339697/content.ht

ml) 

20 Aug 2014 Location 
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Table 2. Parameter values for the rainstorm intensity formula. 

Parameter Value 

A 1265.3 

b 5.919 

c 0.587 

n 0.611 
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Table 3. Parameter variations used in the simulation scenarios. 

Scenarios Flooding Type Human behavior Weekdays or Weekends 

S1 Pluvial flood Daily Weekdays 

S2 Pluvial flood Daily Weekends 

S3 Pluvial flood Bad weather Weekdays 

S4 Pluvial flood Bad weather Weekends 

S5 Pluvial flood Warning Weekdays 

S6 Pluvial flood Warning Weekends 

S7 Fluvial flood Daily Weekdays 

S8 Fluvial flood Daily Weekends 

S9 Fluvial flood Bad weather Weekdays 

S10 Fluvial flood Bad weather Weekends 

S11 Fluvial flood Warning Weekdays 

S12 Fluvial flood Warning Weekends 
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Table 4. Sociodemographic characteristics of the population in the case study area.  

Variables Groups Percentage (%) 

Gender Male 

Female 

50.43 

49.57 

Age 0-17 

18-60 

>60 

18.73 

63.34 

17.93 

Professional status Employed 

Unemployed 

55.77 

44.23 

Education Level (Highest diploma) University, school-college, bachelor 

No diploma 

14.46 

85.54 

Travel mode Walk 25.24 

Bus 43.06 

Car 31.70 

Note: The data are from the 2015 Lishui Statistical Yearbook and 2015 Liandu Yearbook.  
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Table 5. The heights of building steps for different block types. 

No Block type Building type Building steps height 

1 Residential area I Garden house, villa 0.35 m（floors>9, 0.60 m） 

2  Residential area II 

High-rise apartments and new village 

houses before and after liberation (before 

1988); new residential quarters and 

commercial houses (after 1988) 

0.35 m（floors>9, 0.60 m） 

3  Residential area III 
New and old Lane homes, three types of 

staff housing 
0.10 m 

4 Residential area IV Shed house 0.05 m 

5 School Educational building 0.35 m（floors>9, 0.60 m） 

6 Company Office building 0.35 m（floors>9, 0.60 m） 

7 Recreational area 
Public buildings for business, culture, 

sports and other use 
0.35 m（floors>9, 0.60 m） 

 

 


