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Abstract:  8 

Urban flooding exposure is generally investigated with the assumption of stationary disasters and 9 

disaster-bearing bodies within an event, and thus cannot satisfy the increasingly elaborative 10 

modelling and management of urban flood. In this study, a comprehensive method was developed 11 

to simulate dynamic exposure to urban flooding considering residents’ travel behavior. First, a 12 

flood simulation was conducted using the LISFLOOD-FP model to predict the spatio-temporal 13 

distribution of flooding. Second, an agent-based model was used to simulate residents’ movements 14 

during the period of urban flooding. Finally, to study the evolution and patterns of urban flooding 15 

exposure, the exposure of population, roads, and buildings to urban flooding was simulated using 16 

Lishui, China as the case study. The results indicated evident spatio-temporal variations in urban 17 

flooding and population distribution. Additionally, the exposure increased with increasing rainfall 18 

and flooding severity. The urban area near the Oujiang River was the most severely flooded and 19 

indicated the largest amount of exposure of population, roads, and buildings. Furthermore, the 20 

impacts of flooding on roads were greater than those on population and on buildings. This study 21 

presents the first fully formulated method for dynamic urban flood exposure simulation at high 22 

spatio-temporal resolution. The results of this study can provide baseline data for determining 23 

urban flood disaster vulnerability, socioeconomic loss assessment, urban disaster risk management, 24 

and for establishing emergency response plans. 25 
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1. Introduction 27 

Storm flooding has become increasingly frequent and severe with the intensification of global 28 

warming and the rising frequency of extreme weather events (Dankers and Feyen, 2008; 29 

Hammond et al., 2015). Urban floods have become major natural disasters in many cities around 30 

the world and have created serious threats to human life and social and economic activities (Gain 31 

et al., 2015). Effectively coping with floods and their adverse effects is an important part of disaster 32 

prevention and mitigation as well as disaster risk management (Atta-Ur-Rahman, 2014). Non-33 

engineering measures such as exposure assessment are currently the main way of managing urban 34 

flooding risk (Chen et al., 2015). Exposure refers to the presence of people, livelihoods, 35 

environmental services and resources, infrastructure, or economic, social, or cultural assets in 36 

places that could be adversely affected by natural disasters (IPCC, 2012). Urban flood disasters 37 

are caused by the adverse effects of heavy rain and other factors on the city system in certain 38 

disaster-prone pregnant environments. These events consist of three parts: the disaster-causing 39 

factors, the disaster-pregnant environment, and the disaster-bearing bodies (Shi, 1996).  40 

Exposure has obvious dynamic characteristics because of the dynamic evolution of urban floods 41 

and disaster-bearing bodies. Therefore, the characteristics of flood disasters and building 42 

environments and the distribution of population and socio-economic resources are the key factors 43 

for evaluating urban flood exposure. The methods for evaluating exposure to urban flooding at a 44 

certain time or period vary due to changes in the disaster-bearing bodies, study areas, data 45 

acquisition methods, etc. (Röthlisberger et al., 2017). Index-based methods are commonly used 46 

for comprehensive exposure evaluation (Mahe et al., 2005; Mansur et al., 2016; Guo et al., 2014). 47 
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The exposure index method is to select the natural, social, economic and other evaluation indexes 48 

from the characteristics of the disaster-bearing bodies to establish the evaluation index system, 49 

determine the index weights by the analytic hierarchy process and expert scoring method, construct 50 

the evaluation system by using mathematical model, and obtain the exposures of the disaster-51 

bearing bodies (Nasiri et al., 2016). Statistical methods based on historical disaster data are also 52 

utilized (Moel et al., 2011). 53 

With respect to spatial considerations, the currently implemented method for estimation of disaster 54 

exposure adopts the administrative boundaries of socioeconomic data, which are organized as 55 

research units (Yin, 2009). Consequently, natural elements that have higher spatial resolutions must 56 

be compromised due to the lower spatial resolution of human elements like population (Yang et 57 

al., 2013). Therefore, a comprehensive and sophisticated geographic research unit has not been 58 

established, thus resulting in simulation results applicable only to macro planning and decision 59 

making. Hence, the estimation of disaster exposure needs to incorporate greater spatial 60 

heterogeneity and resolution. 61 

Besides enhancement of the spatial scale, dynamic temporal simulation of disaster exposure has 62 

gained increasing attention. Specifically, the dynamic evolution of disaster exposure at the macro 63 

time scale considers exposure distribution as well as its variation during different development 64 

periods (Weis et al., 2016). Therefore, this method is relatively mature and has led to abundant 65 

research results. At the micro time scale, disaster-causing factors and disaster-bearing bodies 66 

represented by populations are constantly varying. On the one hand, spatio-temporal changes in 67 

disaster-causing factors (rainfall) result in corresponding dynamic changes in the characteristics 68 

(water depth and velocity) of urban flood disasters. On the other hand, daily travel activities of 69 

urban residents, such as commuting between residential and work or learning spaces, cause a 70 
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dynamic spatio-temporal distribution of the population. At the same time, the exposure to urban 71 

flooding changes dramatically over a short period of time. To avoid or reduce disaster risks, 72 

casualties, and property losses, different individuals are likely to adopt different adaptive behaviors, 73 

such as delaying or cancelling travel plans, while the government is likely to adopt organizational 74 

actions such as issuing warnings and evacuating residents (Wan and Wang, 2017; Parker et al., 75 

1995). Thus, the dynamic simulation of exposure requires the dynamic space-time simulation of 76 

variations in the disaster, disaster-bearing bodies, as well as interactions between them. Modeling 77 

of the temporal and spatial changes in natural disasters mainly uses the disaster system simulation 78 

method, and the typical representative used is a hydrological or hydrodynamic model to simulate 79 

flood disasters (Werren et al., 2016). The change simulation of the disaster-bearing body 80 

