
Anonymous Referee #1 

Comment 

This article proposes an ensemble of GCM model for simulation of precipitation based on spatial assessment metrics. 

The article presents original research works and outputs. The work is relevant to the interests of the readership of 

HESS and is well-written. However, there are few issues that need to be addressed. Therefore, authors are 

encouraged to revise the manuscript accordingly. 

Reply 

Thanks for your highly constructive comments on our manuscript. The manuscript has now been revised according 

to the comments. The details of the revisions made are given under each comment. Revisions are marked in Red. 

 

Comment 1 

In Section 3, authors introduce different GCM performance assessment metrics. For almost all parameters except 

Kling-Gupta, the range of the metric and the meaning of the extreme values are elaborated. To be consistent, it is 

recommended to revise section 3.1.6 accordingly. 

Reply 

Thanks for your suggestion. We have now defined the range of KGE as below. 

“In the present study, KGE was calculated between historical observed data and GCM simulated data using Eq. (12). 

KGE values can range between –infinity to 1, where values closer to 1 are preferred.” 

 

Comment 2 

In section 3.3, it is highlighted that the RM values for annual, monsoon, and winter precipitations are averaged to 

derive overall rank for each GCM. Does this approach flatten the effect of extreme cases? Was it necessary to 

average them? How were the individual rankings? Authors need to explain the impact of this approach on their final 

conclusion. 

Reply 

Thank you very much for this interesting comment. In the original manuscript, in order to derive an overall rank for 

each GCM, RM values corresponding to annual, monsoon and winter precipitation were first averaged and then 

based on the average of RM values an overall rank was assigned to each GCM. This procedure helped in assigning 



one single rank to each GCM while taking into account precipitation for annual, monsoon, and winter seasons all 

together. 

Following your above comment, in the revised manuscript, we ranked each GCM for each season (i.e. annual, 

monsoon, winter, pre-monsoon, and post-monsoon precipitation) to derive ranks for each variable (precipitation, 

maximum and minimum temperature) separately by applying comprehensive rating metric. Later, comprehensive 

rating metric was again applied on precipitation, maximum and minimum temperature ranks to derive an overall 

rank of GCMs for the whole study area. This procedure helps us to avoid averaging. The obtained results are 

discussed in section 4.3 as below. 

4.3 Overall Ranks of GCMs for Precipitation, Maximum Temperature and Minimum Temperature 

The application of various evaluation metrics has yielded different ranks for the same GCM (Ahmadalipour et al., 

2017;Raju et al., 2017). The ranks attained by GCMs corresponding to different metrics and seasons (annual, 

monsoon, winter, pre-monsoon and post-monsoon) were used to calculate the RM values for each GCM. The ranks 

of GCMs for P, Tmax and Tmin are presented in Table 4 along with the RM values. As seen in Table 4, EC-EARTH, 

BCC-CSM1.1 (m) and CSIRO-Mk3-6-0 were the most skillful GCMs in reproducing the spatial characteristics of P, 

Tmax and Tmin respectively. On the other hand, IPSL-CM5B-LR, CMCC-CM, and INMCM4 displayed the least skill 

in reproducing the spatial characteristics of P, Tmax and Tmin respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 4. Ranks of GCMs for P, Tmax and Tmin based on rating metric values 

