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General Comments In this manuscript, authors evaluated precipitation data from 20
CMIP5 GCMs and selected four better-performing CMIP5 GCMs based on their spa-
tial performance against observed precipitation (GPCC) during the historical period
(1961-2005). To evaluate the skill of model precipitation (CMIP5 GCMs) against ob-
served precipitation (GPCC), they used six spatial metrics (SPAEF, Goodman-Kruskal’s
lambda, Fractions Skill Score, Cramer’s V, Mapcurves, and Kling-Gupta efficiency).
Finally, they generated multi-model ensemble mean (MME) of precipitation of four
selected GCMs using Random forest regression and simple mean method. The
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manuscript is written fairly well, and the idea of spatial assessment of CMIP5 GCMs
for multi-model ensemble mean is appreciated. However, the execution of manuscript
seems sloppy and hasty. There are numerous methodological, data, explanation, re-
porting, and citation issues in the manuscript. Thus I recommend major revisions be
required before publication. Reply Thank you for your highly constructive comments
and suggestions on our manuscript. Your constructive comments and suggestions
helped us to improve the quality of the paper. We have carefully addressed all your
comments in the revision of the paper. Revised text is highlighted in red.

Major issues: Comment 1 Error and unexplained parameters in the formula of matrices:
I have many doubts about spatial assessment methods. Authors need to explain all six
methods clearly and correctly. a) In Goodman-Kruskal’s lambda, how many classes
you have taken in the contingency matrix? Please mention the number of classes and
explain- Are these classes sufficient to explain spatial variability of rainfall or measure
the matrix accurately? Did you consider only one annual map to estimate the lambda
value for each model? If yes, then there may be many years those have low or high
bias but not captured in the annual mean map. You need to estimate lambda value
for each year or seasonal map. What is the maxj (or maxj)? What is the value of m
and n? Reply a: Thanks for your comment. We have considered seven classes (cat-
egories) in the contingency matrix following the study by Demirel et al. (2018). We
have addressed the above issues as follows. “Goodman–Kruskal’s lambda also known
as Lambda coefficient (λ) is used to measure the nominal/categorical association be-
tween categorical maps (Goodman and Kruskal, 1954). Lambda coefficient (λ) varies
between 0 and 1, where a value closer to 1 refers to a higher similarity between the map
of model simulations and that of observations of P, Tmax and Tmin. The Lambda (λ)
coefficient was calculated using Eq. (9), where ãĂŰmaxãĂŮ_j is the number of classes
(categories) in observed and simulated maps, c_ij is a contingency matrix (describes
the relationships between the data classes), i and j are the classes in observed and
simulated maps, m represent the number of classes in observed and simulated maps
respectively. In the present study, seven classes in the contingency matrix were used
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by following the study by Demirel et al. (2018). The “DescTools” package (Signorell,
2016) written in R programming language was employed in this study for estimating
the nominal/categorical association between observed and simulated maps.

Eq. (9) (see the supplement file)

Regarding the calculation of Lambda value, we have calculated the Lambda value
for year and seasons separately and then an average value was considered for the
whole study area. We have addressed the above issue in section 3.1 of the re-
vised manuscript as follows. 3.2 GCM Performance Assessment “SPAtial EFficiency,
Fractions Skill Score, Goodman–Kruskal’s lambda, Cramer’s V, Mapcurves, and Kling-
Gupta efficiency were individually applied for each year from 1961 to 2005 to mean
annual, monsoon, winter, pre-monsoon, and post-monsoon precipitation, maximum
and minimum temperature. Later, the GOF values of each year were temporally aver-
aged to obtain a value for the entire study area. The details of the above spatial metrics
are given below.”

b) In the fraction skill score, there should Nx*Ny in the palace of N. Roberts and
Lean,(2008) used Nx*Ny. It will affect the final results. Please explain it. Reply b:
Thanks for the comment, we used “verification” package (Pocernich, 2006) written in
R programming language for the calculation of FSS. Verification package follows the
equations used in Roberts and Lean (2008). Therefore, we have revised FSS equa-
tions as below.

3.2.2 Fractions Skill Score The Fractions Skill Score (FSS) proposed by (Roberts and
Lean, 2008) is another measure used for the assessment of spatial agreement between
model simulations and observations. FSS varies between 0 and 1 where a value closer
to 1 refers to higher agreement between observed and simulated data. In this study,
FSS between observed and GCM simulated data was computed using Eq. (6).

Eq. (6) (See the supplement file)
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In Eq. (6) MSE refers mean square error and is calculated using Eq. (7) and (8).