(population) can use the method based on individual space-time mark data (Liang et al., 2015) and 81 

the agent-based method (Kang et al., 2012). Although the former can acquire the human position 82 

and moving track, it is difficult to identify the purpose of human activities, and human disaster 83 

response behavior cannot be simulated. The agent-based model (ABM) can not only simulate the 84 

population distribution but can also simulate the interaction among the population (as the disaster 85 

victim), the hazard factors, and the disaster-pregnant environment (Yin, et al., 2016b). Current 86 

research has used the ABM to simulate human responses to disasters, which, in turn, have been 87 

used in natural disaster risk research (Johnstone, 2012; Huang et al., 2015). Nevertheless, the 88 

simulation results do not reflect the exposure characteristics of the disaster-bearing bodies and 89 

their dynamic changes (Dawson et al., 2011). 90 

Therefore, the objectives of this study were to develop a novel method using the LISFLOOD-FP 91 

model (Sect. 3.1) and an ABM (Sect. 3.2) to simulate the exposure of urban populations, roads, 92 

and buildings to flooding under varying conditions and subsequently implement the method as a 93 
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pilot study in a real city. Several scenarios, including diverse flooding types and various responses 94 

of residents to flooding, were considered in this regard. Additionally, dynamic features of the real 95 

world were incorporated to improve the micro exposure analysis. This method was subsequently 96 

applied to an urban area as a case study. Exposure simulation is a useful tool for estimation of 97 

disaster vulnerability and assessment of losses, and the results of this study are likely to benefit 98 

the relevant government agencies in assessing risk, issuing warnings, and planning emergency 99 

responses to urban natural disasters. 100 

2. Study area and data source 101 

In this study, Lishui City in Zhejiang Province, China, was considered as the study region because 102 

of the availability of the required data and flooding history. The urban district of Lishui is a largely 103 

hilly and mountainous area, and the Oujiang River traverses its southern and eastern parts. The 104 

study area is located in the central district of Lishui, covers an area of 43.4 km2, and has a large 105 

population of about 71673 (Fig. 1). The frequencies of heavy rainstorms and persistent 106 

concentrated rainfall events rise sharply in May and June during the Meiyu flood period, which 107 

often results in flood disasters. On August 20, 2014, a heavy rainfall event lasting a few days 108 

produced a 50-year flood in Lishui and caused considerable loss of property. 109 

The datasets used in this study included a digital elevation model and data for rivers, roads, 110 

buildings, population, and observation data consisting of flow and water level. Traffic flow and 111 

water accumulation data were used for validation. Table 1 describes the sources and uses of the 112 

datasets. 113 

Survey data was used to generate daily routine. There were 500 residents participated in the survey. 114 

Among them, there were 100 people under 18 years old, 300 middle-aged people and 100 elderly 115 
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people. Employed people and male people accounted for 55% and 50%, respectively. And 14% of 116 

the population had received higher education. The distribution of the above social characteristics 117 

is close to the actual population distribution in the study area. 118 

3. Methodology 119 

This study comprised three aspects: disaster simulation, human activity simulation, and dynamic 120 

exposure assessment (Fig. 2). The first step included fluvial and pluvial flooding simulation based 121 

on the LISFLOOD-FP model. The simulation of human activity utilized ABM to obtain the spatio-122 

temporal distribution of the population under different scenarios. Finally, the developed model 123 

was combined with the results of the previous two steps to assess the dynamic exposure of the 124 

population, roads, and buildings to urban flooding. 125 

3.1 Flood models 126 

A wide variety of existing hydrological or hydrodynamic models are available that are capable of 127 

simulating fluvial or pluvial flooding, including the Storm Water Management Model (SWMM) 128 

(Rossman, 2015), LISFLOOD (Bates and De Roo, 2000), MIKE-SHE (DHI, 2000), MIKE-11 129 

(Havnø et al., 1995), MOUSE (Lindberg et al., 1989), HEC-RAS (Brunner, 2008), and HEC-HMS 130 

(Charley et al., 1995). LISFLOOD-FP (Bates et al., 2013) is a coupled 1D/2D hydraulic model 131 

based on a raster grid and was designed for research purposes at the University of Bristol. 132 

LISFLOOD-FP uses a square grid as the computational grid to simulate one-dimensional river 133 

hydraulic changes and two-dimensional floodplain hydraulic changes. The applicability of the 134 

model has been verified by several studies (Horritt and Bates, 2002; Bates and De Roo, 2000). 135 

Therefore, the LISFLOOD-FP model was chosen for the simulation of fluvial and pluvial flooding.  136 
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Floodplain flows were described in terms of the continuity and momentum equations discretized 137 

over a grid of square cells, which allowed the model to represent 2D dynamic flow fields for the 138 

floodplain. It assumed that the flow between two cells was simply a function of the free surface 139 

height difference between those cells: 140 
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where ℎ𝑖,𝑗 is the free surface height of water at node (i,j), ∆𝑥 and  ∆𝑦 are the cell dimensions, n is 143 

the effective grid scale Manning’s friction coefficient for the floodplain, and 𝑄𝑥 and 𝑄𝑦 describe 144 

the volumetric flow rates between the floodplain cells. 𝑄𝑦 is defined analogously to 𝑄𝑥.The flow 145 

depth, ℎ𝑓𝑙𝑜𝑤 , represents the depth through which water can flow between two cells, and d is 146 

defined as the difference between the highest free surface height of water in the two cells and the 147 

highest bed elevation. 148 

The types of flooding simulated in this study included pluvial and fluvial floods. Synthetic rainfall 149 

data for a return period of 50 years used for pluvial flood simulation were simulated using the 150 

Chicago hyetograph method (CHM) (Cen et al., 1998). The rainfall data were determined using 151 

the rainstorm intensity formula (Eq. (3)), rainfall duration time (T), and peak position (r).  152 

𝑖 =
𝐴(1+𝑐 log𝑃)

167(𝑡+𝑏)𝑛
,                                                                                                                               (3) 153 

where 𝑖 is the rainfall intensity (mm/min), 𝑃 is the return period, and t is the time. 𝐴, 𝑏, 𝑐 and 𝑛 154 

are parameters related to the characteristics of the local rainstorm and need solutions. 𝐴 is the 155 

rainfall parameter, i.e. the design rainfall (mm) for 1 min at a 10 year return period, 𝑐 is the rainfall 156 



8 

 

variation parameter (dimensionless), and 𝑏 is the rainfall duration correction parameter, i.e. the 157 

time constant (min) that can be added to convert the curve into a straight line after logarithmic 158 

calculation of the two sides of the rainstorm intensity formula. 𝑛 is the rainstorm attenuation index, 159 

which is related to the return period. The rainfall duration was 6 hours (6 am to 12 pm), and the 160 

accumulated rainfall was nearly 148 mm. The “r” refers to the relative rainfall peak time, i.e., the 161 

value from zero to one. Zero means the maximum rainfall at the beginning of rainfall and one 162 

means the maximum rainfall at the end of rainfall. Here, we fixed r at 0.2 based on the assumption 163 

that the peak is located at the one fifth point of the design hyetograph. The parameters 𝐴, 𝑏, 𝑐 and 164 