GCM P Rank GCM Tmax Rank GCM Tmin Rank 

EC-EARTH 0.823 1 BCC-CSM1.1(m) 0.702 1 CSIRO-Mk3-6-0 0.750 1 

NorESM1-M 0.794 2 NorESM1-M 0.663 2 GFDL-ESM2G 0.720 2 

GFDL-CM3 0.714 3 HadGEM2-ES 0.656 3 CMCC-CMS 0.692 3 

CCSM4 0.689 4 IPSL-CM5B-LR 0.630 4 BCC-CSM1.1(m) 0.684 4 

MIROC5 0.685 5 HadGEM2-AO 0.626 5 GFDL-ESM2M 0.681 5 

GFDL-ESM2G 0.673 6 CMCC-CMS 0.616 6 MIROC-ESM-CHEM 0.657 6 

CESM1-CAM5 0.654 7 HadGEM2-CC 0.608 7 NorESM1-M 0.656 7 

HadGEM2-AO 0.651 8 FGOALS-g2 0.600 8 ACCESS1-3 0.656 8 

GFDL-ESM2M 0.643 9 CSIRO-Mk3-6-0 0.594 9 MIROC-ESM 0.654 9 

FGOALS-g2 0.607 10 ACCESS1-0 0.577 10 MIROC5 0.646 10 

MIROC-ESM 0.589 11 IPSL-CM5A-LR 0.566 11 CCSM4 0.631 11 

ACCESS1-0 0.555 12 INMCM4 0.561 12 CESM1-BGC 0.628 12 

ACCESS1-3 0.555 12 GISS-E2-H 0.556 13 CESM1-CAM5 0.595 13 

MIROC-ESM-CHEM 0.532 14 MIROC5 0.551 14 MRI-CGCM3 0.584 14 

HadGEM2-CC 0.531 15 BNU-ESM 0.538 15 CanESM2 0.577 15 

HadGEM2-ES 0.514 16 BCC-CSM1-1 0.534 16 BNU-ESM 0.569 16 

BCC-CSM1-1 0.506 17 GISS-E2-R 0.532 17 FGOALS-g2 0.569 16 

CESM1-WACCM 0.482 18 MPI-ESM-LR 0.532 17 MPI-ESM-MR 0.569 16 

CNRM-CM5 0.480 19 FIO-ESM 0.524 19 MPI-ESM-LR 0.566 19 

CESM1-BGC 0.467 20 CESM1-WACCM 0.522 20 EC-EARTH 0.506 20 

INMCM4 0.464 21 ACCESS1-3 0.520 21 IPSL-CM5A-MR 0.490 21 

FIO-ESM 0.462 22 GFDL-ESM2M 0.514 22 HadGEM2-ES 0.487 22 

MPI-ESM-MR 0.437 23 MPI-ESM-MR 0.513 23 ACCESS1-0 0.481 23 

IPSL-CM5A-LR 0.426 24 CCSM4 0.466 24 FIO-ESM 0.446 24 

CanESM2 0.406 25 CESM1-BGC 0.459 25 CMCC-CM 0.428 25 

MPI-ESM-LR 0.395 26 CanESM2 0.442 26 GISS-E2-R 0.418 26 

BCC-CSM1.1(m) 0.394 27 MIROC-ESM 0.442 26 GISS-E2-H 0.416 27 

IPSL-CM5A-MR 0.382 28 CNRM-CM5 0.434 28 HadGEM2-AO 0.416 27 

CMCC-CMS 0.381 29 EC-EARTH 0.427 29 IPSL-CM5A-LR 0.416 27 

MRI-CGCM3 0.381 29 MIROC-ESM-CHEM 0.427 29 BCC-CSM1-1 0.413 30 

CMCC-CM 0.353 31 GFDL-ESM2G 0.416 31 HadGEM2-CC 0.413 30 

BNU-ESM 0.337 32 GFDL-CM3 0.398 32 CNRM-CM5 0.361 32 

GISS-E2-H 0.319 33 CESM1-CAM5 0.371 33 CESM1-WACCM 0.356 33 

CSIRO-Mk3-6-0 0.273 34 IPSL-CM5A-MR 0.326 34 IPSL-CM5B-LR 0.275 34 

GISS-E2-R 0.253 35 MRI-CGCM3 0.319 35 GFDL-CM3 0.231 35 

IPSL-CM5B-LR 0.144 36 CMCC-CM 0.249 36 INMCM4 0.226 36 

 

The better performance of EC-EARTH, BCC-CSM1.1 (m) and CSIRO-Mk3-6-0 in simulating P, Tmax and Tmin over 

Indo-Pak sub-continent has also been reported in several past studies. Latif et al. (2018) reported the relatively better 

performance of EC-EARTH, and BCC-CSM1.1 (m) out of 36 CMIP5 GCMs in simulating precipitation over Indo-



Pakistan sub-continent based on spatial correlation. Rehman et al. (2018) conducted a study to assess the 

performance of CMIP5 GCMs in simulating the mean precipitation and temperature over south Asia. The study 

reported the better performance of EC-EARTH in simulating precipitation and CSIRO-Mk3-6-0 in simulating 

temperature. Khan et al. (2018) assessed the performance of 31 CMIP5 GCMs in simulating the mean precipitation 

and temperature over Pakistan using multiple daily gridded datasets and identified EC-EARTH as the best GCM for 

simulating precipitation and CSIRO-Mk3-6-0 for simulating temperature. Better performance of CSIRO-Mk3-6-0 in 

simulating maximum and minimum temperature is also reported in the study by (Ahmed et al., 2019b). 

