
 

Anonymous Referee #3 

 

General Comments 

In this manuscript, authors evaluated precipitation data from 20 CMIP5 GCMs and selected four better-performing 

CMIP5 GCMs based on their spatial performance against observed precipitation (GPCC) during the historical period 

(1961-2005). To evaluate the skill of model precipitation (CMIP5 GCMs) against observed precipitation (GPCC), 

they used six spatial metrics (SPAEF, Goodman-Kruskal’s lambda, Fractions Skill Score, Cramer’s V, Mapcurves, 

and Kling-Gupta efficiency). Finally, they generated multi-model ensemble mean (MME) of precipitation of four 

selected GCMs using Random forest regression and simple mean method. The manuscript is written fairly well, and 

the idea of spatial assessment of CMIP5 GCMs for multi-model ensemble mean is appreciated. However, the 

execution of manuscript seems sloppy and hasty. There are numerous methodological, data, explanation, reporting, 

and citation issues in the manuscript. Thus I recommend major revisions be required before publication. 

Reply 

Thank you for your highly constructive comments and suggestions on our manuscript. Your constructive comments 

and suggestions helped us to improve the quality of the paper. We have carefully addressed all your comments in the 

revision of the paper. Revised text is highlighted in red. 

 

Major issues: 

Comment 1 

Error and unexplained parameters in the formula of matrices: I have many doubts about spatial assessment methods. 

Authors need to explain all six methods clearly and correctly.  

a) In Goodman-Kruskal’s lambda, how many classes you have taken in the contingency matrix? Please mention the 

number of classes and explain- Are these classes sufficient to explain spatial variability of rainfall or measure the 

matrix accurately? Did you consider only one annual map to estimate the lambda value for each model? If yes, then 

there may be many years those have low or high bias but not captured in the annual mean map. You need to estimate 

lambda value for each year or seasonal map. What is the maxj (or maxj)? What is the value of m and n? 

Reply a: 

Thanks for your comment. We have considered seven classes (categories) in the contingency matrix following the 

study by Demirel et al. (2018). We have addressed the above issues as follows. 



“Goodman–Kruskal's lambda also known as Lambda coefficient (𝜆) is used to measure the nominal/categorical 

association between categorical maps (Goodman and Kruskal, 1954). Lambda coefficient (𝜆) varies between 0 and 1, 

where a value closer to 1 refers to a higher similarity between the map of model simulations and that of observations 

of P, Tmax and Tmin. The Lambda (𝜆) coefficient was calculated using Eq. (9), where 𝑚𝑎𝑥𝑗  is the number of classes 

(categories) in observed and simulated maps, 𝑐𝑖𝑗  is a contingency matrix (describes the relationships between the 

data classes), 𝑖 and 𝑗 are the classes in observed and simulated maps, 𝑚 represent the number of classes in observed 

and simulated maps respectively. In the present study, seven classes in the contingency matrix were used by 

following the study by Demirel et al. (2018). The “DescTools” package (Signorell, 2016) written in R programming 

language was employed in this study for estimating the nominal/categorical association between observed and 

simulated maps. 

 

𝜆 =
∑ 𝑚𝑎𝑥𝑗𝑐𝑖𝑗

𝑚
𝑖=1 −𝑚𝑎𝑥𝑗 ∑ 𝑐𝑖𝑗

𝑚
𝑖=1
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         (9) 

 

Regarding the calculation of Lambda value, we have calculated the Lambda value for year and seasons separately 

and then an average value was considered for the whole study area.  

We have addressed the above issue in section 3.1 of the revised manuscript as follows. 

3.2 GCM Performance Assessment 

“SPAtial EFficiency, Fractions Skill Score, Goodman–Kruskal's lambda, Cramer’s V, Mapcurves, and Kling-Gupta 

efficiency were individually applied for each year from 1961 to 2005 to mean annual, monsoon, winter, pre-

monsoon, and post-monsoon precipitation, maximum and minimum temperature. Later, the GOF values of each year 

were temporally averaged to obtain a value for the entire study area. The details of the above spatial metrics are 

given below.” 

 

 

 b) In the fraction skill score, there should Nx*Ny in the palace of N. Roberts and Lean,(2008) used Nx*Ny. It will 

affect the final results. Please explain it. 

Reply b:  

Thanks for the comment, we used “verification” package (Pocernich, 2006) written in R programming language for 

the calculation of FSS. Verification package follows the equations used in Roberts and Lean (2008). Therefore, we 

have revised FSS equations as below. 



 

3.2.2 Fractions Skill Score 

The Fractions Skill Score (FSS) proposed by (Roberts and Lean, 2008) is another measure used for the assessment 

of spatial agreement between model simulations and observations. FSS varies between 0 and 1 where a value closer 

to 1 refers to higher agreement between observed and simulated data. In this study, FSS between observed and GCM 

simulated data was computed using Eq. (6).  

 

𝐹𝑆𝑆 = 1 −
𝑀𝑆𝐸(𝑛)

𝑀𝑆𝐸(𝑛)𝑟𝑒𝑓
          (6) 

 

In Eq. (6) MSE refers mean square error and is calculated using Eq. (7) and (8). 

 

𝑀𝑆𝐸(𝑛) =
1
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∑ .
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In Eq. (7) and (8) 𝑁𝑥 is the number of columns, 𝑁𝑦 is the number of rows in a map (observed or simulated), 𝑂 and 

𝑀 are observed and simulated data fractions respectively. The “verification” package (Pocernich, 2006) written in R 

programming language was employed in this study for estimating FSS values. 

 

c) In Cramer’s V, you have taken the wrong formula. There should be N*(min(m-1,n-1)), but you have taken 

N*(min(m,n)-1. It will also affect your final selection.  

Reply c: 

We agree that Cramér's V is computed by taking the square root of the chi-squared statistic divided by the sample 

size and the minimum dimension minus 1. Both these expression do the same action. Let’s assume m=34 and n=32, 

thus min(m,n)-1=31 and also min(m-1,n-1)=31. The equation of Cramer’s V used in the present study is also same 

as the one used in the study by Rees (2008). The text was revised as follows. 

 



“Cramer’s V (Cramér, 1999) statistic is a Chi-square-test-based measure which is used in assessing spatial 

agreement between observations and model simulations (Zawadzka et al., 2015). Its value ranges between 0 and 1 

and a closer the value to 1 the better the agreement. Cramer’s V is calculated using Eq. (10). 

 

𝑉 = √
𝑥2

𝑁(min(𝑚,𝑛)−1
          (10) 

 

where, 𝑥2 is Chi-Square, N is the grand total of observations, m is the number of rows and n is the number of 

columns. In this exercise m = 42 (number of rows of data) and n = 2 (observed and modelled precipitation). The 

“DescTools” package (Signorell, 2016) written in R programming language was employed in this study for 

calculating Cramer’s V values.”  

 

d) In Mapcurves method, did you classify your map in the different range of rain? If yes, how many classes you 

have taken? Did you calculate Y value for each month/ season/year? It should be calculated for each year (1961-

2005) between model and GPCC data in the case of annual values. 

Reply d: 

Yes, we have classified our data into seven classes and calculated the map curve value for each year and each season 

and later an average value was considered for the whole study area. We have addressed the issue as follows. 