𝑛 were estimated from the rainstorm intensity formula for Lishui City obtained from the “Zhejiang 165 

City Rainstorm Intensity Formula Table” published by the Hangzhou Municipal Planning Bureau 166 

(Table 2). The rainfall simulation results are shown in Fig. 3(a). The flow and water level input 167 

data for fluvial flood simulation utilized observational data from Lishui’s 50-year flood in 2014, 168 

provided by the Liandu Hydrological Station (Fig. 3(b)). The flow data for the Daxi and Haoxi 169 

rivers on August 20, 2014 were obtained from the Xiaobaiyan and Huangdu stations, respectively, 170 

and the observational data for water levels at the outlets were those for the Kaitan Dam. 171 

3.2 ABM 172 

Several modeling techniques, often collectively referred to as social simulation, have been 173 

successfully used to represent the behaviors of humans and organizations. These include event and 174 

fault trees, Bayesian networks, microsimulation, cellular automata, system dynamics, and ABMs. 175 

Research methods based on ABMs have been gradually introduced to the field of natural disaster 176 

risk assessment. ABM is considered most suitable to address challenges associated with simulating 177 

the complexity and dynamic variability of population exposure to flooding due to its capacity to 178 

capture interactions and dynamic responses in a spatial environment (Dawson et al., 2011).. 179 
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An ABM is a computational method for simulating the actions and interactions of autonomous 180 

decision-making entities in a network or a system to subsequently assess their effects on the system 181 

as a whole. Individuals and organizations represent agents. Each agent individually assesses its 182 

situation and makes decisions based on a set of rules. Agents may execute various behaviors 183 

appropriate for the system component they represent—for example, producing or consuming. 184 

Therefore, an ABM consists of a system of agents and the relationships between them. Even a 185 

simple ABM can exhibit complex behavior patterns because a series of simple interactions 186 

between individuals may result in more complex system-scale outcomes that could not have been 187 

predicted just by aggregating individual agent behaviors. 188 

The ABM was developed as a concept in the late 1940s, and substantial applications were realized 189 

with the emergence of high-powered computing. Such applications include those in the political 190 

sciences (Axelrod, 1997), management and organizational effectiveness, and the behavior of social 191 

networks (Sallach and Macal, 2001; Gilbert and Troitzsch, 2005). In recent years, it has been 192 

introduced to the geosciences and other fields to provide novel ideas for the study of modern 193 

geography, including land use simulation and planning as well as residential choice and residential 194 

space differentiation (Benenson et al., 2002). The urban flood disaster system is a typical complex 195 

“natural and social” system. The introduction of ABM to simulate space-time distributions of 196 

populations is expected to quantify the dynamic exposure of populations to urban flood disasters. 197 

For example, Dawson et al. (2011) proposed a dynamic ABM for flood event management to 198 

evaluate population vulnerability under different storm surge conditions, dam break scenarios, 199 

flood warning times, and evacuation strategies. 200 

3.3 Spatio-temporal simulation of population distribution 201 
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The individual travels were simulated using ABM by defining the activity patterns of different 202 

types of residents to subsequently obtain the distribution of the population at each moment. The 203 

ABM of residents’ travels established in this study included two core elements of agents and 204 

activities, and two basic elements of blocks and networks. The travel survey data were used 205 

according to the demographic properties of the agent to generate synthetic daily routines. 206 

Residents were independent individuals with subjectivity. This study abstracted them as agents. 207 

Only a limited number of agent classifications were used to reduce the number of agent types. The 208 

types of agents were classified according to the social characteristics of the residents. Age and 209 

gender characteristics mainly affect the ability of people to respond to disasters. The self-help 210 

abilities of the minors under 18 years of age and residents older than 60 years are generally poor. 211 

In the event of natural disasters, they are generally categorized as the objects of help. The middle-212 

aged group (18–60 years old) generally has greater physical strength with better ability to cope 213 

with disasters. Unemployed people are more vulnerable to natural disasters. On the one hand, their 214 

living environments and resistance to disasters are poor; on the other hand, their economic 215 

conditions are limited, which impedes recovery after the disaster and seriously affects their daily 216 

life in the short term. Education level is related to the possibility of receiving early warning 217 

information by the individual. Individuals with higher education levels are more likely to respond 218 

to early warning information and are more aware of disasters than others (Terti et al., 2015; Shabou 219 

et al., 2017). Additionally, different travel modes have different effects on the activity patterns of 220 

people as well as on exposure levels when disasters occur. Therefore, the agent types were divided 221 

according to age, gender, employment status, education level, and travel mode. 222 

Activities were classified as work, study, recreation, shopping, at-home, and travel.Activities were 223 

classified as work, learning, leisure, recreation, shopping, rest, and travel. An activity pattern 224 
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consisted of a series of activities to describe the spatio-temporal distribution of the agent. The 225 

location and scope of an agent were restricted to blocks and networks. Different types of agents 226 

indicated different activity patterns, and the same agent type could also indicate different activity 227 

patterns in different scenarios. To capture the variability in the travel survey and the uncertainties 228 

in behavior, synthetic daily routines were described in probabilistic terms. Figure 4 presents an 229 

example of the synthetic daily routine of an agent with the following demographic characteristics: 230 

female agent, aged 18–60 years, and unemployed. In this example, the agent started the day at 8 231 

am on a weekday. The agent then had a 0.8 probability of going straight to worktraveled by a 232 

school to drop the children off, subsequently had a 0.8 probability of shoppingwent home, and so 233 

on. 234 

The study area was discretized into several blocks to improve the spatial resolution of the exposure 235 

results. The discretization procedure was conducted with geographic information system (GIS) 236 

tools (Lü et al., 2018), and several factors, including rivers, roads, land use, and buildings, were 237 

considered. Blocks were activity places for agents and represented the smallest unit of exposure. 238 

This study divided the block into five categories: residential area, school, company, recreational 239 

area, and others. Additionally, the residential areas were subdivided into I, II, III, and IV classes 240 

according to the type of building. 241 

In this study, the network referred to roads and restricted the spatial travel scope of an intelligent 242 

agent. Rural roads, highways, and urban roads (including main roads, sub trunk roads, and its 243 

branches) were included in the network. The route selection criteria were defined once the different 244 

activities from each individual’s schedule were located, and road section attributes were specified. 245 