 

Regarding the issue of deriving rank based on average of RM values (given in the original manuscript) and overall 

ranks based on individual ranks; a comparison was made. The comparison of overall ranks obtained with the above 

two approaches is shown in Table below (not included in the manuscript). As seen in Table below, it was understood 

that the differences between the overall ranks derived based on; average of RM values and overall ranks is mostly 

quite small. Therefore, it can be stated that either the overall ranks can be derived based on average of RM values or 

individual ranks. However, derivation of overall ranks based on ranks of individual variable is relatively simple and 

hence recommended. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



GCM P Tmax Tmin 
Avg RM 

value 

Rank 

based on 

average 

RM 

value 

Rank 

based on 

overall 

RM 

values 

Difference 

ACCESS1-0 0.555 0.577 0.481 0.537 17 13 4 

ACCESS1-3 0.555 0.520 0.656 0.577 9 4 5 

BCC-CSM1-1 0.506 0.534 0.413 0.484 6 3 3 

BCC-CSM1.1(m) 0.394 0.702 0.684 0.594 22 23 -1 

BNU-ESM 0.337 0.538 0.569 0.481 23 24 -1 

CanESM2 0.406 0.442 0.577 0.475 25 26 -1 

CCSM4 0.689 0.466 0.631 0.595 5 7 -2 

CESM1-BGC 0.467 0.459 0.628 0.518 18 19 -1 

CESM1-CAM5 0.654 0.371 0.595 0.540 14 18 -4 

CESM1-WACCM 0.482 0.522 0.356 0.454 27 29 -2 

CMCC-CM 0.353 0.249 0.428 0.343 36 36 0 

CMCC-CMS 0.381 0.616 0.692 0.563 11 6 5 

CNRM-CM5 0.480 0.434 0.361 0.425 31 34 -3 

CSIRO-Mk3-6-0 0.273 0.594 0.750 0.539 15 12 3 

EC-EARTH 0.823 0.427 0.506 0.585 8 16 -8 

FGOALS-g2 0.607 0.600 0.569 0.592 7 10 -3 

FIO-ESM 0.462 0.524 0.446 0.477 24 25 -1 

GFDL-CM3 0.714 0.398 0.231 0.448 28 28 0 

GFDL-ESM2G 0.673 0.416 0.720 0.603 4 8 -4 

GFDL-ESM2M 0.643 0.514 0.681 0.613 3 5 -2 

GISS-E2-H 0.319 0.556 0.416 0.430 29 30 -1 

GISS-E2-R 0.253 0.532 0.418 0.401 33 32 1 

HadGEM2-AO 0.651 0.626 0.416 0.564 10 9 1 

HadGEM2-CC 0.531 0.608 0.413 0.517 19 17 2 

HadGEM2-ES 0.514 0.656 0.487 0.552 13 11 2 

inmcm4 0.464 0.561 0.226 0.417 32 27 5 

IPSL-CM5A-LR 0.426 0.566 0.416 0.469 26 20 6 

IPSL-CM5A-MR 0.382 0.326 0.490 0.399 34 35 -1 

IPSL-CM5B-LR 0.144 0.630 0.275 0.350 35 31 4 

MIROC-ESM-

CHEM 0.532 0.427 0.657 0.539 2 14 -12 

MIROC-ESM 0.589 0.442 0.654 0.561 12 15 -3 

MIROC5 0.685 0.551 0.646 0.627 16 2 14 

MPI-ESM-LR 0.395 0.532 0.566 0.498 21 21 0 

MPI-ESM-MR 0.437 0.513 0.569 0.506 20 22 -2 

MRI-CGCM3 0.381 0.319 0.584 0.428 30 33 -3 

NorESM1-M 0.794 0.663 0.656 0.704 1 1 0 

 

 

 



Comment 3 

It is needed to give some background knowledge about Random Forest method. Why is it selected? It is needed to 

give some reasoning for this selection. Also in the results and discussion, more explanation is needed for this 

method.  

Reply  

Thank you very much for this comment. We have now added a new sub-section covering the information related to 

Random Forest algorithm as show below. . 

3.5.2 Random Forest (RF) 

Random Forest (RF) algorithm (Breiman, 2001) was used in the calculation of the mean time series of P, Tmax and 

Tmin corresponding to an MME of four top ranked GCMs. RF is a relatively new machine learning algorithm widely 

used in modelling non-linear relationships between predictors and predictands (Ahmed et al., 2019a). RF algorithm 

is found to perform well with spatial data sets and less prone to over-fitting (Folberth et al., 2019). Most importantly 

Folberth et al. (2019) reported that RF is less sensitive to multivariate correlation. 