Eq. (7) (See the supplement file)

Eq. (8) (See the supplement file)

In Eq. (7) and (8) N_x is the number of columns, N_y is the number of rows in a
map (observed or simulated), O and M are observed and simulated data fractions
respectively. The “verification” package (Pocernich, 2006) written in R programming
language was employed in this study for estimating FSS values.

c) In Cramer’s V, you have taken the wrong formula. There should be N*(min(m-1,n-
1)), but you have taken N*(min(m,n)-1. It will also affect your final selection. Reply c:
We agree that Cramér’s V is computed by taking the square root of the chi-squared
statistic divided by the sample size and the minimum dimension minus 1. Both these
expression do the same action. Let’s assume m=34 and n=32, thus min(m,n)-1=31 and
also min(m-1,n-1)=31. The equation of Cramer’s V used in the present study is also
same as the one used in the study by Rees (2008). The text was revised as follows.

“Cramer’s V (Cramér, 1999) statistic is a Chi-square-test-based measure which is used
in assessing spatial agreement between observations and model simulations (Za-
wadzka et al., 2015). Its value ranges between 0 and 1 and a closer the value to 1
the better the agreement. Cramer’s V is calculated using Eq. (10).

Eq. (10) (See the supplement file)

). The “DescTools” package (Signorell, 2016) written in R programming language was
employed in this study for calculating Cramer’s V values.”

d) In Mapcurves method, did you classify your map in the different range of rain? If
yes, how many classes you have taken? Did you calculate Y value for each month/
season/year? It should be calculated for each year (1961-2005) between model and
GPCC data in the case of annual values. Reply d: Yes, we have classified our data
into seven classes and calculated the map curve value for each year and each sea-
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son and later an average value was considered for the whole study area. We have
addressed the issue as follows. “Mapcurves is another statistical measure, developed
by Hargrove et al. (2006) for the measurement of similarity between categorical maps.
Mapcurves quantifies the degree of concordance between two maps. The value of
Mapcurves can vary from 0 to 1 (perfect agreement). In the present study, the degree
of concordance between the historical observed P, Tmax and Tmin map and each of
the GCM simulated P, Tmax and Tmin maps was determined using Eq. (11) where,
ãĂŰMCãĂŮ_X refers the Mapcurves value, A is the total area of a given class X on the
map being compared, B is the total area of a given class Y on the observed map, C is
the interesting area between X and Y when the maps are overlaid and n is the number
of classes in the reference map.

Eq. (11) (See the supplement file)

In this study the function “mapcurves(x,y)” available in “sabre” package (Nowosad and
Stepinski, 2018) written in R programing language was used for estimating mapcurves
values. In that function x, and y are vectors representing categorical values of categor-
ical values of historical observed data (e.g. GPCC precipitation) and categorical values
of simulated data by a GCM, respectively.”

e) In Kling-Gupta efficiency, please check Demirel et al., 2018 paper. They have taken
different formulas for beta and gamma. Reply e: Thanks, we rechecked the equations
with the original paper related to Kling-Gupta Efficiency and found that the equations
in our manuscript are correct.

f) Why did you choose these six methods? What are the limitations of each method?
Please explain. Reply f: The study by Rees (2008) inspired us to test different spatial
metrics in our GCM selection study. Furthermore, these metrics have been also used
in other studies (Demirel et al., 2018;Koch et al., 2018;Rees, 2008). We have added
a line on page 2, line 15 of introduction section as follows. “These metrics were se-
lected based on their recent applications in spatial performance assessment of models
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(Demirel et al., 2018;Koch et al., 2018;Rees, 2008).” The limitations of these metrics
are reported in Demirel et al. (2018) as follows. “SPAEF is noted as very discrimina-
tive metric in selecting different raster maps whereas other metrics e.g. FSS, Cramer’s
V (Demirel et al., 2018;Koch et al., 2018) are tolerant (less sensitive). This leads to
different results in the spatial calibration of models.

Comment 2 Error in rating metrics formula: (P10, L10) In this formula, rank varies from
1 to 6 (n=6) but it should be 1 to 20 (model=20) for each matrix. Please explain this.

Reply Sorry for the mistake; we have made the necessary correction as follows.

“The overall ranks of GCMs based on different GOFs were obtained for each season
separately using Eq. (15).

Eq. (15)

In Eq. (15), n refers to the number of GCMs, m refers to the number of metrics or
seasons and i refers to the rank of a GCM based on ith GOF. A value of RM near
to 1 refers to a better GCM in terms of its ability to mimic the spatial or temporal
characteristics of observations.”