Although various factors are involved in the route choice process, several studies have indicated 246 

that minimizing travel time is the principal criterion for selecting routes (Papinski et al., 2009; 247 



12 

 

Ramming, 2001; Bekhor et al., 2006). Therefore, the classical Dijkstra algorithm, a single-source 248 

shortest path algorithm that provides trees of minimal total length and time in a connected set of 249 

nodes, was selected in this study (Dijkstra, 1959). The activity pattern attributions concerned only 250 

the starting times and durations of the activity sequences, thus indicating that the travel duration 251 

for each individual was computed based on the distance between the different activity locations. 252 

Therefore, the implemented schedules may be distorted compared to the assigned schedules in 253 

terms of travel durations (Terti et al., 2015). 254 

3.4 Impacts of disasters on anthropogenic activities 255 

This study accounted for the adaptability or adjustment behavior of residents to disasters during 256 

the disaster event. The type of activity and its sensitivity to disaster affected the residents’ disaster 257 

response behavior. Recreation and shopping activities were easier to cancel and postpone than 258 

work and learning (Cools et al., 2010). The sensitivities of residents to disasters depended on their 259 

socioeconomic characteristics and risk factors such as disaster- (flood-) related knowledge and 260 

experience. People with higher education levels are more knowledgeable about disasters and are 261 

more likely to receive early warning information and take effective measures (Terti et al., 2015). 262 

Additionally, it is easier for workers to ignore the risks of a disaster (Ruin et al., 2007; Drobot et 263 

al., 2007). Therefore, this study accounted for the impacts of education level on the response 264 

behavior of residents to disaster events. 265 

The impacts of a disaster on population distribution were determined by defining different activity 266 

patterns and their changing probabilities. Figure 5 indicates activity patterns during different 267 

disaster scenarios for unemployed adult women who had received higher educationduring different 268 

disaster scenarios. The “bad weather” scenario was similar to the “daily activity” pattern. For 269 



13 

 

instance, the change in travel probability during “bad weather” due to a rainstorm reflected the 270 

adaptive behavior of residents. The “warning” scenario assumed that the government had issued 271 

early warning information at eight a.m., the schools had suspended classes during the weekday, 272 

and the resident responses were stronger than those to the “bad weather” scenario, thereby resulting 273 

in a greater difference in activity patterns. 274 

3.5 Dynamic exposure assessment 275 

The dynamic exposure was calculated based on the simulations of spatio-temporal distributions of 276 

the population and flooding. Therefore, the exposure at each moment was calculated according to 277 

the population distribution and flood data at that time. Based on the availability of data, this study 278 

focused only on three types of disaster-bearing bodies, i.e., population, roads, and buildings. 279 

(i) Population 280 

Population exposure generally refers to the population exposed to the impacts of disaster events 281 

and is characterized by regional population or population density. This study selected the exposed 282 

population and accounted for vulnerable groups and road users. Among these, age was the primary 283 

factor impacting the vulnerability. Specifically, the young (people under the age of 18 years) and 284 

the elderly (people over 60 years old) were the vulnerable groups. 285 

(ii) Roads 286 

As the basic skeleton of a city, roads are not only the media for daily travel of passengers and 287 

freight transportation but also disaster-bearing bodies (Yin, et al., 2016a), as they are vulnerable 288 

to flood disasters. This study selected the number and lengths of exposed roads to reflect road 289 

exposure. 290 
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(iii) Buildings 291 

The aggravation of urban flooding has made building flooded more common in urban areas, thus 292 

resulting in loss of internal property and construction structure. Additionally, the dynamic state of 293 

building exposure is related to the safety of both the building as well as the nearby population. In 294 

this study, the area of the exposed building and the depth of accumulated water in the building 295 

were considered to be the building exposure. 296 

3.6 Scenario design 297 

The daily behaviors of people are characterized by certain patterns with regard to daily, weekly, 298 

monthly, and annual cycles. The rainstorm (“bad weather”) and disaster response measures 299 

adopted by the organization (“warning”) are likely to affect people’s daily behaviors. Therefore, 300 

12 scenarios, representing different flooding types and human activities, were designed in this 301 

study (Table 3). S1, S2, S7, and S8 were control groups that indicated human activity with no rain 302 

and no warning, while the rest of the scenarios were experimental groups. 303 

4. Results 304 

4.1 Model implementation and parameter setting 305 

As an important spatial data management and analysis technology, GIS plays an important role in 306 

dynamic exposure analysis of urban floods. Because of the simplicity, readability and extensibility 307 

of the Python programming language, an increasing number of research institutes are adopting it 308 

for development. Therefore, the model was developed using the Visual Studio Code software 309 

(Visual studio code, 2018) and Python programming language (Python, 2018). The development 310 
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of the graphical user interface (GUI), GIS module, and drawing module was realized by Qt (Qt, 311 

2018), Geopandas (Geopandas, 2018), and Matplotlib (Matplotlib, 2018), respectively. 312 

(i) Block generation 313 

In this study, the study area was divided into 237 blocks based on the method introduced in Sect. 314 

3.3. The block types and their spatial distributions are shown in Fig. 6 and Fig. 7, respectively. 315 

Most of the blocks in the study area were categorized as residential area, while blocks of 316 

recreational areas and others (which indicated rivers) were few and concentrated. 317 

(ii) Parameter setting 318 

Since the census did not identify individuals according to addresses, at the start of each simulation, 319 

an agent population with the same distributions of age, gender, employment, education level, and 320 

travel mode was randomly located within the residential area for the case study. The synthetic 321 

daily routines were described in probabilistic terms to capture the variability in the travel survey 322 

and uncertainties in behavior.  323 

Additionally, to reduce the number of agent types, only a limited number of agent classifications 324 

were used. The distribution of population characteristics for Liandu District is shown in Table 4. 325 

The agents were divided into 18 types for daily (non-disaster) scenarios (S1, S2, S7, and S8) and 326 

24 types for disaster scenarios (other scenarios except S1, S2, S7, and S8) based on the influence 327 

of education level on the individual disaster response behavior (Fig. 8). 328 

(iii) Exposure threshold 329 

Although flood fatalities can occur through a number of mechanisms, such as physical trauma, 330 

heart attack, or electrocution, drowning accounts for two-thirds of the fatalities (Jonkman and 331 
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Kelman, 2005). Previous research has established that the probability of death or serious injury as 332 

a result of exposure to flooding (Abt et al., 1989; Karvonen et al., 2000; Lind et al., 2004; Jonkman 333 

and Penning‐Rowsell, 2008) is dominated by (1) the depth of floodwater and (2) the velocity of 334 

floodwater. Additionally, the rate of water level rise can also play an important role in this regard. 335 

