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Abstract. The climate modelling community has trialled a large number of metrics for evaluating temporal performance of 

General Circulation Models (GCMs), while very little attention has been given to the assessment of their spatial performance 15 

which is equally important. This study evaluated the performance of 36 Coupled Model Intercomparison Project 5 (CMIP5) 

GCMs in relation to their skills in simulating mean annual, monsoon, winter, pre-monsoon, and post-monsoon precipitation, 

maximum and minimum temperature over Pakistan using state-of-the-art spatial metrics; SPAtial EFficiency, Fractions Skill 

Score, Goodman–Kruskal's lambda, Cramer’s V, Mapcurves, and Kling-Gupta efficiency for the period 1961-2005. The 

multi-model ensemble (MME) precipitation, maximum and minimum temperature data were generated through the 20 

intelligent merging of simulated precipitation, maximum and minimum temperature of selected GCMs employing Random 

Forest (RF) regression and Simple Mean (SM). The results indicated some differences in the ranks of GCMs for different 

spatial metrics. The overall ranks indicated NorESM1-M, MIROC5, BCC-CSM1-1 and ACCESS1-3 as the best GCMs in 

simulating the spatial patterns of mean annual, monsoon, winter, pre-monsoon, and post-monsoon precipitation, maximum 

and minimum temperature over Pakistan. MME precipitation, maximum and minimum temperature generated based on the 25 

best performing GCMs showed more similarities with observed precipitation, maximum and minimum temperature 

compared to precipitation, maximum and minimum temperature simulated by individual GCMs. The MMEs developed using 

RF displayed better performance than the MMEs-based on SM. Multiple spatial metrics have been used for the first time for 

selecting GCMs based on their capability to mimic the spatial patterns of annual and seasonal precipitation, maximum and 

minimum temperature. The approach proposed in the present study can be extended to any number of GCMs and climate 30 

variables and applicable to any region for the suitable selection of an ensemble of GCMs to reduce uncertainties in climate 

projections. 
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1 Introduction  

Climate change is a complex, multidimensional phenomenon that is being critically studied over the last few decades (Byg 

and Salick, 2009;Cameron, 2011). The changes in climate are mostly observed by studying the variations in precipitation and 

temperature regimes (Sheffield and Wood, 2008). Several studies reported increase in severity and frequency of droughts 

(Ahmed et al., 2019a), floods (Wu et al., 2014), heatwaves (Perkins-Kirkpatrick and Gibson, 2017) and decrease in severity 5 

and frequency of cold snaps (Wang et al., 2016) in the recent years which are indicative of abrupt variations in the 

precipitation and temperature regimes. According to the Intergovernmental Panel on Climate Change (IPCC) 5th Assessment 

Report (AR5), the average global land and ocean surface air temperature has risen by around 0.72°C (0.49–0.89°C) during 

1951–2012. It is projected that it will further increase by 1.8 °C to 4 °C by the end of the 21st century (IPCC, 2014). The 

climate modelling community has widely agreed that the sharp temperature rise in the post-industrial revolution era is 10 

significantly affecting the global hydrologic cycle (Sohoulande Djebou and Singh, 2015;Evans, 1996). The spatiotemporal 

variations in the global hydrologic cycle are influential on the humans and the environment. Therefore, it is important to 

study the variations in spatiotemporal patterns of climate variables such as precipitation and temperature (Akhter et al., 

2017). 

General Circulation Models (GCMs) are principally utilised to simulate and project climate on a global scale (Pour et al., 15 

2018;Sachindra et al., 2014). Over the years, a large number of GCMs have been developed and used for the simulation and 

projection of the global climate. The Coupled Model Intercomparison Project Phase 5 (CMIP5) is a set of GCMs available 

from the IPCC AR5 (Taylor et al., 2012). The CMIP5 GCMs showed significant improvements in climate simulations 

compared to its previous generation of CMIP3 models (Gao et al., 2015;Kusunoki and Arakawa, 2015). Currently, over 50 

GCMs are available in the CMIP5 suite with different spatial resolutions (Hayhoe et al., 2017). Human and computational 20 

resources pose a restriction on the size of the sub-set of GCMs used in a climate change impact assessment (Herger et al., 

2018). Sa'adi et al. (2017), Salman et al. (2018a), Pour et al. (2018) and Khan et al. (2018a) reported that a multi-model 

ensemble (a sub-set) of GCMs selected considering their skills in reproducing past observed characteristics of climate can 

reduce the GCM associated uncertainties in climate change impact assessment. The multi-model ensembles (MME) also 

enhance the reliability of projection using information from several sources or GCMs (Pavan and Doblas-Reyes, 2000;Knutti 25 

et al., 2010). 

The methods used for the generation of MMEs are broadly divided into two groups; (1) simple composite method (SCM) 

and (2) weighted ensemble method (WEM) (Wang et al., 2018). In SCM all ensemble members are equally weighted while 

in the WEM, ensemble members are weighted according to their performance in simulating the past climate (Wang et al., 

2018;Oh and Suh, 2017;Giorgi and Mearns, 2002). The SCM is relatively simple to apply and found to perform better than 30 

individual GCMs (Weigel et al., 2010;Acharya et al., 2013;Wang et al., 2018). However, WEM is preferred as it can remove 

the systematic biases and improve the prediction capability since higher weights are assigned to better GCMs (Krishnamurti 

et al., 1999;Krishnamurti et al., 2000). Salman et al. (2018a) reported that the prediction capability of an MME improves if it 
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is based on the WEM method. Thober and Samaniego (2014) also showed that sub-ensembles generated using WEM has a 

better capability to capture the historical characteristics of precipitation and temperature extremes. The performances of 

MMEs depend on the performance of ensemble members in simulating historical climate (Pour et al., 2018). Therefore, 

selection of a sub-ensemble is a major challenge in climate change modelling. 

Numerous endeavours have been made to examine the adequacy of climate models in simulating various climate variables 5 

(e.g. precipitation) (McMahon et al., 2015;Gu et al., 2015). Smith et al. (1998) stated that selection of an appropriate set of 

GCMs in a climate change impact assessment can be achieved considering 4 criteria; (1) Vintage - only the latest generation 

GCMs are considered, (2) Spatial resolution - fine resolution GCMs are preferred over coarser ones, (3) Validity - 

performances of GCMs are considered, and (4) Representativeness - an ensemble of GCMs covering a wide range of 

projections of a climate variable (e.g. precipitation) is considered. In the above criteria, assessment and selection of GCMs 10 

based on their validity is the most widely adopted criterion where GCMs are ranked and selected according to their skill in 

simulating observed past climate (Mendlik and Gobiet, 2016). 

A wide variety of methods has been used to assess climate models based on their ability to simulate the observed historical 

climate (past performance) such as reliability ensemble averaging approach (Giorgi and Mearns, 2002), relative entropy 

(Shukla et al., 2006), Bayesian approach (Min and Hense, 2006;Tebaldi et al., 2005;Chandler, 2013), probability density 15 

function (Perkins et al., 2007), hierarchical ANOVA models (Sansom et al., 2013), clustering (Knutti et al., 2013), 

correlation (Xuan et al., 2017;Jiang et al., 2015), and symmetrical uncertainty (Salman et al., 2018a). Johnson and Sharma 

(2009) assessed the performance of GCMs in replicating inter-annual variability. Thober and Samaniego (2014) evaluated 

the performance of GCMs in reproducing extreme indices of precipitation and temperature. Apart from that, some studies 

combined several performance measures such as root means square error, mean absolute error, correlation coefficient, and 20 

skill scores into one performance index to assess the accuracy of GCMs in reproducing past climate (Gu et al., 2015;Barfus 

and Bernhofer, 2015;Gleckler et al., 2008;Wu et al., 2016;Ahmadalipour et al., 2017;Raju et al., 2017). Moreover, the past 

performance assessment of GCM is performed at different temporal scales; daily (Perkins et al., 2007), monthly (Raju et al., 

2017), seasonal (Ahmadalipour et al., 2017) and annual (Murphy et al., 2004). Besides temporal scales, a number of studies 

ranked GCMs based on spatial areal average (Ahmadalipour et al., 2017;Abbasian et al., 2019), while some studies 25 

considered GCM performance at all the grid points covering the study area (Raju et al., 2017;Salman et al., 2018a). 

It is also observed in the literature that there is no consensus on the choice of the GCM selection approach and temporal 

scale at which the performance assessment is done. Raäisaänen (2007), Smith and Chandler (2010) and McMahon et al. 

(2015) also argued that there is no universally accepted criterion for the assessment of GCMs. However, McMahon et al. 