Comment 3 Pre-monsoon and Post-monsoon seasons: Why did you not consider the
pre and post monsoon season for the analysis and during the overall rank. These
seasons will affect significantly in the overall ranking. I recommend to estimate rank
month-wise That will improve the results significantly and should not provide the same
weight to each month. Here, you provided the same weight to annual, monsoon, and
winter rank (during overall rank). Why? Reply Thanks for your suggestion, we have
revised whole analysis by considering pre-monsoon and post monsoon along with an-
nual, monsoon and winter seasons. Besides precipitation, we also included maximum
and minimum temperature for the selection of GCMs. When different seasons and cli-
mate variable were considered it significantly changed the ranks. Large uncertainties
are associated in GCM outputs at monthly or finer timescales. Therefore, selections
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of GCMs are generally not done based on month-wise ranking. GCMs are generally
ranked based on their capability of producing present-day annual and seasonal clima-
tology. This has been mentioned in the revised manuscript as follows.

“GCMs are faltered by the uncertainty in their outputs at monthly or finer timescales
such as daily or sub-daily (Xue et al., 2007;Onyutha et al., 2016) (Xue et al., 2007;
Onyutha et al., 2016). Therefore, the performances of GCMs are generally evaluated
according to their capability of producing present-day mean seasonal cycles, interan-
nual variability, and spatial distribution of climatology at regional or local scales (Meher
et al., 2017;Das et al., 2018) (Miao et al. 2012; Fu et al. 2013; Das et al. 2016; Meher
and Das, 2017).”

Comment 4 Inconsistency in spatial resolution: You should consider the same spatial
resolution to compare the maps or data sample. In the manuscript, observation data
(GPCC) are available at 0.5âŮę resolution and model data are prepared at 2âŮę reso-
lution. Model data should be regridded at 2âŮę. Reply In order to avoid the confusion,
we have added following text to section 2.2.1 of the revised manuscript as follows.
“Monthly precipitation data simulated by the 36 CMIP5 GCMs for ensemble member
r1i1p1 run were extracted from the IPCC data distribution center (http://www.ipcc-
data.org/sim/gcm_monthly/AR5/Reference-Archive.html) for period 1961-2005. The
modelling centres, names of GCMs and spatial resolution of each of the selected
GCMs are provided in Table 1. In order to have a common spatial resolution, precip-
itation, maximum and minimum temperature data obtained from different GCMs and
GPCC and CRU databases were interpolated into a common 2o×2o grid using bilinear
interpolation.”

Comment 5 Random Forest Method: Please explain the method and weight value. Re-
ply Thanks for the comment, we have added a new section 3.5.2 for Random Forest
description as shown below. 3.5.2 Random Forest (RF) Random Forest (RF) algo-
rithm (Breiman, 2001) was used in the calculation of the mean time series of P, Tmax
and Tmin corresponding to an MME of four top ranked GCMs. RF is a relatively new
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machine learning algorithm widely used in modelling non-linear relationships between
predictors and predictands (Ahmed et al., 2019b). RF algorithm is found to perform well
with spatial data sets and less prone to over-fitting (Folberth et al., 2019). Most impor-
tantly Folberth et al. (2019) reported that RF is less sensitive to multivariate correlation.
RF is an ensemble technique where regression is done using multiple decision trees.
RF algorithm uses the following steps in regression. 1. A bootstrap resampling method
is used to select sample sets from training data. 2. Classification And Regression Tree
(CART) technique is used to develop unpruned trees using the bootstrap sample. 3. A
large number of trees are developed with the samples selected repetitively from training
data so that all training data have equal probability of selection. 4. A regression model
is fitted for all the trees and the performance of each tree is assessed. 5. Ensemble
prediction is estimated by averaging the predictions of all trees which is considered
as the final prediction. Wang et al. (2017a) and He et al. (2016) reported that the
performance of RF varies with the number of trees (ntree) and the number of variables
randomly sampled at each split in developing the trees (mtry). It was observed that
RF performance increases with the increase in ntree. However, in the present study
the performance was not found to increase significantly in term of root mean square
error when the ntree was greater than 500. Therefore, ntree was set to 500 while the
mtry was set to p/3 where p is the number of variables (i.e. GCMs) used for developing
RF-based MME. The MME prediction can be improved by assigning larger weight to
the GCMs which show better performance (Sa’adi et al., 2017). RF regression models
developed using historical P, Tmax and Tmin simulations of GCMs as independent vari-
able and historical observed P, Tmax and Tmin as dependent variable provide weights
to the GCMs according to their ability to simulate historical observed P, Tmax and Tmin.
The “Random Forest” package written in R programming language was employed in
this study for developing RF-based MMEs. RF-based MMEs were calibrated with the
first 70% of the data and validated with the rest of the data.

Comment 6 Increase the number of CMIP5 models in the study: Authors used only
20 models for the current study and said all four RCP data available for 20 models.
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However, there is no use of RCP data in the analysis. Hence, they can get historical
data for more than 35 CMIP5 GCMs. That will increase the scope and use of this study.
I recommend they should use the maximum number of models. Reply Thanks for your
suggestion. We have revised whole analysis by considering precipitation, maximum
and minimum temperature data obtained from 36 CMIP5 GCMs.

