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Abstract. Soil texture and soil particle size fractions (psf) play an increasing role in physical, chemical and hydrological 10 

processes. Digital soil mapping using machine-learning methods was widely applied to generate more detailed prediction of 

qualitative or quantitative outputs than traditional soil-mapping methods in soil science. As compositional data, interpolation 

of soil psf combined with log ratio approaches was developed to improve the prediction accuracy, which also can be used to 

indirectly derive soil texture. However, few reports systematically analyzed and compared the classification and regression, 

the accuracies of original (untransformed) and log ratio approaches, and the performance of direct and indirect soil texture 15 

classification using machine-learning methods. In this total, a total of 45 evaluation models generated from five different 

machine-learning models combined with original and three log ratio approaches—additive log ratio, centered log ratio and 

isometric log ratio (ALR, CLR and ILR, respectively), to evaluate and compare the performance of soil texture classification 

and soil psf interpolation. The results demonstrated that log ratio approaches modified the soil sampling data more 

symmetrically, and with respect to soil texture classification, random forest (RF) and extreme gradient boosting (XGB) showed 20 

notable consequences. For soil psf interpolation, RF delivered the best performance among five machine-learning models with 

lowest root mean squared error (RMSE, sand: 15.09 %, silt: 13.86 %, clay: 6.31 %), mean absolute error (MAE, sand: 10.65 %, 

silt: 9.99 %, clay: 5.00 %), Aitchison distance (AD, 0.84) and standardized residual sum of squares (STRESS, 0.61), and 

highest coefficient of determination (R2, sand: 53.28 %, silt: 45.77 %, clay: 53.75 %). STRESS was improved using log ratio 

approaches, especially CLR and ILR. There is a pronounced improvement (21.3 %) in the kappa coefficient using indirect soil 25 

texture classification compared to the direct approach. Our systematic comparison helps to elucidate the processing and 

selection of compositional data in spatial simulation. 

                                                           
1 Abbreviations: psf, soil particle-size fractions; HRB, Heihe River Basin; DSM, digital soil mapping; KNN, k-nearest 

neighbor; MLP, multilayer perceptron neural network; RF, random forest; SVM, support vector machines; XGB, extreme 

gradient boosting; ALR, additive log-ratio; CLR, centered log-ratio; ILR, isometric log-ratio; ORI, original; ROC, receiver 
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1 Introduction 

Soil texture, classified by ranges of soil particle-size fractions (psf), is one of the most important attributes affecting the soil 

properties and the physical, chemical and hydrological processes covering soil porosity, soil fertility, water retention, 

infiltration, drainage and aeration. Measuring soil texture can be used for soil fertility management (Pahlavan-Rad and 

Akbarimoghaddam, 2018), water management (Thompson et al., 2012), maintenance of organic carbon (Bationo et al., 2007) 5 

and provision of ecosystem services (Adhikari and Hartemink, 2016). The soil psf, i.e., sand, silt and clay, are vital in most 

hydrological, ecological, and environmental risk assessment models (Liess et al., 2012). The spatial distributions of soil texture 

and soil psf affect and control runoff generation, slope stability, depth of accumulation, and soluble salt content (McNamara 

et al., 2005; Follain et al., 2006; Yoo et al., 2006; Gochis et al., 2010; Crouvi et al., 2013). 

Previous reports revealed that there are close correlations between the spatial variations of soil texture and landscape and 10 

topography (Gobin et al., 2001; Brown et al., 2004; Zhao et al., 2009; Liess et al., 2012). Compared with traditional soil 

mapping methods, digital soil mapping (DSM) has an obvious advantage in that it is considerably more economical and 

efficient; additionally, soil maps using DSM yielded more details because of the development of data-mining algorithms and 

GIS tools and more extensive application of spatial remote sensing data, particularly in the regional and continental scale. 

DSM methods were applied by an increasing number of soil scientists to map soil properties using ancillary data (McBratney 15 

et al., 2003; Zeraatpisheh et al., 2017), the so-called environmental covariates, which can be obtained from digital elevation 

models (DEM), remote sensing data, and categorical or geomorphology maps (Krasilnikov et al., 2011). Furthermore, some 

soil physicochemical attributes, such as soil organic carbon (SOC) and pH, were also permissible to obtain as environmental 

covariates (Camera et al., 2017). Wang and Shi (2017) also recommended that the soil psf prediction should consider the 

ancillary data, which can enhance the performance of interpolation. 20 

Different machine-learning methods, such as boosting regression trees (Jafari et al., 2014; Yang et al., 2016), random forests 

(Hengl et al., 2015; Zeraatpisheh et al., 2017) and artificial neural networks (Bagheri Bodaghabadi et al., 2015; Taalab et al., 

2015), have been most commonly employed in DSM models for both regression and classification combined with 

environmental covariates in soil science. Hengl et al. (2015) contrasted the performance of spatial predictions of soil properties, 

such as soil psf, using random forests and linear regression, and the results demonstrated that the random forests were superior 25 

                                                           

operating characteristics; PRC, precision-recall curve; AUC, area under the ROC curve; AUPRC, area under the PRC; 

RMSE, root mean squared error; MAE, mean absolute error; R2, coefficient of determination; MAD, median absolute 

deviation; AD, Aitchison distance; STRESS, standardized residual sum of squares; KNN_ALR, KNN_CLR, KNN_ILR, 

KNN_ORI, MLP_ALR, MLP_CLR, MLP_ILR, MLP_ORI, RF_ALR, RF_CLR, RF_ILR, RF_ORI, SVM_ALR, 

SVM_CLR, SVM_ILR, SVM_ORI, XGB_ALR, XGB_CLR, XGB_ILR, XGB_ORI, KNN, MLP, RF, SVM, XGB 

combined with ALR, CLR, ILR, ORI respectively; ClLo, clay loam; Lo, loam; LoSa, loamy sand; Sa, sand; SaClLo, sandy 

clay loam; SaLo, sandy loam; Si, silt; SiClLo, silty clay loam; SiLo, silt loam. 
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to the linear regression with remarkable advantages of not only robust to noise but also low bias and variance. Hengl et al. 

(2017) improved the prediction of organic carbon, bulk density, pH and soil texture fractions on a global scale using machine-

learning models – random forest, gradient boosting and multinomial logistic regression – indicating that random forest and 

gradient boosting outperformed linear models in large data sets. Taghizadeh-Mehrjardi et al. (2015) investigated the predictive 

power of soil classes using six machine learning-based classifiers and found that artificial neural network and decision trees 5 

performed better than any other models they mentioned with relatively high overall accuracies and kappa coefficients. Heung 

et al. (2016) evaluated a suite of 10 machine-learning models for predicting soil taxonomic units, and the consequences 

suggested that although the k-nearest neighbor and support vector machine had the highest accuracy, “tree learners” were 

preferred because of the interpretability of the results and the speed of parameterization. Most previous studies selected one or 

more machine-learning algorithms to simulate soil category or continuous variables for classification or regression problems. 10 

From this perspective, however, few studies systematically analyzed both soil texture classification and soil psf interpolation 

using multiple machine-learning methods. 

  The soil psf, which can be classified as soil texture, are not only continuous variables but also compositional data. We need 

to pay more attention to the latter case. Numerous different interpretations of the interpolation of compositional data in soil 

science have been suggested (Gobin et al., 2001; Lark and Bishop, 2007; Salazar et al., 2015), and the most extensively used 15 

were a combination of log ratio approaches involving the additive log ratio (ALR) and the centered log ratio (CLR) put forward 

by Aitchison (1982), as well as the isometric log ratio (ILR) from Egozcue et al. (2003). However, most studies using log ratio 

approaches to simulate the spatial variation of soil psf were kriging methods (so-called geostatistics), rather than machine-

learning methods. Huang et al. (2014) combined multiple linear regression with ALR to improve the prediction precision of 

soil psf using electromagnetic data on a 1-m transect. Odeh et al. (2003) proposed that modified ALR ordinary kriging 20 

transcended compositional kriging and cokriging. Sun et al. (2014) contradistinguished compositional kriging, log ratio 

cokriging, cokriging, and ALR-cokriging, and produced proximate results. In contrast, Walvoort and de Gruijter (2001) thought 

compositional kriging had better performance than ALR ordinary kriging. Zhang et al. (2013) suggested compositional kriging 

was more appropriate for soil texture prediction than symmetry log ratio ordinary (or regression) kriging. Wang and Shi (2018) 

developed log ratio kriging combined with robust variogram estimation, which was preferable to compositional kriging 25 

methods. However, few studies combined log ratio with machine-learning models for soil psf interpolation in soil science. 

