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Responses to the Referee 

*Major comments* 

 

A review of “Systematic comparison of five machine-learning methods” by Mo Zhang and Wenjiao Shi. The 

manuscripts describe a comparison between five machine learning methods for soil classification and interpolation of 5 

soil particle size fractions. It explores different transformed data. There are a few major problems with the manuscript: 

 

Comment 1: The five machine-learning methods come falling from the air. That is to be regretted, as there is much 

more information available in the literature. The manuscript now provides only some technical aspects, and for instance 

not prior assumptions, restrictions in their use or their general comparability. The manuscript would largely benefit 10 

from a short mathematical introduction to the five techniques, from where it would become clear whether in fact 

comparable methods are compared, or that there is a comparison between apples and oranges. 

 

Response: Thanks for the referee’s suggestion for the machine-learning methods. We have added mathematical introduction 

of these five machine-learning methods to show these techniques can be compared.  15 

P19L4, Section 2.4.1—2.4.5 in our revised version: 

(1) K-nearest neighbor (KNN) 

K-nearest neighbor (KNN) is a simple non-parametric classifier based on known instance to label unknown instance (Cover 

and Hart, 1967). For the test set, K-nearest training set vectors were found, and maximum summed kernel densities were 

computed for classification. Moreover, continuous variables can also be predicted for regression with the average values of K-20 

nearest neighbors. For a training set of observed data 𝐿 = {(𝑦𝑖 , 𝑥𝑖), 𝑖 = 1, . . . , 𝑛𝐿} , class 𝑦𝑖 ∈ {1, . . . , 𝑐} , and the predictor 

values 𝑥′𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝). For a new observation (𝑦, 𝑥), the nearest neighbor (𝑦(1), 𝑥(1)) is based on the distance function 

which is as follows: 

𝑑(𝑥, 𝑥(1)) = 𝑚𝑖𝑛𝑖( 𝑑(𝑥, 𝑥𝑖)),                    (1) 

and �̂� = 𝑦(1) refers to the nearest neighbor, which is the prediction for 𝑦. Value 𝑥(𝑗) and 𝑦(𝑗) is the 𝑗th nearest neighbor 25 

of 𝑥 and class of training set, respectively. Weighted KNN is an extended version of KNN, which considers the maximum of 

summed kernel densities and the K nearest vectors of training set for each row of the test set (the distances of the nearest 

neighbors) based on the Minkowski distance, more details can be found in Hechenbichler and Schliep (2004), the equation for 

Minkowski distance is as follows: 

𝑑(𝑥𝑖 , 𝑥𝑗) = (∑ |𝑥𝑖𝑠 − 𝑥𝑗𝑠|
𝑝
𝑠=1

𝑞
)1/𝑞 ,                     (2) 30 
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where 𝑑(𝑥𝑖 , 𝑥𝑗) refers to the Euclidean distance when 𝑞 = 2 and the absolute distance results for 𝑞 = 1. Therefore, the 

parameters of KNN contain the maximum value of k (kmax), the distances of the nearest neighbors (distance) and the types of 

kernel function (kernel). The KNN model is available in the R package “kknn” (Schliep and Hechenbichler, 2016). 

 

(2) Multilayer perceptron neural network (MLP) 5 

Multilayer perceptron neural network (MLP), which is currently one of the most popular multilayer feed forward 

backpropagation networks, was selected to train artificial neural network (ANN) models in our study due to its rapid operation, 

small set of training requirements and ease of implementation (Subasi, 2007). MLP neurons can perform classification or 

regression depending on whether the response variable is categorical or continuous. The MLP has three sequential layers: input 

layer, hidden layer and output layer. In the hidden layer of MLP, each neuron 𝑗 sums input environmental covariate in our 10 

study 𝑥𝑖  after multiplying them by the connection weights 𝑤𝑗𝑖   respectively, and calculates its output 𝑦𝑗  (soil PSF 

component or texture class) as a function of the sum:  

𝑦𝑗 = 𝑓(∑ 𝑤𝑗𝑖𝑥𝑖),                       (3) 

where 𝑓 is the activation function, which can be a linear (selected in our study) or logistic function. The sum of squared 

differences between the predicted values and observed values of the output results of neurons 𝐸 is defined as follows:  15 

𝐸 =
1

2
∑ (𝑦𝑝𝑗 − 𝑦𝑜𝑗)2

𝑗 ,                     (4) 

where 𝑦𝑝𝑗  and 𝑦𝑜𝑗  is the predicted and observed value of output neuron 𝑗, respectively. Each 𝑤𝑗𝑖  is adjusted to reduce 𝐸 

and the adjustment of 𝑤𝑗𝑖  depends on the training algorithm (Basheer and Hajmeer, 2000). The resilient backpropagation 

algorithm was chosen because the learning rate of this algorithm is adaptive, avoiding oscillations and accelerating the learning 

process (Behrens and Scholten, 2006). The range of the data set should be standardized because MLPs operate in terms of the 20 

scale 0 to 1. MLP can be run using the R package “RSNNS” (Bergmeir and Benitez, 2012). 

 

(3) Random forest (RF) 

Random forest (RF) was developed by Breiman (2001), combining the bagging method (Breiman, 1996) with the random 

variable selection, and the principle was to merge a group of “weak learners” together to form a “strong learner”. Bootstrap 25 

sampling is used for each tree of RF, and the rules to binary split data are different for regression and classification problems. 

For classification, the Gini index is used to split the data; for regression, minimizing the sum of the squares of the mean 

deviations (M) can be selected to train each tree model, the equations are as follows: 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑘
2𝐾

𝑘=1 ,                     (5) 

𝐺𝑖𝑛𝑖(𝐷, 𝐴) =
|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷1) +

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷2),                 (6) 30 

M = 𝑚𝑖𝑛𝐴[ 𝑚𝑖𝑛𝑐1
∑ (𝑦𝑖 − 𝑐1)𝑥𝑖∈𝐷1(𝐴)

2
+ 𝑚𝑖𝑛𝑐2

∑ (𝑦𝑖 − 𝑐2)𝑥𝑖∈𝐷2(𝐴)
2

],                (7) 
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where 𝑝𝑘 refers to the proportion of 𝑘th class in the data set on the current node, for feature 𝐴 = 𝑎, data set 𝐷 is divided 

into two parts (𝐷1  and 𝐷2 ), 𝐷1  describes the data set which meets the condition 𝐴 = 𝑎  and 𝐷2  is the opposite of 𝐷1 ; 

𝐺𝑖𝑛𝑖(𝐷, 𝐴) represents the uncertainty of set 𝐷 after binary split; 𝑦𝑖  is the predicted value of input value 𝑥𝑖, 𝑐1 and 𝑐2 is 

the mean of data set 𝐷1 and 𝐷2, respectively. Benefits of using RFs are that the ensembles of trees are used without pruning. 

In addition, RF is relatively robust to overfitting, and standardization or normalization are not necessary because it is insensitive 5 

to the range of value. Two parameters should be adjusted for RF model: the number of trees (ntree) and the number of features 

randomly sampled at each split (mtry). The RF model is available in the R package “randomForest” (Liaw and Wiener, 2002). 

 

(4) Support vector machines (SVM) 

The support vector machine (SVM), proposed by Cortes and Vapnik (1995), is a type of generalized linear classifier that is 10 

widely applied for classification and regression problems in soil science (Burges, 1998). The main principle of SVM is to 

classify different classes by constructing an optimal separating hyperplane in the feature space (so called “structural risk 

minimization”). Regression problems also can be solved by minimization of the structural risk using loss functions (Vapnik, 

1998) in SVM, named support vector regression. For a data set {𝑥𝑖 , 𝑦𝑖} , 𝑖 = 1, . . . , 𝑘 , 𝑥 ∈ 𝑅  and 𝑥  refers to an n-

dimensional vector, 𝑦 ∈ {−1, +1}  is the class corresponding to 𝑥 , the equation for calculating a hyperplane of SVM is 15 

defined as follows: 

𝑚𝑖𝑛
𝑤,𝑏,𝜉

1

2
𝑤𝑇 × 𝑤 + 𝐶 ∑ 𝜉𝑖

𝑘
𝑖=1 ,  

s.t. 𝑦𝑖(𝑤𝑇 × 𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑘,              (8)    

where 𝜙(𝑥𝑖) refers to the mapping from the input space to the feature space, 𝐶 > 0  is penalty factor (cost), 𝑤, 𝑏, and 𝜉 

are the parameters need to be optimized during the process of model training, which can be determined by the Lagrange 20 

multipliers: 

𝑓(𝑥) = 𝑠𝑔𝑛( 𝑦𝑖𝑎𝑖𝑘(𝑥𝑖 , 𝑥) + 𝑏∗)                    (9) 

where 𝑎𝑖 refers to the support vector, 𝑘(𝑥𝑖 , 𝑥) refers to the kernel function, and 𝑏∗ is the bias. The advantages of SVMs are 

that they are effective in high dimensional spaces. Radial basis function was selected for SVM as the kernel function in our 

study, and two other parameters need to be tuned, i.e., cost and gamma, controlling the tradeoff between the classification 25 

accuracy and complexity, and the ranges of radial effect, respectively. The SVM model is available in the R package “e1071” 

(Meyer et al., 2017). 