However, other factors, such as age, fitness level, height, and weight of the individual, are also 336 

important for determining their vulnerability to disasters. A comprehensive review of the flood-337 

related casualty data and methods to assess the risk of death or serious harm to people caused by 338 

flooding is provided by the Department for Environment Food and Rural Affairs and Environment 339 

Agency (2003) and Jonkman and Penning‐Rowsell (2008). In this study, rather than predicting 340 

mortality (which is subject to random factors as well as those mentioned previously), exposure to 341 

floodwater depths of 25 cm or greater under relatively fast flowing (2.5 m/s or greater) conditions 342 

was established as the threshold for most vulnerable people (DEFRA and Environment Agency, 343 

2003). This provided a conservative estimate of individuals vulnerable to floodwater rather than 344 

an estimate of mortality (Dawson et al., 2011). 345 

Since building steps (thresholds) exert a blocking effect on shallow flooding, they are likely to 346 

reduce the degree of flooding by restricting the flood water to the outside of the building, thereby 347 

reducing the exposure of the building. Therefore, this study assigned building step heights to 348 

corresponding block types according to the architectural design standards of China and the actual 349 

conditions of the study area (Table 5). It should be noted that the block type “Other” constituted 350 

rivers and did not contain buildings. Therefore, the exposure of the building was determined 351 

according to the depth of the flood and the height of the building steps. The depth of the water 352 

entering the building was the difference between the depth of the flood and the height of the step. 353 



17 

 

4.2 Flood simulation 354 

Figure 9 indicates the accumulated water depths and velocities of pluvial and fluvial floods in the 355 

study area. As is evident, the pluvial and fluvial floods exerted significant impacts, and the urban 356 

area near the Oujiang River was the most severely flooded area. Additionally, water is also 357 

accumulated in the inner areas of the city, mainly on roads, in case of pluvial flood disasters. The 358 

variations in water depths and velocities for eight severely flooded areas (including blocks and 359 

roads) are presented in Fig. 10. As indicated, evident spatio-temporal variations in flooding were 360 

observed. Figures 9 and 10 indicate that water depth was the main factor causing life and property 361 

losses, whereas water velocity had little or no effect. 362 

The flooded urban roads and locations in Lishui during the 50-year flood in 2014 were as follows: 363 

the city had 10 flooded roads and 18 water accumulation points. The actual hydrological points 364 

were selected and combined with the urban flooding results simulated by the prototype system. 365 

The water accumulation distribution is indicated in Fig. 161. 366 

To avoid overlapping with the simulated water accumulation results for roads, the actual flooding 367 

points in the figure only included road junctions and the entirety of Gucheng road (the Lutang 368 

Street to Dayou Street section), and Liyang Street (which connected the senior middle school to 369 

the Sanyan temple section) was represented by corresponding intersection points. Figure 16 1 370 

indicates that both the simulation results and the actual water accumulation points were mainly 371 

distributed along the river. The simulated water accumulation area (Fig. 1611(a)) included roads 372 

in the center of the city and was larger than the actual flooding area. This difference could be 373 

attributed to different definitions of “water accumulation”. The simulation results presented in 374 

Figure 161 included all areas where the accumulated water depth during the flooding period was 375 
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greater than 15 cm. The actual water accumulation point was defined as one experiencing rainfall 376 

greater than 50 mm over a 24 hour period. Additionally, it was characterized by the water 377 

accumulation depth of the road reaching 15 cm (the meteorological department issued the blue 378 

rainstorm warning at this level), the water withdrawal time reaching one hour, and the water 379 

accumulation scope value being greater than 50 m2. Certain gaps existed between the observational 380 

data and the actual flow since the observation station was far from the study area. Hence, the results 381 

indicated that the simulated water accumulation area during the fluvial flood (Fig. 161 (b)) was 382 

smaller than that of the actual situation. 383 

4.3 Simulation of the spatio-temporal distribution of population 384 

The population spatio-temporal distribution was simulated based on six scenarios: (1) daily, 385 

weekday (S1, S7); (2) daily, weekend (S2, S8); (3) bad weather, weekday (S3, S9); (4) bad weather, 386 

weekend (S4, S10); (5) warning, weekday (S5, S11); (6) warning, weekend (S6, S12). Figure 102 387 

indicates the population variation for blocks and roads for the six scenarios. Figure 1112(a) 388 

indicates that, among the three weekend scenarios, the population in the playground (Block 77) 389 

changed more than the population in the company (Block 113). Figure 1112(b) indicates that the 390 

population on the roads was volatile, and the morning peak hour during the weekend was delayed 391 

by an hour in comparison to that during the weekdays. The population distribution in the study 392 

area is shown in Fig. 1213. The population was unevenly distributed and concentrated in 393 

recreational and residential areas over the weekend. However, the population distribution on 394 

weekdays was relatively uniform. The concurrent population distribution for the six scenarios 395 

changed significantly during the weekend, while the distribution for weekdays changed little. 396 
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Figures 11 12 and 12 13 indicate that the population change patterns were different for different 397 

blocks types. The daily routines of several people started from the residential area (home) in the 398 

morning, followed by school or company blocks during weekdays and recreational areas during 399 

weekends, and, finally, concluded with a return to the residential area at night. During the 400 

occurrence of rainstorms or the reception of warning messages, different types of people reacted 401 

differently (continuing, postponing, or cancelling the originally planned activities). Vulnerable 402 

people, like the elderly and children, and sensitive people (such as the homeless) were more likely 403 

to cancel travel plans. Additionally, recreational activities were more likely to be cancelled than 404 

were learning and work activities. 405 

The reliability of the simulation of the spatio-temporal population distribution was indirectly 406 

verified by utilizing the traffic flow data from June 24 to July 7, 2017. The morning and evening 407 

peak hours on weekdays and weekends, the simulated total number of residents passing the four 408 

intersections (such as the junction of the Liqing and Huayuan roads) during peak hours, and the 409 

actual measured traffic flow at the intersections are shown in Fig. 174. The traffic flow data in Fig. 410 