“Mapcurves is another statistical measure, developed by Hargrove et al. (2006) for the measurement of similarity 

between categorical maps. Mapcurves quantifies the degree of concordance between two maps. The value of 

Mapcurves can vary from 0 to 1 (perfect agreement). In the present study, the degree of concordance between the 

historical observed P, Tmax and Tmin map and each of the GCM simulated P, Tmax and Tmin maps was determined 

using Eq. (11) where, 𝑀𝐶𝑋 refers the Mapcurves value, A is the total area of a given class X on the map being 

compared, B is the total area of a given class Y on the observed map, C is the interesting area between X and Y 

when the maps are overlaid and n is the number of classes in the reference map. 

𝑀𝐶𝑋 = ∑ [(
𝐶

𝐴
∙

𝐶

𝐵
)]𝑛

𝑌=1            (11) 

In this study the function “mapcurves(x,y)” available in “sabre” package (Nowosad and Stepinski, 2018) written in 

R programing language was used for estimating mapcurves values. In that function x, and y are vectors representing 

categorical values of categorical values of historical observed data (e.g. GPCC precipitation) and categorical values 

of simulated data by a GCM, respectively.” 

 



 

 e) In Kling-Gupta efficiency, please check Demirel et al., 2018 paper. They have taken different formulas for beta 

and gamma.  

Reply e: 

Thanks, we rechecked the equations with the original paper related to Kling-Gupta Efficiency and found that the 

equations in our manuscript are correct.  

 

f) Why did you choose these six methods? What are the limitations of each method? Please explain. 

Reply f: 

The study by Rees (2008) inspired us to test different spatial metrics in our GCM selection study. Furthermore, these 

metrics have been also used in other studies (Demirel et al., 2018;Koch et al., 2018;Rees, 2008). We have added a 

line on page 2, line 15 of introduction section as follows. 

“These metrics were selected based on their recent applications in spatial performance assessment of models 

(Demirel et al., 2018;Koch et al., 2018;Rees, 2008).” 

The limitations of these metrics are reported in Demirel et al. (2018) as follows. 

“SPAEF is noted as very discriminative metric in selecting different raster maps whereas other metrics e.g. FSS, 

Cramer’s V (Demirel et al., 2018;Koch et al., 2018) are tolerant (less sensitive). This leads to different results in the 

spatial calibration of models.  

 

Comment 2 

Error in rating metrics formula: (P10, L10) In this formula, rank varies from 1 to 6 (n=6) but it should be 1 to 20 

(model=20) for each matrix. Please explain this. 

 

Reply 

Sorry for the mistake; we have made the necessary correction as follows. 

 

“The overall ranks of GCMs based on different GOFs were obtained for each season separately using Eq. (15). 

 



𝑅𝑀 = 1 −
1

𝑛𝑚
∑ 𝑟𝑎𝑛𝑘𝑖

𝑛
𝑖=1          (15) 

 

In Eq. (15), n refers to the number of GCMs, m refers to the number of metrics or seasons and i refers to the rank of 

a GCM based on ith GOF. A value of RM near to 1 refers to a better GCM in terms of its ability to mimic the spatial 

or temporal characteristics of observations.” 

 

 

Comment 3 

Pre-monsoon and Post-monsoon seasons: Why did you not consider the pre and post monsoon season for the 

analysis and during the overall rank. These seasons will affect significantly in the overall ranking. I recommend to 

estimate rank month-wise That will improve the results significantly and should not provide the same weight to each 

month. Here, you provided the same weight to annual, monsoon, and winter rank (during overall rank). Why? 

Reply 

Thanks for your suggestion, we have revised whole analysis by considering pre-monsoon and post monsoon along 

with annual, monsoon and winter seasons. Besides precipitation, we also included maximum and minimum 

temperature for the selection of GCMs. When different seasons and climate variable were considered it significantly 

changed the ranks. Large uncertainties are associated in GCM outputs at monthly or finer timescales. Therefore, 

selections of GCMs are generally not done based on month-wise ranking. GCMs are generally ranked based on their 

capability of producing present-day annual and seasonal climatology. This has been mentioned in the revised 

manuscript as follows. 

 

“GCMs are faltered by the uncertainty in their outputs at monthly or finer timescales such as daily or sub-daily (Xue 

et al., 2007;Onyutha et al., 2016) (Xue et al., 2007; Onyutha et al., 2016). Therefore, the performances of GCMs are 

generally evaluated according to their capability of producing present-day mean seasonal cycles, interannual 

variability, and spatial distribution of climatology at regional or local scales (Meher et al., 2017;Das et al., 2018) 

(Miao et al. 2012; Fu et al. 2013; Das et al. 2016; Meher and Das, 2017).” 

 

Comment 4 

Inconsistency in spatial resolution: You should consider the same spatial resolution to compare the maps or data 

sample. In the manuscript, observation data (GPCC) are available at 0.5◦ resolution and model data are prepared at 

2◦ resolution. Model data should be regridded at 2◦. 



Reply 

In order to avoid the confusion, we have added following text to section 2.2.1 of the revised manuscript as follows. 

“Monthly precipitation data simulated by the 36 CMIP5 GCMs for ensemble member r1i1p1 run were extracted 

from the IPCC data distribution center (http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html) 

for period 1961-2005. The modelling centres, names of GCMs and spatial resolution of each of the selected GCMs 

are provided in Table 1. In order to have a common spatial resolution, precipitation, maximum and minimum 

temperature data obtained from different GCMs and GPCC and CRU databases were interpolated into a common 

2o×2o grid using bilinear interpolation.” 

 

 

Comment 5 

Random Forest Method: Please explain the method and weight value. 

Reply 

Thanks for the comment, we have added a new section 3.5.2 for Random Forest description as shown below. 

3.5.2 Random Forest (RF) 

Random Forest (RF) algorithm (Breiman, 2001) was used in the calculation of the mean time series of P, Tmax and 

Tmin corresponding to an MME of four top ranked GCMs. RF is a relatively new machine learning algorithm widely 

used in modelling non-linear relationships between predictors and predictands (Ahmed et al., 2019b). RF algorithm 

is found to perform well with spatial data sets and less prone to over-fitting (Folberth et al., 2019). Most importantly 

Folberth et al. (2019) reported that RF is less sensitive to multivariate correlation. 

RF is an ensemble technique where regression is done using multiple decision trees. RF algorithm uses the following 

steps in regression. 

1. A bootstrap resampling method is used to select sample sets from training data. 

2. Classification And Regression Tree (CART) technique is used to develop unpruned trees using the bootstrap 

sample. 

3. A large number of trees are developed with the samples selected repetitively from training data so that all 

training data have equal probability of selection. 

4. A regression model is fitted for all the trees and the performance of each tree is assessed. 

5. Ensemble prediction is estimated by averaging the predictions of all trees which is considered as the final 

prediction. 

http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html


Wang et al. (2017a) and He et al. (2016) reported that the performance of RF varies with the number of trees (ntree) 

and the number of variables randomly sampled at each split in developing the trees (mtry). It was observed that RF 

performance increases with the increase in ntree. However, in the present study the performance was not found to 

increase significantly in term of root mean square error when the ntree was greater than 500. Therefore, ntree was 

set to 500 while the mtry was set to p/3 where p is the number of variables (i.e. GCMs) used for developing RF-

based MME. 