 

(5) Extreme gradient boosting (XGB) 

Extreme Gradient Boosting, put forward by Chen and Guestrin (2016), is an efficient method of implementation for gradient 30 

boosting frames, tree learning algorithms and efficient linear model solvers to solve both classification and regression problems 

(Chen et al., 2018). Like the boosted regression trees (Elith et al., 2008), it follows the principle of gradient enhancement; 
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however, more regularized model formalization is applied to XGB to control over-fitting, making it more remarkable. In 

addition, parallel calculations can be automatically executed during the training phase of the XGB model, presenting a great 

advantage in large data sets, as the XGB can be more than ten times faster than the existing gradient boosting model (Chen 

and Guestrin, 2016). The residuals of the first tree can be fitted by the second tree to enhance the model accuracy and the sum 

of the prediction of each tree generates the ultimate prediction. The general prediction function at step t is defined as follows: 5 

𝑓𝑖
(𝑡)

= ∑ 𝑓𝑘(𝑥𝑖) = 𝑓𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)
𝑡
𝑘=1 ,                    (10) 

where 𝑓𝑡(𝑥𝑖) refers to the tree (learner) at step t, 𝑓𝑖
(𝑡)

 and 𝑓𝑖
(𝑡−1)

 refer to the predicted values at steps t and t − 1, and 𝑥𝑖 

is the input value. 

𝑂𝑏𝑗(𝑡) = ∑ 𝑙(𝑦𝑖 , 𝑦𝑖)𝑛
𝑘=1 + ∑ 𝛺(𝑓𝑖)

𝑛
𝑘=1 ,                 (11) 

where 𝑙 refers to the loss function, 𝑛 is the number of data set, and 𝛺 refers to the regularization term, which equation is 10 

defined as follows:  

𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝜔‖2,                     (12) 

where 𝜔 refers to the score vector, 𝜆 is the parameter of regularization term, and 𝛾 is the minimum loss. There are seven 

parameters should be tuned in XGB, containing the learning rate (eta), the maximum depth of a tree (max_depth), the max 

number of boosting iterations (nrounds), the subsample ratio of columns (colsample_bytree), the subsample ratio of the training 15 

instance (subsample), the minimum loss reduction (gamma) and the minimum sum of instance weight (min_child_weight). 

The XGB model is available in the R package “xgboost” (Chen et al., 2018). 

 

New Reference 

Basheer, I. A., and Hajmeer, M.: Artificial neural networks: fundamentals, computing, design, and application, Journal of 20 

Microbiological Methods, 43, 3-31, https://doi.org/10.1016/S0167-7012(00)00201-3, 2000. 

Hechenbichler, K., and Schliep, K.: Weighted k-Nearest-Neighbor Techniques and Ordinal Classification, 2004. 

 

Comment 2: Section 2.5 discusses log-ratio transformation methods. 

a. For one, here the term ‘methods’ is used (which I like) and at other places the term ‘approaches’ (which should be 25 

avoided throughout). 

b. But more importantly is the lack of mathematical rigor throughout. Line 13 gives a condition ∀𝒋 = 𝟏, . . . 𝒋 − 𝟏, 𝒋 +

𝟏, . . . 𝑫. I do not at all understand this restriction. I think it is wrong. 

c. In equation (4) it is unclear why on the left hand side there is a term yj mentioned: is that exceptional? I do not think 

so: it has to be removed. 30 

d. In equation (9) there seems to be the D-ith root: is that correct? What is the rationale behind this? 

e. Again in equation (9), the z is only defined for all except for the last component. Why is that the case?  
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In all, this section needs a very careful revision by a professional mathematician. 

Response: Thanks for the referee’s suggestion for log ratio transformation methods. We have improved this section in our 

revised version and the section was checked by a professional mathematician.  

P22L26, 2.5 Log-ratio transformation methods:  

For comment 2 a, we have replaced “approaches” with “methods”.  5 

For comment 2 b, we apologize for our mistake about conditions and equations such as ∀𝑗 = 1, . . . 𝑗 − 1, 𝑗 + 1, . . . 𝐷 were 

wrong, and the right forms were: 

For the composition of 𝐷 elements𝑥 = [𝑥1, . . . , 𝑥𝐷], 𝑥𝑗 > 0, ∀𝑗 = 1, 2, . . . 𝐷, and ∑ 𝑥𝑗
𝐷
𝑗=1 = 1, the transformation equation 

for ALR is defined as follows: 

𝑎𝑙𝑟(𝐱) = (𝑙𝑛
𝑥1

𝑥𝑗
, . . . , 𝑙𝑛

𝑥𝑗−1

𝑥𝑗
, 𝑙𝑛

𝑥𝑗+1

𝑥𝑗
, . . . , 𝑙𝑛

𝑥𝐷

𝑥𝑗
),                            (13) 10 

For comment 2 c, we have removed “𝑦𝑗” in Eq. (4) in our revised version. 

𝑐𝑙𝑟(𝐱) = (𝑙𝑛
𝑥1

√∏ 𝑥𝑗
𝐷
𝑗=1

𝐷
, . . . , 𝑙𝑛

𝑥𝐷

√∏ 𝑥𝑗
𝐷
𝑗=1

𝐷
),                    (14) 

For comment 2 d and e, the questions of Eq. (9) 𝑧𝑖 = √
𝐷−𝑖

𝐷−𝑖+1
𝑙𝑛

𝑥𝑖

√∏ 𝑥𝑗
𝐷
𝑗=𝑖+1

𝐷−𝑖
, for 𝑖 = 1, . . . , 𝐷 − 1 can be explained by the 

rationale and interpretation of ILR transformation method. The isometric log ratio transformation method, proposed by 

Egozcue et al. (2003), in ILR transformation method, an orthonormal basis was chosen to project the compositions from SD 15 

(simplex with respect to the Aitchison geometry) to RD−1 (real space with respect to the Euclidean geometry) isometrically. 

The choice of a specific orthonormal basis on SD is important for the interpretation of coordinates (Fiserova and Hron, 2011), 

which can be explained by sequential binary partition (SBP) because compositions can be interpreted in terms of their groups 

(Egozcue and Pawlowsky-Glahn, 2005). In the SBP, the choice of construction of coordinates (so-called balances) is:  

(1) First, the parts of the composition are divided into two groups: group coded by +1 and group coded by -1, and the first 20 

coordinate is obtained to describe the balance between the parts of +1 and -1 groups.  

(2) Second and following steps, previous +1 and -1 groups are divided into two new groups, respectively, coding by +1 and -

1 similarly until the components not involved are coded with 0. The balance of each step remains the same as before and the 

total number of steps is D-1 (the dimension of SD, see Fiserova and Hron, 2011), finally. Therefore, the equation for coordinates 

in the kth step is as follows: 25 

𝑧𝑘 = √
𝑟𝑘𝑠𝑘

𝑟𝑘+𝑠𝑘
𝑙𝑛(

(𝑥𝑖1𝑥𝑖2 ...𝑥𝑖𝑟𝑘
)1/𝑟𝑘

(𝑥𝑗1𝑥𝑗2 ...𝑥𝑗𝑠𝑘
)1/𝑠𝑘

), 𝑘 = 1, . . . , 𝐷 − 1,                  (15)  

where 𝑧𝑘 refers to the balance between two groups, 𝑖1, 𝑖2, . . . , 𝑖𝑟𝑘
 is the 𝑟𝑘 parts of the +1 group, and 𝑗1, 𝑗2, . . . , 𝑗𝑟𝑘

 is the 

𝑠𝑘 parts of the -1 group. The balances therefore contain stepwise all the relevant information of compositions in +1 and -1 

groups. It also can be explained in table, for example, in soil PSF compositional data (D = 3), a choice of SBP is shown. 
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Table 1 One choice of SBP of soil PSF data (D = 3). 

order sand silt clay r s balance 

1 + - - 1 2 𝑧1 = √
2

3
𝑙𝑛

𝑠𝑎𝑛𝑑

√𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦
   

2 0 + - 1 1 𝑧2 = √
1

2
𝑙𝑛

𝑠𝑖𝑙𝑡

𝑐𝑙𝑎𝑦
  

 

Thus, the interpretation above can explain these questions: D-ith root—derive from the Eq. (15) and Table 1, and the number 

of equations for ILR method is D-1, containing all information of compositions.  

Note that the SBP can be applied blindly or can be based on expert knowledge (Fiserova and Hron, 2011), the SBP chose in 5 

our manuscript is shown in Table 1; however, there are different results such as the accuracy evaluation, maps of spatial 

prediction when different SBPs are used, which has been contained in our current research. 

 

Reference  

Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., and Barcelo-Vidal, C.: Isometric logratio transformations for 10 

compositional data analysis, Math. Geol., 35, 279-300, 10.1023/a:1023818214614, 2003. 