174 are multi-day average results. 411 

In theory, the simulated value should be much larger than the measured value since the former 412 

indicates the number of people while the latter represents the number of cars and buses. However, 413 

as indicated in Fig. 174, the simulated value was close to the measured value. This could be 414 

attributed to the assumption that the study area was closed and the simulated population was the 415 

number of permanent residents, excluding the migrant population. In reality, the number of 416 

migrants in the urban area during daytime is large owing to its geographical location. Moreover, 417 

this study simplified human activities when simulating the spatio-temporal distribution of the 418 

population. Therefore, the number of pedestrians on the road was small. However, both the 419 
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simulated and measured values were essentially similar with regard to changes in their trends. 420 

Therefore, the simulation method for the spatio-temporal distribution of population is feasible, and 421 

the results are reliable. 422 

4.4 Exposure assessment 423 

Figure 13 15 presents the population exposure variation for two selected areas. The difference 424 

between pluvial and fluvial flood scenarios could be attributed to differences in the changes and 425 

degrees of water accumulation. Figure 1315(a) indicates that population exposure was the highest 426 

for the daily scenario, followed by the bad weather scenario and minimum warning scenario. 427 

However, as indicated in Fig. 1315(b), the population was most exposed to both weekend and 428 

weekday warning scenarios. This is attributed to the assumption that the disaster response behavior 429 

adopted by residents was to reduce travel, i.e., the refuge of residents was the residential area. 430 

Additionally, the response was not based on the exposure of the residential area. Therefore, when 431 

residential areas, such as Block 6, were exposed to floods, the residents chose to reduce travel, 432 

thus resulting in an increase in the population of residential areas and consequently increasing the 433 

population exposure. According to the analysis of the 12 scenarios, the government departments 434 

can carry out disaster prevention and mitigation measures for areas with large amounts of 435 

population exposure, such as evacuation prior to the disaster, and initiate key rescue operations 436 

during the disaster. The method proposed in this study can also help determine vulnerable 437 

populations and road users in the exposed blocks. Because we had considered vulnerable people 438 

and road users when we constructed the population groups (agents), we can get similar information 439 

from the results of vulnerable populations and road users in the exposed blocks, like the exposed 440 

population. Such information is of great practical significance. 441 
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Figure 14 16 presents variations in the road and building exposures of two selected areas with 442 

serious flooding. The road and building exposures for the study area are presented in Fig. 1517. It 443 

can be concluded that road and building exposures during pluvial and fluvial floods also varied 444 

with the flood depth. Additionally, the exposed road length of the block was fluctuant, while the 445 

building was either entirely exposed or not exposed. Furthermore, the area of the road affected by 446 

pluvial and fluvial floods was greater than that of the buildings. As indicated in Fig. 1517, exposed 447 

buildings were present only in a few areas (blocks), while roads were affected in several areas. 448 

Additionally, buildings were least exposed due to high thresholds or the number of building steps 449 

designed and built in recent years, while roads and population were severely affected by floods. 450 

4.5 Validation 451 

The flooded urban roads and locations in Lishui during the 50-year flood in 2014 were as follows: 452 

the city had 10 flooded roads and 18 water accumulation points. The actual hydrological points 453 

were selected and combined with the urban flooding results simulated by the prototype system. 454 

The water accumulation distribution is indicated in Fig. 16. 455 

To avoid overlapping with the simulated water accumulation results for roads, the actual flooding 456 

points in the figure only included road junctions and the entirety of Gucheng road (the Lutang 457 

Street to Dayou Street section), and Liyang Street (which connected the senior middle school to 458 

the Sanyan temple section) was represented by corresponding intersection points. Figure 16 459 

indicates that both the simulation results and the actual water accumulation points were mainly 460 

distributed along the river. The simulated water accumulation area (Fig. 16(a)) included roads in 461 

the center of the city and was larger than the actual flooding area. This difference could be 462 

attributed to different definitions of “water accumulation”. The simulation results presented in 463 



22 

 

Figure 16 included all areas where the accumulated water depth during the flooding period was 464 

greater than 15 cm. The actual water accumulation point was defined as one experiencing rainfall 465 

greater than 50 mm over a 24 hour period. Additionally, it was characterized by the water 466 

accumulation depth of the road reaching 15 cm (the meteorological department issued the blue 467 

rainstorm warning at this level), the water withdrawal time reaching one hour, and the water 468 

accumulation scope value being greater than 50 m2. Certain gaps existed between the observational 469 

data and the actual flow since the observation station was far from the study area. Hence, the results 470 

indicated that the simulated water accumulation area during the fluvial flood (Fig. 16 (b)) was 471 

smaller than that of the actual situation. 472 

The reliability of the simulation of the spatio-temporal population distribution was indirectly 473 

verified by utilizing the traffic flow data from June 24 to July 7, 2017. The morning and evening 474 

peak hours on weekdays and weekends, the simulated total number of residents passing the four 475 

intersections (such as the junction of the Liqing and Huayuan roads) during peak hours, and the 476 

actual measured traffic flow at the intersections are shown in Fig. 17. The traffic flow data in Fig. 477 

17 are multi-day average results. 478 

In theory, the simulated value should be much larger than the measured value since the former 479 

indicates the number of people while the latter represents the number of cars and buses. However, 480 

as indicated in Fig. 17, the simulated value was close to the measured value. This could be 481 

attributed to the assumption that the study area was closed and the simulated population was the 482 

number of permanent residents, excluding the migrant population. In reality, the number of 483 

migrants in the urban area during daytime is large owing to its geographical location. Moreover, 484 

this study simplified human activities when simulating the spatio-temporal distribution of the 485 

population. Therefore, the number of pedestrians on the road was small. However, both the 486 
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simulated and measured values were essentially similar with regard to changes in their trends. 487 

Therefore, the simulation method for the spatio-temporal distribution of population is feasible, and 488 

the results are reliable. 489 

5. Conclusions 490 

Urban flooding considerably impacts the daily lives of residents and not only affects commuting 491 

but also causes casualties and traffic congestion. This study proposed a method for obtaining high-492 

resolution dynamic exposure to urban flooding. First, the spatio-temporal distributions of pluvial 493 

and fluvial floods were simulated by the LISFLOOD-FP model. Second, the responses of residents 494 

to bad weather and government measures (warnings) were incorporated to develop an ABM to 495 

simulate residents’ activities during flooding. Finally, urban exposure during different flood 496 

scenarios was comprehensively simulated and was based on the population and hydrological 497 

simulation results, road and building data, and the case study of the Lishui urban district. 498 