The MME prediction can be improved by assigning larger weight to the GCMs which show better performance 

(Sa'adi et al., 2017). RF regression models developed using historical P, Tmax and Tmin simulations of GCMs as 

independent variable and historical observed P, Tmax and Tmin as dependent variable provide weights to the GCMs 

according to their ability to simulate historical observed P, Tmax and Tmin. 

The “Random Forest” package written in R programming language was employed in this study for developing RF-

based MMEs. RF-based MMEs were calibrated with the first 70% of the data and validated with the rest of the data. 

 

 

Comment 6 

Increase the number of CMIP5 models in the study: Authors used only 20 models for the current study and said all 

four RCP data available for 20 models. However, there is no use of RCP data in the analysis. Hence, they can get 

historical data for more than 35 CMIP5 GCMs. That will increase the scope and use of this study. I recommend they 

should use the maximum number of models. 

Reply 

Thanks for your suggestion. We have revised whole analysis by considering precipitation, maximum and minimum 

temperature data obtained from 36 CMIP5 GCMs.  

 

 

Comment 7 

Selection of better performing models should be based on at least precipitation and temperature: In the manuscript, 

authors used only precipitation variable to select better performing models, but there are many models under CMIP5 

those have low projection skill in temperature data and high skill in precipitation. Hence, there is a possibility of the 

poor skill of temperature projection in the selected GCMs. Moreover, most of the studies in the hydrology and earth 

science commonly use precipitation and temperature variables. Therefore, they should include the temperature 



variable in the analysis and select the models based on the high skill in both (Precipitation and temperature) 

variables. 

Reply 

Following your suggestion, we have selected the GCMs based on annual, monsoon, winter, post and pre-monsoon 

precipitation, maximum and minimum temperature over Pakistan. The revised results are given below. 

 

4.2 Evaluation and Ranking of GCMs  

The SPAEF, FSS, Lambda, Cramer-V, Mapcurves, and KGE between observed (GPCC P, CRU Tmax and Tmin) and 

GCMs simulated mean annual, monsoon, winter, pre-monsoon and post-monsoon P, Tmax and Tmin of Pakistan were 

estimated for the period 1961 to 2005. As an example, Table 3 shows the GOF values that define the performance of 

each GCM in simulating GPCC mean annual precipitation. In Table 3 ranks of GCMs corresponding to each 

performance metric is shown within brackets. The GOF values near to 1 refer to the better performance of the GCM 

of interest. For example, CESM1-CAM5 has a GOF value of 0.540 for SPAEF, and hence regarded as the best GCM 

in term of SPAEF, whereas CSIRO-Mk3-6-0 can be regarded as the poorest which has a GOF value of -0.505 in 

term of SPAEF. The GOF values for other metrics (i.e. FSS, Lambda, Cramer-V, Mapcurves, and KGE) can be 

interpreted in the same manner. 

 

 

 

 

 

 

 

 

 

 

 

 



Table 3. GOF values of GCMs obtained using different spatial metrics for mean annual precipitation. 

GCM 
SPAEF 

(Rank) 

FSS 

(Rank) 

Lambda 

(Rank) 

Cramer-

V(Rank) 

Mapcurves 

(Rank) 

KGE 

(Rank) 

ACCESS1-0 0.411(7) 0.659(24) 0.143(24) 0.370(28) 0.244(29) 0.172(29) 

ACCESS1-3 0.155(24) 0.712(20) 0.107(30) 0.315(34) 0.206(34) 0.310(15) 

BCC-CSM1-1 0.241(21) 0.691(21) 0.143(24) 0.388(27) 0.258(27) 0.082(33) 

BCC-CSM1.1(m) 0.149(25) 0.685(22) 0.214(13) 0.545(16) 0.376(16) 0.304(16) 

BNU-ESM 0.185(23) 0.759(11) 0.179(18) 0.519(21) 0.349(21) 0.233(26) 

CanESM2 0.250(20) 0.642(26) 0.250(6) 0.547(15) 0.378(15) -0.443(35) 

CCSM4 0.440(4) 0.798(5) 0.250(6) 0.667(4) 0.525(4) 0.420(8) 

CESM1-BGC 0.439(5) 0.759(12) 0.214(13) 0.655(10) 0.508(10) 0.337(12) 

CESM1-CAM5 0.540(1) 0.840(1) 0.250(6) 0.667(4) 0.525(4) 0.531(2) 

CESM1-WACCM 0.430(6) 0.776(10) 0.250(6) 0.656(9) 0.510(9) 0.384(10) 

CMCC-CM -0.255(34) 0.565(33) 0.143(24) 0.496(24) 0.325(24) 0.189(28) 

CMCC-CMS -0.043(28) 0.637(28) 0.143(24) 0.369(29) 0.244(28) 0.249(22) 

CNRM-CM5 0.364(12) 0.732(17) 0.250(6) 0.667(4) 0.525(4) 0.314(14) 

CSIRO-Mk3-6-0 -0.505(36) 0.321(36) 0.036(36) 0.264(36) 0.179(36) -1.837(36) 

EC-EARTH 0.232(22) 0.756(13) 0.286(4) 0.759(2) 0.642(2) 0.404(9) 

FGOALS-g2 0.321(13) 0.793(6) 0.179(18) 0.531(17) 0.361(17) 0.362(11) 

FIO-ESM 0.281(17) 0.752(14) 0.214(13) 0.559(14) 0.391(14) 0.283(19) 

GFDL-CM3 0.387(8) 0.815(4) 0.429(1) 0.782(1) 0.690(1) 0.493(3) 

GFDL-ESM2G 0.307(14) 0.786(7) 0.250(6) 0.667(4) 0.525(4) 0.484(4) 

GFDL-ESM2M 0.297(16) 0.778(8) 0.214(13) 0.436(26) 0.296(25) 0.458(5) 

GISS-E2-H -0.100(32) 0.616(31) 0.107(30) 0.335(33) 0.220(33) 0.245(24) 

GISS-E2-R -0.054(29) 0.616(30) 0.107(30) 0.350(31) 0.229(31) 0.236(25) 

HadGEM2-AO 0.454(3) 0.740(15) 0.179(18) 0.520(20) 0.350(20) 0.315(13) 

HadGEM2-CC 0.387(9) 0.683(23) 0.179(18) 0.360(30) 0.236(30) 0.222(27) 

HadGEM2-ES 0.371(11) 0.721(18) 0.179(18) 0.530(18) 0.360(18) 0.277(20) 

INMCM4 0.378(10) 0.777(9) 0.179(18) 0.530(18) 0.360(18) 0.422(6) 

IPSL-CM5A-LR -0.054(30) 0.634(29) 0.357(2) 0.590(12) 0.427(12) 0.117(32) 

IPSL-CM5A-MR -0.093(31) 0.548(34) 0.357(2) 0.590(12) 0.427(12) -0.183(34) 

IPSL-CM5B-LR -0.286(35) 0.538(35) 0.107(30) 0.350(31) 0.229(31) 0.131(31) 

MIROC-ESM-

CHEM 0.273(18) 0.733(16) 0.214(13) 0.655(10) 0.508(10) 0.303(17) 

MIROC-ESM 0.258(19) 0.720(19) 0.286(4) 0.677(3) 0.537(3) 0.29(18) 

MIROC5 0.302(15) 0.828(3) 0.071(34) 0.454(25) 0.285(26) 0.420(7) 

MPI-ESM-LR -0.012(27) 0.639(27) 0.143(24) 0.517(22) 0.346(22) 0.253(21) 