Aside from those mentioned above, the lack of systematic comparison of accuracy, strengths and weaknesses between original 

(untransformed) and log ratio approaches should be considered, especially in terms of combining with machine-learning 

methods. 

  Soil texture classification using machine-learning methods can be classified as a dependent variable; furthermore, it also 30 

can be derived indirectly from soil psf. Camera et al. (2017) reported that random forests were more remarkable than 

multinomial logistic regression in the direct soil texture classification. Wu et al. (2018) compared the support vector machines 

(SVM), artificial neural network (ANN), and classification tree (CT) models, demonstrating better prediction performance 
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generated from SVM than from CT and ANN. For the indirect classification of soil texture, Poggio and Gimona (2017) 

combined hybrid geostatistical generalized additive models with ALR and modeled soil particle classes at medium resolution 

(250 m) in Scotland, expecting that vegetation index, morphological features and information about the phenological season 

were of vital significance as environmental covariates. Considering the particularity of compositional data, the consequences 

of soil psf classification and regression (indirect soil texture classification and soil psf interpolation, respectively) could be 5 

compared from the direct and indirect soil texture classification as a result of the relationship between soil texture and soil psf. 

Nevertheless, few studies systematically compared these using different machine-learning methods combined with original 

(untransformed) and log ratio transformed data for both direct and indirect soil texture classification. 

  In our study, five machine-learning models – k-nearest neighbor (KNN), multilayer perceptron neural network (MLP), 

random forest (RF), support vector machines (SVM), and extreme gradient boosting (XGB) – were included and applied for 10 

DSM of soil texture classification and soil psf interpolation. Furthermore, the original (untransformed) and log ratio 

transformed data were also combined with the machine-learning algorithms mentioned above for soil psf interpolation. Hence, 

the objectives of this study are (i) to compare different performance of five machine-learning models in the direct soil texture 

classification, (ii) to evaluate the accuracies of different log ratio approaches and original (untransformed) method applied for 

soil psf from the perspective of compositional data using machine-learning models, and (iii) to estimate whether the accuracies 15 

of indirect soil texture classification using original (untransformed) data and log ratio transformed data were improved 

compared with the direct soil texture classification. 

2 Data and methods 

2.1 Study area 

The Heihe River Basin (HRB, 97 °6 '-102 °3 ' E, 37 °43 '- 42 °40 ' N) is situated in the Hexi Corridor, northwest of China, 20 

covering the Inner Mongolia Autonomous Region, Gansu and Qinghai provinces (Fig. 1a), which is the second largest inland 

river basin in China with an area of 146,700 km2. The elevation and three reaches (i.e., upper, middle and lower) of the study 

area are shown in Fig. 1b. For the upper reaches of HRB, the climate changes significantly with altitude; the mean annual 

precipitation is 350 mm, the mean annual temperature is from -5-4 °C and the annual average evaporation is 1000 mm. For 

the middle reaches of HRB, the mean annual precipitation declines between 250 and 50 mm, the annual average evaporation 25 

increases from 2000 (east) to 4000 mm (west), and the mean annual temperature is from 2.8 to 7.6 °C. The lower reaches of 

HRB are situated in Ejina Banner on the Alxa Plateau, which is an arid desert climate with annual precipitation under 50 mm 

and annual average evaporation above 3500 mm; the mean annual temperature is from 8 to 10 °C. 
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Figure 1. The (a) geographical location, (b) Heihe River, elevation and soil sampling points of Heihe River Basin, China. 

The vegetation of the upper reaches of HRB is influenced from the southeast to northwest by hydrothermal conditions. The 

main vegetation types are alpine vegetation (4000-5000 m), alpine meadow vegetation belt (3000-4000 m), alpine shrub 

meadow (3200-3800 m), mountain forest meadow belt (2400-3200 m), mountain grassland belt (1800-2400 m), and desert 5 

base belt (less than 1800 m). The main vegetation types of the middle and lower reaches of the HRB are relatively fewer, 

including cultivated vegetation and desert, and the areas near the Heihe River on the lower reaches are shrub and steppe. 

The main soil types are frigid desert soils (less than 4000 m), alpine meadow soil and alpine steppe soil (3600-4000 m), 

gray cinnamon soil and chernozem (3200-3600 m), sierozem and chestnut soil (2600-3200 m), chestnut soil (2300-2600 m) 

and sierozem (1900-2300 m) on the upper reaches of the HRB. The main soil types on the middle reaches of HRB are aeolian 10 

sandy soil, frigid frozen soil and gray brown desert soil. The main soil types in the lower reaches of HRB are aeolian sandy 

soil, gray brown desert soil (northwest) and lithosol (northeast). 

The main types of geomorphology on the upper reaches of HRB are modern glaciers, alpine and hilly, and plimatic basins. 

Narrow plains are distributed on the middle reaches of HRB. For the lower reaches, the main types of geomorphology are hilly 

(northwest), plain, sandy land and platform (east), and the area near Heihe River is a flood plain. 15 

2.2 Soil sampling 

A total of 640 soil sampling points was collected in the HRB from the Science Data Center of Cold and Arid Regions (WestDC) 

in China (http://westdc.westgis.ac.cn/), involving 392 soil sampling points on the upper reaches and 248 soil sampling points 
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on the middle and lower reaches of the HRB. The soil types, vegetation types, distribution of DEM and geomorphology types 

of the HRB were considered in soil sample collection according to the location and proportion of these types for the purpose 

of more representative spatial characteristics of soil psf using limited soil samples. There were more soil sampling points on 

the middle and upper reaches of HRB due to the more complicated soil types and vegetation types in these areas. In contrast, 

the types on the lower reaches are relatively similar with more desert in the northwest. Hence, the east of the lower reaches of 5 

the HRB contained more soil sampling points. All soil samples had information about soil psf (i.e., sand, silt and clay) and 

related environmental covariates using a laser diffraction approach and the extraction tool in ArcGIS, respectively, and the 

global position system (GPS) recorded the position information. 

2.3 Environmental covariates and pre-processing 

The environmental covariates, such as topographic attributes, remote sensing attributes, climate and position attributes, soil 10 

physicochemical attributes and categorical maps, are logically related to the distributions of soil psf. System for Automated 

Geoscientific Analysis (SAGA) GIS (Conrad et al., 2015) was used to compute their topographic attributes from DEM, 

including slope, aspect, convergence index, curvature, plane curvature, profile curvature and valley depth. Remote sensing 

attributes, including the normalized difference vegetation index (NDVI, Huete et al., 2002), the Brightness index (BI, 

Metternicht and Zinck, 2003), and the soil adjusted vegetation index (SAVI, Huete, 1988) were derived from the Landsat 7 15 

based on band operation. We also collected climate attributes from the National Meteorological Information Center (NMIC, 

http://data.cma.cn/), such as the mean annual precipitation and the mean annual temperature. Latitude and longitude were also 

considered because of the large scale of the HRB. Mean annual surface evapotranspiration data (Wu et al., 2012) were gathered 

from WestDC (http://westdc.westgis.ac.cn/), as well as soil physicochemical attributes, such as soil organic carbon, saturated 

water content, field water holding capacity, wilt water content, saturated hydraulic conductivity, and soil thickness (Yi et al., 20 

2015; Song et al., 2016; Yang et al., 2016), which can also address the distributions of soil psf. Additionally, the categorical 

maps were of significance, such as geomorphology types, soil types, land cover and vegetation types. For slope, the method 

of dividing the hierarchy rotates clockwise from the north (0 °), and each 45 ° was an interval, including north (337.5-22.5 °), 

northeast (22.5-67.5 °), east (67.5-112.5 °), southeast (112.5-167.5 °), south (167.5-202.5 °), southwest (202.5-247.5 °), west 

(247.5-292.5 °), and northwest (292.5-337.5 °). 25 

2.4 Machine learning methods and parameters optimization 

2.4.1 K-nearest neighbor (KNN) 

K-nearest neighbor (KNN) is a simple non-parametric classifier based on known instance to label unknown instance (Cover 

and Hart, 1967). For the test set, k-nearest training set vectors were found, and maximum summed kernel densities were 

computed for classification. Moreover, continuous variables can also be predicted for regression with the average values of k-30 
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nearest neighbors. Weighted KNN is an extended version of KNN that considers the distances of the nearest neighbors; 

therefore, the parameters of KNN contain the maximum value of k (kmax), the distances of the nearest neighbors (distance) 

and the types of kernel function (kernel). The KNN model is available in the R package “kknn” (Schliep and Hechenbichler, 

2016). 