The method developed could predict floods as well as the exposure of buildings, roads, and the 499 

population at different times and locations. Additionally, it could provide effective reference 500 

information for residents’ travels and urban disaster management. In summary, this study had four 501 

main elements. First, different spatio-temporal distributions of water depth and velocity 502 

predictions were obtained using the LISFLOOD-FP model. Second, an ABM was utilized to 503 

simulate the spatio-temporal distributions of the population. Third, the impacts of pluvial and 504 

fluvial floods on buildings were found to be small, while that on roads and the population was 505 

evident. Finally, if residents simply reduced their travels (stayed at home), the exposure of the 506 

population in the exposed residential areas increased. 507 
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It should be noted that there is no comprehensive way to verify the proposed method. This is 508 

because parameters of human behavior and psychological processes are difficult (or, to some 509 

extent, impossible) to obtain. In this study, the proposed method was verified indirectly. The actual 510 

traffic information for each road intersection was collected and compared with the simulated 511 

population results. Additionally, the information for actual water accumulation points was 512 

compared with the simulated water accumulation results. However, a few limitations persist. For 513 

instance, considerable uncertainties regarding the use and design of the ABM exist. These include 514 

differences in the responses of residents of the same type to disasters in the same scenario. 515 

Therefore, this study simply attempted to reflect reality. Moreover, simplification of the behavior 516 

patterns and disaster responses of residents is inevitable, thus resulting in differences between the 517 

simulation results and reality. In addition, the investigation of different durations and intensities 518 

of the rainstorm is also relevant. However, the inclusion of other factors was beyond the scope of 519 

this research. Therefore, future studies should focus on optimizing the proposed method and 520 

incorporating the effects of different durations and intensities of rainstorms. 521 
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Figure 1. Location of the study area (left) and a digital elevation model indicating the specific 698 

details of the study area (right).  699 

Figure 2. Overview of the dynamic exposure simulation to urban flooding. 700 

Figure 3. Rainfall simulation results based on the CHM method, and observational data used for 701 

fluvial flood simulation. 702 

Figure 4. A synthetic daily routine generated from the travel survey and census data for an 703 

unemployed female agent aged 18–60 years.  704 

Figure 5. Activity patterns for an unemployed female agent aged 18–60 years and highly educated 705 

during disaster scenarios. (a) Bad weather (weekday) (b) Warning (weekday) (c) Bad weather 706 

(weekend) (d) Warning (weekend). 707 

Figure 6. Number of different block types.  708 

Figure 7. Spatial distribution of blocks. 709 

Figure 8. Agent types for daily and disaster scenarios. Daily scenarios refers to S1, S2, S7, and 710 

S8. Others are disaster scenarios. 711 

Figure 9. Accumulated water depths and velocities. T means time here. 712 

Figure 10. Changes in the surface water depths and velocities for eight severely flooded areas. 713 

The “dep” indicates water depth, and “vel” indicates water velocity. 714 

Figure 161. Map of the flooded area indicating the flooding simulation and the real flood in 2014. 715 

The information for the flooded area was provided by Lishui City Housing and Urban-Rural 716 

Construction Bureau. 717 

Figure 1112. Population changes in blocks and roads for the six scenarios. 718 

Figure 1213. Population distribution for the six scenarios. T means time here. 719 

Figure 174. Traffic flow and population simulation results during peak hours on weekdays and 720 

weekends. The traffic flow data were provided by the Lishui City Traffic Bureau. Real means 721 
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measured value here. LQ is Liqing Road, KF is Kaifa Road, HY is Huayuan Road, ZJ is Zijin 722 

Road, and LT is Lutang Street. 723 

Figure 1315. Changes in the population exposure of two blocks for the 12 scenarios. Block 168 724 

was a recreational area, and Block 6 was a residential area. 725 

Figure 1416. Changes in road and building exposures in severely flooded blocks. The exposed 726 

road length and building area represent road and building exposures, respectively. 727 

Figure 1517. Map of road and building exposures. T means time here. 728 

Figure 16. Map of the flooded area indicating the flooding simulation and the real flood in 2014. 729 

The information for the flooded area was provided by Lishui City Housing and Urban-Rural 730 

Construction Bureau. 731 

Figure 17. Traffic flow and population simulation results during peak hours on weekdays and 732 

weekends. The traffic flow data were provided by the Lishui City Traffic Bureau. Real means 733 

measured value here. LQ is Liqing Road, KF is Kaifa Road, HY is Huayuan Road, ZJ is Zijin 734 

Road, and LT is Lutang Street.  735 
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 736 

Figure 1. Location of the study area (left) and a digital elevation model indicating the specific 737 

details of the study area (right).    738 
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 739 

Figure 2. Overview of the dynamic exposure simulation to urban flooding.  740 
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 741 

(a) Rainfall simulation data                                                          (b) Observational data 742 

Figure 3. Rainfall simulation results based on the CHM method, and observational data used for 743 

fluvial flood simulation.  744 
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(a) Activity on weekdays                                  (b) Activity on weekends 747 

Figure 4. A synthetic daily routine generated from the travel survey and census data for an 748 

unemployed female agent aged 18–60 years.   749 
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Figure 5. Activity patterns for an unemployed female agent aged 18–60 years and highly educated 756 

during disaster scenarios. (a) Bad weather (weekday) (b) Warning (weekday) (c) Bad weather 757 

(weekend) (d) Warning (weekend). 758 

759 
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 760 

Figure 6. Number of different block types.  761 
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 762 

Figure 7. Spatial distribution of blocks. 763 

764 
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(a) Agent types for daily scenarios 766 
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(b) Agent types for disaster scenarios 768 

Figure 8. Agent types for daily and disaster scenarios. Daily scenarios refers to S1, S2, S7, and 769 

S8. Others are disaster scenarios.  770 
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 771 

(a) Water depth (pluvial flood, T = 15:00)         (b) Water velocity (pluvial flood, T = 08:00) 772 

 773 

(c) Water depth (fluvial flood, T = 16:00)         (d) Water velocity (fluvial flood, T = 16:00) 774 

Figure 9. Accumulated water depths and velocities. T means time here.  775 
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 776 

(a) Pluvial flood                                                 (b) Fluvial flood 777 

Figure 10. Changes in the surface water depths and velocities for eight severely flooded areas. 778 

The “dep” indicates water depth, and “vel” indicates water velocity.779 
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 780 

(a) Pluvial flood                                                 (b) Fluvial flood 781 

Figure 116. Map of the flooded area indicating the flooding simulation and the real flood in 782 