Comment 7 Selection of better performing models should be based on at least precip-
itation and temperature: In the manuscript, authors used only precipitation variable to
select better performing models, but there are many models under CMIP5 those have
low projection skill in temperature data and high skill in precipitation. Hence, there is a
possibility of the poor skill of temperature projection in the selected GCMs. Moreover,
most of the studies in the hydrology and earth science commonly use precipitation
and temperature variables. Therefore, they should include the temperature variable in
the analysis and select the models based on the high skill in both (Precipitation and
temperature) variables. Reply Following your suggestion, we have selected the GCMs
based on annual, monsoon, winter, post and pre-monsoon precipitation, maximum and
minimum temperature over Pakistan. The revised results are given below.

4.2 Evaluation and Ranking of GCMs The SPAEF, FSS, Lambda, Cramer-V,
Mapcurves, and KGE between observed (GPCC P, CRU Tmax and Tmin) and GCMs
simulated mean annual, monsoon, winter, pre-monsoon and post-monsoon P, Tmax
and Tmin of Pakistan were estimated for the period 1961 to 2005. As an example,
Table 3 shows the GOF values that define the performance of each GCM in simulating
GPCC mean annual precipitation. In Table 3 ranks of GCMs corresponding to each
performance metric is shown within brackets. The GOF values near to 1 refer to the
better performance of the GCM of interest. For example, CESM1-CAM5 has a GOF
value of 0.540 for SPAEF, and hence regarded as the best GCM in term of SPAEF,
whereas CSIRO-Mk3-6-0 can be regarded as the poorest which has a GOF value of
-0.505 in term of SPAEF. The GOF values for other metrics (i.e. FSS, Lambda, Cramer-
V, Mapcurves, and KGE) can be interpreted in the same manner.
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Table 3 (See the supplement file)

Table 3 shows the ranks attained by GCMs corresponding to different metrics. For
example, BCC-CSM1.1 (m) attained ranks 25, 22, 13, 16, 16 and 16 for SPAEF,
FSS, Lambda, Cramer-V, Mapcurves, and KGE respectively. It was observed that
CSIRO-Mk3-6-0 is the only GCM able to secure the same rank for all metrics. How-
ever, HadGEM2-ES secured rank 18 for four metrics (i.e. FSS, Lambda, Cramer-V,
Mapcurves). Several GCMs attained the same rank for three metrics (e.g. BCC-
CSM1.1(m), CCSM4, CMCC-CM and CMCC-CMS). Cramer-V and Mapcurve showed
more or less similar ranks for GCMs. Similar results were also seen for other seasons
and variables (not presented in the manuscript).

4.3 Overall Ranks of GCMs for Precipitation, Maximum Temperature and Minimum
Temperature The application of various evaluation metrics has yielded different ranks
for the same GCM (Ahmadalipour et al., 2017;Raju et al., 2017). The ranks attained by
GCMs corresponding to different metrics and seasons (annual, monsoon, winter, pre-
monsoon and post-monsoon) were used to calculate the RM values for each GCM.
The ranks of GCMs for P, Tmax and Tmin are presented in Table 4 along with the
RM values. As seen in Table 4, EC-EARTH, BCC-CSM1.1 (m) and CSIRO-Mk3-6-
0 were the most skillful GCMs in reproducing the spatial characteristics of P, Tmax
and Tmin respectively. On the other hand, IPSL-CM5B-LR, CMCC-CM, and INMCM4
displayed the least skill in reproducing the spatial characteristics of P, Tmax and Tmin
respectively.

Table 4 (See the supplement file)

The better performance of EC-EARTH, BCC-CSM1.1 (m) and CSIRO-Mk3-6-0 in sim-
ulating P, Tmax and Tmin over Indo-Pak sub-continent has also been reported in sev-
eral past studies. Latif et al. (2018) reported the relatively better performance of EC-
EARTH, and BCC-CSM1.1 (m) out of 36 CMIP5 GCMs in simulating precipitation over
Indo-Pakistan sub-continent based on spatial correlation. Rehman et al. (2018) con-
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ducted a study to assess the performance of CMIP5 GCMs in simulating the mean pre-
cipitation and temperature over south Asia. The study reported the better performance
of EC-EARTH in simulating precipitation and CSIRO-Mk3-6-0 in simulating tempera-
ture. Khan et al. (2018) assessed the performance of 31 CMIP5 GCMs in simulat-
ing the mean precipitation and temperature over Pakistan using multiple daily gridded
datasets and identified EC-EARTH as the best GCM for simulating precipitation and
CSIRO-Mk3-6-0 for simulating temperature. Better performance of CSIRO-Mk3-6-0 in
simulating maximum and minimum temperature is also reported in the study by (Ahmed
et al., 2019c). The spatial patterns of mean annual P, Tmax and Tmin simulated by the
GCMs ranked 1 and ranked 36 were compared with the spatial patterns of GPCC P
and CRU Tmax and Tmin, and presented in Figure 3 as an example. In Figure 3 it was
seen that the GCMs that attained rank 1 showed spatial patterns more or less similar
to that of GPCC P and CRU Tmax and Tmin. On the other hand, GCMs ranked 36
(i.e. rank 36) showed large differences compared to the spatial patterns of GPCC P
and CRU Tmax and Tmin. The Figure 3 clearly shows that GCMs which attained rank
36 under-estimated the precipitation and temperature over a large region in the study
area.