2.4.2 Multilayer perceptron neural network (MLP) 5 

Multilayer perceptron neural network (MLP), which is currently one of the most popular multilayer feed forward 

backpropagation networks, was selected to train artificial neural network (ANN) models in our study due to its rapid operation, 

small set of training requirements and ease of implementation (Subasi, 2007). MLP neurons can perform classification or 

regression depending on whether the response variable is categorical or continuous. The MLP has three sequential layers: input 

layer, hidden layer and output layer. The resilient backpropagation algorithm was chosen because the learning rate of this 10 

algorithm is adaptive, avoiding oscillations and accelerating the learning process (Behrens and Scholten, 2006). The range of 

the data set should be standardized because MLPs operate in terms of the scale 0 to 1. MLP can be run using the R package 

“RSNNS” (Bergmeir and Benitez, 2012). 

2.4.3 Random forest (RF) 

Random forest (RF) was developed by Breiman (2001), combining the bagging method (Breiman, 1996) with the random 15 

variable selection, and the principle was to merge a group of “weak learners” together to form a “strong learner”. Bootstrap 

sampling is used for each tree of RF, and the rules to binary split data are different for regression and classification problems. 

For classification, the Gini index is used to split the data; for regression, minimizing the sum of the squares of the mean 

deviations can be selected to train each tree model. Benefits of using RFs are that the ensembles of trees are used without 

pruning. In addition, RF is relatively robust to overfitting, and standardization or normalization are not necessary because it is 20 

insensitive to the range of value. Two parameters should be adjusted for RF model: the number of trees (ntree) and the number 

of features randomly sampled at each split (mtry). The RF model is available in the R package “randomForest” (Liaw and 

Wiener, 2002). 

2.4.4 Support vector machines (SVM) 

The support vector machine (SVM), proposed by Cortes and Vapnik (1995), is a type of generalized linear classifier that is 25 

widely applied for classification and regression problems in soil science (Burges, 1998). The main principle of SVM is to 

classify different classes by constructing an optimal separating hyperplane in the feature space (so called “structural risk 

minimization”). Regression problems also can be solved by minimization of the structural risk using loss functions (Vapnik, 

1998) in SVM, named support vector regression. The advantages of SVMs are that they are effective in high dimensional 
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spaces. Radial basis function was selected for SVM as the kernel function in our study, and two other parameters need to be 

tuned, i.e., cost and gamma, controlling the tradeoff between the classification accuracy and complexity, and the ranges of 

radial effect, respectively. The SVM model is available in the R package “e1071” (Meyer et al., 2017). 

2.4.5 Extreme gradient boosting (XGB) 

Extreme Gradient Boosting, put forward by Chen and Guestrin (2016), is an efficient method of implementation for gradient 5 

boosting frames, tree learning algorithms and efficient linear model solvers to solve both classification and regression problems 

(Chen et al., 2018). Like the boosted regression trees (Elith et al., 2008), it follows the principle of gradient enhancement; 

however, more regularized model formalization is applied to XGB to control over-fitting, making it more remarkable. In 

addition, parallel calculations can be automatically executed during the training phase of the XGB model, presenting a great 

advantage in large data sets, as the XGB can be more than ten times faster than the existing gradient boosting model (Chen 10 

and Guestrin, 2016). There are seven parameters should be tuned in XGB, containing the learning rate (eta), the maximum 

depth of a tree (max_depth), the max number of boosting iterations (nrounds), the subsample ratio of columns 

(colsample_bytree), the subsample ratio of the training instance (subsample), the minimum loss reduction (gamma) and the 

minimum sum of instance weight (min_child_weight). The XGB model is available in the R package “xgboost” (Chen et al., 

2018). 15 

2.4.6 Parameters optimization 

The parameters of machine-learning models we mentioned above need to be adjusted, and the numbers of these parameters of 

models are different. For instance, XGB has seven parameters and is one of the most complicated models; on the other hand, 

for the MLP, in the case where we have chosen the algorithm, the only parameter that should be tuned is the size of the MLP 

model. 20 

R package “caret” (Kuhn, 2018) provides an effective grid-search method that can automatically adjust the parameters by 

setting the adjustment grid, avoiding the uncertainty of artificial adjustment for some models (e.g., XGB) with more parameters. 

A set of parameters with the lowest RMSE or the highest R2 for regression and the highest overall accuracy or kappa coefficient 

for classification by cross-validation can be selected to be the best parameters. However, in the presence of many adjustment 

parameters, it may be inefficient due to the long training time. Thus, we used the other package of “randomForest” for RF and 25 

“kknn” for KNN, which can also restructure the parameters for these two models. 

In our study, eleven dependent variables (i.e., ten for regression and one for classification) were trained with environmental 

covariates (independent variables) for the sake of parameter adjustment for each model, including “sand, silt, clay, ilr1, ilr2, 

alr1, alr2, clr1, clr2, clr3” and “class”. Subsequently, the parameters were definitely computed; here, we just give the relative 

ranges of the parameters after adjustment for most dependent variables; for example, in KNN the kmax was 15, the distance 30 

was 1, and the kernel was rectangular; in MLP, the size fluctuated between 5 and 10; in RF, the ntree was 1000 and mtry 
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fluctuated from 9 to 11; in SVM, gamma was 0.01 and cost was 1; and in XGB, the range of parameters of max_depth (3-4), 

eta (0.05-0.1), colsample_bytree (0.6-0.8), nrounds (30), subsample (0.8-1), gamma (0-0.4), and min_child_weight (0.6-0.8) 

were obtained after conditioning. 

2.5 Log-ratio transformation methods  

For compositional data, the sum of the components is 1 (or 100 %), which should be guaranteed. Soil particle size data (i.e., 5 

sand, silt and clay), including three dimensions, are typical compositional data. The closed number system can be explained 

as follows: the individual variables in the data set are not independent of each other; moreover, they are related by being 

expressed as a percentage (Filzmoser et al., 2009). In the Euclidean space, one dimension (variable) would be omitted for the 

original method to guarantee no information loss because of the constant-sum constraint. Therefore, the Euclidean space is not 

appropriate for the analysis of soil psf data. The most widely used approaches are log ratio approaches (Aitchison, 1982), 10 

consisting of the additive log ratio, centered log ratio and isometric log ratio (ALR, CLR and ILR for short, respectively) from 

Aitchison (1982) and Egozcue et al. (2003). 

For the composition of 𝐷  elements 𝑥 = [𝑥1, . . . , 𝑥𝐷] , 𝑥𝑗 > 0 , ∀𝑗 = 1, . . . 𝑗 − 1, 𝑗 + 1, . . . 𝐷 , and ∑ 𝑥𝑗
𝐷
𝑗=1 = 1 , the 

transformation equation for ALR is defined as follows: 

𝑎𝑙𝑟(𝑥) = (𝑙𝑛
𝑥1

𝑥𝑗
, . . . , 𝑙𝑛

𝑥𝑗−1

𝑥𝑗
, 𝑙𝑛

𝑥𝑗+1

𝑥𝑗
, . . . , 𝑙𝑛

𝑥𝐷

𝑥𝑗
),                                    (1) 15 

For soil psf (𝐷 = 3) in our study, the transformation equations for ALR are:  

𝑎𝑙𝑟(1) = 𝑙𝑛
𝑠𝑎𝑛𝑑

𝑐𝑙𝑎𝑦
,                            (2) 

𝑎𝑙𝑟(2) = 𝑙𝑛
𝑠𝑖𝑙𝑡

𝑐𝑙𝑎𝑦
,                                                                          (3) 

All of the information regarding the soil psf was contained in alr(1) and alr(2); however, the ALR has been criticized because 

the choice of denominator is subjective, which can influence the results (Bacon-Shone, 2011). The CLR transformation method 20 

can remove this arbitrariness, and the equation is defined as follows: 

𝑐𝑙𝑟(𝑥) = (𝑦1, . . . , 𝑦𝑗 , . . . , 𝑦𝐷) = (𝑙𝑛
𝑥1

√∏ 𝑥𝑗
𝐷
𝑗=1

𝐷
, . . . , 𝑙𝑛

𝑥𝐷

√∏ 𝑥𝑗
𝐷
𝑗=1

𝐷
),        (4) 

where 𝑦𝑗 is the jth component. Similarly, for the soil psf, the transformation equations for CLR are:  