Egozcue, J. J., and Pawlowsky-Glahn, V.: Groups of parts and their balances in compositional data analysis, Math. Geol., 37, 

795-828, 10.1007/s11004-005-7381-9, 2005. 

Fiserova, E., and Hron, K.: On the Interpretation of Orthonormal Coordinates for Compositional Data, Math Geosci., 43, 455-

468, 10.1007/s11004-011-9333-x, 2011. 15 

 

Comment 3: The results section is not at all convincing in its current status. I could understand that a selection is made 

for the best of machine-learning method x transformation combination for the particular study area. That requires 

some space, but it then should be followed up by only one outcome, namely the best. As a scientist I am not interested 

in maps of an inferior quality. Hence, in figure 6, four of the five maps are redundant. The authors could use small 20 

sections of the maps, though, to show where the other techniques are critically sub-optimal, but not more than that.  

 

Response: Thanks for the referee’s suggestion for the predicted classification maps. Because the difference of these maps 

covers the full study area, a certain small section of the maps cannot be selected. Further, the abundance index was used to 

describe how many soil texture classes were predicted for each machine-learning method in the study area. Therefore, it is 25 

necessary to compare the predicted classification maps of the whole study area. A number of literatures of spatial prediction 

comparing prediction maps using all the study areas are listed here (Buchanan et al., 2012; Niang et al., 2014; Wang and Shi, 

2018). Moreover, even if more detailed information is produced on a given map, it is hard to argue which map is the best 
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among these five maps using different machine-learning methods, especially for regions where there is no data (cannot be 

verified). In the revised manuscript, we focused on objectively revealing these results generated from different methods, 

including the indicators of abundance indices, the value ranges of prediction maps, distribution characteristics and textural 

features, rather than subjectively describing which method is better than the others.  

 5 

Reference 

 

Buchanan, S., Triantafilis, J., Odeh, I. O. A., and Subansinghe, R.: Digital soil mapping of compositional particle-size fractions 

using proximal and remotely sensed ancillary data, Geophysics, 77, WB201-WB211, 10.1190/geo2012-0053.1, 2012. 

Niang, M. A., Nolin, M. C., Jego, G., and Perron, I.: Digital Mapping of Soil Texture Using RADARSAT-2 Polarimetric 10 

Synthetic Aperture Radar Data, Soil Sci. Soc. Am. J., 78, 673-684, 10.2136/sssaj2013.07.0307, 2014. 

Wang, Z., and Shi, W. J.: Robust variogram estimation combined with isometric log-ratio transformation for improved accuracy 

of soil particle-size fraction mapping, Geoderma, 324, 56-66, 10.1016/j.geoderma.2018.03.007, 2018. 

 

Comment 4: Still in the results section, I am not convinced about the repetition on page 20 of what is already in the 15 

table. I want to know why one method and one transformation is the best, and in particular whether that is due to the 

specific case study or to an inherently superior combination of the transformation with the methods. What stands out 

is that RF_ORI is the best. Fine, point taken. But then in figure 7, I am only interested in the RF_ORI map, and all the 

other maps should be avoided. Similar remarks apply to table 3 and figures 8 and 9. The authors should make more 

out of the data that they had to their disposal, than just creating sub-optimal maps! Figure 10, by the way, is interesting 20 

and may lead to a sub-optimal map (in terms of the RMSE). XGB is not so bad in terms of RMSE and much faster, 

hence if speed is an issue (when would that be?) then a researcher may opt for XGB. It should then be clear what s/he 

essentially loses in terms of representations on maps. 

 

Response: Thanks for the referee’s suggestions and questions. Table 4 (the comparisons of accuracy of different machine-25 

learning models combined with original and transformed data) demonstrated the RF performed better than other four machine-

learning methods. RF_ORI had the best performance of the MAE, RMSE and R2 of sand, silt and clay components, and 

RF_ILR performed best in the STRESS. In fact, log ratio transformation methods can improve the overall evaluation indicators 

of compositions such as the STRESS. It is not because of the specific case study, the same conclusion was reached in our 

previous study (Wang and Shi, 2018). Moreover, because of the large soil sampling data sets and regional scale study area, 30 

there are outliers (skewed distribution) and uncertainty in soil samples and spatial prediction. RF method has advantages than 

other machine-learning methods as we mentioned in our manuscript: “RF is relatively robust to overfitting, and standardization 
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or normalization are not necessary because it is insensitive to the range of value”. Therefore, this can be taken as a general 

conclusion.  

In addition, two sections (the performance of these maps and the table of evaluation indicators) are independent, which can 

draw different conclusions respectively. For the section of spatial prediction maps of soil PSF, we focused on the systematic 

comparison of different performance generated from different methods rather than only creating a certain map which performed 5 

best in the accuracy evaluation, similar structure layout of spatial prediction research also can be shown in Zhang et al. (2014) 

and the reference cited in the response of comment 3. This is because more information should be taken into account with 

respect to the systematic comparison. We have added more detailed description between different prediction maps to evaluate 

which methods are better. All the ranges of prediction maps of sand (approximately 9.0—90.0 %) were within the range of the 

original data (0.98—99.66 %), like the distribution of USDA triangles. Therefore, all models overestimated the low values and 10 

underestimated the high values. For sand content, maps of RF_ILR (7.9—94.7 %) and XGB_ORI (1.8—92.4 %) generated 

wider output distributions and were relatively closer to the range of the distribution of original data than other prediction maps 

such as KNN_ILR (7.3—88.6 %), KNN_ORI (7.8—80.8 %), MLP_ILR (8.8—90.8 %), MLP_ORI (9.0—90.3 %), RF_ORI 

(9.0—81.0 %), SVM_ILR (6.5—85.6 %), SVM_ORI (7.3—90.0 %) and XGB_ILR (5.0—88.5 %). From this point of view, 

RF and XGB were more accurate than others. Furthermore, for the soil texture classification (Fig. 8 and 9), LoSa and SaLo 15 

are obviously most confused classes. But they are fairly similar to each other so not a big problem probably. We have added 

the description of the similarity of LoSa and SaLo in discussion part to make readers have more profound impression.  

With respect to the total computing time of different machine-learning methods, XGB did not lose much on accuracy (in 

terms of the RMSE etc.) but the computing time drops significantly. We have added this to our discussion. 

P38L1: “All the ranges of prediction maps of sand (approximately 9.0—90.0 %) were within the range of the original data 20 

(0.98—99.66 %). RF_ILR (7.9—94.7 %) and XGB_ORI (1.8—92.4 %) generated wider output distributions and were relatively 

closer to the range of the distribution of original data than other prediction maps such as KNN_ILR (7.3—88.6 %), KNN_ORI 

(7.8—80.8 %), MLP_ILR (8.8—90.8 %), MLP_ORI (9.0—90.3 %), RF_ORI (9.0—81.0 %), SVM_ILR (6.5—85.6 %), 

SVM_ORI (7.3—90.0 %) and XGB_ILR (5.0—88.5 %).” 

P46L6: “In fact, LoSa and SaLo were obviously most confused classes; however, they are fairly similar to each other (see Fig. 25 

8).” 

P44L25: “For the total computing time, RF revealed the longest time with respect to both classification (453.73 s) and 

regression (188.87 s); however, it is the most accurate among five machine-learning methods in our study. In addition, for 

trade-offs of the total computing time of model and sub-optimal accuracy, XGB was superior to any other model, reducing the 

computing time significantly, while maintaining the accuracy not drop too much.”  30 

 

Reference 
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Wang, Z., and Shi, W. J.: Robust variogram estimation combined with isometric log-ratio transformation for improved accuracy 

of soil particle-size fraction mapping, Geoderma, 324, 56-66, 10.1016/j.geoderma.2018.03.007, 2018. 

Zhang, S. W., Kong, W. F., Huang, Y. F., Shen, C. Y., and Ye, H. C.: Spatial Prediction of Topsoil Texture in a Mountain-plain 

Transition Zone Using Unvariate and Multivariate Methods Based on Symmetry Logratio Transformation, Intell. Autom. 

Soft Comput., 20, 115-129, 10.1080/10798587.2013.861966, 2014. 5 

 

Comment 5: The discussion section has some interesting elements, but I could easily imagine an improvement when 

better focusing upon what has been achieved and how it should be interpreted, also in terms of the soils and the particle 

sizes. In particular, a transition of the methods to other areas should be discussed: how should we take it? Maybe do it 

hierarchically, i.e. first a quick and imprecise method, followed by a precise method? 10 

 

Response: Thanks for the referee’s suggestion for the discussion of a transition of the methods to other areas. We have added 

it to the discussion section of our revised revision. 

P44L29: “With respect to the generality results of a transition of these machine-learning methods to other areas, it can be 

considered hierarchically. First, for the quick and imprecise machine-learning methods, XGB was recommended (sub-optimal 15 

accuracy), which was fast at the expense of a loss in precision. Second, considering the precise methods, RF can deliver the 

most accurate results, but it takes the longest computing time. Therefore, XGB should be selected when researchers deal with 

larger data sets and regional scale study area; if they have enough time while want to produce more accurate results, RF is 

recommended.” 