Fig. 3 (See the supplementary file)

4.4 Identification of Ensemble Members Based on the criteria mentioned in Section
3.4, ranks of each variable were estimated and then the GCMs were ranked based
on the overall RM values. Table 5 shows the overall ranks of the 36 GCMs consid-
ered in this study. The four top ranked GCMs; NorESM1-M, MIROC5, BCC-CSM1-1
and ACCESS1-3 indicated in bold in Table 5 were designated as the members of the
ensemble for P, Tmax and Tmin over Pakistan.

Table 5 (See the supplementary file)

The performances of the four top ranked GCMs (i.e. GCMs ranked 1, 2, 3 and 4) and
four lowest ranked GCMs (i.e. GCMs ranked 33, 34, 35, and 36) were visually evalu-
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ated using scatter plots shown in Figures 4 and 5, pertaining to mean annual P, Tmax
and Tmin as example. In order to plot the scatter, the P, Tmax and Tmin simulated
by each GCM and GPCC P, CRU Tmax and CRU Tmin pertaining to all grid points
was averaged (spatially averaged precipitation and temperature). As expected, GCMs
that attained ranks 1 to 4 showed closer agreements with the GPCC P, CRU Tmax
and CRU Tmin compared to that of GCMs which attained ranks 33, 34, 35, and 36.
The same can also be noticed based on md values provided in each figure where top
ranked GCMs showed higher md values compared to lowest ranked GCMs. The scat-
ter plots in Figure 5 indicated that the P, Tmax and Tmin simulated by the least skillful
GCMs underestimated mean annual P, Tmax and Tmin. Over and underestimation of
P, Tmax and Tmin also can be seen in the scatter plots of GCMs ranked 1, 2, 3 and
4. However, their scatter was found much aligned with the 45 degree line compared to
that of GCMs ranked 33, 34, 35, and 36. Therefore, it is argued that the GCMs ranked
1, 2, 3 and 4 can be used as an ensemble for the simulation of 33, 34, 35, and 36.

Fig. 4 (See the supplementary file)

Fig. 5 (See the supplementary file)

Some of the GCMs identified for the ensemble over Pakistan were found similar with
GCMs that showed better performance in the neighboring countries such as India
and Iran. Jena et al. (2015) used Z-value test, correlation coefficient, relative pre-
cipitation comparison test, probability function comparison, root mean square error,
and Student’s t-test to evaluate the performance of 20 CMIP5 GCMs in simulating In-
dian summer monsoon. They found that CCSM4, CESM1-CAM5, GFDL-CM3, and
GFDL-ESM2G perform better compared to the other GCMs. Prasanna (2015) con-
ducted a study to assess the performance of 12 CMIP5 GCMs using mean and coeffi-
cient of variation over South Asia (5N–35N; 65E–95E) and identified ACCESS, CNRM,
HadGEM2-ES, MIROC5, Can-ESM, GFDL-ESM2M, GISS, MPI-ESM and NOR-ESM
as better performing GCMs. Sarthi et al. (2016) evaluated the performance of 34
CMIP5 GCMs using Taylor diagram, skill score, correlation and RMSE. They found that
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BCC-CSM1.1(m), CCSM4, CESM1(BGC), CESM1(CAM5), CESM1(WACCM), and
MPI-ESM-MR were able to better capture the Indian summer monsoon precipitation.
Afshar et al. (2016) applied Nash–Sutcliffe efficiency, percent of bias, coefficient of
determination, and ratio of the RMSE to the standard deviation of observations for as-
sessing performance of precipitation simulations of 14 CMIP5 GCMs over a mountain-
ous catchment in north-eastern Iran which borders Pakistan. They recommend GFDL-
ESM2G, IPSL-CM5A-MR, MIROC-ESM, and NorESM1-M as better GCMs. Mahmood
et al. (2018) used correlation coefficient, error between observed and GCM means
and standard deviation, root mean square error, to assess the performance of CMIP5
GCMs in simulating precipitation over Jhelum river basin, Pakistan and found the
good performance of GFDL-ESM2G, HadGEM2-ES, NorESM1-ME, CanESM2, and
MIROC5. Latif et al. (2018) reported better performance of HadGEM2-AO, INM-CM4,
CNRM-CM5, NorESM1-M, CCSM4 and CESM1-WACCM out of 36 GCMs in simulat-
ing precipitation over Indo-Pakistan based on partial correlation. The above findings
indicated that the GCMs identified in this study for the ensemble were also found to
perform well in the other studies in nearby countries/regions.