𝑐𝑙𝑟(1) = 𝑙𝑛
𝑠𝑎𝑛𝑑

√𝑠𝑎𝑛𝑑×𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦3 ,                                 (5) 

𝑐𝑙𝑟(2) = 𝑙𝑛
𝑠𝑖𝑙𝑡

√𝑠𝑎𝑛𝑑×𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦3 ,         (6) 25 

𝑐𝑙𝑟(3) = 𝑙𝑛
𝑐𝑙𝑎𝑦

√𝑠𝑎𝑛𝑑×𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦3 ,         (7) 

In the CLR approach, the geometric mean composed of all compositions of soil psf is the denominator, and one-to-one 

mapping of equations and soil psf could be implemented. Nevertheless, the CLR is inapplicable for multivariate analysis 
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because the sum of the dimensions of CLR is 0, and thus the results are collinear. These problems can be overcome by using 

ILR approach, which transforms all the information into D-1 orthogonal log contrasts (Abdi et al., 2015). The transformation 

equations for ILR are defined as follows: 

𝑧 = (𝑧1, . . . 𝑧𝐷−1) = 𝑖𝑙𝑟(𝑥),                     (8) 

𝑧𝑖 = √
𝐷−𝑖

𝐷−𝑖+1
𝑙𝑛

𝑥𝑖

√∏ 𝑥𝑗
𝐷
𝑗=𝑖+1

𝐷−𝑖
,                       (9) 5 

where 𝑧𝑖 is the ith component. The ILR transformation equations for soil psf in our study can also be defined as follows: 

𝑖𝑙𝑟(1) = √
2

3
𝑙𝑛

𝑠𝑎𝑛𝑑

√𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦
,                    (10) 

𝑖𝑙𝑟(2) = √
1

2
𝑙𝑛

𝑠𝑖𝑙𝑡

𝑐𝑙𝑎𝑦
,                       (11) 

For a more uniform comparison of the descriptive statistics, the ordering of three components of soil psf followed sand-silt-

clay, and we added the third equation for the ALR and ILR. Although all the information could be included in the first two 10 

equations, note that in the process of interpolation, only the first two equations were used for ALR and ILR:  

𝑎𝑙𝑟(3) = 𝑙𝑛
𝑐𝑙𝑎𝑦

𝑠𝑎𝑛𝑑
,                      (12) 

𝑖𝑙𝑟(3) = √
2

3
𝑙𝑛

𝑐𝑙𝑎𝑦

√𝑠𝑎𝑛𝑑×𝑠𝑖𝑙𝑡
,                     (13) 

The equations for 𝑎𝑙𝑟(1), 𝑎𝑙𝑟(2), 𝑎𝑙𝑟(3) were equivalent to 𝑎𝑙𝑟(𝑠𝑎𝑛𝑑), 𝑎𝑙𝑟(𝑠𝑖𝑙𝑡), 𝑎𝑙𝑟(𝑐𝑙𝑎𝑦) in ALR, the same as in ILR. 

The back-transformed equations for ALR, CLR and ILR were recommended in our previous research (Wang and Shi, 2017), 15 

and were computed in the “compositions” R package (van den Boogaart and Tolosana-Delgado, 2008). 

For the original (untransformed) method, the standardization function was used to ensure predictions of soil psf were 

between 0 and 100 and that their sum was 100%:  

𝑠𝑎𝑛𝑑𝑠 =
𝑠𝑎𝑛𝑑

(𝑠𝑎𝑛𝑑+𝑠𝑖𝑙𝑡+𝑐𝑙𝑎𝑦)
× 100,                                    (14) 

where, 𝑠𝑎𝑛𝑑𝑠 is the content of sand after standardization, the same as silt and clay fractions. 20 

2.6 Validation 

2.6.1 Validation method 

A total of 45 methods that we simulated are presented in Table 1; five machine-learning models were combined with one 

original (ORI) and three log ratio approaches (ALR, CLR, ILR). Five machine-learning methods were applied for the direct 

soil texture classification; additionally, these methods were combined with original (untransformed) and log ratio transformed 25 

data for a total of 40 methods for the indirect soil texture classification (20) and soil psf interpolation (20). The data were 

randomly divided into two sets to guarantee prediction accuracy and persuasion; for instance, one (70 % = 448 soil samples) 
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was employed for training models and the other (30 % = 192 soil samples) was set aside for validation. This process was 

repeated 30 times for soil texture classification and soil psf interpolation, and different indicators were chosen to evaluate 

different performances of models (or methods). 

Table 1. The method system of soil texture classification and soil psf interpolation. 

Methods 

Soil texture classification Soil psf interpolation 

Direct classification Indirect classification — 

Original data  

(ORI) 
KNN, MLP, RF, SVM, XGB KNN_ORI, MLP_ORI, RF_ORI, SVM_ORI, XGB_ORI  

Log-ratio 

transformed data  

(ALR, CLR, ILR) 

— 
KNN_ALR, KNN_CLR, KNN_ILR, MLP_ALR, MLP_CLR, 

MLP_ILR, RF_ALR, RF_CLR, RF_ILR, SVM_ALR, 

SVM_CLR, SVM_ILR, XGB_ALR, XGB_CLR, XGB_ILR,  

2.6.2 Validation indicators for soil texture classification 5 

The overall accuracy (Brus et al., 2011) and kappa coefficient were selected to evaluate the overall effects of soil texture types 

predicted by different models. Moreover, the receiver operating characteristic (ROC) curve, precision-recall curve (PRC), area 

under the ROC curve (AUC), area under the precision-recall curve (AUPRC) and abundance index were applied to evaluate 

the performance of different soil texture types. 

The overall accuracy represents all samples of soil texture types correctly classified by machine-learning models, divided 10 

by the total number of samples of soil texture types used in the validation. The higher overall accuracy, the more accurate soil 

map (Brus et al., 2011):  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
,                           (15) 

where 𝑇, 𝐹, 𝑃 and 𝑁 denote True, False, Positive, and Negative and 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁 were true positive, true negative, false 

positive, and false negative. When the numbers of samples in different classes are imbalanced in the data set, the kappa 15 

coefficient can explain the agreement of classes (Marchetti et al., 2011), which is calculated based on the confusion matrix, 

the equation is defined as:  

𝑘𝑎𝑝𝑝𝑎 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
,                    (16) 

where, 𝑝𝑜 is the probability of observed agreement (overall accuracy) and 𝑝𝑒 is the probability of agreement when two 

classes are unconditionally independent. The strength of the kappa coefficients is interpreted in the following manner: 0.01-20 

0.20: slight, 0.21-0.40: fair, 0.41-0.60: moderate, 0.61-0.80: substantial, 0.81-1.00: almost perfect (Landis and Koch, 1977). 
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The probabilities of different soil texture types (sum to 1) obtained during the training and predicting processes of machine-

learning models were selected to calculate the sensitivity, specificity, precision and recall: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,                  (17) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
,                    (18) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,                     (19) 5 

In general, sensitivity, precision and recall indicate the extent of identifying positive cases, and specificity demonstrates the 

extent of identifying the negative cases of models. ROC analysis is commonly used in two-class problems. However, soil 

texture types are more than two classes. In our point of view, a one-vs-rest strategy was employed to produce different ROC 

graphs for each soil texture type. 

𝑃𝑖 = 𝑐𝑖,                       (20) 10 

𝑁𝑖 = ⋃ 𝑗 ≠ 𝑖𝑐𝑗 ∈ 𝐶,                     (21) 

where C is the set including all classes, 𝑃𝑖  is the positive class, 𝑁𝑖 is the negative class, including all classes except 𝑐𝑖 in 

ROC graph i (Fawcett, 2006). 

In practice, the weakness of the ROC curve is that it cannot indicate the differences among the models in the cases of 

imbalanced samples between positive and negative. Soil texture data are a class-imbalanced data set of positive and negative, 15 

and the negative classifier would be overvalued under these circumstances because of the overabundance of majority (negative) 

examples, additionally revealing overly optimistic findings (Davis and Goadrich, 2006). However, precision and recall curves 

(PRC) are more informative than ROC curves in dealing with class-imbalanced data (Fu et al., 2017). The R package “precrec” 

(Saito and Rehmsmeier, 2017) generated ROC and PRC curves and computed AUC and AUPRC for each soil texture type. 

This process was repeated 30 times and eventually, the average ROC and PRC curves with their average areas under these 20 

curves were obtained. 