RF is an ensemble technique where regression is done using multiple decision trees. RF algorithm uses the following 

steps in regression. 

1. A bootstrap resampling method is used to select sample sets from training data. 

2. Classification And Regression Tree (CART) technique is used to develop unpruned trees using the bootstrap 

sample. 

3. A large number of trees are developed with the samples selected repetitively from training data so that all 

training data have equal probability of selection. 

4. A regression model is fitted for all the trees and the performance of each tree is assessed. 

5. Ensemble prediction is estimated by averaging the predictions of all trees which is considered as the final 

prediction. 

Wang et al. (2017) and He et al. (2016) reported that the performance of RF varies with the number of trees (ntree) 

and the number of variables randomly sampled at each split in developing the trees (mtry). It was observed that RF 

performance increases with the increase in ntree. However, in the present study the performance was not found to 

increase significantly in term of root mean square error when the ntree was greater than 500. Therefore, ntree was 

set to 500 while the mtry was set to p/3 where p is the number of variables (i.e. GCMs) used for developing RF-

based MME. 

The MME prediction can be improved by assigning larger weight to the GCMs which show better performance 

(Sa'adi et al., 2017). RF regression models developed using historical P, Tmax and Tmin simulations of GCMs as 

independent variable and historical observed P, Tmax and Tmin as dependent variable provide weights to the GCMs 

according to their ability to simulate historical observed P, Tmax and Tmin. 



The “Random Forest” package written in R programming language was employed in this study for developing RF-

based MMEs. RF-based MMEs were calibrated with the first 70% of the data and validated with the rest of the data. 

 

 

Comment 4 

Section 4.1, it is suggested to present NRMSE formula. 

Reply 

Thank you very much for your suggestion. We have now added a sub-section entitled “Accuracy Assessment of 

Gridded Precipitation Data” under the method section 3.1 and provided details on NRMSE and md. 

3.1 Accuracy Assessment of Gridded Precipitation and Temperature Data 

The accuracy of gridded GPCC precipitation data and CRU temperature data was assessed by comparing them with 

observed station data using NRMSE and md. NRMSE is a non-dimensional form of Root Mean Square Error 

(RMSE) which is derived by normalizing RMSE by variance of observations. NRMSE is more reliable than RMSE 

in comparing model performance when the model outputs are in different units or the same unit but with different 

orders of magnitude (Willmott, 1982). NRMSE can have any positive value, however values closer to 0 are 

preferred as they denote smaller errors (Chen and Liu, 2012). In this study, NRMSE was calculated Eq. 1. 
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Where xsim,i and xobs,i refer to the ith value in the gridded and observed time series of the climate variable (i.e. 

precipitation or temperature) respectively, and N is the number of data points in each time series. 

 

The ‘md’ shown in Eq. 2 is widely used to estimate the agreement between observed and gridded data of climate 

variables (Noor et al., 2019;Ahmed et al., 2019a). It varies between 0 (no agreement) and 1 (perfect agreement) 

(Willmott, 1981). 
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Where xsim,i and xobs,i are the ith data point in the gridded data and observed data series of a climate variable.  

 

 

Comment 5 

To have a better understanding about the site, it would be good to add the location of stations on the map. 

Reply 

Thank you very much for your suggestion. We have revised Figure 1 and included the locations of the stations. Also, 

we have provided the names of stations in Table 2. 

 

 



 

 

Figure 1. The location of Pakistan in central-south Asia and the GCM grid points over the country along with 

locations of precipitation and temperature observation stations. The names of the stations are given in Table 2. 

 

 

 

 

 

 

 

 



Table 2. Validation of accuracy of GPCC precipitation using NRMSE and md  

Station No Station Name 

Precipitation (P) Maximum Temperature (Tmax) Minimum Temperature (Tmin) 