 20 

Comment 6: Finally, the abstract should be improved: the opening statements are too wordy, as a single sentence 

justification for the study is enough. The term ‘notable consequences’ is too vague for an abstract. The final main 

concluding sentence ‘… helps to elucidate the processing and selection of compositional data in spatial simulation’ is 

not justified from the manuscript. We only see that one method x transformation combination is doing best, another 

combination is fast at the expense of a loss in precision. That seems to be a good conclusion, and in that sense the study 25 

is valuable as an interesting case study on soil analysis in a rather large area. 

 

Response: Thanks for the referee’s suggestion for the abstract which should be improved, and we have improved this in our 

revised version, such as wordy opening statements, vague description (“notable consequences”), subjective sentence (“Our 

systematic comparison helps to elucidate the processing and selection of compositional data in spatial simulation”).  30 

P13L10: Abstract. “Soil texture and soil particle size fractions (psf) play an increasing role in physical, chemical and 

hydrological processes. Many previous studies have used machine-learning and log ratio transformation methods for soil psf 

interpolation and soil texture classification to improve the prediction accuracy. However, few reports systematically analyzed 
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and compared the classification and regression, the accuracies of original (untransformed) and log ratio methods, and the 

performance of direct and indirect soil texture classification using machine-learning methods. A total of 45 evaluation models 

generated from five different machine-learning models combined with original and three log ratio methods—additive log ratio, 

centered log ratio and isometric log ratio (ALR, CLR and ILR, respectively), to evaluate and compare the performance of soil 

texture classification and soil psf interpolation. The results demonstrated that log ratio methods modified the soil sampling 5 

data more symmetrically, and with respect to soil texture classification, random forest (RF) and extreme gradient boosting 

(XGB) showed better consequences with the overall accuracy (RF: 0.629, XGB: 0.611), kappa coefficients (RF: 0.238, XGB: 

0.240) and precision-recall curve (PRC) analysis (RF: 0.646, XGB: 0.616). For soil psf interpolation, RF delivered the best 

performance among five machine-learning models with lowest root mean squared error (RMSE, sand: 15.09 %, silt: 13.86 %, 

clay: 6.31 %), mean absolute error (MAE, sand: 10.65 %, silt: 9.99 %, clay: 5.00 %), Aitchison distance (AD, 0.84) and 10 

standardized residual sum of squares (STRESS, 0.61), and highest coefficient of determination (R2, sand: 53.28 %, silt: 45.77 %, 

clay: 53.75 %). STRESS was improved using log ratio methods, especially CLR and ILR. There is a pronounced improvement 

(21.3 %) in the kappa coefficient using indirect soil texture classification compared to the direct approach. With respect to the 

evaluation of accuracy, RF was recommended as the best strategy among these five machine-learning models according to 

soil PSF interpolation and soil texture classification. In addition, from the point of view of total computing time of model and 15 

sub-optimal accuracy (trade-offs of accuracy and time), XGB was preferred than any other models. Log ratio transformation 

methods were needed in the evaluation of the indirect soil texture classification and maps of PSFs and texture classes. Our 

findings can provide a reference for other research of spatial prediction of soil PSF and texture combined with environmental 

covariates using machine-learning methods with skewed distribution soil PSF data in a large area.” 

 20 

*Minor comments* 

 

Comment 1: There is little need to describe the vegetation in the study area, please remove. Also, rainfall patterns are 

not so interesting when it comes to soil particle size fractions, but I may be mistaken here. 

Response: Thanks for the referee’s suggestion. The environmental covariates such as vegetation types and the mean annual 25 

precipitation you mentioned were used as independent variables to train five machine-learning models in our study. Therefore, 

they were useful and we did not delete them.  

 

Comment 2: The English needs a careful check: in general, the manuscript is well readable, but some fine-tuning may 

further improve the accessibility. 30 

Response: Thanks for the referee’s suggestion for the English in our manuscript. We have improved the overall language of 

this article and we have checked and improved the writing in the revised version.  
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Comment 3: What are ‘close correlations’ (p. 2, l. 10)? 

“Previous reports revealed that there are close correlations between the spatial variations of soil texture and landscape and 

topography” means that there are strong linear or nonlinear relationship between soil properties (soil texture class was included) 

and landscape or topography. It can be explained in Jenny’s famous equation—a mechanistic model for soil development: 

𝑆 = 𝑓(𝑐, 𝑜, 𝑟, 𝑝, 𝑡, . . . ),                     (16) 5 

where 𝑆 refers to soil, 𝑐 (sometimes cl) represents climate, 𝑜 organisms including humans, 𝑟 relief, 𝑝 parent material 

and 𝑡 time. For the interpretation of 𝑟, the relationship between soil and topographic factors has been evident in previous 

reports. It also can be explained by the SCORPAN model, which is a better explanation: 

𝑆𝑐 = 𝑓(𝑠, 𝑐, 𝑜, 𝑟, 𝑝, 𝑎, 𝑛),                     (17) 

where 𝑆𝑐 stands for soil classes or other properties of the soil at a point; 𝑐 is climate, climatic properties of the environment; 10 

𝑜 is organisms, vegetation or fauna or human 

activity; 𝑟 is topography, landscape attributes; 𝑝 is parent material, lithology; 𝑎 is age, the time factor; 𝑛 is space, spatial 

position. More details can be found in McBratney et al. (2003). We have added the explanation of close correlations.  

 

P14L13: “Previous reports revealed that there are close correlations of linear or nonlinear relationship between the spatial 15 

variations of soil texture and landscape and topography.” 

 

Reference 

McBratney, A. B., Santos, M. L. M., and Minasny, B.: On digital soil mapping, Geoderma, 117, 3-52, 10.1016/s0016-

7061(03)00223-4, 2003. 20 

 

Comment 4: Whence the sentence ‘kriging methods (so-called geostatistics)’ (p.3, l. 18)? Kriging is a geostatistical 

interpolation method; in fact, it is a whole collection of those. 

Response: Thanks for the referee’s suggestion. We have improved this sentence in our revised version. 

P15L26: “However, most studies using log ratio approaches to simulate the spatial variation of soil psf were kriging method—25 

a kind of geostatistical interpolation method.” 

 

Comment 5: I object to the use of the term ‘attribute’ for a variable (p. 6). It is a GIS term and not a scientific term, a 

much better term is ‘variable’. Further down in the paragraph we suddenly read about evapotranspiration data. The 

manuscript would benefit from a more careful separation between variable and data. 30 

Response: Thanks for the referee’s suggestion for more careful separation between variable and data in our manuscript. First, 

we have replaced ‘attribute’ with ‘variable’; second, ‘evapotranspiration data’ has been changed to ‘evapotranspiration 

variable’. 
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Comment 6: Notation is inconsistent for k-nearest neighbor (p. 6 ff.). It should either be capitalized throughout, or not 

at all. 

Response: Thanks for the referee’s suggestion and we have improved this in our revised version. 

 5 

Comment 7: On page 9 there is the requirement stated that the sum of the components is equal to 1. Fine, but how is 

that guaranteed? Is a correction being made if it is not the case at a prediction location? 

Response: Thanks for the referee’s question. ‘For soil psf compositional data (i.e. sand, silt and clay), the sum of the 

components is 1 (or 100 %), which should be guaranteed.’ It can be guaranteed by using log ratio transformation methods 

(ALR, CLR and ILR in our manuscript), the original soil PSF data was transformed from Aitchison space (simplex space) to 10 

Euclidean space (real space), log ratio transformed data then was modeled independently; finally, the results of prediction of 

soil PSF (in log ratio pattern, i.e. ILR_1 and ILR_2 for ILR transformation method) were back-transformed to the original 

space (in simplex pattern, i.e. sand, silt and clay), this process can guarantee the sum of soil PSF components was 1 (100 %). 