4.5 Multi-model Ensemble (MME) Mean The performances of GCM ensembles iden-
tified in Section 4.4 were validated considering two types of MME means. The MME
mean of P, Tmax and Tmin of the four top ranked GCMs was calculated with 1). Simple
Mean (SM) and 2). Random Forest (RF). In SM, the time series of P, Tmax and Tmin of
the four top ranked GCMs were averaged to obtain the MME while in RF, the time se-
ries of P, Tmax and Tmin of the four top ranked GCMs were considered as inputs to the
RF based MME. In Figure 6, the spatial patterns of P, Tmax and Tmin corresponding to
both MMEs derived with SM and RF were compared with that of GPCC P, CRU Tmax
and CRU Tmin. The spatial patterns of P, Tmax and Tmin were created using Ordinary
Kriging technique. Ordinary Kriging was selected as it was found to perform better
than other Interpolation methods over the Pakistan (Ahmed et al., 2014). As seen in
Figure 6, both MMEs captured the spatial patterns of observed P, Tmax and Tmin to
a good degree. However, the differences can be seen in both MMEs in replicating the

C13

spatial pattern of GPCC P, CRU Tmax and CRU Tmin. The visual comparison provided
in Figure 6 also indicated that RF-based MME performs better than the MME based
on SM. The SM was found to underestimate annual precipitation in the south-western
and the northern regions, while the RF was found to produce spatial pattern almost
identical to that of GPCC precipitation. A similar result can also be seen for maximum
and minimum temperature patterns where RF showed better performance. The bet-
ter performance of RF in generating MME has also been reported in several studies.
Salman et al. (2018) generated MME mean for maximum and minimum temperature
over Iraq using four CMIP5 GCMs and reported RF performed better compared to in-
dividual GCMs. Likewise, Wang et al. (2017b) conducted a comprehensive study to
evaluate the performance of different machine learning techniques including RF, sup-
port vector machine, Bayesian model averaging and the arithmetic ensemble mean in
generating MME. They considered 33 CMIP5 GCMs for precipitation and temperature
over 108 station located in Australia and concluded RF and SVM can generate better
MMEs compared to other techniques.

Fig. 6 (See the supplementary file)

The performance of MME ensembles was further evaluated using scatter plots shown
in Figure 7. Scatter plots were developed using spatially averaged GPCC P, CRU Tmax
and CRU Tmin and MME annual P, Tmax and Tmin at all grid points for the period 1961-
2005. According to scatter plots in Figure 7, RF-based MME performed significantly
better compared to its counterpart SM-based MME in simulating P, Tmax and Tmin.

Fig. 7 (See the supplementary file)

Other issues: Comment 1 P2, L1 – please provide citation after several studies (related
to the heatwaves, cold snaps etc.). Duffy et al. (2015) is about drought and wet
spells. Reply Thanks for your suggestion; we have added citations as given below.
“Several studies reported increase in severity and frequency of droughts (Ahmed et
al., 2019a), floods (Wu et al., 2014), heatwaves (Perkins-Kirkpatrick and Gibson, 2017)
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and decrease in severity and frequency of cold snaps (Wang et al., 2016) in the recent
years which are indicative of abrupt variations in the precipitation and temperature
regimes.”

Comment 2 P2, L7: please provide the correct citation. Hegerl et al.,2018 is not about
the affecting hydrological cycle (that include ET, runoff, soil moisture, and precip) Re-
ply Sorry for the mistake, we have changed the reference as given below. The cli-
mate modelling community has widely agreed that the sharp temperature rise in the
post-industrial revolution era is significantly affecting the global hydrologic cycle (So-
houlande Djebou and Singh, 2015;Evans, 1996).

Comment 3 P2, L9: should be Akhter et al., 2017 Reply Thanks, corrected as sug-
gested.

Comment 4 P2, L10: Wright et al., 2015 is about RCMs. Please provide a correct refer-
ence. Reply Sorry for the mistake, we have removed the Wright et al., 2015 citation and
added Pour et al., 2018 as below: “Global Circulation Models (GCMs) are principally
utilized to simulate and project climate on global scale (Pour et al., 2018;Sachindra et
al., 2014).