(2015) reported that GCM simulations at the annual time scale can better reproduce long-term mean statistics compared to 30 

that at daily time scale. Gleckler et al. (2008) stated that assessment of GCMs with respect to a climate variable like 

precipitation over multiple time scales or seasons may provide vital information to water resources managers especially in 

the regions where climate variability is high. Moreover, Raju et al. (2017) and Salman et al. (2018a) demonstrated that GCM 

assessment provides more useful information when the evaluation is conducted at individual grid points covering the study 
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area of interest. Selection of GCMs based on their performance at individual grid points over a region does not guarantee 

their capability to simulate spatial patterns of regional climate. It is expected that GCMs should be able to capture the spatial 

pattern of major features of the climate of a region such as a monsoon and western disturbances. Koch et al. (2018) and 

Demirel et al. (2018) argued that climate modelling community is mostly focused on the temporal performance of GCMs 

and ignores explicit assessment of their spatial performance which is also equally important. They also emphasized on the 5 

importance of the use of multiple spatial metrics for GCM performance assessment. Furthermore, the metrics should be 

insensitive to the units of the variables compared. 

Overall, review of literature revealed that several studies (Khan et al., 2018a;Pour et al., 2018;Salman et al., 2018a;Raju et 

al., 2017) assessed the performance of GCMs considering several grid points over the whole study area; however they 

ignored the capability of GCMs to replicate the spatial patterns. Spatial patterns of GCMs provide a better understanding of 10 

the occurrences of hydro-climatic phenomena such as precipitation distributions, floods and droughts. Therefore, it is 

imperative to assess the skills of GCMs in replicating the historical spatial patterns of climate variables. Within this 

framework, the current study hypothesized that the sub-ensemble members identified based on their ability to mimic the 

spatial pattern of observed precipitation, maximum and minimum temperature of a region can be used for the generation of a 

reliable MME for precipitation, maximum and minimum temperature for that region. This study for the first time, employed 15 

six state-of-the-art spatial performance metrics; SPAtial EFficiency metric (SPAEF) (Demirel et al., 2018), Fractions Skill 

Score (FSS) (Roberts and Lean, 2008), Goodman–Kruskal's lambda (Goodman and Kruskal, 1954), Cramer’s V (Cramér, 

1999), Mapcurves (Hargrove et al., 2006), and Kling-Gupta efficiency (KGE) (Gupta et al., 2009) for the assessment of 

performance of 36 CMIP5 GCM in simulating observed annual (Jan to Dec), monsoon (Jun to Sep), winter (Dec to Mar), 

pre-monsoon (Apr to May), and post-monsoon (Oct to Nov) precipitation, maximum and minimum temperature over 20 

Pakistan. These metrics were selected based on their recent applications in several spatial performance assessment studies 

(Demirel et al., 2018;Koch et al., 2018;Rees, 2008). Then based on the above spatial performance metrics the most skilful 

GCMs were identified and hence multi-model ensemble (MME) means of precipitation, maximum and minimum 

temperature using Simple Mean (SM) and Random Forest (RF) were generated. 

2 Study Area and Datasets 25 

2.1 Study area  

As shown in Figure 1, Pakistan located in south Asia shares its border with India in the east, China in the north, Afghanistan 

and Iran in the west and the Arabian Sea in the south. Pakistan has a rugged topography ranging from 0 m in the south to 

8572 m in the north. Figure 2 which is based on the study by Ahmed et al. (2019d) shows that a large area of Pakistan 

experiences an arid climate, followed by semi-arid climate, while a small area in the southwest region experiences hyper-arid 30 

climate. However, a small area in the northernmost region of the country experiences sub-humid to humid climate. 
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Pakistan receives summer monsoon precipitation during the period June-September and winter precipitation during the 

period December-March. Besides that, there are two intermediate rainy seasons called the pre-monsoon and the post-

monsoon during the periods April-May and October-November, respectively (Sheikh, 2001). The bulk of the summer 

precipitation is caused by the monsoon winds that arise from the Bay of Bengal while westerly disturbances in the 

Mediterranean Sea are responsible for the winter precipitation. The average precipitation in Pakistan widely varies from 5 

southwest to northern parts in the range of < 100 to > 1000 mm/year (based on data from 1961 to 2010). Since the country is 

mostly characterized by arid and semi-arid climate; the bulk of the country receives precipitation less than 500 mm/year 

while only a very limited area in the north receives more than 1,000 mm/year of precipitation (Ahmed et al., 2017). The 

average temperature of the country varies from 0o C in the northern region to 32o C in the southern region (Khan et al., 

2018b). 10 

 

 

Figure 1. The location of Pakistan in central-south Asia and the GCM grid points over the country along with the locations 

of precipitation and temperature observation stations. The names of the stations are given in Table 2. 
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Figure 2. Aridity classification of Pakistan (adopted from Ahmed et al. (2019d)) 

2.2 Datasets  5 

2.2.1 Gridded Precipitation and Temperature data 

The lack of long records of climate observations with extensive spatial coverage is a major issue in hydro-climatological 

investigations in many regions. As a solution to this problem, gridded datasets based on observations and various 

interpolation and data assimilation techniques have been created (Kishore et al., 2015). In this investigation, gridded monthly 

precipitation data of the Global Precipitation Climatology Center (GPCC) (Schneider et al., 2013) 10 

(dwd.de/EN/ourservices/gpcc/gpcc.html), and gridded monthly maximum and minimum temperature data of Climatic 

Research Unit (CRU) of East Anglia University (https://crudata.uea.ac.uk/cru/data/hrg/) (Harris et al., 2014) were used as the 

surrogates of observed precipitation, maximum and minimum temperature respectively for the period 1961-2005. GPCC 

precipitation and CRU temperature data are available at a spatial resolution of 0.5°. As stated in the existing literature GPCC 

and CRU data are of high quality (Shiru et al., 2018;Salman et al., 2018b) and have an excellent seamless spatial and 15 

temporal coverage (Spinoni et al., 2014). Most importantly, GPCC precipitation and CRU temperature data have shown 

https://crudata.uea.ac.uk/cru/data/hrg/
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correlations above 0.80 with observed precipitation, maximum and minimum temperature over Pakistan (Ahmed et al., 

2019c).  

2.2.2 GCM precipitation and Temperature data 

Monthly precipitation data simulated by the 36 CMIP5 GCMs for ensemble run r1i1p1 were extracted from the IPCC data 

distribution center (http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html) for the period 1961-2005. 5 

The modelling centres, names of GCMs and spatial resolution of each of the selected GCMs are provided in Table 1. In 

order to have a common spatial resolution, precipitation (P), maximum temperature (Tmax) and minimum temperature (Tmin) 

data obtained from different GCMs and GPCC and CRU databases were interpolated into a common 2o×2o grid using 

bilinear interpolation. 

 10 

Table 1. CMIP5 GCMs considered in this study. 

Country Modelling Centre Model Name 
Resolution in arc 

degrees (Lat) 

Resolution in arc 

degrees (Lon) 

Australia Commonwealth Scientific and 

Industrial Research 

Organization/Bureau of 

Meteorology 

ACCESS1-0 1.25 1.875 

ACCESS1-3 1.25 1.875 

Commonwealth Scientific and 

Industrial Research 

Organization/Queensland Climate 

Change Centre of Excellence 

CSIRO-Mk3-6-0 1.8653 1.875 

     

Canada Canadian Centre for Climate 

Modelling and Analysis 

CanESM2 2.7906 2.8125 

     

China Beijing Climate Center BCC-CSM1.1(m) 2.7906 2.8125 

BCC-CSM1-1 2.7906 2.8125 

Beijing Normal University BNU-ESM 2.7906 2.8125 

Institute of Atmospheric Physics, 

Chinese Academy of Sciences 

FGOALS-g2 2.7906 2.8125 

The First Institute of 

Oceanography, SOA 

FIO-ESM 2.81 2.78 

     

France Institut Pierre-Simon Laplace  IPSL-CM5A-LR 1.8947 3.75 

IPSL-CM5A-MR 1.2676 2.5 

IPSL-CM5B-LR 1.8947 3.75 

Centre National de Recherches 

Météorologiques, Centre Européen 

de Recherche et de Formation 

Avancée en Calcul Scientifique 

CNRM-CM5 1.4008 1.40625 

http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html


8 

 

     

Germany Max Planck Institute for 

Meteorology  

MPI-ESM-LR 1.8653 1.875 

MPI-ESM-MR 1.8653 1.875 

     

Italy Centro Euro-Mediterraneo sui 

Cambiamenti Climatici 

CMCC-CM 0.7484 0.75 

CMCC-CMS 3.7111 3.75 

     

Japan Atmosphere and Ocean Research 

Institute (The University of 

Tokyo), National Institute for 

Environmental Studies, and Japan 

Agency for Marine-Earth Science 

and Technology 

MIROC5 1.4008 1.40625 

MIROC-ESM 2.7906 2.8125 

MIROC-ESM-

CHEM 

2.7906 2.8125 

Meteorological Research Institute  MRI-CGCM3 1.12148 1.125 

     

Netherlands/Irel

and 

EC-EARTH consortium published 

at Irish Centre for High-End 

Computing 

EC-EARTH 1.1215 1.125 

     

Norway Bjerknes Centre for Climate 

Research, Norwegian 

Meteorological Institute  

NorESM1-M 1.8947 2.5 

     