MPI-ESM-MR 0.041(26) 0.653(25) 0.143(24) 0.506(23) 0.335(23) 0.245(23) 

MRI-CGCM3 -0.180(33) 0.572(32) 0.071(34) 0.293(35) 0.194(35) 0.169(30) 

NorESM1-M 0.464(2) 0.833(2) 0.250(6) 0.667(4) 0.525(4) 0.532(1) 

 

Table 3 shows the ranks attained by GCMs corresponding to different metrics. For example, BCC-CSM1.1 (m) 

attained ranks 25, 22, 13, 16, 16 and 16 for SPAEF, FSS, Lambda, Cramer-V, Mapcurves, and KGE respectively. It 



was observed that CSIRO-Mk3-6-0 is the only GCM able to secure the same rank for all metrics. However, 

HadGEM2-ES secured rank 18 for four metrics (i.e. FSS, Lambda, Cramer-V, Mapcurves). Several GCMs attained 

the same rank for three metrics (e.g. BCC-CSM1.1(m), CCSM4, CMCC-CM and CMCC-CMS). Cramer-V and 

Mapcurve showed more or less similar ranks for GCMs. Similar results were also seen for other seasons and 

variables (not presented in the manuscript). 

 

 

4.3 Overall Ranks of GCMs for Precipitation, Maximum Temperature and Minimum Temperature 

The application of various evaluation metrics has yielded different ranks for the same GCM (Ahmadalipour et al., 

2017;Raju et al., 2017). The ranks attained by GCMs corresponding to different metrics and seasons (annual, 

monsoon, winter, pre-monsoon and post-monsoon) were used to calculate the RM values for each GCM. The ranks 

of GCMs for P, Tmax and Tmin are presented in Table 4 along with the RM values. As seen in Table 4, EC-EARTH, 

BCC-CSM1.1 (m) and CSIRO-Mk3-6-0 were the most skillful GCMs in reproducing the spatial characteristics of P, 

Tmax and Tmin respectively. On the other hand, IPSL-CM5B-LR, CMCC-CM, and INMCM4 displayed the least skill 

in reproducing the spatial characteristics of P, Tmax and Tmin respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Ranks of GCMs for P, Tmax and Tmin based on rating metric values 

GCM P Rank GCM Tmax Rank GCM Tmin Rank 

EC-EARTH 0.823 1 BCC-CSM1.1(m) 0.702 1 CSIRO-Mk3-6-0 0.750 1 

NorESM1-M 0.794 2 NorESM1-M 0.663 2 GFDL-ESM2G 0.720 2 

GFDL-CM3 0.714 3 HadGEM2-ES 0.656 3 CMCC-CMS 0.692 3 

CCSM4 0.689 4 IPSL-CM5B-LR 0.630 4 BCC-CSM1.1(m) 0.684 4 

MIROC5 0.685 5 HadGEM2-AO 0.626 5 GFDL-ESM2M 0.681 5 

GFDL-ESM2G 0.673 6 CMCC-CMS 0.616 6 MIROC-ESM-CHEM 0.657 6 

CESM1-CAM5 0.654 7 HadGEM2-CC 0.608 7 NorESM1-M 0.656 7 

HadGEM2-AO 0.651 8 FGOALS-g2 0.600 8 ACCESS1-3 0.656 8 

GFDL-ESM2M 0.643 9 CSIRO-Mk3-6-0 0.594 9 MIROC-ESM 0.654 9 

FGOALS-g2 0.607 10 ACCESS1-0 0.577 10 MIROC5 0.646 10 

MIROC-ESM 0.589 11 IPSL-CM5A-LR 0.566 11 CCSM4 0.631 11 

ACCESS1-0 0.555 12 INMCM4 0.561 12 CESM1-BGC 0.628 12 

ACCESS1-3 0.555 12 GISS-E2-H 0.556 13 CESM1-CAM5 0.595 13 

MIROC-ESM-CHEM 0.532 14 MIROC5 0.551 14 MRI-CGCM3 0.584 14 

HadGEM2-CC 0.531 15 BNU-ESM 0.538 15 CanESM2 0.577 15 

HadGEM2-ES 0.514 16 BCC-CSM1-1 0.534 16 BNU-ESM 0.569 16 

BCC-CSM1-1 0.506 17 GISS-E2-R 0.532 17 FGOALS-g2 0.569 16 

CESM1-WACCM 0.482 18 MPI-ESM-LR 0.532 17 MPI-ESM-MR 0.569 16 

CNRM-CM5 0.480 19 FIO-ESM 0.524 19 MPI-ESM-LR 0.566 19 

CESM1-BGC 0.467 20 CESM1-WACCM 0.522 20 EC-EARTH 0.506 20 

INMCM4 0.464 21 ACCESS1-3 0.520 21 IPSL-CM5A-MR 0.490 21 

FIO-ESM 0.462 22 GFDL-ESM2M 0.514 22 HadGEM2-ES 0.487 22 

MPI-ESM-MR 0.437 23 MPI-ESM-MR 0.513 23 ACCESS1-0 0.481 23 

IPSL-CM5A-LR 0.426 24 CCSM4 0.466 24 FIO-ESM 0.446 24 

CanESM2 0.406 25 CESM1-BGC 0.459 25 CMCC-CM 0.428 25 

MPI-ESM-LR 0.395 26 CanESM2 0.442 26 GISS-E2-R 0.418 26 

BCC-CSM1.1(m) 0.394 27 MIROC-ESM 0.442 26 GISS-E2-H 0.416 27 

IPSL-CM5A-MR 0.382 28 CNRM-CM5 0.434 28 HadGEM2-AO 0.416 27 

CMCC-CMS 0.381 29 EC-EARTH 0.427 29 IPSL-CM5A-LR 0.416 27 

MRI-CGCM3 0.381 29 MIROC-ESM-CHEM 0.427 29 BCC-CSM1-1 0.413 30 

CMCC-CM 0.353 31 GFDL-ESM2G 0.416 31 HadGEM2-CC 0.413 30 

BNU-ESM 0.337 32 GFDL-CM3 0.398 32 CNRM-CM5 0.361 32 

GISS-E2-H 0.319 33 CESM1-CAM5 0.371 33 CESM1-WACCM 0.356 33 

CSIRO-Mk3-6-0 0.273 34 IPSL-CM5A-MR 0.326 34 IPSL-CM5B-LR 0.275 34 

GISS-E2-R 0.253 35 MRI-CGCM3 0.319 35 GFDL-CM3 0.231 35 

IPSL-CM5B-LR 0.144 36 CMCC-CM 0.249 36 INMCM4 0.226 36 

 

The better performance of EC-EARTH, BCC-CSM1.1 (m) and CSIRO-Mk3-6-0 in simulating P, Tmax and Tmin over 

Indo-Pak sub-continent has also been reported in several past studies. Latif et al. (2018) reported the relatively better 

performance of EC-EARTH, and BCC-CSM1.1 (m) out of 36 CMIP5 GCMs in simulating precipitation over Indo-



Pakistan sub-continent based on spatial correlation. Rehman et al. (2018) conducted a study to assess the 

performance of CMIP5 GCMs in simulating the mean precipitation and temperature over south Asia. The study 

reported the better performance of EC-EARTH in simulating precipitation and CSIRO-Mk3-6-0 in simulating 

temperature. Khan et al. (2018) assessed the performance of 31 CMIP5 GCMs in simulating the mean precipitation 

and temperature over Pakistan using multiple daily gridded datasets and identified EC-EARTH as the best GCM for 

simulating precipitation and CSIRO-Mk3-6-0 for simulating temperature. Better performance of CSIRO-Mk3-6-0 in 

simulating maximum and minimum temperature is also reported in the study by (Ahmed et al., 2019c). 