Comment 5 P2, L13: cite CMIP5 GCMs Reply Thanks, we have added a citation to
CMIP5 as shown below. The Coupled Model Intercomparison Project Phase 5 (CMIP5)
is a set of GCMs available from the IPCC AR5 (Taylor et al., 2012).

Comment 6 P2, L14: Cited paper is not about the cmip5 and cmip3 comparison. Reply
Thanks, reference is replaced as below: “GCMs showed significant improvements in
climate simulations compared to its previous generation of CMIP3 models (Gao et al.,
2015;Kusunoki and Arakawa, 2015).”

Comment 7 P2, L14: more than 50 GCMS are available. Please check other papers.
Reply Thanks for your suggestion we have revised GCM number and citation as be-
low: “Currently, over 50 GCMs are available in the CMIP5 suite with different spatial
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resolutions (Hayhoe et al., 2017).”

Comment 8 P2, L16: Ekstrom et al., 2016 is not about size and restriction on the size
of the subset of GCMs. Reply We have revised the citation as below: “Human and
computational resources pose a restriction on the size of the sub-set of GCMs used in
a climate change impact assessment (Herger et al., 2018).”

Comment 9 P2, L16: Salam et al., 2018a and 2018b is same Reply Thanks. Corrected
accordingly.

Comment 10 P2, L17: should be 2018 Reply Thanks, corrected as suggested.

Comment 11 P2, L16: cite some paper about the uncertainties in GCMs and why
do we need to do ensemble mean. Please add some line about this. Reply Thanks
for the comment; we have added some references and text in relation to the above
comment. “Sa’adi et al. (2017), Salman et al. (2018), Pour et al. (2018) and Khan et al.
(2018) reported that a multi-model ensemble (a sub-set) of GCMs selected considering
their skills in reproducing past observed characteristics of climate can reduce the GCM
associated uncertainties in climate change impact assessment.” Comment 12 P2, L19:
“prediction” (“projection”) Reply Thanks. Corrected as suggested.

Comment 13 P2, L22: Wang et al., 2017 Reply Thanks. Corrected as suggested.

Comment 14 P2, L24: Wang et al., 2017 Reply Thanks. Corrected as suggested.

Comment 15 P2, L25: Fu et al., 2018 and Dong et al., 2018 are not about the compar-
ison between MME and individual. They are based on temperature projection. Reply
Thanks for the comment, we have removed Fu et al., 2018 and Dong et al., 2018 and
added two new references as shown below. The SCM is relatively simple to apply
and found to perform better than individual GCMs (Weigel et al., 2010;Acharya et al.,
2013;Wang et al., 2018).

Comment 16 P2, L31: 2018 Reply Thanks. Corrected as suggested.
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Comment 17 P3, L15: Gleckler et al.,2008a and 2018b are same. Reply Thanks.
Corrected accordingly.

Comment 18 P4, L1: provide citation after several studies. Reply Thanks for the sug-
gestion; we have provided some references to support our claim. “Overall, review of
literature revealed that several studies (Khan et al., 2018;Pour et al., 2018;Salman et
al., 2018;Raju et al., 2017) assessed the performance of GCMs considering several
grid points over the whole study area; however they ignored the capability of GCMs to
replicate the spatial patterns.

Comment 19 P4, L7: you used six methods. Please correct this number throughout the
paper. Reply Thanks. Corrected as suggested. Comment 20 P4, L11: please mention
the calendar months. Reply Thanks, we have now mentioned the calendar months
as shown below. “. . ..assessment of performance of 20 CMIP5 GCM in simulating
observed annual (Jan to Dec), monsoon (Jun to Sep) and winter (Dec to Mar), pre-
monsoon (Apr to May), and post-monsoon (Oct to Nov) precipitation, maximum and
minimum temperature over Pakistan.”

Comment 21 Figure 1: should include a climate zone map also. Reply Thanks for the
suggestion, we have now provided an aridity map of Pakistan separately as figure 2
adopted from the recent study by (Ahmed et al., 2019d) and added some text in study
area section (2.1) as shown below. “Pakistan is overwhelmed by arid and semi-arid cli-
mate, and displays significant climatic variations (Figure 2). Figure 2 which is based on
the study by Ahmed et al. (2019d) shows that a large area of Pakistan experiences arid
climate, followed by semi-arid climate, while a small area in the southwest experiences
hyper-arid climate. However, a small area in the top north of the country experiences
sub-humid to humid climate.