Russia Russian Academy of Sciences, 

Institute of Numerical 

Mathematics 

inmcm4 1.5 2 

     

South Korea National Institute of 

Meteorological Research, Korea 

Meteorological Administration 

HadGEM2-AO 1.25 1.875 

     

UK Met Office Hadley Centre HadGEM2-CC 1.25 1.875 

HadGEM2-ES 1.25 1.875 

     

USA National Center for Atmospheric 

Research 

CCSM4 0.9424 1.25 

CESM1-BGC 0.9424 1.25 

CESM1-CAM5 0.9424 1.25 

CESM1-WACCM 1.8848 2.5 

Geophysical Fluid Dynamics 

Laboratory 

GFDL-CM3 2 2.5 

GFDL-ESM2G 2.0225 2 

GFDL-ESM2M 2.0225 2.5 

NASA/GISS (Goddard Institute for 

Space Studies) 

GISS-E2-H 2 2.5 

GISS-E2-R 2 2.5 
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3 Methodology 

In this study, GCMs for annual, monsoon, winter, pre-monsoon and post-monsoon P, Tmax and Tmin were first ranked 

separately (individual ranking) using six spatial performance measures; SPAEF, FSS, Lambda, Cramer-V, Mapcurves, and 

KGE. Then a comprehensive rating metric (RM) (Jiang et al., 2015) was used to rank the GCMs considering the individual 

ranks determined corresponding to all above spatial performance measures. The RM values of GCMs obtained for each 5 

variable were combined for deriving the overall ranks of GCMs. Finally, a sub-set of GCMs (MME) based on the overall 

ranks was selected and P, Tmax and Tmin data for the MME were derived. The procedure used for the ranking, identification of 

the ensemble of GCMs and derivation of P, Tmax and Tmin data from the multi-model ensemble of GCMs is outlined as 

follows. 

 10 

1. All GCM simulated past P, Tmax and Tmin data for the period 1961-2005 were remapped to a common grid with a 

2o×2o resolution. 

2. SPAEF, FSS, Lambda, Cramer-V, Mapcurves, and KGE were individually applied to annual, monsoon, winter, pre-

monsoon and post-monsoon P, Tmax and Tmin data for the period 1961-2005. 

3. The goodness of fit (GOF) estimated by SPAEF, FSS, Lambda, Cramer-V, Mapcurves, and KGE for annual, 15 

monsoon, winter, pre-monsoon and post-monsoon P, Tmax and Tmin were used to rank the GCMs separately. 

4. Comprehensive rating metrics (RM) was used to combine the ranks of GCMs determined by the above spatial 

performance measures separately for P, Tmax and Tmin. 

5. RM was again used to derive the overall ranks of GCMs considering P, Tmax and Tmin together for the entire study 

area. 20 

6. The four-top ranked GCMs based on their overall ranks in replicating annual, monsoon, winter, pre-monsoon and 

post-monsoon P, Tmax and Tmin were identified. 

7. Simple Average (SM) and Random Forest (RF) were used to generate MME P, Tmax and Tmin means with the P, Tmax 

and Tmin simulated by the four-top ranked GCMs identified in step 6. 

8. Finally, the spatial patterns of MME P, Tmax and Tmin generated using SM and RF were validated by visually 25 

comparing them with the spatial patterns of observed P, Tmax and Tmin. 

 

Details of the methods and the determination of the best performing ensemble of GCMs are provided in the 

following sections. 

 30 
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3.1 Accuracy Assessment of Gridded Precipitation and Temperature Data 

The accuracy of gridded GPCC precipitation data and CRU temperature data was assessed by comparing them with the 

observed station data using normalised root mean square error (NRMSE) and modified index of agreement (md). NRMSE is 

a non-dimensional form of root mean square error (RMSE) which is derived by normalizing RMSE by the range of 

observations. NRMSE is more reliable than RMSE in comparing model performance when the model outputs are in different 5 

units or the same unit but with different orders of magnitude (Willmott, 1982). NRMSE can have any positive value, 

however, values closer to 0 are preferred as they denote smaller errors (Chen and Liu, 2012). In this study, NRMSE was 

calculated Eq. 1. 
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Where xsim,i and xobs,i refer to the ith value in the gridded and observed time series of the climate variable (i.e. precipitation or 

temperature) respectively, and N is the number of data points in each time series. 

 

The ‘md’ shown in Eq. 2 is widely used to estimate the agreement between observed and gridded data of climate variables 15 

(Noor et al., 2019;Ahmed et al., 2019b). It varies between 0 (no agreement) and 1 (perfect agreement) (Willmott, 1981). 
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Where xsim,i and xobs,i are the ith value in the gridded data and observed data series of a climate variable.  20 

3.2 GCM Performance Assessment 

SPAEF, FSS, Lambda, Cramer-V, Mapcurves, and KGE were individually applied on each year from 1961 to 2005 of mean 

annual, monsoon, winter, pre-monsoon, and post-monsoon P, Tmax and Tmin. Later, the GOF values of each year were 

temporally averaged to obtain a value for the entire study area. The details of the metrics are given below. 
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3.2.1 SPAtial EFficiency metric 

SPAtial EFficiency metric (SPAEF), proposed by Demirel et al. (2018) is a robust spatial performance metric which 

considers three statistical measures (1) Pearson correlation, (2) coefficient of variation and (3) histogram overlap, in the 

assessment of GOF of a model. The major advantage of SPAEF is that it combines the information derived from the above 

three independent statistical measures into one metric. The SPAEF values between past observed GPCC P, CRU Tmax and 5 

Tmin and GCM simulated P, Tmax and Tmin were calculated using Eq. 3. In Eq. 3, α is the Pearson correlation coefficient 

between observed and GCM simulated data, β is the spatial variability and γ is the overlap between the histograms of 

observed and GCM simulated data. 

 

𝑆𝑃𝐴𝐸𝐹 = 1 − √(𝛼 − 1)2 + (𝛽 − 1)2 + (𝛾 − 1)2        (3) 10 

 

Equations 4 and 5 show the procedure for β and γ calculations respectively (for Pearson correlation (α) refer to (Pearson, 

1948). In Eq. 4 𝜎𝐺 and 𝜎𝑂 refer to standard deviation of GCM simulated and observed data respectively and 𝜇𝐺 and 𝜇𝑂 refer 

to mean of GCM simulated and observed data respectively. 

 15 

𝛽 =
(

𝜎𝐺
𝜇𝐺

)

(
𝜎𝑂
𝜇𝑂

)
             (4) 

 

In Eq. 5, K, L and n refer to histograms value of observations, histograms value of GCM simulations and the number of bins 

in a histogram. 

 20 

γ=
∑ min (𝐾𝑗,𝐿𝑗)𝑛

𝑗=1

∑ 𝐾𝑗
𝑛
𝑗=1

            (5) 

 

The SPAEF can have a value between −∞ and 1, where a value closer to 1 indicates higher spatial similarity between the 

observations and model simulations (Koch et al., 2018). A code written in MATLAB environment was used for calculating 

SPAEF values (Demirel et al., 2018). 25 
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3.2.2 Fractions Skill Score 

The Fractions Skill Score (FSS) proposed by (Roberts and Lean, 2008) is another measure used for the assessment of spatial 

agreement between model simulations and observations. FSS varies between 0 and 1 where a value closer to 1 refers to a 

higher agreement between observed and simulated data. In this study, FSS between observed and GCM simulated data was 

computed using Eq. 6. 5 

 

𝐹𝑆𝑆 = 1 −
𝑀𝑆𝐸(𝑛)

𝑀𝑆𝐸(𝑛)𝑟𝑒𝑓
          (6) 

 

In Eq. 6 MSE refers mean square error and is calculated using Eq. 7 and 8. 

 10 

𝑀𝑆𝐸(𝑛) =
1
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In Eq. 7 and 8 𝑁𝑥  and 𝑁𝑦  are the number of columns and rows in an observed or simulated map of a climate variable 15 

respectively, 𝑂 and 𝑀 are observed and simulated data fractions respectively. The “verification” package (Pocernich, 2006) 

written in R programming language was employed in this study for estimating FSS values. 

3.2.3 Goodman–Kruskal's lambda 

Goodman–Kruskal's lambda also known as Lambda coefficient (𝜆) is used to measure the nominal/categorical association 

between categorical maps (Goodman and Kruskal, 1954). Lambda coefficient (𝜆) varies between 0 and 1, where a value 20 

closer to 1 refers to a higher similarity between the map of model simulations and that of observations of P, Tmax and Tmin. 

The Lambda (𝜆) coefficient was calculated using Eq. 9, where 𝑚𝑎𝑥𝑗  is the number of classes (categories) in the observed 

and simulated maps, 𝑐𝑖𝑗  is a contingency matrix (describes the relationships between the data classes), 𝑖 and 𝑗 are the classes 

in observed and simulated maps, 𝑚 represents the number of classes in the observed and simulated maps respectively. In the 

present study, seven classes in the contingency matrix were used by following the study by Demirel et al. (2018). The 25 

“DescTools” package (Signorell, 2016) written in R programming language was employed in this study for estimating the 

nominal/categorical association between observed and simulated maps. 