Abundance index was applied to describe the proportion of all soil texture types and correctly predicted soil texture types 

in the prediction map, which was defined as follows: 

𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 = 𝑝/𝑡,       (22) 

where p is correctly predicted soil texture type(s) and t is all soil texture types in the prediction map. For the sake of ensuring 25 

the balance of the soil texture types, all nine soil texture types were involved in test sets, covering clay loam (ClLo: 12), loam 

(Lo: 57), loamy sand (LoSa: 18), sand (Sa: 23), sandy clay loam (SaClLo: 4), sandy loam (SaLo: 58), silt (Si: 31), silty clay 

loam (SiClLo: 37), and silt loam (SiLo: 400); most were SiLo (62.5%) and the fewest were SaClLo (0.63%). 

2.6.3 Validation indicators for soil psf interpolation 

The accuracy and performance of machine-learning models mentioned above for the original (untransformed) and different 30 

log ratio transformation approaches were evaluated using five statistical indicators, containing coefficient of determination 
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(R2), root mean square error (RMSE), mean absolute error (MAE), Aitchison distance (AD, Aitchison, 1992), and standardized 

residual sum of squares (STRESS, Martin-Fernandez et al., 2001). The equations for the validation indicators R2, RMSE, MAE, 

AD and STRESS are as follows: 

𝑅2 =
∑ (𝑌𝑖,𝑚−𝑌𝑖,𝑒)𝑛

𝑖=1

∑ (𝑌𝑖,𝑚−𝑌̄𝑖,𝑚)𝑛
𝑖=1

,                     (23) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖,𝑚 − 𝑌𝑖,𝑒)2𝑛

𝑖=1 ,                  (24) 5 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑖,𝑚 − 𝑌𝑖,𝑒|𝑛

𝑖=1 ,                   (25) 

where 𝑌𝑖,𝑚, 𝑌𝑖,𝑒 , 𝑌̄𝑖,𝑚 and n are the measured, predicted and the mean of measured soil psf and the number of observations (soil 

sampling points for validation). Closer to 1 and higher values of R2 and the lower values of RMSE and MAE show better 

performance of models and methods. 

𝐴𝐷 = [∑ [𝑙𝑜𝑔
𝑥𝑖

𝑔(𝑥)
− 𝑙𝑜𝑔

𝑋𝑖

𝑔(𝑋)
]𝐷

𝑖=1

2

]
1/2

,                 (26) 10 

𝑆𝑇𝑅𝐸𝑆𝑆 = [
∑ (𝐴𝐷𝑥,𝑖𝑗−𝐴𝐷𝑋,𝑖𝑗)2

𝑖<𝑗

∑ (𝐴𝐷𝑥,𝑖𝑗)2
𝑖<𝑗

]
1/2

,                  (27) 

where 𝑥 is the observed value; 𝑋 is the predicted value; 𝐷 is the number of dimensions (for soil psf is 3); 𝑔(𝑥) denotes 

the geometric mean (𝑥1. . . 𝑥𝐷)1/𝐷; 𝐴𝐷𝑥,𝑖𝑗  and 𝐴𝐷𝑋,𝑖𝑗 are the 𝐴𝐷𝑠 between the observed soil psf and the predicted soil psf 

at sites 𝑖 and 𝑗. Both present that model performances are better when the values are lower. 

2.6.4 Indirect soil texture classification by soil psf interpolation 15 

Seventy percent of the 640 soil sampling points were used for training each machine-learning model, and the remaining 30 % 

were used for the soil psf interpolation; thereafter, we transformed the content of three components (sand, silt and clay) into 

the soil texture types in the USDA soil texture classification triangles using the R package “soiltexture” (Moeys, 2018). 

Eventually, the overall accuracy and kappa coefficient were computed and evaluated. This process was repeated 30 times, and 

the averages of these consequences were employed to compare the classification performance of each model. The direct and 20 

indirect soil texture classifications were also compared with the overall accuracy and kappa coefficient. The training and testing 

sets for each time were the same by setting seeds, and all calculations and analysis were performed with the freely available 

software R (R Core Team, 2018). 

2.7 Statistical analysis for the original and log ratio transformed data 

The mean, median, minimum (Min), maximum (Max), median absolute deviation (MAD), skewness (Skew), kurtosis and 25 

Kolmogorov-Smirnov test (p>0.05) were employed for descriptive statistical analysis of the original (untransformed) and log 
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ratio transformed soil psf data. The arithmetic mean of log-ratio transformation data should be back-transformed to the real 

space. For 𝑋 = [𝑋1, . . . , 𝑋𝑛], the MAD can be calculated according to the Eq. (28) as below: 

𝑀𝐴𝐷(𝑋) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)|).          (28) 

3 Results 

3.1 The descriptive statistics for the original and log ratio transformed soil psf data 5 

With respect to the original (untransformed) data of sand, the mean fraction (30.64 %) was much higher than that of median 

fraction (25.10 %); conversely, both silt and clay were the opposite, with lower mean fractions (silt: 55.79 %, clay: 13.57 %) 

than median fractions (silt: 59.47 %, clay: 13.78 %). For the log ratio transformed data, the means of sand (28.69 %) and silt 

(60.54 %) were closer to the median values of the original data, aside from clay, with mean of 10.78 %. 

  All MADs of log ratio transformed data were much smaller than those of the original data in all cases; for instance, ILR 10 

contained the best value of MAD for sand (0.66) and clay (0.44), and CLR generated the lowest MAD for silt (0.43) among 

different log ratio approaches (Fig. 2). All log ratio approaches had lower skews (ALR: 0.77, CLR: 0.88, ILR: -1.20) than 

those of the original data (1.24) for sand. Moreover, CLR (-0.4) declined the original skew (-0.93) for silt. However, it was 

negligible for log ratio transformation data compared with the original skew of clay (0.4). The kurtosis of all log ratio 

approaches was much higher compared with the consequences generated from original (untransformed) data. In terms of the 15 

k-s test (p < 0.05), although the p values of the original (untransformed) and different log ratio transformed data were not 

significant and all histograms were not subject to normal distribution, log ratios made the images of the data more symmetric 

(Fig. 2).  
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Figure 2. Descriptive statistical analysis for the original (untransformed) and logratio transformed soil sampling data. Note 

that the means generated from log ratio transformed data were back-transformed to the real space. 

3.2 Comparison of the machine learning models in the classification of soil texture types 

3.2.1 Comparison of the validation indicators for soil texture classification 

The overall accuracy of each model ranged from 0.610 to 0.647 (Fig. 3a). SVM had the highest overall accuracy (0.647) among 5 

the five models, followed closely by the accuracies of KNN (0.631) and RF (0.629). XGB (0.611) and MLP (0.610) were 

relatively lower among these models. The highest kappa coefficient was generated from XGB (0.240), followed by RF (0.238), 

KNN (0.234) and MLP (0.230), and the worst performer was SVM, with kappa coefficient dropping to 0.186 (Fig. 3b). 

 

Figure 3. (a) The overall accuracies and (b) kappa coefficients for different machine learning models of KNN, MLP, RF, SVM 10 

and XGB. 

The AUC with regard to each soil texture type of 640 soil sampling points predicted from five different models demonstrated 

that the ranking of the AUC was RF>XGB>SVM>KNN>MLP in the case of fewer soil sampling points (ClLo, LoSa, Sa, 

SaClLo and Si). However, in the case of the types with more soil sampling points (Lo, SaLo, SiLo, SiClLo), the ROC curves 

exhibited roughly the same shape for each model (Fig. 4); therefore, the order of performance was as follows: 15 

RF>SVM>XGB>MLP>KNN. 
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Figure 4. The AUC for different machine-learning methods of each soil texture type (a) ClLo (b) Lo (c) LoSa (d) Sa (e) SaClLo 

(f) SaLo (g) Si (h) SiClLo (i) SiLo; n was the sampling points for different soil texture types. 

We combined the PRCs with five machine-learning methods to evaluate the performance of these models with respect to 

predicting each soil texture type using soil psf imbalanced data with different samples of soil texture types (Fig. 5). We found 5 

that the AUPRC of types with fewer positive examples were typically small, especially in the case of SaClLo (only four 

samples), which resulted in unsatisfying consequences because the lack of soil sampling points made models learn poorly 

during the training process. Hence, the soil texture types (Lo, SaLo, SiLo, SiClLo) with more positive examples delivered 

superior results to those with fewer positive examples. Moreover, these soil texture types had significant differences in 

AUPRCs. For example, SiLo, which had the largest number of samples, was the most effective among these nine types. The 10 
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total AUPRC calculated by the weights of samples for AUPRC of each type was applied to evaluate the effect of each model, 

and the order was as follows: RF (0.646)>XGB (0.616)>KNN (0.601)>MLP (0.600)>SVM (0.599). 