NRMSE md NRMSE md NRMSE md 

1 Karachi 0.530 0.840 0.270 0.880 0.180 0.919 

2 Pasni 0.470 0.890 0.310 0.840 0.260 0.879 

3 Nawabshah 0.740 0.740 0.300 0.850 0.170 0.919 

4 Padidan 0.590 0.780 0.190 0.920 0.150 0.939 

5 Jacobabad 0.520 0.840 0.100 0.960 0.090 0.959 

6 Dalbandin 0.090 0.960 0.140 0.940 0.230 0.889 

7 Kalat 0.970 0.870 0.240 0.900 0.470 0.779 

8 Sibbi 0.590 0.880 0.390 0.810 0.260 0.889 

9 Bahawalnagar 0.530 0.810 0.310 0.899 0.270 0.881 

10 Quetta 0.750 0.760 0.240 0.890 0.120 0.949 

11 Multan 0.730 0.740 0.120 0.950 0.120 0.949 

12 Faisalabad 0.700 0.740 0.210 0.900 0.170 0.919 

13 Lahore 0.710 0.700 0.140 0.940 0.110 0.959 

14 Sargodha 0.790 0.680 0.160 0.930 0.170 0.919 

15 Mianwali 0.720 0.750 0.240 0.890 0.120 0.949 

16 Islamabad 0.450 0.840 0.160 0.930 0.190 0.909 

17 Peshawar 0.690 0.720 0.190 0.920 0.110 0.949 

 

 

 

Comment 6 

It is also recommended to highlight the limitations of the study in the discussion part 

Reply 

Thanks for your suggestion. We have now added the following paragraph to the manuscript to highlight the 

limitations of this study and recommendation for future work. 

“In this study performance of GCMs was assessed based on their ability to simulate past observed P, Tmax and Tmin 

and hence the best performing GCMs were identified and used for the development of MMEs. However, it is found 

that past and future climate may have a weak association hence it is not necessary that if a GCM performs well in 

the past will give reliable results in future (Knutti et al., 2010). In other words, the best GCMs selected for the 

MMEs considering their ability to simulate past climate may not be the best in the future under changing climate 

(Ruane and McDermid, 2017;Ahmed et al., 2019b). This is due to the large uncertainties associated with GHG 

emission scenarios and GCMs. As a solution to this limitation, Salman et al. (2018) selected an ensemble of GCMs 

based on past performance as well as the degree of agreement between their future projections. The study detailed in 



the present manuscript can be repeated in future to select GCMs considering their past performance and the degree of 

agreement in their future projections. 

In the present study, the MME of P, Tmax and Tmin were developed by considering top four ranked GCMs. In the past, 

MMEs were developed considering 3 to 10 top ranked GCMs. However, none of the study showed the performance 

of MME by varying the number of GCMs in MME. The performance of an MME can be sensitive to the choice of 

the number of GCMs. Hence, in future, a study should be conducted to investigate the impact of the number of 

GCMs used for the development of the MME.  

Only RF algorithm was used in this study for the development of MMEs. Other machine learning algorithms (e.g. 

Artificial Neural Networks, Support Vector Machine, Relevance Vector Machine, K-nearest neigbour, Extreme 

Learning method) can also be used for the development of MMEs. A comparison of the performance of MMEs 

developed with different machine learning algorithms can assist in identification of pros and cons of different 

algorithms in relation to development of MMEs.   

In the present study, GCM ranking and MME development was conducted only considering P, Tmax and Tmin 

pertaining to annual, monsoon, winter, pre-monsoon and post-monsoon seasons. However, several studies reported 

that the ranking of GCMs based on different climate variables may assist in the identification of a more dependable 

set of GCMs for ensemble generation (Johnson and Sharma, 2012;Xuan et al., 2017). In future, the ranking of 

GCMs can be conducted considering several climate variables (e.g. precipitation, mean temperature, maximum 

temperature, minimum temperature, wind speed, evapotranspiration and solar radiation).”  

 

 

Comment 7 

For figures 4, 5, and 7 a performance measure such as r-squared is needed for each scatter plot of observed vs 

simulated data points. 

Reply 

Thanks for your suggestion. We have indicated the performance of MMEs in terms of the modified index of 

agreement (md) in all plots in Figures 4, 5 and 7 as shown below. 

 



 

Figure 4. Scatter of spatially averaged annual P, Tmax and Tmin of four top ranked GCMs against GPCC P, CRU Tmax 

and CRU Tmin for the period 1961 to 2005. 

 



 

Figure 5. Scatter of spatially averaged annual P, Tmax and Tmin of four lowest ranked GCMs against GPCC P, CRU 

Tmax and CRU Tmin for the period 1961 to 2005. 

 

 

 



 

 

 

Figure 7.  Scatter of spatially averaged mean annual GPCC P, CRU Tmax and CRU Tmin MME of four top ranked 

GCMs against P, CRU Tmax and CRU Tmin using Simple Mean (SM) and Random Forest (RF) for the period 1961 to 

2005. 
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