 

𝜆 =
∑ 𝑚𝑎𝑥𝑗𝑐𝑖𝑗

𝑚
𝑖=1 −𝑚𝑎𝑥𝑗 ∑ 𝑐𝑖𝑗

𝑚
𝑖=1

𝑁−𝑚𝑎𝑥𝑗 ∑ 𝑐𝑖𝑗
𝑚
𝑖=1

         (9) 
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3.2.4 Cramer’s V 

Cramer’s V (Cramér, 1999) statistic is a Chi-square-test-based measure which is used in assessing spatial agreement between 

observations and model simulations (Zawadzka et al., 2015). Its value ranges between 0 and 1 and value closer to 1 refers to 

a better agreement between the simulated and observed maps of the climate variable. Cramer’s V was calculated using Eq. 

10. 5 

 

𝑉 = √
𝑥2

𝑁(min(𝑚,𝑛)−1
          (10) 

 

where, 𝑥2 is Chi-Square, N is the grand total of observations, m is the number of rows and n is the number of columns. In 

this exercise m = 42 (number of rows of data) and n = 2 (observed and modelled precipitation). The “DescTools” package 10 

(Signorell, 2016) written in R programming language was employed in this study for calculating Cramer’s V values. 

3.2.5 Mapcurves 

Mapcurves is another statistical measure, developed by Hargrove et al. (2006) for the measurement of similarity between 

categorical maps. Mapcurves quantifies the degree of concordance between two maps. The value of Mapcurves can vary 

from 0 to 1 (perfect agreement). In the present study, the degree of concordance between the historical observed P, Tmax and 15 

Tmin map and each of the GCM simulated P, Tmax and Tmin maps was determined using Eq. 11 where, 𝑀𝐶𝑋  refers the 

Mapcurves value, A is the total area of a given class X on the map being compared, B is the total area of a given class Y on 

the observed map, C is the area of intersection between X and Y when the maps are overlaid and n is the number of classes 

in the observed map. 

 20 

𝑀𝐶𝑋 = ∑ [(
𝐶

𝐴
∙

𝐶

𝐵
)]𝑛

𝑌=1            (11) 

 

In this study, the function “mapcurves(x,y)” available in “sabre” package (Nowosad and Stepinski, 2018) written in R 

programing language was used for estimating mapcurves values. In that equation x and y are vectors represent the categorical 

values of historical observed data (e.g. GPCC precipitation) and categorical values of simulated data by a GCM, respectively. 25 

3.2.6 Kling-Gupta efficiency 

Kling-Gupta efficiency (KGE) is a GOF test developed by Gupta et al. (2009), for the model performance assessment. KGE 

considers three statistical measures (1) Pearson correlation, (2) variability ratio and (3) bias ratio, in the assessment of model 

performance. In the present study, KGE was calculated between historical observed data and GCM simulated data using Eq. 

12. KGE values can range between –infinity and 1, where values close to 1 are preferred. 30 
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𝐾𝐺𝐸 = 1 − √(𝛼𝑃 − 1)2 + (𝛽𝑃 − 1)2 + (𝛾𝑅𝑃 − 1)2        (12) 

In Eq. 12, 𝛼𝑃 is the Pearson correlation (Pearson, 1948) between observed and GCM simulated data, 𝛽𝑃 is the bias ratio, and 

𝛾𝑅𝑃 is the variability ratio. Equations 13 and 14, show the calculation of 𝛽𝑃 and 𝛾𝑅𝑃 respectively. 

𝛽𝑃 =
𝜇𝐺

𝜇𝑂
             (13) 5 

In Eq. 13, 𝜇𝐺 and 𝜇𝑂 refer to mean of GCM simulated and observed data respectively. 

𝛾𝑅𝑃 =
𝐶𝑉𝐺

𝐶𝑉𝑂
=

(
𝜎𝐺
𝜇𝐺

)

(
𝜎𝑂
𝜇𝑂

)
            (14) 

In Eq. 14, 𝐶𝑉𝐺 and 𝐶𝑉𝑂 refer to coefficient of variation of GCM simulated and observed data respectively. 

3.3 Comprehensive Rating Metrics 

The ranking of GCMs with respect to a given climate variable using one single GOF measure is a relatively simple task. 10 

However, the ranking of GCMs becomes more challenging when multiple GOF measures are used with multiple climate 

variables, as different GCMs may display different degrees of accuracies for different GOF measures and climate variables. 

In such a case, an information aggregation approach that combines information from several GOF measures can be used. In 

this study, a comprehensive rating metric (Chen et al., 2011) was used to obtain the overall ranks of GCMs. The overall 

ranks of GCMs based on different GOFs were obtained for each season separately using Eq. 15. 15 

 

𝑅𝑀 = 1 −
1

𝑛𝑚
∑ 𝑟𝑎𝑛𝑘𝑖

𝑛
𝑖=1            (15) 

 

In Eq. (15), n refers to the number of GCMs, m refers to the number of metrics or seasons and i refers to the rank of a GCM 

based on ith GOF. A value of RM near to 1 refers to a better GCM in terms of its ability to mimic the spatial or temporal 20 

characteristics of observations. 

3.4 Identification of Ensemble Members 

The uncertainties in climate projections which arise from GCM structure, assumptions and approximations, initial conditions, 

and parameterization can be reduced by identifying an ensemble of better performing GCMs (Kim et al., 2015). Lutz et al. 

(2016) reported that one or a small ensemble of GCMs is suitable for climate change impact assessment. A number of 25 

studies (Weigel et al., 2010;Miao et al., 2012) have suggested that one GCM is not enough to assess the uncertainties 
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associated with the future climate. Therefore, identification of an ensemble of GCMs is a necessity in climate change impact 

assessments. In the present study, four top-ranked GCMs were considered for the development of MMEs for P, Tmax and Tmin. 

The review of the literature revealed that there is no well-defined guideline on the selection of the optimum number of 

GCMs for the MME and most of the studies considered the first three to ten GCMs ranked according to the descending order 

of their performance for the MME. For instance, in the study by Xuan et al. (2017) over Zhejiang, China, ten top-ranked 5 

GCMs for an MME for precipitation were used. In another study over China, Jiang et al. (2015) developed MMEs for daily 

temperature extremes using the five top-ranked GCMs. In a study over Pakistan, Khan et al. (2018a) considered six common 

GCMs that appeared in the lists of ten top-ranked GCMs for daily temperature and precipitation. Ahmadalipour et al. (2017) 

used the four top-ranked GCMs for simulating daily precipitation and temperature over the Columbia River Basin in the 

Pacific Northwest USA. In the study by Hussain et al. (2018) the three top-ranked GCMs for the development of an MME 10 

for precipitation over Bornean tropical rainforests in Malaysia were used.  

 

In the present study, the ensemble of GCMs was identified in two steps: (1) RM values of GCMs for annual, monsoon, 

winter, pre-monsoon and post-monsoon P, Tmax and Tmin were individually used to derive an overall rank for each GCM, and 

(2) four top-ranked GCMs based on RM values for all climate variables were considered for the ensemble. The selection of 15 

an appropriate set of GCMs considering their skills in different seasons enables the selection of an ensemble which can 

better simulate the observations in different seasons. 

3.5 Development of Multi-model Ensemble Mean 

The uncertainties in projections of a climate variable can be reduced by using its mean time series calculated from an MME 

of better performing GCMs (You et al., 2018). Numerous approaches are documented in the literature for the calculation of 20 

mean time series from an ensemble of better performing GCMs starting from simple arithmetic mean to machine learning 

algorithms (Kim et al., 2015). In the present study, two approaches 1). Simple Mean (SM) and 2). Random Forest (RF) 

(Breiman, 2001) were used for the calculation of mean time series of P, Tmax and Tmin corresponding to an ensemble of four 

top-ranked GCMs. 

3.5.1 Simple Mean (SM) 25 

Simple Mean (SM)-based MMEs were developed by simply averaging the individual P, Tmax and Tmin simulations of the four 

top-ranked GCMs using Eq.16. 

 

𝑆𝑀 =
1

𝑛
∑ 𝐺𝐶𝑀𝑖

𝑛
𝑖=1           (16) 

 30 
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In Eq. 16, n refers to the number of GCMs considered for the development of MMEs which is four in the present study and 

GCMi refers to the simulations of the climate variable of interest (i.e. P, Tmax and Tmin) produced by the ith GCM. 

3.5.2 Random Forest (RF) 

Random Forest (RF) algorithm (Breiman, 2001) was used in the calculation of the mean time series of P, Tmax and Tmin 

corresponding to an MME of four top-ranked GCMs. RF is a relatively new machine learning algorithm widely used in 5 

modelling non-linear relationships between predictors and predictands (Ahmed et al., 2019b). RF algorithm is found to 

perform well with spatial data sets and less prone to over-fitting (Folberth et al., 2019). Most importantly Folberth et al. 