 

Figure 5. The AUPRC for different machine-learning methods of each soil texture type (a) ClLo (b) Lo (c) LoSa (d) Sa (e) 

SaClLo (f) SaLo (g) Si (h) SiClLo (i) SiLo; n was the sampling points for different soil texture types. 5 

3.2.2 Comparison of the prediction maps for soil texture classification  

Prediction maps of soil texture types in the HRB using machine-learning models delivered quite different spatial distributions 

in the overall performance of different models (Fig. 6). The abundance indices pointed out that all models could not predict 
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the type of SaClLo; in other words, KNN and XGB predicted 8 of 9 types, followed closely by RF (7 of 9 types) and MLP (6 

of 9 types). However, SVM predicted only two types, which was an unsatisfactory result associated with the lowest kappa 

coefficient (Fig. 3). Additionally, the prediction effects of different models were different in the distributions of soil texture 

types in the HRB. The consequences of RF and XGB illustrated that the main soil texture types in the northwest of the lower 

reaches of HRB were mostly LoSa, while other prediction models produced SaLo. On the upper reaches of the HRB, soil 5 

texture types generated from RF were more abundant and more in accordance with the real environment. 

 

Figure 6. Soil texture classification prediction map of different soil texture types of (a) KNN, (b) MLP, (c) RF, (d) SVM and 

(e) XGB. 

3.3 Comparison of the machine-learning models combined with log ratio approaches in the interpolation of soil psf 10 

3.3.1 Comparison of the validation indicators for interpolation of soil psf 

We compared the performance of each machine-learning model combined with the original (untransformed) and the log ratio 

transformed data of soil psf. The results indicated that the accuracies of STRESS of the methods combined with log ratio 

transformed data were superior to other approaches using original (untransformed) data (Table 2). With respect to KNN, MLP, 

RF and XGB, values of RMSE, MAE, R2 and AD generated from original (untransformed) data outperformed log ratio 15 
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transformed data; for SVM, log ratio transformed data delivered superior improvement. For instance, SVM_CLR and 

SVM_ILR had higher R2 and lower RMSE and MAE than SVM_ORI of sand, silt and clay. 

By comparison among different log ratio approaches of the same machine-learning model, ILR and CLR outperformed 

ALR in these models, other than MLP, showing a slight difference. As shown in Table 2, KNN_CLR demonstrated the most 

remarkable performance among the three KNN models using different log ratio transformed data with highest R2 (sand: 5 

48.48 %; silt: 38.37 %; clay: 41.43 %) and lowest RMSE (sand: 15.82 %; silt: 14.77 %; clay: 7.09 %) and MAE (sand: 11.21 %; 

silt: 10.74 %; clay: 5.58 %). Furthermore, CLR and ILR generated relatively similar consequences for each model of RF and 

SVM; with respect to XGB, XGB_ILR showed the best performance with all indicators we measured, aside from RMSE 

(6.75 %) and MAE (5.36 %) of clay, and STRESS (0.63). 

We also compared five different machine-learning models using the same log ratio approaches. In the case of ALR, 10 

ALR_RF had talent, with the lowest RMSE (sand: 15.50 %; silt: 14.43 %; clay: 6.62 %) and MAE (sand: 10.90 %; silt: 10.52 %; 

clay: 5.24 %), the highest R2 (sand: 50.57 %; silt: 41.23 %; clay: 48.90 %), and the lowest AD (0.86) and STRESS (0.61), 

followed by SVM_ALR, XGB_ALR, KNN_ALR and MLP_ALR. Regarding CLR and ILR, RF also produced the most 

preferable performance followed by SVM, XGB, KNN and MLP. For ORI approach, RF outperformed other models in 

accordance with log ratio approaches, and the next were XGB, SVM, KNN and MLP. Therefore, it is clear that RFs 15 

demonstrated the most extraordinary indicators of RMSE, MAE, R2 and AD from the ORI model and the best STRESS from 

the log ratio models (RF_ALR, RF_CLR and RF_ILR).
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Table 2. The comparisons of accuracies of different machine-learning models combined with original (untransformed) and transformed data. 

 RMSE (%) MAE (%) R2 (%) AD STRESS 

 Sand Silt Clay Sand Silt Clay Sand Silt Clay   

KNN_ALR 16.05 15.04 7.12 11.35 10.93 5.59 47.02 36.11 41.07 0.90 0.62 

KNN_CLR 15.82 14.77 7.09 11.21 10.74 5.58 48.48 38.37 41.43 0.88 0.62 

KNN_ILR 15.82 14.82 7.14 11.22 10.84 5.60 48.46 37.88 40.74 0.88 0.64 

KNN_ORI 15.51 14.47 7.05 11.12 10.51 5.49 50.59 40.92 42.24 0.84 0.66 

MLP_ALR 15.83 15.07 7.43 11.42 11.06 5.97 48.50 35.82 35.79 0.92 0.66 

MLP_CLR 15.84 15.07 7.41 11.45 11.05 5.96 48.42 35.86 36.19 0.92 0.66 

MLP_ILR 15.84 15.07 7.40 11.46 11.04 5.95 48.40 35.85 36.32 0.92 0.66 

MLP_ORI 15.80 14.72 6.96 11.50 10.85 5.52 48.75 38.84 43.72 0.90 0.68 

RF_ALR 15.50 14.43 6.62 10.90 10.52 5.24 50.57 41.23 48.90 0.86 0.61 

RF_CLR 15.28 14.22 6.61 10.70 10.25 5.21 51.95 42.89 49.16 0.86 0.61 

RF_ILR 15.27 14.25 6.66 10.66 10.26 5.26 51.99 42.60 48.28 0.86 0.61 

RF_ORI 15.09 13.86 6.31 10.65 9.99 5.00 53.28 45.77 53.75 0.84 0.66 

SVM_ALR 15.66 14.59 6.76 11.66 10.88 5.34 49.61 39.87 46.89 0.88 0.66 

SVM_CLR 15.27 14.36 6.87 11.01 10.41 5.41 52.12 41.85 45.14 0.87 0.65 

SVM_ILR 15.29 14.37 6.84 10.92 10.43 5.42 51.99 41.69 45.58 0.87 0.65 

SVM_ORI 15.30 14.38 6.92 10.94 10.32 5.43 51.98 41.71 44.45 0.87 0.67 

XGB_ALR 15.82 14.92 6.72 11.32 11.01 5.35 48.57 37.23 47.44 0.88 0.64 

XGB_CLR 15.70 14.80 6.75 10.96 10.67 5.39 49.23 38.10 46.90 0.88 0.62 

XGB_ILR 15.45 14.57 6.75 10.91 10.52 5.36 50.88 40.01 47.01 0.88 0.63 

XGB_ORI 15.15 14.05 6.47 10.88 10.15 5.15 52.85 44.27 51.36 0.86 0.68 
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3.3.2 Comparison of the interpolation maps of soil psf  

Interpolation maps of soil psf (sand, silt and clay) using log ratio transformed data (ILR) and original (untransformed) data 

were represented in Figs. 7, S1 and S2. At first glance, there was a negligible difference between ILR and ORI based on the 

same machine-learning model. However, the maps generated from models combined with ILR transformed data showed closer 

ranges to the original soil sampling data in the case of sand (0.98-99.66 %), silt (0.17-95.87 %) and clay (0.03-39.77 %), and 5 

the texture features were more suitable for the distributions of the real environment (Figs. 7, S1 and S2). With respect to 

different machine-learning models, RF and XGB delivered more detailed information about texture features in prediction maps 

than did KNN, SVM and MLP. 
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Figure 7. The interpolation maps of sand fraction. 