The back-transformed equations for these three log ratio methods were as follows: 

𝑎𝑙𝑟(𝑥𝑗) =
𝑒𝑥𝑝(𝑎𝑙𝑟(𝑥𝑗))

∑ 𝑒𝑥𝑝(𝑎𝑙𝑟(𝑥𝑗))𝐷
𝑗=1

 ,                   (18) 15 

𝑐𝑙𝑟(𝑥𝑗) =
𝑒𝑥𝑝(𝑐𝑙𝑟(𝑥𝑗))

∑ 𝑒𝑥𝑝(𝑐𝑙𝑟(𝑥𝑗))𝐷
𝑗=1

 ,                    (19) 

𝑌(𝑥𝑗) = ∑
𝑖𝑙𝑟(𝑥𝑗)

√𝑗×(𝑗+1)

𝐷
𝑗=1 − √

𝑗−1

𝑗
× 𝑖𝑙𝑟(𝑥𝑗) ,                (20) 

𝑖𝑙𝑟(𝑥0) = 𝑖𝑙𝑟(𝑥𝐷) = 0 ,                    (21) 

𝑖𝑙𝑟(𝑥𝑗) =
𝑒𝑥𝑝(𝑌(𝑥𝑗))

∑ 𝑒𝑥𝑝(𝑌(𝑥𝑗))𝐷
𝑗=1

 ,                    (22) 

Furthermore, with respect to the original method (using original soil PSF data without transformation as dependent variable), 20 

the standardization function (Eq. 14 in our manuscript) was used to ensure the sum of predictions of soil PSF was 100%:  

𝑠𝑎𝑛𝑑𝑠 =
𝑠𝑎𝑛𝑑

(𝑠𝑎𝑛𝑑+𝑠𝑖𝑙𝑡+𝑐𝑙𝑎𝑦)
× 100                  (23) 

where, 𝑠𝑎𝑛𝑑𝑠 is the content of sand after standardization, the same as silt and clay component. It cannot deal when the 

negative values are produced in wider regional scale area. Therefore, we recommended using log ratio transformation methods 

for soil PSF (compositional) data interpolation (spatial perdition). We have added the back-transformed equations for ALR, 25 

CLR and ILR transformation methods in P24L10. 
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Systematic comparison of five machine-learning methods in 

classification and interpolation of soil particle size fractions using 

different transformed data 

Mo Zhang1,2, Wenjiao Shi1,3 

1Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, 5 

Chinese Academy of Sciences, Beijing 100101, China 
2School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China 
3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China 

Correspondence to: Wenjiao Shi (shiwj@lreis.ac.cn) 

Abstract. Soil texture and soil particle size fractions (psf) play an increasing role in physical, chemical and hydrological 10 

processes. Many previous studies have used machine-learning and log ratio transformation methods for soil psf interpolation 

and soil texture classification to improve the prediction accuracy. Digital soil mapping using machine-learning methods was 

widely applied to generate more detailed prediction of qualitative or quantitative outputs than traditional soil-mapping methods 

in soil science. As compositional data, interpolation of soil psf combined with log ratio approachesmethods was developed to 

improve the prediction accuracy, which also can be used to indirectly derive soil texture. However, few reports systematically 15 

analyzed and compared the classification and regression, the accuraciesaccuracy of original (untransformed) and log ratio 

approachesmethods, and the performance of direct and indirect soil texture classification using machine-learning methods. In 

this total, a total of 45 evaluation models generated from five different machine-learning models combined with original and 

three log ratio approachesmethods—additive log ratio, centered log ratio and isometric log ratio (ALR, CLR and ILR, 

respectively), to evaluate and compare the performance of soil texture classification and soil psf interpolation. The results 20 

demonstrated that log ratio approachesmethods modified the soil sampling data more symmetrically, and with respect to soil 

texture classification, random forest (RF) and extreme gradient boosting (XGB) showed notable consequences. For soil psf 

interpolation, RF delivered the best performance among five machine-learning models with lowest root mean squared error 

(RMSE, sand: 15.09 %, silt: 13.86 %, clay: 6.31 %), mean absolute error (MAE, sand: 10.65 %, silt: 9.99 %, clay: 5.00 %), 

Aitchison distance (AD, 0.84) and standardized residual sum of squares (STRESS, 0.61), and highest coefficient of 25 

determination (R2, sand: 53.28 %, silt: 45.77 %, clay: 53.75 %). STRESS was improved using log ratio approachesmethods, 

especially CLR and ILR. There is a pronounced improvement (21.3 %) in the kappa coefficient using indirect soil texture 

classification compared to the direct method. With respect to the evaluation of accuracy, RF was recommended as the best 

strategy among these five machine-learning models according to soil PSF interpolation and soil texture classification. In 

addition, from the point of view of total computing time of model and sub-optimal accuracy (trade-offs of accuracy and time), 30 

XGB was preferred than any other models. Log ratio transformation methods were needed in the evaluation of the indirect soil 

texture classification and maps of PSFs and texture classes. Our findings can provide a reference for other research of spatial 
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prediction of soil PSF and texture combined with environmental covariates using machine-learning methods with skewed 

distribution soil PSF data in a large area.Our systematic comparison helps to elucidate the processing and selection of 

compositional data in spatial simulation. 

1 Introduction 

Soil texture, classified by ranges of soil particle-size fractions (psf), is one of the most important attributes affecting the soil 5 

properties and the physical, chemical and hydrological processes covering soil porosity, soil fertility, water retention, 

infiltration, drainage and aeration. Measuring soil texture can be used for soil fertility management (Pahlavan-Rad and 

Akbarimoghaddam, 2018), water management (Thompson et al., 2012), maintenance of organic carbon (Bationo et al., 2007) 

and provision of ecosystem services (Adhikari and Hartemink, 2016). The soil psf, i.e., sand, silt and clay, are vital in most 

hydrological, ecological, and environmental risk assessment models (Liess et al., 2012). The spatial distributions of soil texture 10 

and soil psf affect and control runoff generation, slope stability, depth of accumulation, and soluble salt content (McNamara 

et al., 2005; Follain et al., 2006; Yoo et al., 2006; Gochis et al., 2010; Crouvi et al., 2013). 

Previous reports revealed that there are close correlations of linear or nonlinear relationship between the spatial variations 

of soil texture and landscape and topography (Gobin et al., 2001; Brown et al., 2004; Zhao et al., 2009; Liess et al., 2012). 

Compared with traditional soil mapping methods, digital soil mapping (DSM) has an obvious advantage in that it is 15 

considerably more economical and efficient; additionally, soil maps using DSM yielded more details because of the 

development of data-mining algorithms and GIS tools and more extensive application of spatial remote sensing data, 

particularly in the regional and continental scale. DSM methods were applied by an increasing number of soil scientists to map 

soil properties using ancillary data (McBratney et al., 2003; Zeraatpisheh et al., 2017), the so-called environmental covariates, 

which can be obtained from digital elevation models (DEM), remote sensing data, and categorical or geomorphology maps 20 

                                                           
1 Abbreviations: psf, soil particle-size fractions; HRB, Heihe River Basin; DSM, digital soil mapping; KNN, kK-nearest 

neighbor; MLP, multilayer perceptron neural network; RF, random forest; SVM, support vector machines; XGB, extreme 

gradient boosting; ALR, additive log-ratio; CLR, centered log-ratio; ILR, isometric log-ratio; ORI, original; ROC, receiver 

operating characteristics; PRC, precision-recall curve; AUC, area under the ROC curve; AUPRC, area under the PRC; 

RMSE, root mean squared error; MAE, mean absolute error; R2, coefficient of determination; MAD, median absolute 

deviation; AD, Aitchison distance; STRESS, standardized residual sum of squares; KNN_ALR, KNN_CLR, KNN_ILR, 

KNN_ORI, MLP_ALR, MLP_CLR, MLP_ILR, MLP_ORI, RF_ALR, RF_CLR, RF_ILR, RF_ORI, SVM_ALR, 

SVM_CLR, SVM_ILR, SVM_ORI, XGB_ALR, XGB_CLR, XGB_ILR, XGB_ORI, KNN, MLP, RF, SVM, XGB 

combined with ALR, CLR, ILR, ORI respectively; ClLo, clay loam; Lo, loam; LoSa, loamy sand; Sa, sand; SaClLo, sandy 

clay loam; SaLo, sandy loam; Si, silt; SiClLo, silty clay loam; SiLo, silt loam. 
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(Krasilnikov et al., 2011). Furthermore, some soil physicochemical attributes, such as soil organic carbon (SOC) and pH, were 

also permissible to obtain as environmental covariates (Camera et al., 2017). Wang and Shi (2017) also recommended that the 

soil psf prediction should consider the ancillary data, which can enhance the performance of interpolation. 

Different machine-learning methods, such as boosting regression trees (Jafari et al., 2014; Yang et al., 2016), random forests 

(Hengl et al., 2015; Zeraatpisheh et al., 2017) and artificial neural networks (Bagheri Bodaghabadi et al., 2015; Taalab et al., 5 

2015), have been most commonly employed in DSM models for both regression and classification combined with 

environmental covariates in soil science. Hengl et al. (2015) contrasted the performance of spatial predictions of soil properties, 

such as soil psf, using random forests and linear regression, and the results demonstrated that the random forests were superior 

to the linear regression with remarkable advantages of not only robust to noise but also low bias and variance. Hengl et al. 

(2017) improved the prediction of organic carbon, bulk density, pH and soil texture fractions on a global scale using machine-10 

learning models – random forest, gradient boosting and multinomial logistic regression – indicating that random forest and 

gradient boosting outperformed linear models in large data sets. Taghizadeh-Mehrjardi et al. (2015) investigated the predictive 

power of soil classes using six machine learning-based classifiers and found that artificial neural network and decision trees 

performed better than any other models they mentioned with relatively high overall accuraciesaccuracy and kappa coefficients. 

Heung et al. (2016) evaluated a suite of 10 machine-learning models for predicting soil taxonomic units, and the consequences 15 

suggested that although the kK-nearest neighbor and support vector machine had the highest accuracy, “tree learners” were 

preferred because of the interpretability of the results and the speed of parameterization. Most previous studies selected one or 

more machine-learning algorithms to simulate soil category or continuous variables for classification or regression problems. 