Fig. 2 (See the supplementary file)

Comment 22 P4, L25-29: this data conflict with the fig 3a. Reply Thanks for the com-
ment. We agree that there is some conflicting information. We checked and found
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that Figure 3a is prepared based on 35 grid points at a spatial resolution of 2o x 2o
using the GPCC data for the period 1961 to 2005 while the information provided in
Line 25 to 29 is based on the study by Ahmed et al. (2017) where they considered
337 grid points over Pakistan for the period 1961 to 2010. Furthermore, Ahmed et al.
(2017) classified the precipitation into 10 classes while the present study classified it
into seven classes (Figure 3a). We have provided the data period as shown. “The bulk
of the summer precipitation is caused by the monsoon winds that arise from the Bay of
Bengal while westerly disturbances in the Mediterranean Sea are responsible for the
winter precipitation. The average precipitation in Pakistan widely varies from south-
west to northern parts in the range of < 100 to > 1000 mm/year during 1961 to 2010.
Since the country is mostly characterized by arid and semi-arid climate; the bulk of the
country receives less than 500 mm/year of precipitation while only a very limited area
in the north receives more than 1,000 mm/year of precipitation (Ahmed et al., 2017).”

Comment 23 P5, L7: please provide the website link (GPCC data). Reply Thanks, we
have provided the weblink to GPCC data as shown below. “In this investigation, grid-
ded monthly precipitation data of the Global Precipitation Climatology Center (GPCC)
(Schneider et al., 2013) (dwd.de/EN/ourservices/gpcc/gpcc.html) were used as the sur-
rogates of observed precipitation for the period 1961-2005.”

Comment 24 P5, L11: high correlation? Please provide the number. Reply Thanks,
we have provided the correlation values as shown below. “Most importantly, GPCC
precipitation data have shown correlations above 0.80 with observed precipitation over
Pakistan (Ahmed et al., 2019c).”

Comment 25 P5, L14-20: Please mention the ensemble member that you have used in
the CMIP5 GCMs. Reply Thanks, we have mentioned the ensemble member as shown
below. “Monthly precipitation data simulated by the 20 CMIP5 GCMs for ensemble
member r1i1p1 run were extracted. . ...”

Comment 26 P5, L15: provide a website link. Reply Thanks, a web link is pro-
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vided as shown below. “Monthly precipitation data simulated by the 20 CMIP5
GCMs were extracted from the IPCC data distribution center (http://www.ipcc-
data.org/sim/gcm_monthly/AR5/Reference-Archive.html) for period 1961-2005.”

Comment 27 P6, L24: Please check the citation. In the introduction, you mentioned
Demirel et al., (2018). Reply Sorry for the mistake, we have corrected it as shown
below. “SPAtial EFficiency metric (SPAEF), proposed by Demirel et al. (2018) is a
robust spatial performance. . ...”

Comment 28 P7, L11: Lambda (heading) Reply Thanks. Corrected as suggested.

Comment 29 P11, L12- 25: You did not mention about the time series. Is it annual
rainfall or seasonal or monthly time series? Did you check NRMSE and md between
the annual time series? Reply Thanks for your comment. We have revised the section
4.1 as shown below in response to your above comment. “4.1 Accuracy Assessment of
Gridded Precipitation Data As a preliminary analysis, the monthly time series of GPCC
P, CRU Tmax and CRU Tmin data were validated against the monthly time series
of observed P, Tmax and Tmin. The validation was performed for the period 1961-
2005. In the present study, two statistical metrics; Normalized Root Mean Square Error
(NRMSE), and modified index of agreement (md) were used to assess the accuracy of
monthly time series of GPCC P, CRU Tmax and CRU Tmin in replicating the mean and
the variability of monthly time series of observed P, Tmax and Tmin. The NRMSE and
md values between observed P and GPCC P (pertaining to the grid point closest to the
observation station), observed Tmax and Tmin with CRU Tmax and Tmin obtained for
17 locations in Pakistan are given in Table 2. Overall, all the stations showed low and
high NRMSE and md values respectively, indicating that the accuracy of the GPCC
P in replicating observed precipitation and CRU Tmax and CRU Tmin in replicating
observed Tmax and Tmin over Pakistan is high. Overall, NRMSE values were found in
the ranges of 0.09 to 0.970 for P, 0.100 to 0.390 for Tmax, and 0.09 to 0.470 for Tmin.
At the same time, overall, md values were found in the ranges of 0.680 to 0.960 for P,
0.810 to 0.960 for Tmax, and 0.779 to 0.959 for Tmin.
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Table 2 (See the supplementary file)

Comment 30 No need for figure 2. You can remove the figure 2 and include the rank in
table 3 in brackets.

Reply Thanks for your suggestion, we have removed Figure 2 and included ranks in
Table 3 in brackets as shown below.

Table 3 (See the supplementary file)
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