3.4 Comparison of direct and indirect soil texture classification 

3.4.1 Comparison of the validation indicators for direct and indirect soil texture classification 

Compared with the classification performance of the five machine-learning models using original (untransformed) data, the 

overall accuracies and kappa coefficients of models using log ratio transformed data were improved, especially RF and XGB, 5 

which combined with all three log ratio approaches were superior to the ORI approach. Table 3 shows that the overall accuracy 

(0.631) and kappa coefficient (0.245) of the original method in KNN models were better than any other log ratio approach. In 

summary, the ILR transformation method of five machine-learning models showed the highest overall accuracy among three 

log ratio transformation approaches (KNN: 0.628; MLP: 0.614; RF: 0.631; SVM: 0.631; XGB: 0.632), which also 

demonstrated the best performance with regard to kappa coefficients (KNN: 0.244; RF: 0.291; SVM: 0.239; XGB: 0.252), 10 

except for MLP (ALR: 0.216; CLR: 0.216; ILR: 0.214). We also compared direct classification (Fig. 3) with indirect 

classification and found that the highest values of overall accuracy of indirect classification (KNN: 0.631; MLP: 0.614; RF: 

0.628; SVM: 0.638; XGB: 0.632) were slightly decreased in comparison of the direct classification (KNN: 0.631; MLP: 0.610; 

RF: 0.629; SVM: 0.647; XGB: 0.611) for RF and SVM, and improved or kept stable for MLP and XGB, and KNN, respectively. 

In turn, the kappa coefficients were greatly modified using indirect classification (KNN: 0.245; MLP: 0.216; RF: 0.291; SVM: 15 

0.239; XGB: 0.252) compared with direct classification (KNN: 0.234; MLP: 0.230; RF: 0.238; SVM: 0.186; XGB: 0.240), 

other than MLP; peculiarly, RF_ILR increased the kappa coefficient to 0.291 (21.3 % improvement) while keeping accuracy 

stable, which showed the highest kappa coefficient among these methods. 

Table 3. Overall accuracies and kappa coefficients calculated from soil texture classification by the interpolated maps from 

five models using original (untransformed) data and log ratio transformed data. 20 

Methods Overall accuracy Kappa coefficient 

KNN_ALR 0.623  0.236  

KNN_CLR 0.627  0.241  

KNN_ILR 0.628  0.244  

KNN_ORI 0.631  0.245  

MLP_ALR 0.614  0.216  

MLP_CLR 0.614  0.216  

MLP_ILR 0.614  0.214  

MLP_ORI 0.611  0.216  

RF_ALR 0.619  0.284  

RF_CLR 0.625  0.276  
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RF_ILR 0.628  0.291  

RF_ORI 0.619  0.279  

SVM_ALR 0.591  0.205  

SVM_CLR 0.630  0.227  

SVM_ILR 0.631  0.239  

SVM_ORI 0.638  0.232  

XGB_ALR 0.610  0.226  

XGB_CLR 0.612  0.240  

XGB_ILR 0.632  0.252  

XGB_ORI 0.619  0.239  

3.4.2 The prediction performance of soil texture types from different methods  

The distributions of soil texture classes using original (untransformed) data and ILR transformed data are illustrated in the 

USDA soil texture triangle (Fig. 8). The triangle of the original soil psf data (Fig. 8a) shows wider ranges of spatial dispersion 

than the interpolation data using machine-learning models, revealing the properties of aggregate from the sides to the center 

of triangles. With respect to these machine-learning models, RF showed the most dispersed feature in accordance with the 5 

original soil psf data. The distributions predicted from models combined with ILR transformed data were more discrete and 

more associated with the original soil psf data than those resulting from ORI approaches. The results of prediction represented 

striking differences in that the error ratio (red color) of soil sampling points on types of LoSa, SaLo and Lo (left side of triangles) 

were significantly more than those on types of SiLo and Si (the right side of triangles) for most models, especially KNN and 

MLP. The log ratio approaches overestimated the content of silt in the process of transformation (Fig. 2); in this way, these 10 

points were biased to the right of the USDA soil texture triangle based on overall contraction (regression smoothing effects), 

crossing the classification boundary and becoming other soil texture types. RF_ILR (Fig. 8f) delivered the highest right ratio 

(RR) among these models, and the classification accuracy was enhanced using the ILR approach (83.9%) compared with the 

ORI approach (81.7%). In the case of other models, the differences between the ORI and log ratio approaches were negligible. 

We also compared the RRs of indirect classification models with those of direct classification, demonstrating all RRs of direct 15 

classification were higher (KNN: 67.97 %; MLP: 75.16 %; RF: 100 %; SVM: 66.09 %; XGB: 81.09 %), especially RF and 

XGB; however, we removed this evaluation indicator because the same data sets were employed in the processes of training 

and predicting. 
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Figure 8. Soil texture types of 640 soil samples shown in USDA texture triangle. The results of soil psf were generated from 

(a) original (untransformed) data, (b) KNN_ILR (65.0 %), (c) KNN_ORI (65.9 %), (d) MLP_ILR (63.3 %), (e) MLP_ORI 

(63.6 %), (f) RF_ILR (83.9 %), (g) RF_ORI (81.7 %), (h) SVM_ILR (66.1 %), (i) SVM_ORI (66.4 %), (j) XGB_ILR (67.8 %), 

and (k) XGB_ORI (68.0 %). Note that the predicted right-ratios (RRs) of the soil texture types were in the bracket after 5 

interpolators 
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3.4.3 Comparison of prediction maps of direct and indirect soil texture classification 

Fig. 9 shows the similarity of the three log-ratio approaches. The soil texture maps predicted using original (untransformed) 

data is different from those generated by log ratio transformed data, and the classification maps from the machine learning 

models combined the log ratio transformed data had more detailed information. Three log-ratio transformation methods of the 

same machine learning model are similar in the number of each type predicted; however, there are some differences between 5 

methods using original (untransformed) data and those using log-ratio transformed data. All machine learning models 

combined with original data predicted more types of Lo and SaLo, and less types of LoSa and Si, which could also be presented 

in Fig. 9. The performance of different machine-learning models, especially in the lower reaches of the HRB was also compared, 

for log ratio approaches, for KNN, KNN_ALR and KNN_CLR predicted more type of LoSa than KNN_ILR in the north of 

lower reaches; for each model of MLP and RF, the differences were slight; more types of Lo in the northwest of lower reaches 10 

and less LoSa near the Heihe River were generated by SVM_ALR, compared with SVM_CLR and SVM_ILR; for XGB, the 

performance of three maps were different due to the prediction of LoSa. We also compared the prediction of the soil texture 

types by direct classification (Fig. 6) with those generated by indirect classification using the same machine-learning model, 

and found completely difference between them on the lower reaches of HRB, such as the distribution of LoSa; on the middle 

and upper reaches of HRB, all the prediction maps were similar, mainly distributed with SiLo. 15 
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Figure 9. Soil texture classification prediction maps by soil psf interpolation (ALR, CLR, ILR log-ratio and ORI approaches) 

of KNN, MLP, RF, SVM and XGB. 

3.4.4 Comparison of time-spending for each model in soil texture classification and soil psf interpolation 

Time spending for models was computed to compare the efficiency of different machine-learning models in soil texture 

classification and soil psf interpolation (Fig. 10). Because the differences in time spending among ORI and log ratio approaches 5 

were similar, ILR was selected for soil psf interpolation. For the different models, RFs required the longest time for both 

classification (453.73 s) and regression (188.87 s), which may cause it to lose advantages when dealing with big data sets. 

KNN (classification: 4.2 s, regression: 23.6 s) and SVM (classification: 4.15 s, regression: 12.4 s) both showed shorter time in 

not only classification but also regression. Likewise, XGB (classification: 21.6 s, regression: 17.13 s) was much more stable 

and used less time, and the data processes were simpler compared with MLP (classification: 47.28 s, regression: 152.31 s). 10 

Moreover, it delivered better performance than KNN and SVM in prediction maps of HRB, demonstrating an effective way of 

dealing with larger data. 

 

Figure 10. Average time spent running 30 times for KNN, MLP, RF, SVM and XGB of soil texture classification and soil psf 

interpolation. 15 
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4 Discussion 

4.1 The systematic comparison of the five machine learning models 

As mentioned previously, we compared the performance of different machine-learning methods containing KNN, MLP, RF, 

SVM and XGB. The results demonstrate that SVM had the highest overall accuracy and XGB generated the highest kappa 

coefficient with respect to direct soil texture classification; considering the comprehensive evaluation of AUC and AUPRC, 5 

RF showed the best performance among these machine-learning models. In the case of soil psf interpolation, the indicators of 

RMSE, MAE, R2, AD and STRESS showed that RFs outperformed other machine-learning models, which also indicated more 

detailed information in prediction maps of sand, silt and clay as well as XGB. For the indirection classification of soil texture, 

the USDA soil texture triangles generated from RF were the closest to the distribution of the original soil psf data (Fig. 8a), 

with the highest classification right ratio. Prediction maps of indirect soil texture classification were also considered, 10 

demonstrating RF and MLP models were more suitable for the real environment, especially the models combined with log 

ratio transformation approaches. Time spending of different machine-learning models showed that KNN, SVM and XGB 

required less time than RF and MLP to fit large data sets. 