From this perspective, however, few studies systematically analyzed both soil texture classification and soil psf interpolation 

using multiple machine-learning methods. 20 

  The soil psf, which can be classified as soil texture, are not only continuous variables but also compositional data. We need 

to pay more attention to the latter case. Numerous different interpretations of the interpolation of compositional data in soil 

science have been suggested (Gobin et al., 2001; Lark and Bishop, 2007; Salazar et al., 2015), and the most extensively used 

were a combination of log ratio approachesmethods involving the additive log ratio (ALR) and the centered log ratio (CLR) 

put forward by Aitchison (1982), as well as the isometric log ratio (ILR) from Egozcue et al. (2003). However, most studies 25 

using log ratio approachesmethods to simulate the spatial variation of soil psf were kriging methods method—a kind of 

geostatistical interpolation method.so-called geostatistics), rather than machine-learning methods. Huang et al. (2014) 

combined multiple linear regression with ALR to improve the prediction precision of soil psf using electromagnetic data on a 

1-m transect. Odeh et al. (2003) proposed that modified ALR ordinary kriging transcended compositional kriging and cokriging. 

Sun et al. (2014) contradistinguished compositional kriging, log ratio cokriging, cokriging, and ALR-cokriging, and produced 30 

proximate results. In contrast, Walvoort and de Gruijter (2001) thought compositional kriging had better performance than 

ALR ordinary kriging. Zhang et al. (2013) suggested compositional kriging was more appropriate for soil texture prediction 

than symmetry log ratio ordinary (or regression) kriging. Wang and Shi (2018) developed log ratio kriging combined with 
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robust variogram estimation, which was preferable to compositional kriging methods. However, few studies combined log 

ratio with machine-learning models for soil psf interpolation in soil science. Aside from those mentioned above, the lack of 

systematic comparison of accuracy, strengths and weaknesses between original (untransformed) and log ratio 

approachesmethods should be considered, especially in terms of combining with machine-learning methods. 

  Soil texture classification using machine-learning methods can be classified as a dependent variable; furthermore, it also 5 

can be derived indirectly from soil psf. Camera et al. (2017) reported that random forests were more remarkable than 

multinomial logistic regression in the direct soil texture classification. Wu et al. (2018) compared the support vector machines 

(SVM), artificial neural network (ANN), and classification tree (CT) models, demonstrating better prediction performance 

generated from SVM than from CT and ANN. For the indirect classification of soil texture, Poggio and Gimona (2017) 

combined hybrid geostatistical generalized additive models with ALR and modeled soil particle classes at medium resolution 10 

(250 m) in Scotland, expecting that vegetation index, morphological features and information about the phenological season 

were of vital significance as environmental covariates. Considering the particularity of compositional data, the consequences 

of soil psf classification and regression (indirect soil texture classification and soil psf interpolation, respectively) could be 

compared from the direct and indirect soil texture classification as a result of the relationship between soil texture and soil psf. 

Nevertheless, few studies systematically compared these using different machine-learning methods combined with original 15 

(untransformed) and log ratio transformed data for both direct and indirect soil texture classification. 

  In our study, five machine-learning models – kK-nearest neighbor (KNN), multilayer perceptron neural network (MLP), 

random forest (RF), support vector machines (SVM), and extreme gradient boosting (XGB) – were included and applied for 

DSM of soil texture classification and soil psf interpolation. Furthermore, the original (untransformed) and log ratio 

transformed data were also combined with the machine-learning algorithms mentioned above for soil psf interpolation. Hence, 20 

the objectives of this study are (i) to compare different performance of five machine-learning models in direct soil texture 

classification, (ii) to evaluate the accuraciesaccuracy of different log ratio approachesmethods and original (untransformed) 

method applied for soil psf from the perspective of compositional data using machine-learning models, and (iii) to estimate 

whether the accuraciesaccuracy of indirect soil texture classification using original (untransformed) data and log ratio 

transformed data were improved compared with the direct soil texture classification. 25 

2 Data and methods 

2.1 Study area 

The Heihe River Basin (HRB, 97 °6 '-102 °3 ' E, 37 °43 '~ 42 °40 ' N) is situated in the Hexi Corridor, northwest of China, 

covering the Inner Mongolia Autonomous Region, Gansu and Qinghai provinces (Fig. 1a), which is the second largest inland 

river basin in China with an area of 146,700 km2. The elevation and three reaches (i.e., upper, middle and lower) of the study 30 
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area are shown in Fig. 1b. For the upper reaches of HRB, the climate changes significantly with altitude; the mean annual 

precipitation is 350 mm, the mean annual temperature is from -5-4 °C and the annual average evaporation is 1000 mm. For 

the middle reaches of HRB, the mean annual precipitation declines between 250 and 50 mm, the annual average evaporation 

increases from 2000 (east) to 4000 mm (west), and the mean annual temperature is from 2.8 to 7.6 °C. The lower reaches of 

HRB are situated in Ejina Banner on the Alxa Plateau, which is an arid desert climate with annual precipitation under 50 mm 5 

and annual average evaporation above 3500 mm; the mean annual temperature is from 8 to 10 °C. 

 

Figure 1. The (a) geographical location, (b) Heihe River, elevation and soil sampling points of Heihe River Basin, China. 

The vegetation of the upper reaches of HRB is influenced from the southeast to northwest by hydrothermal conditions. The 

main vegetation types are alpine vegetation (4000-5000 m), alpine meadow vegetation belt (3000-4000 m), alpine shrub 10 

meadow (3200-3800 m), mountain forest meadow belt (2400-3200 m), mountain grassland belt (1800-2400 m), and desert 

base belt (less than 1800 m). The main vegetation types of the middle and lower reaches of the HRB are relatively fewer, 

including cultivated vegetation and desert, and the areas near the Heihe River on the lower reaches are shrub and steppe. 

The main soil types are frigid desert soils (higherless than 4000 m), alpine meadow soil and alpine steppe soil (3600-4000 

m), gray cinnamon soil and chernozem (3200-3600 m), sierozem and chestnut soil (2600-3200 m), chestnut soil (2300-2600 15 

m) and sierozem (1900-2300 m) on the upper reaches of the HRB. The main soil types on the middle reaches of HRB are 

aeolian sandy soil, frigid frozen soil and gray brown desert soil. The main soil types in the lower reaches of HRB are aeolian 

sandy soil, gray brown desert soil (northwest) and lithosol (northeast). 
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The main types of geomorphology on the upper reaches of HRB are modern glaciers, alpine and hilly, and intermountain 

basinplimatic basins. Narrow plains are distributed on the middle reaches of HRB. For the lower reaches, the main types of 

geomorphology are hilly (northwest), plain, sandy land and platform (east), and the area near Heihe River is a flood plain. 

2.2 Soil sampling 

A total of 640 soil sampling points was collected in the HRB from the Science Data Center of Cold and Arid Regions (WestDC) 5 

in China (http://westdc.westgis.ac.cn/), involving 392 soil sampling points on the upper reaches and 248 soil sampling points 

on the middle and lower reaches of the HRB. The soil types, vegetation types, distribution of DEM and geomorphology types 

of the HRB were considered in soil sample collection according to the location and proportion of these types for the purpose 

of more representative spatial characteristics of soil psf using limited soil samples. There were more soil sampling points on 

the middle and upper reaches of HRB due to the more complicated soil types and vegetation types in these areas. In contrast, 10 

the types on the lower reaches are relatively similar with more desert in the northwest. Hence, the east of the lower reaches of 

the HRB contained more soil sampling points. All soil samples had information about soil psf (i.e., sand, silt and clay) and 

related environmental covariates using a laser diffraction approach and the extraction tool in ArcGIS, respectively, and the 

global position system (GPS) recorded the position information. 

2.3 Environmental covariates and pre-processing 15 

The environmental covariates, such as topographic attributes, remote sensing attributes, climate and position attributes, soil 

physicochemical attributes and categorical maps, are logically related to the distributions of soil psf. System for Automated 

Geoscientific Analysis (SAGA) GIS (Conrad et al., 2015) was used to compute their the topographic attributes from DEM, 

including slope, aspect, convergence index, general curvature, plane curvature, profile curvature and valley depth. Remote 

sensing attributes, including the normalized difference vegetation index (NDVI, Huete et al., 2002), the Brightness index (BI, 20 

Metternicht and Zinck, 2003), and the soil adjusted vegetation index (SAVI, Huete, 1988) were derived from the Landsat 7 

based on band operation. We also collected climate attributes from the National Meteorological Information Center (NMIC, 

http://data.cma.cn/), such as the mean annual precipitation and the mean annual temperature. Latitude and longitude were also 

considered because of the large scale of the HRB. Mean annual surface evapotranspiration data (Wu et al., 2012) were gathered 

from WestDC (http://westdc.westgis.ac.cn/), as were well as soil physicochemical attributes, such as soil organic carbon, 25 

saturated water content, field water holding capacity, wilt water content, saturated hydraulic conductivity, and soil thickness 

(Yi et al., 2015; Song et al., 2016; Yang et al., 2016), which can address the distributions of soil psf, as well. Additionally, the 

categorical maps were of significance, such as geomorphology types, soil types, land cover and vegetation types. For slope, 

the method of dividing the hierarchy rotates clockwise from the north (0°), and each 45° was an interval, including north 

http://westdc.westgis.ac.cn/
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(337.5-22.5°), northeast (22.5-67.5°), east (67.5-112.5°), southeast (112.5-167.5°), south (167.5-202.5°), southwest (202.5-

247.5°), west (247.5-292.5°), and northwest (292.5-337.5°). 