(2019) reported that RF is less sensitive to multivariate correlation. RF is an ensemble technique where regression is done 

using multiple decision trees. RF algorithm uses the following steps in developing regression models. 

 10 

1. A bootstrap resampling method is used to select sample sets from training data (i.e. GCM and observed data). 

2. Classification And Regression Tree (CART) technique is used to develop unpruned trees using the bootstrapped samples. 

3. A large number of trees are developed with the samples selected repetitively from training data so that all training data 

have an equal probability of selection. 

4. A regression model is fitted to each tree and the performance of each tree is assessed. 15 

5. Ensemble simulation is estimated by averaging the predictions of all trees which is considered as the final simulation. 

 

Wang et al. (2018) and He et al. (2016) reported that the performance of RF varies with the number of trees (ntree) and the 

number of variables randomly sampled (mtry) at each split in developing the trees. In those studies, it was observed that RF 

performance increases with the increase in the value of ntree. However, in the current study the performance was not found 20 

to increase significantly in term of root mean square error when the value of ntree was greater than 500. Therefore, ntree was 

set to 500 while the mtry was set to p/3 where p is the number of variables (i.e. 4 GCMs) used for developing RF-based 

MME. 

The MME prediction can be improved by assigning larger weights to the GCMs which show better performance (Sa'adi et al., 

2017). RF regression models developed using historical P, Tmax and Tmin simulations of GCMs as independent variables and 25 

historical observed P, Tmax and Tmin as dependent variables provide weights to the GCMs according to their ability to simulate 

historical observed P, Tmax and Tmin. The “randomForest” package (Breiman, 2006) written in R programming language was 

employed in this study for developing RF-based MMEs. RF-based MMEs were calibrated with the first 70% of the data and 

validated with the rest of the data. 
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4 Results and Discussion 

4.1 Accuracy Assessment of Gridded Precipitation Data 

As a preliminary analysis, the monthly time series of GPCC P, CRU Tmax and CRU Tmin data were validated against the 

monthly time series of observed P, Tmax and Tmin. The validation was performed for the period 1961-2005. In the present 

study, two statistical metrics; Normalized Root Mean Square Error (NRMSE), and modified index of agreement (md) were 5 

used to assess the accuracy of monthly time series of GPCC P, CRU Tmax and CRU Tmin in replicating the mean and the 

variability of monthly time series of observed P, Tmax and Tmin. 

The NRMSE and md values between observed P and GPCC P (pertaining to the grid point closest to the observation station), 

observed Tmax and Tmin with CRU Tmax and Tmin obtained for 17 locations in Pakistan are given in Table 2. Overall, all the 

stations showed low and high NRMSE and md values respectively, indicating that the accuracy of the GPCC P in replicating 10 

observed precipitation and CRU Tmax and CRU Tmin in replicating observed Tmax and Tmin over Pakistan is high. Overall, 

NRMSE values were found in the ranges of 0.09 to 0.970 for P, 0.100 to 0.390 for Tmax, and 0.09 to 0.470 for Tmin. Overall, 

md values were found in the ranges of 0.680 to 0.960 for P, 0.810 to 0.960 for Tmax, and 0.779 to 0.959 for Tmin. 

 

 15 

Table 2. Validation of accuracy of GPCC P and CRU Tmax and Tmin using NRMSE and md 

Station No Station Name 

Precipitation (P) Maximum Temperature (Tmax) Minimum Temperature (Tmin) 

NRMSE md NRMSE md NRMSE md 

1 Karachi 0.530 0.840 0.270 0.880 0.180 0.919 

2 Pasni 0.470 0.890 0.310 0.840 0.260 0.879 

3 Nawabshah 0.740 0.740 0.300 0.850 0.170 0.919 

4 Padidan 0.590 0.780 0.190 0.920 0.150 0.939 

5 Jacobabad 0.520 0.840 0.100 0.960 0.090 0.959 

6 Dalbandin 0.090 0.960 0.140 0.940 0.230 0.889 

7 Kalat 0.970 0.870 0.240 0.900 0.470 0.779 

8 Sibbi 0.590 0.880 0.390 0.810 0.260 0.889 

9 Bahawalnagar 0.530 0.810 0.310 0.899 0.270 0.881 

10 Quetta 0.750 0.760 0.240 0.890 0.120 0.949 

11 Multan 0.730 0.740 0.120 0.950 0.120 0.949 

12 Faisalabad 0.700 0.740 0.210 0.900 0.170 0.919 

13 Lahore 0.710 0.700 0.140 0.940 0.110 0.959 

14 Sargodha 0.790 0.680 0.160 0.930 0.170 0.919 

15 Mianwali 0.720 0.750 0.240 0.890 0.120 0.949 

16 Islamabad 0.450 0.840 0.160 0.930 0.190 0.909 

17 Peshawar 0.690 0.720 0.190 0.920 0.110 0.949 
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4.2 Evaluation and Ranking of GCMs 

SPAEF, FSS, Lambda, Cramer-V, Mapcurves, and KGE between observed (GPCC P, CRU Tmax and Tmin) and GCM 

simulated mean annual, monsoon, winter, pre-monsoon and post-monsoon P, Tmax and Tmin of Pakistan were estimated for 

the period 1961 to 2005. As an example, Table 3 shows the GOF values that depict the performance of each GCM in 5 

simulating GPCC mean annual precipitation. In Table 3, the ranks of GCMs corresponding to each performance metric is 

shown within brackets. GOF values near to 1 refer to the better performance of the GCM of interest. For example, CESM1-

CAM5 has a GOF value of 0.540 for SPAEF, and hence regarded as the best GCM in term of SPAEF, whereas CSIRO-Mk3-

6-0 can be regarded as the poorest GCM which has a GOF value of -0.505 in term of SPAEF. The GOF values for other 

metrics (i.e. FSS, Lambda, Cramer-V, Mapcurves, and KGE) can also be interpreted in the same manner. 10 

 

 

Table 3. GOF values and ranks of GCMs obtained using different spatial metrics for mean annual precipitation. 

GCM SPAEF (Rank) FSS (Rank) Lambda (Rank) Cramer-V(Rank) Mapcurves (Rank) KGE (Rank) 

ACCESS1-0 0.411 (7) 0.659 (24) 0.143 (24) 0.370 (28) 0.244 (29) 0.172 (29) 

ACCESS1-3 0.155 (24) 0.712 (20) 0.107 (30) 0.315 (34) 0.206 (34) 0.310 (15) 

BCC-CSM1-1 0.241 (21) 0.691 (21) 0.143 (24) 0.388 (27) 0.258 (27) 0.082 (33) 

BCC-CSM1.1(m) 0.149 (25) 0.685 (22) 0.214 (13) 0.545 (16) 0.376 (16) 0.304 (16) 

BNU-ESM 0.185 (23) 0.759 (11) 0.179 (18) 0.519 (21) 0.349 (21) 0.233 (26) 

CanESM2 0.250 (20) 0.642 (26) 0.250 (6) 0.547 (15) 0.378 (15) -0.443 (35) 

CCSM4 0.440 (4) 0.798 (5) 0.250 (6) 0.667 (4) 0.525 (4) 0.420 (8) 

CESM1-BGC 0.439 (5) 0.759 (12) 0.214 (13) 0.655 (10) 0.508 (10) 0.337 (12) 

CESM1-CAM5 0.540 (1) 0.840 (1) 0.250 (6) 0.667 (4) 0.525 (4) 0.531 (2) 

CESM1-WACCM 0.430 (6) 0.776 (10) 0.250 (6) 0.656 (9) 0.510 (9) 0.384 (10) 

CMCC-CM -0.255 (34) 0.565 (33) 0.143 (24) 0.496 (24) 0.325 (24) 0.189 (28) 

CMCC-CMS -0.043 (28) 0.637 (28) 0.143 (24) 0.369 (29) 0.244 (28) 0.249 (22) 

CNRM-CM5 0.364 (12) 0.732 (17) 0.250 (6) 0.667 (4) 0.525 (4) 0.314 (14) 

CSIRO-Mk3-6-0 -0.505 (36) 0.321 (36) 0.036 (36) 0.264 (36) 0.179 (36) -1.837 (36) 

EC-EARTH 0.232 (22) 0.756 (13) 0.286 (4) 0.759 (2) 0.642 (2) 0.404 (9) 

FGOALS-g2 0.321 (13) 0.793 (6) 0.179 (18) 0.531 (17) 0.361 (17) 0.362 (11) 

FIO-ESM 0.281 (17) 0.752 (14) 0.214 (13) 0.559 (14) 0.391 (14) 0.283 (19) 

GFDL-CM3 0.387 (8) 0.815 (4) 0.429 (1) 0.782 (1) 0.690 (1) 0.493 (3) 