The spatial patterns of mean annual P, Tmax and Tmin simulated by the GCMs ranked 1 and ranked 36 were compared 

with the spatial patterns of GPCC P and CRU Tmax and Tmin, and presented in Figure 3 as an example. In Figure 3 it 

was seen that the GCMs that attained rank 1 showed spatial patterns more or less similar to that of GPCC P and 

CRU Tmax and Tmin. On the other hand, GCMs ranked 36 (i.e. rank 36) showed large differences compared to the 

spatial patterns of GPCC P and CRU Tmax and Tmin. The Figure 3 clearly shows that GCMs which attained rank 36 

under-estimated the precipitation and temperature over a large region in the study area. 

 

 

 

 

 

 



 

  

Figure 3. Spatial patterns of GPCC precipitation (a), CRU maximum temperature (b) CRU minimum temperature (c) 

GCM rank 1 (d - f) and GCM rank 36 (g - i) mean annual precipitation, maximum and minimum temperature 

respectively. 

 

4.4 Identification of Ensemble Members 

Based on the criteria mentioned in Section 3.4, ranks of each variable were estimated and then the GCMs were 

ranked based on the overall RM values. Table 5 shows the overall ranks of the 36 GCMs considered in this study. 

The four top ranked GCMs; NorESM1-M, MIROC5, BCC-CSM1-1 and ACCESS1-3 indicated in bold in Table 5 

were designated as the members of the ensemble for P, Tmax and Tmin over Pakistan. 

 

 

 



Table 5. Overall ranks of GCMs for the identification of ensemble members 

GCM P Rank Tmax Rank Tmin Rank Overall RM Value Overall Rank 

NorESM1-M 2 2 7 0.898 1 

MIROC5 5 14 10 0.731 2 

BCC-CSM1-1 17 16 30 0.417 3 

ACCESS1-3 10 8 16 0.685 4 

GFDL-ESM2M 9 22 5 0.667 5 

CMCC-CMS 29 6 3 0.648 6 

CCSM4 4 24 11 0.639 7 

GFDL-ESM2G 6 31 2 0.639 8 

HadGEM2-AO 8 5 27 0.630 9 

FGOALS-g2 12 21 8 0.620 10 

HadGEM2-ES 16 3 22 0.620 11 

CSIRO-Mk3-6-0 34 9 1 0.593 12 

ACCESS1-0 12 10 23 0.583 13 

MIROC-ESM-CHEM 14 29 6 0.546 14 

MIROC-ESM 11 26 9 0.574 15 

EC-EARTH 1 29 20 0.537 16 

HadGEM2-CC 15 7 30 0.519 17 

CESM1-CAM5 7 33 13 0.509 18 

CESM1-BGC 20 25 12 0.472 19 

IPSL-CM5A-LR 24 11 27 0.426 20 

MPI-ESM-LR 26 17 19 0.426 21 

MPI-ESM-MR 23 23 16 0.426 22 

BCC-CSM1.1(m) 27 1 4 0.704 23 

BNU-ESM 32 15 16 0.417 24 

FIO-ESM 22 19 24 0.398 25 

CanESM2 25 26 15 0.389 26 

inmcm4 21 12 36 0.361 27 

GFDL-CM3 3 32 35 0.352 28 

CESM1-WACCM 18 20 33 0.343 29 

GISS-E2-H 33 13 27 0.324 30 

IPSL-CM5B-LR 36 4 34 0.315 31 

GISS-E2-R 35 17 26 0.278 32 

MRI-CGCM3 29 35 14 0.278 33 

CNRM-CM5 19 28 32 0.269 34 

IPSL-CM5A-MR 28 34 21 0.231 35 

CMCC-CM 31 36 25 0.148 36 

 

 

The performances of the four top ranked GCMs (i.e. GCMs ranked 1, 2, 3 and 4) and four lowest ranked GCMs (i.e. 

GCMs ranked 33, 34, 35, and 36) were visually evaluated using scatter plots shown in Figures 4 and 5, pertaining to 

mean annual P, Tmax and Tmin as example. In order to plot the scatter, the P, Tmax and Tmin simulated by each GCM 



and GPCC P, CRU Tmax and CRU Tmin pertaining to all grid points was averaged (spatially averaged precipitation 

and temperature). As expected, GCMs that attained ranks 1 to 4 showed closer agreements with the GPCC P, CRU 

Tmax and CRU Tmin compared to that of GCMs which attained ranks 33, 34, 35, and 36. The same can also be noticed 

based on md values provided in each figure where top ranked GCMs showed higher md values compared to lowest 

ranked GCMs. The scatter plots in Figure 5 indicated that the P, Tmax and Tmin simulated by the least skillful GCMs 

underestimated mean annual P, Tmax and Tmin. Over and underestimation of P, Tmax and Tmin also can be seen in the 

scatter plots of GCMs ranked 1, 2, 3 and 4. However, their scatter was found much aligned with the 45 degree line 

compared to that of GCMs ranked 33, 34, 35, and 36. Therefore, it is argued that the GCMs ranked 1, 2, 3 and 4 can 

be used as an ensemble for the simulation of 33, 34, 35, and 36. 

     



 

Figure 4. Scatter of spatially averaged annual P, Tmax and Tmin, of four top ranked GCMs against GPCC P, CRU Tmax 

and CRU Tmin for the period 1961 to 2005. 



 

Figure 5. Scatter of spatially averaged annual P, Tmax and Tmin of four lowest ranked GCMs against GPCC P, CRU 

Tmax and CRU Tmin for the period 1961 to 2005. 



Some of the GCMs identified for the ensemble over Pakistan were found similar with GCMs that showed better 

performance in the neighboring countries such as India and Iran. Jena et al. (2015) used Z-value test, correlation 

coefficient, relative precipitation comparison test, probability function comparison, root mean square error, and 

Student’s t-test to evaluate the performance of 20 CMIP5 GCMs in simulating Indian summer monsoon. They found 

that CCSM4, CESM1-CAM5, GFDL-CM3, and GFDL-ESM2G perform better compared to the other GCMs. 

Prasanna (2015) conducted a study to assess the performance of 12 CMIP5 GCMs using mean and coefficient of 

variation over South Asia (5N–35N; 65E–95E) and identified ACCESS, CNRM, HadGEM2-ES, MIROC5, Can-

ESM, GFDL-ESM2M, GISS, MPI-ESM and NOR-ESM as better performing GCMs. Sarthi et al. (2016) evaluated 

the performance of 34 CMIP5 GCMs using Taylor diagram, skill score, correlation and RMSE. They found that 

BCC-CSM1.1(m), CCSM4, CESM1(BGC), CESM1(CAM5), CESM1(WACCM), and MPI-ESM-MR were able to 

better capture the Indian summer monsoon precipitation. Afshar et al. (2016) applied Nash–Sutcliffe efficiency, 

percent of bias, coefficient of determination, and ratio of the RMSE to the standard deviation of observations for 

assessing performance of precipitation simulations of 14 CMIP5 GCMs over a mountainous catchment in north-

eastern Iran which borders Pakistan. They recommend GFDL-ESM2G, IPSL-CM5A-MR, MIROC-ESM, and 

NorESM1-M as better GCMs. Mahmood et al. (2018) used correlation coefficient, error between observed and 

GCM means and standard deviation, root mean square error, to assess the performance of CMIP5 GCMs in 

simulating precipitation over Jhelum river basin, Pakistan and found the good performance of GFDL-ESM2G, 

HadGEM2-ES, NorESM1-ME, CanESM2, and MIROC5. Latif et al. (2018) reported better performance of 

HadGEM2-AO, INM-CM4, CNRM-CM5, NorESM1-M, CCSM4 and CESM1-WACCM out of 36 GCMs in 

simulating precipitation over Indo-Pakistan based on partial correlation. The above findings indicated that the GCMs 

identified in this study for the ensemble were also found to perform well in the other studies in nearby 

countries/regions. 