2.4 Machine learning methods and parameters optimization 

2.4.1 K-nearest neighbor (KNN) 

K-nearest neighbor (KNN) is a simple non-parametric classifier based on known instance to label unknown instance (Cover 5 

and Hart, 1967). For the test set, kK-nearest training set vectors were found, and maximum summed kernel densities were 

computed for classification. Moreover, continuous variables can also be predicted for regression with the average values of 

kK-nearest neighbors. For a training set of observed data 𝐿 = {(𝑦𝑖 , 𝑥𝑖), 𝑖 = 1, . . . , 𝑛𝐿}, class 𝑦𝑖 ∈ {1, . . . , 𝑐}, and the predictor 

values 𝑥′𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑝). For a new observation (𝑦, 𝑥), the nearest neighbor (𝑦(1), 𝑥(1)) is based on the distance function 

which is as follows: 10 

𝑑(𝑥, 𝑥(1)) = 𝑚𝑖𝑛𝑖( 𝑑(𝑥, 𝑥𝑖)),                    (1) 

and �̂� = 𝑦(1) refers to the nearest neighbor, which is the prediction for 𝑦. Value 𝑥(𝑗) and 𝑦(𝑗) is the 𝑗th nearest neighbor 

of 𝑥 and class of training set, respectively. Weighted KNN is an extended version of KNN, which considers the maximum of 

summed kernel densities and the K nearest vectors of training set for each row of the test set (the distances of the nearest 

neighbors) based on the Minkowski distance, more details can be found in Hechenbichler and Schliep (2004), the equation for 15 

Minkowski distance is as follows: 

𝑑(𝑥𝑖 , 𝑥𝑗) = (∑ |𝑥𝑖𝑠 − 𝑥𝑗𝑠|
𝑝
𝑠=1

𝑞
)1/𝑞 ,                     (2) 

where 𝑑(𝑥𝑖 , 𝑥𝑗) refers to the Euclidean distance when 𝑞 = 2 and the absolute distance results for 𝑞 = 1. Weighted KNN is 

an extended version of KNN that considers the distances of the nearest neighbors; thereforeTherefore, the parameters of KNN 

contain the maximum value of k (kmax), the distances of the nearest neighbors (distance) and the types of kernel function 20 

(kernel). The KNN model is available in the R package “kknn” (Schliep and Hechenbichler, 2016). 

2.4.2 Multilayer perceptron neural network (MLP) 

Multilayer perceptron neural network (MLP), which is currently one of the most popular multilayer feed forward 

backpropagation networks, was selected to train artificial neural network (ANN) models in our study due to its rapid operation, 

small set of training requirements and ease of implementation (Subasi, 2007). MLP neurons can perform classification or 25 

regression depending on whether the response variable is categorical or continuous. The MLP has three sequential layers: input 

layer, hidden layer and output layer. In the hidden layer of MLP, each neuron 𝑗 sums input environmental covariate in our 

study 𝑥𝑖  after multiplying them by the connection weights 𝑤𝑗𝑖   respectively, and calculates its output 𝑦𝑗  (soil PSF 

component or texture class) as a function of the sum:  
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𝑦𝑗 = 𝑓(∑ 𝑤𝑗𝑖𝑥𝑖),                       (3) 

where 𝑓 is the activation function, which can be a linear (selected in our study) or logistic function. The sum of squared 

differences between the predicted values and observed values of the output results of neurons 𝐸 is defined as follows:  

𝐸 =
1

2
∑ (𝑦𝑝𝑗 − 𝑦𝑜𝑗)2

𝑗 ,                     (4) 

where 𝑦𝑝𝑗  and 𝑦𝑜𝑗  is the predicted and observed value of output neuron 𝑗, respectively. Each 𝑤𝑗𝑖  is adjusted to reduce 𝐸 5 

and the adjustment of 𝑤𝑗𝑖  depends on the training algorithm (Basheer and Hajmeer, 2000). The resilient backpropagation 

algorithm was chosen because the learning rate of this algorithm is adaptive, avoiding oscillations and accelerating the learning 

process (Behrens and Scholten, 2006). The range of the data set should be standardized because MLPs operate in terms of the 

scale 0 to 1. MLP can be run using the R package “RSNNS” (Bergmeir and Benitez, 2012). 

2.4.3 Random forest (RF) 10 

Random forest (RF) was developed by Breiman (2001), combining the bagging method (Breiman, 1996) with the random 

variable selection, and the principle was to merge a group of “weak learners” together to form a “strong learner”. Bootstrap 

sampling is used for each tree of RF, and the rules to binary split data are different for regression and classification problems. 

For classification, the Gini index is used to split the data; for regression, minimizing the sum of the squares of the mean 

deviations can be selected to train each tree model, the equations are as follows: 15 

𝐺𝑖𝑛𝑖 = 1 − ∑ 𝑝𝑘
2𝐾

𝑘=1 ,                     (5) 

𝐺𝑖𝑛𝑖(𝐷, 𝐴) =
|𝐷1|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷1) +

|𝐷2|

|𝐷|
𝐺𝑖𝑛𝑖(𝐷2),                 (6) 

M = 𝑚𝑖𝑛𝐴[ 𝑚𝑖𝑛𝑐1
∑ (𝑦𝑖 − 𝑐1)𝑥𝑖∈𝐷1(𝐴)

2
+ 𝑚𝑖𝑛𝑐2

∑ (𝑦𝑖 − 𝑐2)𝑥𝑖∈𝐷2(𝐴)
2

],                (7) 

where 𝑝𝑘 refers to the proportion of 𝑘th class in the data set on the current node, for feature 𝐴 = 𝑎, data set 𝐷 is divided 

into two parts (𝐷1  and 𝐷2 ), 𝐷1  describes the data set which meets the condition 𝐴 = 𝑎  and 𝐷2  is the opposite of 𝐷1 ; 20 

𝐺𝑖𝑛𝑖(𝐷, 𝐴) represents the uncertainty of set 𝐷 after binary split; 𝑦𝑖  is the predicted value of input value 𝑥𝑖, 𝑐1 and 𝑐2 is 

the mean of data set 𝐷1 and 𝐷2, respectively. . Benefits of using RFs are that the ensembles of trees are used without pruning. 

In addition, RF is relatively robust to overfitting, and standardization or normalization are is not necessary because it is 

insensitive to the range of value. Two parameters should be adjusted for the RF model: the number of trees (ntree) and the 

number of features randomly sampled at each split (mtry). The RF model is available in the R package “randomForest” (Liaw 25 

and Wiener, 2002). 

2.4.4 Support vector machines (SVM) 

The support vector machine (SVM), proposed by Cortes and Vapnik (1995), is a type of generalized linear classifier that is 

widely applied for classification and regression problems in soil science (Burges, 1998). The main principle of SVM is to 
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classify different classes by constructing an optimal separating hyperplane in the feature space (so called “structural risk 

minimization”). Regression problems also can be solved by minimization of the structural risk using loss functions (Vapnik, 

1998) in SVM, named support vector regression. For a data set {𝑥𝑖 , 𝑦𝑖} , 𝑖 = 1, . . . , 𝑘 , 𝑥 ∈ 𝑅  and 𝑥  refers to an n-

dimensional vector, 𝑦 ∈ {−1, +1}  is the class corresponding to 𝑥 , the equation for calculating a hyperplane of SVM is 

defined as follows: 5 

𝑚𝑖𝑛
𝑤,𝑏,𝜉

1

2
𝑤𝑇 × 𝑤 + 𝐶 ∑ 𝜉𝑖

𝑘
𝑖=1 ,  

s.t. 𝑦𝑖(𝑤𝑇 × 𝜙(𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑘,              (8)    

where 𝜙(𝑥𝑖) refers to the mapping from the input space to the feature space, 𝐶 > 0  is penalty factor (cost), 𝑤, 𝑏, and 𝜉 

are the parameters need to be optimized during the process of model training, which can be determined by the Lagrange 

multipliers: 10 

𝑓(𝑥) = 𝑠𝑔𝑛( 𝑦𝑖𝑎𝑖𝑘(𝑥𝑖 , 𝑥) + 𝑏∗)                    (9) 

where 𝑎𝑖 refers to the support vector, 𝑘(𝑥𝑖 , 𝑥) refers to the kernel function, and 𝑏∗ is the bias. The advantages of SVMs are 

that they are effective in high dimensional spaces. Radial basis function was selected for SVM as the kernel function in our 

study, and two other parameters need to be tuned, i.e., cost and gamma, controlling the tradeoff between the classification 

accuracy and complexity, and the ranges of radial effect, respectively. The SVM model is available in the R package “e1071” 15 

(Meyer et al., 2017). 