GFDL-ESM2G 0.307 (14) 0.786 (7) 0.250 (6) 0.667 (4) 0.525 (4) 0.484 (4) 

GFDL-ESM2M 0.297 (16) 0.778 (8) 0.214 (13) 0.436 (26) 0.296 (25) 0.458 (5) 

GISS-E2-H -0.100 (32) 0.616 (31) 0.107 (30) 0.335 (33) 0.220 (33) 0.245 (24) 

GISS-E2-R -0.054 (29) 0.616 (30) 0.107 (30) 0.350 (31) 0.229 (31) 0.236 (25) 



19 

 

HadGEM2-AO 0.454 (3) 0.740 (15) 0.179 (18) 0.520 (20) 0.350 (20) 0.315 (13) 

HadGEM2-CC 0.387 (9) 0.683(23) 0.179 (18) 0.360 (30) 0.236 (30) 0.222 (27) 

HadGEM2-ES 0.371 (11) 0.721 (18) 0.179 (18) 0.530 (18) 0.360 (18) 0.277 (20) 

INMCM4 0.378 (10) 0.777 (9) 0.179 (18) 0.530 (18) 0.360 (18) 0.422 (6) 

IPSL-CM5A-LR -0.054 (30) 0.634 (29) 0.357 (2) 0.590 (12) 0.427 (12) 0.117 (32) 

IPSL-CM5A-MR -0.093 (31) 0.548 (34) 0.357 (2) 0.590 (12) 0.427 (12) -0.183 (34) 

IPSL-CM5B-LR -0.286 (35) 0.538(35) 0.107 (30) 0.350 (31) 0.229 (31) 0.131 (31) 

MIROC-ESM-CHEM 0.273 (18) 0.733(16) 0.214 (13) 0.655 (10) 0.508 (10) 0.303 (17) 

MIROC-ESM 0.258 (19) 0.720 (19) 0.286 (4) 0.677 (3) 0.537 (3) 0.290 (18) 

MIROC5 0.302 (15) 0.828 (3) 0.071 (34) 0.454 (25) 0.285 (26) 0.420 (7) 

MPI-ESM-LR -0.012 (27) 0.639 (27) 0.143 (24) 0.517 (22) 0.346 (22) 0.253 (21) 

MPI-ESM-MR 0.041 (26) 0.653 (25) 0.143 (24) 0.506 (23) 0.335 (23) 0.245 (23) 

MRI-CGCM3 -0.180 (33) 0.572 (32) 0.071 (34) 0.293 (35) 0.194 (35) 0.169 (30) 

NorESM1-M 0.464 (2) 0.833 (2) 0.250 (6) 0.667 (4) 0.525 (4) 0.532 (1) 

 

 

Table 3 shows the ranks attained by GCMs corresponding to different metrics. For example, BCC-CSM1.1 (m) attained 

ranks 25, 22, 13, 16, 16 and 16 in terms of SPAEF, FSS, Lambda, Cramer-V, Mapcurves, and KGE respectively. It was 

observed that CSIRO-Mk3-6-0 is the only GCM which was able to secure the same rank for all metrics. However, 5 

HadGEM2-ES secured rank 18 for four metrics (i.e. FSS, Lambda, Cramer-V, Mapcurves). Several GCMs attained the same 

rank for three metrics (e.g. BCC-CSM1.1(m), CCSM4, CMCC-CM and CMCC-CMS). Cramer-V and Mapcurve showed 

more or less similar ranks for GCMs. Similar results were also seen for other seasons and variables (not presented in the 

manuscript). 

4.3 Overall Ranks of GCMs for Precipitation, Maximum Temperature and Minimum Temperature 10 

The application of various evaluation metrics has yielded different ranks for the same GCM (Ahmadalipour et al., 2017;Raju 

et al., 2017). The ranks attained by GCMs corresponding to different metrics and seasons (annual, monsoon, winter, pre-

monsoon and post-monsoon) were used to calculate the RM values for each GCM. The ranks of GCMs for P, Tmax and Tmin 

are presented in Table 4 along with the RM values. As seen in Table 4, EC-EARTH, BCC-CSM1.1 (m) and CSIRO-Mk3-6-

0 were the most skilful GCMs in reproducing the spatial characteristics of P, Tmax and Tmin respectively. On the other hand, 15 

IPSL-CM5B-LR, CMCC-CM, and INMCM4 were poorest GCMs in reproducing the spatial characteristics of P, Tmax and 

Tmin respectively. 

The better performance of EC-EARTH, BCC-CSM1.1 (m) and CSIRO-Mk3-6-0 in simulating P, Tmax and Tmin over Indo-

Pak sub-continent has also been reported in several past studies. Latif et al. (2018) reported the relatively better performance 

of EC-EARTH, and BCC-CSM1.1 (m) out of 36 CMIP5 GCMs in simulating precipitation over Indo-Pakistan sub-continent 20 

based on spatial correlations. Rehman et al. (2018) conducted a study to assess the performance of CMIP5 GCMs in 
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simulating mean precipitation and temperature over south Asia. The study reported the better performance of EC-EARTH in 

simulating precipitation and CSIRO-Mk3-6-0 in simulating temperature. Khan et al. (2018a) assessed the performance of 31 

CMIP5 GCMs in simulating mean precipitation and temperature over Pakistan using multiple daily gridded datasets and 

identified EC-EARTH as the best GCM for simulating precipitation and CSIRO-Mk3-6-0 for simulating temperature. Better 

performance of CSIRO-Mk3-6-0 in simulating maximum and minimum temperature is also reported in the study by (Ahmed 5 

et al., 2019c). 

 

 

Table 4. Ranks of GCMs for P, Tmax and Tmin based on rating metric values 

GCM P Rank 
 

GCM Tmax Rank 
 

GCM Tmin Rank 

EC-EARTH 0.823 1  BCC-CSM1.1(m) 0.702 1  CSIRO-Mk3-6-0 0.750 1 

NorESM1-M 0.794 2  NorESM1-M 0.663 2  GFDL-ESM2G 0.720 2 

GFDL-CM3 0.714 3  HadGEM2-ES 0.656 3  CMCC-CMS 0.692 3 

CCSM4 0.689 4  IPSL-CM5B-LR 0.630 4  BCC-CSM1.1(m) 0.684 4 

MIROC5 0.685 5  HadGEM2-AO 0.626 5  GFDL-ESM2M 0.681 5 

GFDL-ESM2G 0.673 6  CMCC-CMS 0.616 6  MIROC-ESM-CHEM 0.657 6 

CESM1-CAM5 0.654 7  HadGEM2-CC 0.608 7  NorESM1-M 0.656 7 

HadGEM2-AO 0.651 8  FGOALS-g2 0.600 8  ACCESS1-3 0.656 8 

GFDL-ESM2M 0.643 9  CSIRO-Mk3-6-0 0.594 9  MIROC-ESM 0.654 9 

FGOALS-g2 0.607 10  ACCESS1-0 0.577 10  MIROC5 0.646 10 

MIROC-ESM 0.589 11  IPSL-CM5A-LR 0.566 11  CCSM4 0.631 11 

ACCESS1-0 0.555 12  INMCM4 0.561 12  CESM1-BGC 0.628 12 

ACCESS1-3 0.555 12  GISS-E2-H 0.556 13  CESM1-CAM5 0.595 13 

MIROC-ESM-CHEM 0.532 14  MIROC5 0.551 14  MRI-CGCM3 0.584 14 

HadGEM2-CC 0.531 15  BNU-ESM 0.538 15  CanESM2 0.577 15 

HadGEM2-ES 0.514 16  BCC-CSM1-1 0.534 16  BNU-ESM 0.569 16 

BCC-CSM1-1 0.506 17  GISS-E2-R 0.532 17  FGOALS-g2 0.569 16 

CESM1-WACCM 0.482 18  MPI-ESM-LR 0.532 17  MPI-ESM-MR 0.569 16 

CNRM-CM5 0.480 19 
 

FIO-ESM 0.524 19 
 

MPI-ESM-LR 0.566 19 

CESM1-BGC 0.467 20  CESM1-WACCM 0.522 20  EC-EARTH 0.506 20 

INMCM4 0.464 21  ACCESS1-3 0.520 21  IPSL-CM5A-MR 0.490 21 

FIO-ESM 0.462 22  GFDL-ESM2M 0.514 22  HadGEM2-ES 0.487 22 

MPI-ESM-MR 0.437 23  MPI-ESM-MR 0.513 23  ACCESS1-0 0.481 23 

IPSL-CM5A-LR 0.426 24  CCSM4 0.466 24  FIO-ESM 0.446 24 

CanESM2 0.406 25  CESM1-BGC 0.459 25  CMCC-CM 0.428 25 

MPI-ESM-LR 0.395 26  CanESM2 0.442 26  GISS-E2-R 0.418 26 

BCC-CSM1.1(m) 0.394 27  MIROC-ESM 0.442 26  GISS-E2-H 0.416 27 

IPSL-CM5A-MR 0.382 28  CNRM-CM5 0.434 28  HadGEM2-AO 0.416 27 
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CMCC-CMS 0.381 29  EC-EARTH 0.427 29  IPSL-CM5A-LR 0.416 27 