2014. The information for the flooded area was provided by Lishui City Housing and Urban-783 

Rural Construction Bureau.  784 
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 785 

(a) Block                                                             (b) Road 786 

Figure 1112. Population changes in blocks and roads for the six scenarios.  787 
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 788 

(a) Daily, weekday (T = 09:00)               (b) Daily, weekend (T = 09:00) 789 

 790 

(c) Bad weather, weekday (T = 09:00)     (d) Bad weather, weekend (T = 09:00) 791 

 792 

(e) Warning, weekday (T = 09:00)          (f) Warning, weekend (T = 09:00) 793 

Figure 1213. Population distribution for the six scenarios. T means time here.  794 
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 795 

(a) Weekday                                                        (b) Weekend 796 

Figure 14. Traffic flow and population simulation results during peak hours on weekdays and 797 

weekends. The traffic flow data were provided by the Lishui City Traffic Bureau. Real means 798 

measured value here. LQ is Liqing Road, KF is Kaifa Road, HY is Huayuan Road, ZJ is Zijin 799 

Road, and LT is Lutang Street.  800 
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 801 

(a) Population exposure (Block 168)                (b) Population exposure (Block 6) 802 

Figure 1315. Changes in the population exposure of two blocks for the 12 scenarios. Block 168 803 

was a recreational area, and Block 6 was a residential area.  804 
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 805 

(a) Exposed building area (Block 168)                (d) Exposed road length (Block 6) 806 

Figure 146. Changes in road and building exposures in severely flooded blocks. The exposed 807 

road length and building area represent road and building exposures, respectively.  808 
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 809 

(a) Road exposure (pluvial flood, T = 18:30)    (b) Road exposure (fluvial flood, T = 18:30) 810 

 811 

(c) Building exposure (pluvial flood, T = 18:30)  (d) Building exposure (fluvial flood, T = 18:30) 812 

Figure 175. Map of road and building exposures. T means time here.  813 



50 

 

 814 

(a) Pluvial flood                                                 (b) Fluvial flood 815 

Figure 16. Map of the flooded area indicating the flooding simulation and the real flood in 2014. 816 

The information for the flooded area was provided by Lishui City Housing and Urban-Rural 817 

Construction Bureau.  818 
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 819 

(a) Weekday                                                        (b) Weekend 820 

Figure 17. Traffic flow and population simulation results during peak hours on weekdays and 821 

weekends. The traffic flow data were provided by the Lishui City Traffic Bureau. Real means 822 

measured value here. LQ is Liqing Road, KF is Kaifa Road, HY is Huayuan Road, ZJ is Zijin 823 

Road, and LT is Lutang Street.  824 
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Table 1 Data used in this study. 825 

Table 2. Parameter values for the rainstorm intensity formula. 826 

Table 3. Parameter variations used in the simulation scenarios. 827 

Table 4. Sociodemographic characteristics of the population in the case study area.  828 

Table 5. Building step heights for different block types.  829 
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Table 1. Data used in this study.  830 

Data Source Time Use 

Digital elevation model Local government 2013 Topography 

Basic geographic data Local government 2015 Location of river, road 

and building 

Hydrological data Local government 20 Aug 2014 Flow and water level 

1km grid population 

data 

National Earth System 

Science Data Sharing 

Infrastructure, National 

Science & Technology 

Infrastructure of China 

(http://www.geodata.cn

) 

2010 Number of residents in 

grid of the study area. 

Population profile Lishui Statistical 

Yearbook and Liandu 

Yearbook 

(http://tjj.lishui.gov.cn/s

jjw/tjnj/201511/t201511

05_448284.htm) 

2014 Gender profile, age 

profile, education level 

profile, employment 

profile and travel mode 

profile were used to 

classify agent groups. 

Traffic flow data Local government 24 June 2017 to 7 July 

2017 

The number of vehicles 

passing through a node 

within one hour at four 

intersections from 24 

June 2017 to 7 July 

2017 in this area, 

Water accumulation 

point 

Local government 

(http://www.zjjs.com.cn

/n17/n26/n44/n47/c339

697/content.html) 

20 Aug 2014 Location 

  831 
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Table 2. Parameter values for the rainstorm intensity formula. 832 

Parameter Value 

A 1265.3 

b 5.919 

c 0.587 

n 0.611 

  833 
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Table 3. Parameter variations used in the simulation scenarios. 834 

Scenarios Flooding Type Human behavior Weekdays or Weekends 

S1 Pluvial flood Daily Weekdays 

S2 Pluvial flood Daily Weekends 

S3 Pluvial flood Bad weather Weekdays 

S4 Pluvial flood Bad weather Weekends 

S5 Pluvial flood Warning Weekdays 

S6 Pluvial flood Warning Weekends 

S7 Fluvial flood Daily Weekdays 

S8 Fluvial flood Daily Weekends 

S9 Fluvial flood Bad weather Weekdays 

S10 Fluvial flood Bad weather Weekends 

S11 Fluvial flood Warning Weekdays 

S12 Fluvial flood Warning Weekends 

  835 
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Table 4. Sociodemographic characteristics of the population in the case study area.  836 

Variables Groups Percentage (%) 

Gender Male 

Female 

50.430 

49.570 

Age 0-17 

18-60 

>60 

18.730 

63.340 

17.930 

Professional status Employed 

Unemployed 

55.770 

44.230 

Education Level 

(Highest diploma) 

University, school-college, bachelor 

No diploma 

14.457 

85.543 

Travel mode Walk 25.24 

Bus 43.06 

Car 31.70 

Note: The data are from the 2015 Lishui Statistical Yearbook and 2015 Liandu Yearbook.  837 
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Table 5. Building step heights for different block types. 

No Block type Building type Building steps height 

1 
Residential area 

I 
Garden house, villa 0.35 m（floors>9, 0.60 m） 

2 
 Residential area 

II 

High-rise apartments and new 

village houses before and after 

liberation (before 1988); new 

residential quarters and 

commercial houses (after 1988) 

0.35 m（floors>9, 0.60 m） 

3 
 Residential area 

III 

New and old Lane homes, three 

types of staff housing 
0.10 m 

4 
Residential area 

IV 
Shed house 0.05 m 

5 School Educational building 0.35 m（floors>9, 0.60 m） 

6 Company Office building 0.35 m（floors>9, 0.60 m） 

7 
Recreational 

area 

Public buildings for business, 

culture, sports and other use 
0.35 m（floors>9, 0.60 m） 

 838 