 

4.5 Multi-model Ensemble (MME) Mean 

The performances of GCM ensembles identified in Section 4.4 were validated considering two types of MME means. 

The MME mean of P, Tmax and Tmin of the four top ranked GCMs was calculated with 1). Simple Mean (SM) and 2). 

Random Forest (RF). In SM, the time series of P, Tmax and Tmin of the four top ranked GCMs were averaged to 

obtain the MME while in RF, the time series of P, Tmax and Tmin of the four top ranked GCMs were considered as 

inputs to the RF based MME. 

In Figure 6, the spatial patterns of P, Tmax and Tmin corresponding to both MMEs derived with SM and RF were 

compared with that of GPCC P, CRU Tmax and CRU Tmin. The spatial patterns of P, Tmax and Tmin were created using 

Ordinary Kriging technique. Ordinary Kriging was selected as it was found to perform better than other 

Interpolation methods over the Pakistan (Ahmed et al., 2014). As seen in Figure 6, both MMEs captured the spatial 

patterns of observed P, Tmax and Tmin to a good degree. However, the differences can be seen in both MMEs in 

replicating the spatial pattern of GPCC P, CRU Tmax and CRU Tmin. The visual comparison provided in Figure 6 also 

indicated that RF-based MME performs better than the MME based on SM. The SM was found to underestimate 



annual precipitation in the south-western and the northern regions, while the RF was found to produce spatial pattern 

almost identical to that of GPCC precipitation. A similar result can also be seen for maximum and minimum 

temperature patterns where RF showed better performance. The better performance of RF in generating MME has 

also been reported in several studies. Salman et al. (2018) generated MME mean for maximum and minimum 

temperature over Iraq using four CMIP5 GCMs and reported RF performed better compared to individual GCMs. 

Likewise, Wang et al. (2017b) conducted a comprehensive study to evaluate the performance of different machine 

learning techniques including RF, support vector machine, Bayesian model averaging and the arithmetic ensemble 

mean in generating MME. They considered 33 CMIP5 GCMs for precipitation and temperature over 108 station 

located in Australia and concluded RF and SVM can generate better MMEs compared to other techniques. 

 

 

 

Figure 6. Spatial patterns of observed precipitation (a), maximum temperature (b) and minimum temperature (c), 

MME computed using Simple Mean (SM) (d - f) and MME computed using Random Forest (RF) (g - i) for mean 

annual precipitation, maximum temperature and minimum temperature respectively during 1961 to 2005. 



 

The performance of MME ensembles was further evaluated using scatter plots shown in Figure 7. Scatter plots were 

developed using spatially averaged GPCC P, CRU Tmax and CRU Tmin and MME annual P, Tmax and Tmin at all grid 

points for the period 1961-2005. According to scatter plots in Figure 7, RF-based MME performed significantly 

better compared to its counterpart SM-based MME in simulating P, Tmax and Tmin. 

 

 

Figure 7.  Scatter of spatially averaged mean annual GPCC P, CRU Tmax and CRU Tmin MME of four top ranked 

GCMs against P, CRU Tmax and CRU Tmin using Simple Mean (SM) and Random Forest (RF) for the period 1961 to 

2005. 



Other issues: 

Comment 1 

P2, L1 – please provide citation after several studies (related to the heatwaves, cold snaps etc.). Duffy et al. (2015) is 

about drought and wet spells.  

Reply 

Thanks for your suggestion; we have added citations as given below. 

“Several studies reported increase in severity and frequency of droughts (Ahmed et al., 2019a), floods (Wu et al., 

2014), heatwaves (Perkins-Kirkpatrick and Gibson, 2017) and decrease in severity and frequency of cold snaps 

(Wang et al., 2016) in the recent years which are indicative of abrupt variations in the precipitation and temperature 

regimes.” 

 

Comment 2 

P2, L7: please provide the correct citation. Hegerl et al.,2018 is not about the affecting hydrological cycle (that 

include ET, runoff, soil moisture, and precip) 

Reply 

Sorry for the mistake, we have changed the reference as given below. 

The climate modelling community has widely agreed that the sharp temperature rise in the post-industrial revolution 

era is significantly affecting the global hydrologic cycle (Sohoulande Djebou and Singh, 2015;Evans, 1996). 

 

Comment 3 

P2, L9: should be Akhter et al., 2017 

Reply 

Thanks, corrected as suggested. 

 

Comment 4 

P2, L10: Wright et al., 2015 is about RCMs. Please provide a correct reference.  



Reply 

Sorry for the mistake, we have removed the Wright et al., 2015 citation and added Pour et al., 2018 as below: 

“Global Circulation Models (GCMs) are principally utilized to simulate and project climate on global scale (Pour et 

al., 2018;Sachindra et al., 2014).  

 

Comment 5 

P2, L13: cite CMIP5 GCMs  

Reply 

Thanks, we have added a citation to CMIP5 as shown below. 

The Coupled Model Intercomparison Project Phase 5 (CMIP5) is a set of GCMs available from the IPCC AR5 

(Taylor et al., 2012). 

 

Comment 6 

P2, L14: Cited paper is not about the cmip5 and cmip3 comparison.  

Reply 

Thanks, reference is replaced as below: 

“GCMs showed significant improvements in climate simulations compared to its previous generation of CMIP3 

models (Gao et al., 2015;Kusunoki and Arakawa, 2015).” 

 

Comment 7 

P2, L14: more than 50 GCMS are available. Please check other papers.  

Reply 

Thanks for your suggestion we have revised GCM number and citation as below: 

“Currently, over 50 GCMs are available in the CMIP5 suite with different spatial resolutions (Hayhoe et al., 2017).” 

 



Comment 8 

P2, L16: Ekstrom et al., 2016 is not about size and restriction on the size of the subset of GCMs.  

Reply 

We have revised the citation as below: 

“Human and computational resources pose a restriction on the size of the sub-set of GCMs used in a climate change 

impact assessment (Herger et al., 2018).” 

 

Comment 9 

P2, L16: Salam et al., 2018a and 2018b is same  

Reply 

Thanks. Corrected accordingly.  

 

Comment 10 

P2, L17: should be 2018  

Reply 

Thanks, corrected as suggested. 

 

Comment 11 

P2, L16: cite some paper about the uncertainties in GCMs and why do we need to do ensemble mean. Please add 

some line about this.  

Reply 

Thanks for the comment; we have added some references and text in relation to the above comment. 