MRI-CGCM3 0.381 29  MIROC-ESM-CHEM 0.427 29  BCC-CSM1-1 0.413 30 

CMCC-CM 0.353 31  GFDL-ESM2G 0.416 31  HadGEM2-CC 0.413 30 

BNU-ESM 0.337 32  GFDL-CM3 0.398 32  CNRM-CM5 0.361 32 

GISS-E2-H 0.319 33  CESM1-CAM5 0.371 33  CESM1-WACCM 0.356 33 

CSIRO-Mk3-6-0 0.273 34  IPSL-CM5A-MR 0.326 34  IPSL-CM5B-LR 0.275 34 

GISS-E2-R 0.253 35  MRI-CGCM3 0.319 35  GFDL-CM3 0.231 35 

IPSL-CM5B-LR 0.144 36  CMCC-CM 0.249 36  INMCM4 0.226 36 

 

 

The spatial patterns of mean annual P, Tmax and Tmin simulated by the GCMs ranked 1 and 36 were compared with the spatial 

patterns of GPCC P and CRU Tmax and Tmin and presented in Figure 3 as an example. In Figure 3 it was seen that the GCMs 

that attained rank 1 (the best performing GCM) showed spatial patterns more or less similar to that of GPCC P and CRU 5 

Tmax and Tmin. On the other hand, GCMs ranked 36 (the worst-performing GCM) showed large differences compared to the 

spatial patterns of GPCC P and CRU Tmax and Tmin. Figure 3 clearly shows that GCMs which attained rank 36 under-

estimated the precipitation and temperature over a large region in the study area. 
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Figure 3. Spatial patterns of (a) GPCC precipitation, (b) CRU maximum temperature, (c) CRU minimum temperature, (d - f) 

GCM ranked 1 and (g - i) GCM ranked 36 for mean annual precipitation, maximum and minimum temperature for the period 

1961 to 2005. 

 5 

 

4.4 Identification of Ensemble Members 

Based on the criteria mentioned in Section 3.4, ranks of each variable were estimated and then the GCMs were ranked based 

on the overall RM values. Table 5 shows the overall ranks of the 36 GCMs considered in this study. The four top-ranked 

GCMs; NorESM1-M, MIROC5, BCC-CSM1-1 and ACCESS1-3 that are indicated in bold text in Table 5 were selected as 10 

the members of the ensemble for P, Tmax and Tmin over Pakistan. 
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Table 5. Overall ranks of GCMs for the identification of ensemble members 

GCM P Rank Tmax Rank Tmin Rank Overall RM Value Overall Rank 

NorESM1-M 2 2 7 0.898 1 

MIROC5 5 14 10 0.731 2 

BCC-CSM1-1 17 16 30 0.417 3 

ACCESS1-3 10 8 16 0.685 4 

GFDL-ESM2M 9 22 5 0.667 5 

CMCC-CMS 29 6 3 0.648 6 

CCSM4 4 24 11 0.639 7 

GFDL-ESM2G 6 31 2 0.639 8 

HadGEM2-AO 8 5 27 0.630 9 

FGOALS-g2 12 21 8 0.620 10 

HadGEM2-ES 16 3 22 0.620 11 

CSIRO-Mk3-6-0 34 9 1 0.593 12 

ACCESS1-0 12 10 23 0.583 13 

MIROC-ESM-CHEM 14 29 6 0.546 14 

MIROC-ESM 11 26 9 0.574 15 

EC-EARTH 1 29 20 0.537 16 

HadGEM2-CC 15 7 30 0.519 17 

CESM1-CAM5 7 33 13 0.509 18 

CESM1-BGC 20 25 12 0.472 19 

IPSL-CM5A-LR 24 11 27 0.426 20 

MPI-ESM-LR 26 17 19 0.426 21 

MPI-ESM-MR 23 23 16 0.426 22 

BCC-CSM1.1(m) 27 1 4 0.704 23 

BNU-ESM 32 15 16 0.417 24 

FIO-ESM 22 19 24 0.398 25 

CanESM2 25 26 15 0.389 26 

INMCM4 21 12 36 0.361 27 

GFDL-CM3 3 32 35 0.352 28 

CESM1-WACCM 18 20 33 0.343 29 

GISS-E2-H 33 13 27 0.324 30 

IPSL-CM5B-LR 36 4 34 0.315 31 

GISS-E2-R 35 17 26 0.278 32 

MRI-CGCM3 29 35 14 0.278 33 

CNRM-CM5 19 28 32 0.269 34 

IPSL-CM5A-MR 28 34 21 0.231 35 

CMCC-CM 31 36 25 0.148 36 
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The performances of the four top-ranked GCMs (i.e. GCMs ranked 1, 2, 3 and 4) and four lowest-ranked GCMs (i.e. GCMs 

ranked 33, 34, 35, and 36) were visually evaluated using scatter plots shown in Figures 4 and 5, pertaining to mean annual P, 

Tmax and Tmin as example. In order to plot the scatter, the P, Tmax and Tmin simulated by each GCM and GPCC P, CRU Tmax 

and CRU Tmin pertaining to all grid points was averaged (spatially averaged precipitation and temperature). As expected, 5 

GCMs that attained ranks 1 to 4 showed a close agreement with the GPCC P, CRU Tmax and CRU Tmin compared to that of 

GCMs which attained ranks 33, 34, 35, and 36. The same can also be noticed based on md values provided in each figure 

where top-ranked GCMs showed higher md values compared to the lowest-ranked GCMs. The scatter plots in Figure 5 

indicated that the least skilful GCMs underestimated mean annual P, Tmax and Tmin. Over and underestimation of P, Tmax and 

Tmin can also be seen in the scatter plots of GCMs ranked 1, 2, 3 and 4. However, their scatter was found much aligned with 10 

the 45-degree line compared to that of GCMs ranked 33, 34, 35, and 36. Therefore, it is argued that the GCMs ranked 1, 2, 3 

and 4 can be used as an ensemble for the simulation of P, Tmax and Tmin. 
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Figure 4. Scatter of spatially averaged annual P, Tmax and Tmin of four top-ranked GCMs plotted against GPCC P, CRU Tmax 

and CRU Tmin for the period 1961 to 2005. 
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Figure 5. Scatter of spatially averaged annual P, Tmax and Tmin of four lowest ranked GCMs plotted against GPCC P, CRU 

Tmax and CRU Tmin for the period 1961 to 2005. 
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Some of the GCMs identified for the ensemble over Pakistan in this study have also been identified as better-performing 

GCMs over neighboring countries such as India and Iran. Jena et al. (2015) used Z-value test, correlation coefficient, relative 

precipitation comparison test, probability function comparison, root mean square error, and Student’s t-test to evaluate the 

performance of 20 CMIP5 GCMs in simulating Indian summer monsoon. They found that CCSM4, CESM1-CAM5, GFDL-

CM3, and GFDL-ESM2G perform better compared to the other GCMs. Prasanna (2015) conducted a study to assess the 5 

performance of 12 CMIP5 GCMs using mean and coefficient of variation over South Asia (5N–35N; 65E–95E) and 

identified ACCESS, CNRM, HadGEM2-ES, MIROC5, Can-ESM, GFDL-ESM2M, GISS, MPI-ESM and NOR-ESM as 

better-performing GCMs. Sarthi et al. (2016) evaluated the performance of 34 CMIP5 GCMs using Taylor diagram, skill 

score, correlation and RMSE. They found that BCC-CSM1.1(m), CCSM4, CESM1(BGC), CESM1(CAM5), 

CESM1(WACCM), and MPI-ESM-MR were able to better capture the Indian summer monsoon precipitation. Afshar et al. 10 

(2016) applied Nash–Sutcliffe efficiency, percent of bias, coefficient of determination, and the ratio of RMSE to standard 

deviation of observations for assessing the performance of precipitation simulations of 14 CMIP5 GCMs over a mountainous 

catchment in north-eastern Iran which borders Pakistan. They recommend GFDL-ESM2G, IPSL-CM5A-MR, MIROC-ESM, 

and NorESM1-M as better GCMs. Mahmood et al. (2018) used correlation coefficient, the error between observed and GCM 

mean and standard deviation, and root mean square error to assess the performance of CMIP5 GCMs in simulating 15 

precipitation over Jhelum river basin, Pakistan and reported the good performance of GFDL-ESM2G, HadGEM2-ES, 

NorESM1-ME, CanESM2, and MIROC5. Latif et al. (2018) reported better performance of HadGEM2-AO, INM-CM4, 

CNRM-CM5, NorESM1-M, CCSM4 and CESM1-WACCM out of 36 GCMs in simulating precipitation over Indo-Pakistan 

region based on partial correlation. The above findings indicated that the GCMs identified in this study for the ensemble 

were also found to perform well in the other studies conducted over nearby countries/regions. 20 

4.5 Multi-model Ensemble (MME) Mean 

The performance of GCM ensembles identified in Section 4.4 was validated considering two types of MME means. The 

MME mean of P, Tmax and Tmin of the four top-ranked GCMs was calculated with (1). Simple Mean (SM) and (2). Random 

Forest (RF). In the application of SM, the time series of P, Tmax and Tmin of the four top-ranked GCMs were averaged to 

obtain the MME while in the application of RF, the time series of P, Tmax and Tmin of the four top-ranked GCMs were 25 

considered as inputs to the RF-based MME. 