The comparisons of machine-learning models were also mentioned in previous reports. Heung et al. (2016) demonstrated 

that tree learners, such as RFs, delivered better performance than KNN and SVM due to the advantages of the interpretability 15 

of the results for classification problems in soil science; tree learners (decision trees) were also shown by Taghizadeh-Mehrjardi 

et al. (2015), indicating that the decision trees and ANN outperformed KNN, RF and SVM. ANNs, however, were typically 

complicated, which was true for our study due to the standardization and back transformation of MLP. In contrast, Wu et al. 

(2018) proposed that SVM revealed reliable consequences in the direct soil texture classification, which was quite different 

from our results. In general, as binary classifiers, multi-class tasks can be handled as well using SVM; however, this is no 20 

longer the case in our study, as only 2 types of soil texture were generated from SVM, showing unsatisfactory results in both 

kappa coefficients (Fig. 3b) and prediction maps (Fig. 6d). The consequences may be explained by the imbalanced data of soil 

texture types. For more information about tree learners in soil science for regression, Hengl et al. (2017) found lower R2 using 

XGB than RF on a global-scale prediction. Zeraatpisheh et al. (2018) put forward the lowest RMSE and the highest R2 using 

RF compared with multiple linear regression and regression trees for the prediction of clay, and this conclusion was similar to 25 

our study. 

4.2 The systematic comparison of the models combined with three log-ratio transformed data and original data 

We compared the performance of models combined with three types of log ratio transformed data and original (untransformed) 

data for soil psf interpolation and indirect soil texture classification, and the results showed that the models using original data 

performed better in the case of indicators, such as RMSE, MAE, R2 and AD, while the models using log ratio transformed data 30 

improved the STRESS. The interpolation maps of soil psf using ILR approach illustrated closer ranges of soil sampling data 
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than those based on the ORI approach. With respect to the indirect soil texture classification, models using log ratio transformed 

data improved the overall accuracies and kappa coefficients, such as RF and XGB. The USDA soil texture triangles showed 

more discrete distribution and more accordance with soil sampling data using the ILR approach. Better performance was shown 

in soil texture classification prediction maps generated from log ratio transformed data. Among the three log ratio approaches, 

ILR and CLR were superior to ALR for the reason of more accurate indicators of soil psf interpolation and indirect soil texture 5 

classification, as well the performance of prediction maps. Additionally, log ratio approaches modified soil sampling data to 

become more symmetric (Filzmoser et al., 2009); however, this improvement was not greatly effective. Fig.2 illustrated that 

soil sampling data for sand and clay were right-skewed, and silt was left-skewed because the silt component was predominant. 

The ALR approach enhanced soil sampling data of sand; nevertheless, the ALR_sand was still right-skewed, similar to the 

CLR_sand, presenting the lack of adjustment. In contrast, the ILR_sand changed from right-skewed to left-skewed; from this 10 

point of view, the over-adjustment was revealed. Similarly, the lack of adjustments was also shown in CLR_silt and ILR_silt; 

over-adjustments included ALR_silt, ALR_clay, CLR_clay and ILR_clay, making images that were different from normal 

distribution, and the p values of k-s tests were not significant. In our previous research (Wang and Shi, 2017), the ILR approach 

had better performance than ALR and CLR, with the highest R2 and lowest AD. The CLR approach also performed well due 

to the lowest RMSE and mean error (ME) among the three log ratio approaches. When comparing the original (untransformed) 15 

and log ratio approaches, kriging approaches based on the log ratio delivered slightly decreased accuracies, which was similar 

to the conclusion in our study. 

4.3 The systematic comparison of the direct and indirect classification for soil psf 

Indirect classification showed not only better performance with respect to accuracy evaluation but also more accordance with 

the real environment than direct classification. The highest kappa coefficient generated from indirect classification (RF_ILR: 20 

0.291) demonstrated obvious improvement (approximately 21.3 %) compared with that of direct classification (XGB: 0.240), 

keeping the highest overall accuracy stable (-1.4 %) at the same time (direct: 0.647; indirect: 0.638, respectively). 

Compared with the real soil texture distribution and environment of the HRB, SiLo overlaid the upper reaches of HRB, and 

SaLo and Lo were in the south of the upper reaches of HRB showed strip distribution. Moreover, an uncovered area was 

detected in the northwest of the lower reaches of HRB, where it cannot be predicted due to a lack of information (soil samples) 25 

input in the process of model training. The main soil texture types of the lower reaches of the HRB were SiLo, LoSa and small 

amounts of SaLo and Lo distributed in uncovered area. The main soil texture types predicted by direct classification using 

machine-learning models were SaLo and SiLo; RF and XGB delivered much more LoSa than other direct classification models. 

However, all these models predicted that the main soil type of the lower reaches of HRB was SaLo, which was not fitted for 

the real environment (LoSa). In addition, because of the limitation of the train sets, direct classification can only predict types 30 

in the training data; in contrast, indirect classification broke such limitations, and new prediction types arose due to the 

transformation from soil psf to soil texture types. Moreover, more suitable matching performance with the real environment 
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should be considered, such as the log ratio approaches of MLP, RF, KNN_ ALR, KNN_ ILR and XGB_CLR. The direct soil 

texture classification generated relative unsatisfactory consequences. Although the indirect soil texture classification 

outperformed the direct one, kappa coefficients for indirect classification at fair-level (0.21-0.40) also need to be enhanced. 

Hence, soil sampling data appear to be comprehensively meaningful, considering accuracy improvement. In the case of soil 

sampling data, the laser diffraction approach we mentioned above was applied to obtain the discrete representation of particle 5 

size curves based on the given quantiles of these curves, i.e., soil particle size fractions (psf, sand, silt and clay). Subsequently, 

soil psf data were separately modeled for prediction and validation. Another perspective of soil psf should be considered, i.e., 

the probability density functions of particle size curves (so-called functional compositions), which are non-negative values 

that integrate to 1 (or 100 %) and can be considered as compositional data with infinitesimal parts (Menafoglio et al., 2014). 

Unlike conventional approaches, the viewpoints of functional compositions are beneficial to acquiring complete and 10 

continuous information rather than discrete information (sand, silt and clay), and soil texture and soil particle size fractions 

can be extracted using the stochastic simulation of soil particle-size curves (Menafoglio et al., 2016b). Previous studies applied 

such functional-compositional data for the simulation of particle size curves combined with geostatistical or machine-learning 

methods such as kriging and bayes approaches (Menafoglio et al., 2016a) in hydrogeology, demonstrating more remarkable 

results compared with traditional methods. Therefore, which data should be used is the key points of accuracy improvement 15 

in future research. 

5 Conclusion 

We systematically compared a total of 45 models for direct and indirect soil texture classification, and soil psf interpolation 

using five machine-learning approaches combined with original (untransformed) and three different log ratio transformed data 

in the HRB. The results indicate that as flexible and stable models, tree learners such as RF delivered powerful performance 20 

in both classification and regression and were superior to other machine-learning models mentioned above. As a new and sub-

optimal machine-learning method in our study, XGB appeared to be more meaningful and more computationally efficient 

when dealing with large data sets. In addition, the log ratio approaches had advantages of modifying STRESS in soil psf 

interpolation. Moreover, the indirect soil texture classification outperformed the direct one, especially when combined with 

the log ratio approaches. The indirect soil texture classification generated preferable consequences in both cases of accuracy 25 

indicators and prediction maps. More appropriate environmental covariates, more symmetric distribution of soil sampling data 

(or multiple perspectives of compositional data selection), and systematic parameter adjustment algorithms of compositional 

data are key to improving accuracy in the future. 

 

 30 

Data availability. The soil sampling data (DOIs are: 10.3972/heihe.009.2013.db; 10.3972/heihe.009.2013.db; 

DOI:10.3972/heihe.00135.2016.db; 10.3972/hiwater.147.2013.db; 10.3972/heihe.037.2014.db; 10.3972/heihe.0034.2013.db; 
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10.3972/heihe.093.2013.db), remote sensing data and part of environmental covariates data can be accessed through 

http://westdc.westgis.ac.cn/ (last access: 29 October 2018). The meteorological data can be accessed through 

http://data.cma.cn/ (last access: 29 October 2018). 
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