“Sa'adi et al. (2017), Salman et al. (2018), Pour et al. (2018) and Khan et al. (2018) reported that a multi-model 

ensemble (a sub-set) of GCMs selected considering their skills in reproducing past observed characteristics of 

climate can reduce the GCM associated uncertainties in climate change impact assessment.”  



Comment 12 

P2, L19: “prediction” (“projection”)  

Reply 

Thanks. Corrected as suggested.  

 

Comment 13 

P2, L22: Wang et al., 2017  

Reply 

Thanks. Corrected as suggested. 

 

Comment 14 

P2, L24: Wang et al., 2017  

Reply 

Thanks. Corrected as suggested. 

 

Comment 15 

P2, L25: Fu et al., 2018 and Dong et al., 2018 are not about the comparison between MME and individual. They are 

based on temperature projection.  

Reply 

Thanks for the comment, we have removed Fu et al., 2018 and Dong et al., 2018 and added two new references as 

shown below. 

The SCM is relatively simple to apply and found to perform better than individual GCMs (Weigel et al., 

2010;Acharya et al., 2013;Wang et al., 2018). 

 

Comment 16 



P2, L31: 2018  

Reply 

Thanks. Corrected as suggested.  

 

Comment 17 

P3, L15: Gleckler et al.,2008a and 2018b are same.  

Reply 

Thanks. Corrected accordingly.  

 

Comment 18 

P4, L1: provide citation after several studies. 

Reply 

Thanks for the suggestion; we have provided some references to support our claim. 

“Overall, review of literature revealed that several studies (Khan et al., 2018;Pour et al., 2018;Salman et al., 

2018;Raju et al., 2017) assessed the performance of GCMs considering several grid points over the whole study area; 

however they ignored the capability of GCMs to replicate the spatial patterns. 

 

Comment 19 

P4, L7: you used six methods. Please correct this number throughout the paper.  

Reply 

Thanks. Corrected as suggested. 

Comment 20 

P4, L11: please mention the calendar months.  

Reply 

Thanks, we have now mentioned the calendar months as shown below. 



“….assessment of performance of 20 CMIP5 GCM in simulating observed annual (Jan to Dec), monsoon (Jun to 

Sep) and winter (Dec to Mar), pre-monsoon (Apr to May), and post-monsoon (Oct to Nov) precipitation, maximum 

and minimum temperature over Pakistan.” 

 

Comment 21 

Figure 1: should include a climate zone map also. 

Reply 

Thanks for the suggestion, we have now provided an aridity map of Pakistan separately as figure 2 adopted from the 

recent study by (Ahmed et al., 2019d) and added some text in study area section (2.1) as shown below. 

“Pakistan is overwhelmed by arid and semi-arid climate, and displays significant climatic variations (Figure 2). 

Figure 2 which is based on the study by Ahmed et al. (2019d) shows that a large area of Pakistan experiences arid 

climate, followed by semi-arid climate, while a small area in the southwest experiences hyper-arid climate. However, 

a small area in the top north of the country experiences sub-humid to humid climate. 

 

Figure 2: Aridity classification of Pakistan (adopted from (Ahmed et al., 2019d)) 



Comment 22 

P4, L25-29: this data conflict with the fig 3a.  

Reply 

Thanks for the comment. We agree that there is some conflicting information. We checked and found that Figure 3a 

is prepared based on 35 grid points at a spatial resolution of 2o x 2o using the GPCC data for the period 1961 to 2005 

while the information provided in Line 25 to 29 is based on the study by Ahmed et al. (2017) where they considered 

337 grid points over Pakistan for the period 1961 to 2010. Furthermore, Ahmed et al. (2017) classified the 

precipitation into 10 classes while the present study classified it into seven classes (Figure 3a). 

We have provided the data period as shown. 

“The bulk of the summer precipitation is caused by the monsoon winds that arise from the Bay of Bengal while 

westerly disturbances in the Mediterranean Sea are responsible for the winter precipitation. The average 

precipitation in Pakistan widely varies from southwest to northern parts in the range of < 100 to > 1000 mm/year 

during 1961 to 2010. Since the country is mostly characterized by arid and semi-arid climate; the bulk of the country 

receives less than 500 mm/year of precipitation while only a very limited area in the north receives more than 1,000 

mm/year of precipitation (Ahmed et al., 2017).” 

 

Comment 23 

P5, L7: please provide the website link (GPCC data).  

Reply 

Thanks, we have provided the weblink to GPCC data as shown below. 

“In this investigation, gridded monthly precipitation data of the Global Precipitation Climatology Center (GPCC) 

(Schneider et al., 2013) (dwd.de/EN/ourservices/gpcc/gpcc.html) were used as the surrogates of observed 

precipitation for the period 1961-2005.” 

 

Comment 24 

P5, L11: high correlation? Please provide the number. 

Reply 

Thanks, we have provided the correlation values as shown below. 



“Most importantly, GPCC precipitation data have shown correlations above 0.80 with observed precipitation over 

Pakistan (Ahmed et al., 2019c).” 

 

Comment 25 

P5, L14-20: Please mention the ensemble member that you have used in the CMIP5 GCMs.  

Reply 

Thanks, we have mentioned the ensemble member as shown below. 

“Monthly precipitation data simulated by the 20 CMIP5 GCMs for ensemble member r1i1p1 run were extracted…..” 

 

Comment 26 

P5, L15: provide a website link.  

Reply 

Thanks, a web link is provided as shown below. 

“Monthly precipitation data simulated by the 20 CMIP5 GCMs were extracted from the IPCC data distribution 

center (http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html) for period 1961-2005.” 

 

Comment 27 

P6, L24: Please check the citation. In the introduction, you mentioned Demirel et al., (2018).  

Reply 

Sorry for the mistake, we have corrected it as shown below. 

“SPAtial EFficiency metric (SPAEF), proposed by Demirel et al. (2018) is a robust spatial performance…..”  

 

Comment 28 

P7, L11: Lambda (heading)  

Reply 

http://www.ipcc-data.org/sim/gcm_monthly/AR5/Reference-Archive.html


Thanks. Corrected as suggested. 

 

Comment 29 

P11, L12- 25: You did not mention about the time series. Is it annual rainfall or seasonal or monthly time series? Did 

you check NRMSE and md between the annual time series?  

Reply 

Thanks for your comment. We have revised the section 4.1 as shown below in response to your above comment. 

“4.1 Accuracy Assessment of Gridded Precipitation Data 

As a preliminary analysis, the monthly time series of GPCC P, CRU Tmax and CRU Tmin data were validated against 

the monthly time series of observed P, Tmax and Tmin. The validation was performed for the period 1961-2005. In the 

present study, two statistical metrics; Normalized Root Mean Square Error (NRMSE), and modified index of 

agreement (md) were used to assess the accuracy of monthly time series of GPCC P, CRU Tmax and CRU Tmin in 

replicating the mean and the variability of monthly time series of observed P, Tmax and Tmin. 

The NRMSE and md values between observed P and GPCC P (pertaining to the grid point closest to the observation 

station), observed Tmax and Tmin with CRU Tmax and Tmin obtained for 17 locations in Pakistan are given in Table 2. 