In Figure 6, the spatial patterns of P, Tmax and Tmin corresponding to both MMEs derived with SM and RF were compared 

with those of GPCC P, CRU Tmax and CRU Tmin. The spatial patterns of P, Tmax and Tmin were created using ordinary kriging 

technique. Ordinary kriging was selected as it was found to perform better than other interpolation methods over Pakistan 

(Ahmed et al., 2014). As seen in Figure 6, both MMEs captured the spatial patterns of observed P, Tmax and Tmin to a good 30 

degree. However, the differences can be seen in both MMEs in replicating the spatial pattern of GPCC P, CRU Tmax and 

CRU Tmin. The visual comparison provided in Figure 6 also indicated that RF-based MME performs better than the MME 

based on SM. SM-based MME was found to underestimate annual precipitation in the south-western and the northern 
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regions, while the RF-based MME was found to produce a spatial pattern almost identical to that of GPCC precipitation. A 

similar result can also be seen for Tmax and Tmin patterns where RF-based MME showed better performance. The better 

performance of RF in generating MMEs has also been reported in several other studies. Salman et al. (2018a) generated 

MME mean for maximum and minimum temperature over Iraq using four CMIP5 GCMs and reported that RF-based MME 

performed better compared to individual GCMs. Likewise, Wang et al. (2018) conducted a comprehensive study to evaluate 5 

the performance of different machine learning techniques including RF, support vector machine, Bayesian model averaging 

and the arithmetic ensemble mean in generating MMEs. They considered 33 CMIP5 GCMs for precipitation and temperature 

over 108 stations located in Australia and concluded that RF and SVM can generate better performing MMEs compared to 

other techniques. 

 10 
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Figure 6. Spatial patterns of (a) GPCC precipitation, (b) CRU maximum temperature, (c) CRU minimum temperature, (d – f) 

MME-based on Simple Mean (SM) and (g - i) MME-based on Random Forest (RF) for mean annual precipitation, maximum 

and minimum temperature for the period 1961 to 2005. 

 

 5 

The performance of MME ensembles was further evaluated using scatter plots shown in Figure 7. Scatter plots were 

developed using spatially averaged GPCC P, CRU Tmax and CRU Tmin and MME annual P, Tmax and Tmin at all grid points for 

the period 1961-2005. According to scatter plots in Figure 7, RF-based MME performed significantly better compared to its 

counterpart SM-based MME in simulating P, Tmax and Tmin. 

 10 
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Figure 7. Scatter of spatially averaged annual P, Tmax and Tmin of MMEs developed with Simple Mean (SM) and Random 

Forest (RF) using four top-ranked GCMs plotted against GPCC P, CRU Tmax and CRU Tmin for the period 1961 to 2005. 

 

In this study performance of GCMs was assessed based on their ability to simulate past observed P, Tmax and Tmin and hence 5 

the best performing GCMs were identified and used for the development of MMEs. However, it is found that past and future 

climate may have a weak association hence it is not guaranteed that a GCM performs well in the past will produce reliable 

results in future (Knutti et al., 2010). In other words, the best GCMs selected for the MMEs considering their ability to 
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simulate past climate may not be the best in the future under changing climate (Ruane and McDermid, 2017;Ahmed et al., 

2019c). This is due to the large uncertainties associated with GHG emission scenarios and GCMs. As a solution to this 

limitation, Salman et al. (2018a) selected an ensemble of GCMs based on past performance as well as the degree of 

agreement between their future projections. The study detailed in the present manuscript can be repeated in future to select 

GCMs considering their past performance and the degree of agreement in their future projections. 5 

In the present study, the MME of P, Tmax and Tmin were developed by considering four top-ranked GCMs. In the past, MMEs 

were developed considering 3 to 10 top-ranked GCMs. However, none of the past studies investigated the performance of 

MMEs by varying the number of GCMs used in developing them in MME. The performance of an MME can be sensitive to 

the choice of the number of GCMs. Hence, in future, a study should be conducted to investigate the impact of the number of 

GCMs used for the development of the MME. 10 

Only RF algorithm was used in this study for the development of MMEs. Other machine learning algorithms (e.g. Artificial 

Neural Networks, Support Vector Machine, Relevance Vector Machine, K-nearest neigbour, Extreme Learning Machine) 

can also be used for the development of MMEs. A comparison of the performance of MMEs developed with different 

machine learning algorithms can assist in the identification of the pros and cons of different algorithms in relation to 

development of MMEs. 15 

In the present study, GCM ranking and MME development was conducted only considering P, Tmax and Tmin pertaining to 

annual, monsoon, winter, pre-monsoon and post-monsoon seasons. However, several studies reported that the ranking of 

GCMs based on a variety climate variables may assist in the identification of a more dependable set of GCMs for an MME 

(Johnson and Sharma, 2012;Xuan et al., 2017). In future, the ranking of GCMs can be conducted considering a number of 

climate variables such as precipitation, mean temperature, maximum temperature, minimum temperature, wind speed, 20 

evapotranspiration and solar radiation. 

5. Conclusions 

This study quantitatively and qualitatively assessed the spatial accuracy of 36 CMIP5 GCMs in simulating annual, monsoon, 

winter, pre-monsoon, and post-monsoon precipitation, maximum and minimum temperature over Pakistan for the period 

1961-2005. The quantitative evaluation was conducted using six state-of-the-art spatial metrics; SPAtial EFficiency, 25 

Fractions Skill Score, Goodman–Kruskal's lambda, Cramer’s V, Mapcurves, and Kling-Gupta efficiency and qualitative 

evaluation was done using scatter plots. A comprehensive rating metric was used to derive the overall ranks of GCMs based 

on their ranks pertaining to annual, monsoon, winter, pre-monsoon, and post-monsoon precipitation, maximum and 

minimum temperature. 

 30 

Following conclusions were drawn from this study: 
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1) The low Normalized Root Mean Square Error (NRMSE), and high modified index of agreement (md) confirmed the 

close agreement of monthly Global Precipitation Climatology Center (GPCC) precipitation and Climatic Research 

Unit (CRU) temperature with the observed precipitation and temperature extracted from 17 stations located in 

different climate zones in Pakistan. The low NRMSE and high md values of GPCC precipitation and CRU 

temperature can be associated with extensive data quality control measures and the use of a large number of stations 5 

for the development of GPCC precipitation and CRU temperature data sets (Schneider et al., 2013;Harris et al., 

2014). 

 

2) Ranks of the 36 GCMs derived based on all spatial metrics; SPAtial EFficiency, Fractions Skill Score, Goodman–

Kruskal's lambda, Cramer’s V, Mapcurves, and Kling-Gupta efficiency for the period 1961-2005 were found 10 

mostly similar to each other during a given season (i.e. annual, monsoon, winter, pre-monsoon, and post-monsoon) 

for a given climate variable (i.e. precipitation, maximum and minimum temperature). However, it was noticed that 

different GCMs performed significantly differently in simulating different variables (i.e. precipitation, maximum 

and minimum temperature).  

 15 

3)  EC-EARTH, BCC-CSM1.1 (m) and CSIRO-Mk3-6-0 were identified as the most skilful GCMs while IPSL-CM5B-

LR, CMCC-CM, and INMCM4 were identified as the least skilful GCMs in simulating precipitation, maximum and 

minimum temperature over Pakistan, respectively. The overall ranks of GCMs based on comprehensive rating 

metric revealed that NorESM1-M, MIROC5, BCC-CSM1-1 and ACCESS1-3 are the most suitable GCMs for 

simulating all three climate variables (i.e. precipitation, maximum and minimum temperature) over Pakistan. 20 

 

4) The spatial patterns of precipitation, maximum and minimum temperature of four top-ranked GCMs and their MME 

mean precipitation, maximum and minimum temperature generated using Simple Mean (SM) and Random Forest 

(RF) for annual, monsoon, winter, pre-and post-monsoon seasons showed more or less similar spatial patterns to 

those of GPCC precipitation and CRU maximum and minimum temperature. Moreover, the comparison of MME 25 

mean precipitation, maximum and minimum temperature corresponding to annual, monsoon, winter, pre-and post-

monsoon seasons generated using Simple Mean (SM) and Random Forest (RF) clearly showed the superiority of 

Random Forest in replicating the spatial patterns of the GPCC precipitation and CRU maximum and minimum 

temperature. 

 30 
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