Overall, all the stations showed low and high NRMSE and md values respectively, indicating that the accuracy of 

the GPCC P in replicating observed precipitation and CRU Tmax and CRU Tmin in replicating observed Tmax and Tmin 

over Pakistan is high. Overall, NRMSE values were found in the ranges of 0.09 to 0.970 for P, 0.100 to 0.390 for 

Tmax, and 0.09 to 0.470 for Tmin. At the same time, overall, md values were found in the ranges of 0.680 to 0.960 for 

P, 0.810 to 0.960 for Tmax, and 0.779 to 0.959 for Tmin. 

 

 

 

 

 

 

 

 



Table 2. Validation of accuracy of GPCC precipitation using NRMSE and md 

Station No Station Name 

Precipitation (P) Maximum Temperature (Tmax) Minimum Temperature (Tmin) 

NRMSE md NRMSE md NRMSE md 

1 Karachi 0.530 0.840 0.270 0.880 0.180 0.919 

2 Pasni 0.470 0.890 0.310 0.840 0.260 0.879 

3 Nawabshah 0.740 0.740 0.300 0.850 0.170 0.919 

4 Padidan 0.590 0.780 0.190 0.920 0.150 0.939 

5 Jacobabad 0.520 0.840 0.100 0.960 0.090 0.959 

6 Dalbandin 0.090 0.960 0.140 0.940 0.230 0.889 

7 Kalat 0.970 0.870 0.240 0.900 0.470 0.779 

8 Sibbi 0.590 0.880 0.390 0.810 0.260 0.889 

9 Bahawalnagar 0.530 0.810 0.310 0.899 0.270 0.881 

10 Quetta 0.750 0.760 0.240 0.890 0.120 0.949 

11 Multan 0.730 0.740 0.120 0.950 0.120 0.949 

12 Faisalabad 0.700 0.740 0.210 0.900 0.170 0.919 

13 Lahore 0.710 0.700 0.140 0.940 0.110 0.959 

14 Sargodha 0.790 0.680 0.160 0.930 0.170 0.919 

15 Mianwali 0.720 0.750 0.240 0.890 0.120 0.949 

16 Islamabad 0.450 0.840 0.160 0.930 0.190 0.909 

17 Peshawar 0.690 0.720 0.190 0.920 0.110 0.949 

 

 

Comment 30 

No need for figure 2. You can remove the figure 2 and include the rank in table 3 in brackets. 

Reply 

Thanks for your suggestion, we have removed Figure 2 and included ranks in Table 3 in brackets as shown below. 

 

 

 

 

 

 

 



 

Table 3. GOF values and ranks of GCMs obtained using different spatial metrics for mean annual precipitation 

GCM 
SPAEF 

(Rank) 

FSS 

(Rank) 

Lambda 

(Rank) 

Cramer-

V(Rank) 

Mapcurves 

(Rank) 

KGE 

(Rank) 

ACCESS1-0 0.411(7) 0.659(24) 0.143(24) 0.370(28) 0.244(29) 0.172(29) 

ACCESS1-3 0.155(24) 0.712(20) 0.107(30) 0.315(34) 0.206(34) 0.310(15) 

BCC-CSM1-1 0.241(21) 0.691(21) 0.143(24) 0.388(27) 0.258(27) 0.082(33) 

BCC-CSM1.1(m) 0.149(25) 0.685(22) 0.214(13) 0.545(16) 0.376(16) 0.304(16) 

BNU-ESM 0.185(23) 0.759(11) 0.179(18) 0.519(21) 0.349(21) 0.233(26) 

CanESM2 0.250(20) 0.642(26) 0.250(6) 0.547(15) 0.378(15) -0.443(35) 

CCSM4 0.440(4) 0.798(5) 0.250(6) 0.667(4) 0.525(4) 0.420(8) 

CESM1-BGC 0.439(5) 0.759(12) 0.214(13) 0.655(10) 0.508(10) 0.337(12) 

CESM1-CAM5 0.540(1) 0.840(1) 0.250(6) 0.667(4) 0.525(4) 0.531(2) 

CESM1-WACCM 0.430(6) 0.776(10) 0.250(6) 0.656(9) 0.510(9) 0.384(10) 

CMCC-CM -0.255(34) 0.565(33) 0.143(24) 0.496(24) 0.325(24) 0.189(28) 

CMCC-CMS -0.043(28) 0.637(28) 0.143(24) 0.369(29) 0.244(28) 0.249(22) 

CNRM-CM5 0.364(12) 0.732(17) 0.250(6) 0.667(4) 0.525(4) 0.314(14) 

CSIRO-Mk3-6-0 -0.505(36) 0.321(36) 0.036(36) 0.264(36) 0.179(36) -1.837(36) 

EC-EARTH 0.232(22) 0.756(13) 0.286(4) 0.759(2) 0.642(2) 0.404(9) 

FGOALS-g2 0.321(13) 0.793(6) 0.179(18) 0.531(17) 0.361(17) 0.362(11) 

FIO-ESM 0.281(17) 0.752(14) 0.214(13) 0.559(14) 0.391(14) 0.283(19) 

GFDL-CM3 0.387(8) 0.815(4) 0.429(1) 0.782(1) 0.690(1) 0.493(3) 

GFDL-ESM2G 0.307(14) 0.786(7) 0.250(6) 0.667(4) 0.525(4) 0.484(4) 

GFDL-ESM2M 0.297(16) 0.778(8) 0.214(13) 0.436(26) 0.296(25) 0.458(5) 

GISS-E2-H -0.100(32) 0.616(31) 0.107(30) 0.335(33) 0.220(33) 0.245(24) 

GISS-E2-R -0.054(29) 0.616(30) 0.107(30) 0.350(31) 0.229(31) 0.236(25) 

HadGEM2-AO 0.454(3) 0.740(15) 0.179(18) 0.520(20) 0.350(20) 0.315(13) 

HadGEM2-CC 0.387(9) 0.683(23) 0.179(18) 0.360(30) 0.236(30) 0.222(27) 

HadGEM2-ES 0.371(11) 0.721(18) 0.179(18) 0.530(18) 0.360(18) 0.277(20) 

INMCM4 0.378(10) 0.777(9) 0.179(18) 0.530(18) 0.360(18) 0.422(6) 

IPSL-CM5A-LR -0.054(30) 0.634(29) 0.357(2) 0.590(12) 0.427(12) 0.117(32) 

IPSL-CM5A-MR -0.093(31) 0.548(34) 0.357(2) 0.590(12) 0.427(12) -0.183(34) 

IPSL-CM5B-LR -0.286(35) 0.538(35) 0.107(30) 0.350(31) 0.229(31) 0.131(31) 

MIROC-ESM-

CHEM 0.273(18) 0.733(16) 0.214(13) 0.655(10) 0.508(10) 0.303(17) 

MIROC-ESM 0.258(19) 0.720(19) 0.286(4) 0.677(3) 0.537(3) 0.29(18) 

MIROC5 0.302(15) 0.828(3) 0.071(34) 0.454(25) 0.285(26) 0.420(7) 

MPI-ESM-LR -0.012(27) 0.639(27) 0.143(24) 0.517(22) 0.346(22) 0.253(21) 

MPI-ESM-MR 0.041(26) 0.653(25) 0.143(24) 0.506(23) 0.335(23) 0.245(23) 

MRI-CGCM3 -0.180(33) 0.572(32) 0.071(34) 0.293(35) 0.194(35) 0.169(30) 

NorESM1-M 0.464(2) 0.833(2) 0.250(6) 0.667(4) 0.525(4) 0.532(1) 

 The numbers in the brackets are obtained ranks 
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