2.4.5 Extreme gradient boosting (XGB) 

Extreme Gradient Boosting, put forward by Chen and Guestrin (2016), is an efficient method of implementation for gradient 

boosting frames, tree learning algorithms and efficient linear model solvers to solve both classification and regression problems 

(Chen et al., 2018). Like the boosted regression trees (Elith et al., 2008), it follows the principle of gradient enhancement; 20 

however, more regularized model formalization is applied to XGB to control over-fitting, making it more remarkable. In 

addition, parallel calculations can be automatically executed during the training phase of the XGB model, presenting a great 

advantage in large data sets, as the XGB can be more than ten times faster than the existing gradient boosting model (Chen 

and Guestrin, 2016). The residuals of the first tree can be fitted by the second tree to enhance the model accuracy and the sum 

of the prediction of each tree generates the ultimate prediction. The general prediction function at step t is defined as follows: 25 

𝑓𝑖
(𝑡)

= ∑ 𝑓𝑘(𝑥𝑖) = 𝑓𝑖
(𝑡−1)

+ 𝑓𝑡(𝑥𝑖)
𝑡
𝑘=1 ,                    (10) 

where 𝑓𝑡(𝑥𝑖) refers to the tree (learner) at step t, 𝑓𝑖
(𝑡)

 and 𝑓𝑖
(𝑡−1)

 refer to the predicted values at steps t and t − 1, and 𝑥𝑖 

is the input value. 

𝑂𝑏𝑗(𝑡) = ∑ 𝑙(𝑦𝑖 , 𝑦𝑖)𝑛
𝑘=1 + ∑ 𝛺(𝑓𝑖)

𝑛
𝑘=1 ,                 (11) 

where 𝑙 refers to the loss function, 𝑛 is the number of data set, and 𝛺 refers to the regularization term, which equation is 30 

defined as follows:  
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𝛺(𝑓) = 𝛾𝑇 +
1

2
𝜆‖𝜔‖2,                     (12) 

where 𝜔 refers to the score vector, 𝜆 is the parameter of regularization term, and 𝛾 is the minimum loss. There are seven 

parameters should be tuned in XGB, containing the learning rate (eta), the maximum depth of a tree (max_depth), the max 

number of boosting iterations (nrounds), the subsample ratio of columns (colsample_bytree), the subsample ratio of the training 

instance (subsample), the minimum loss reduction (gamma) and the minimum sum of instance weight (min_child_weight). 5 

The XGB model is available in the R package “xgboost” (Chen et al., 2018). 

2.4.6 Parameters optimization 

The parameters of machine-learning models we mentioned above need to be adjusted, and the numbers of these parameters 

of models are different. For instance, XGB has seven parameters and is one of the most complicated models; on the other hand, 

for the MLP, in the case where we have chosen the algorithm, the only parameter that should be tuned is the size of the MLP 10 

model. 

R package “caret” (Kuhn, 2018) provides an effective grid-search method that can automatically adjust the parameters by 

setting the adjustment grid, avoiding the uncertainty of artificial adjustment for some models (e.g., XGB) with more parameters. 

A set of parameters with the lowest RMSE or the highest R2 for regression and the highest overall accuracy or kappa coefficient 

for classification by cross-validation can be selected to be the best parameters. However, in the presence of many adjustment 15 

parameters, it may be inefficient due to the long training time. Thus, we used the other package of “randomForest” for RF and 

“kknn” for KNN, which can also restructure the parameters for these two models. 

In our study, eleven dependent variables (i.e., ten for regression and one for classification) were trained with environmental 

covariates (independent variables) for the sake of parameter adjustment for each model, including “sand, silt, clay, ilr1, ilr2, 

alr1, alr2, clr1, clr2, clr3” and “class”. Subsequently, the parameters were definitely computed; here, we just give the relative 20 

ranges of the parameters after adjustment for most dependent variables; for example, in KNN the kmax was 15, the distance 

was 1, and the kernel was rectangular; in MLP, the size fluctuated between 5 and 10; in RF, the ntree was 1000 and mtry 

fluctuated from 9 to 11; in SVM, gamma was 0.01 and cost was 1; and in XGB, the range of parameters of max_depth (3-4), 

eta (0.05-0.1), colsample_bytree (0.6-0.8), nrounds (30), subsample (0.8-1), gamma (0-0.4), and min_child_weight (0.6-0.8) 

were obtained after conditioning. 25 

2.5 Log-ratio transformation methods  

For soil psf compositional data (i.e. sand, silt and clay), the sum of the components is 1 (or 100 %), which should be guaranteed. 

Soil particle sizepsf data, including three dimensions, are typical compositional data. The closed number system can be 

explained as follows: the individual variables in the data set are not independent of each other; moreover, they are related by 

being expressed as a percentage (Filzmoser et al., 2009). In the Euclidean space, one dimension (variable) would be omitted 30 
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for the original method to guarantee no information loss because of the constant-sum constraint. Therefore, the Euclidean 

space is not appropriate for the analysis of soil psf data. The most widely used approachesmethods are log ratio 

approachesmethods (Aitchison, 1982), consisting of the additive log ratio, centered log ratio and isometric log ratio (ALR, 

CLR and ILR for short, respectively) from Aitchison (1982) and Egozcue et al. (2003). 

For the composition of 𝐷  elements 𝐱 = [𝑥1, . . . , 𝑥𝐷] , 𝑥𝑗 > 0 , ∀𝑗 = 1, . . . 𝑗 − 1, 𝑗 + 1, 2, . . . 𝐷 , and ∑ 𝑥𝑗
𝐷
𝑗=1 = 1 , the 5 

transformation equation for ALR is defined as follows: 

𝑎𝑙𝑟(𝐱) = (𝑙𝑛
𝑥1

𝑥𝑗
, . . . , 𝑙𝑛

𝑥𝑗−1

𝑥𝑗
, 𝑙𝑛

𝑥𝑗+1

𝑥𝑗
, . . . , 𝑙𝑛

𝑥𝐷

𝑥𝑗
),                                  (113) 

For soil psf (𝐷 = 3) in our study, the transformation equations for ALR are:  

𝑎𝑙𝑟(1) = 𝑙𝑛
𝑠𝑎𝑛𝑑

𝑐𝑙𝑎𝑦
,                          (214) 

𝑎𝑙𝑟(2) = 𝑙𝑛
𝑠𝑖𝑙𝑡

𝑐𝑙𝑎𝑦
,                                                                        (315) 10 

All of the information regarding the soil psf was contained in alr(1) and alr(2); however, the ALR has been criticized because 

the choice of denominator is subjective, which can influence the results (Bacon-Shone, 2011). The CLR transformation method 

can remove this arbitrariness, and the equation is defined as follows 

𝑐𝑙𝑟(𝐱) = (𝑦1 , . . . , 𝑦𝑗 , . . . , 𝑦𝐷) = (𝑙𝑛
𝑥1

√∏ 𝑥𝑗
𝐷
𝑗=1

𝐷
, . . . , 𝑙𝑛

𝑥𝐷

√∏ 𝑥𝑗
𝐷
𝑗=1

𝐷
),      (416) 

where 𝑦𝑗 is the jth component. Similarly, for the soil psf, the transformation equations for CLR are:  15 

𝑐𝑙𝑟(1) = 𝑙𝑛
𝑠𝑎𝑛𝑑

√𝑠𝑎𝑛𝑑×𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦3 ,                               (517) 

𝑐𝑙𝑟(2) = 𝑙𝑛
𝑠𝑖𝑙𝑡

√𝑠𝑎𝑛𝑑×𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦3 ,       (618) 

𝑐𝑙𝑟(3) = 𝑙𝑛
𝑐𝑙𝑎𝑦

√𝑠𝑎𝑛𝑑×𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦3 ,       (719) 

In the CLR transformation method, the geometric mean composed of all compositions of soil psf is the denominator, and 

one-to-one mapping of equations and soil psf could be implemented. Nevertheless, the CLR is inapplicable for multivariate 20 

analysis because the sum of the dimensions of CLR is 0, and thus the results are collinear. These problems can be overcome 

by using ILR, which transforms all the information into D-1 orthogonal log contrasts (Abdi et al., 2015). The transformation 

equations for ILR are defined as follows: 

𝑧 = (𝑧1, . . . 𝑧𝐷−1) = 𝑖𝑙𝑟(𝑥),                   (820) 

𝑧𝑖 = √
𝐷−𝑖

𝐷−𝑖+1
𝑙𝑛

𝑥𝑖

√∏ 𝑥𝑗
𝐷
𝑗=𝑖+1

𝐷−𝑖
, for 𝑖 = 1, . . . , 𝐷 − 1.                (921) 25 

where 𝑧𝑖 is the ith component. The ILR transformation equations for soil psf in our study can also be defined as follows: 

𝑖𝑙𝑟(1) = √
2

3
𝑙𝑛

𝑠𝑎𝑛𝑑

√𝑠𝑖𝑙𝑡×𝑐𝑙𝑎𝑦
,                     (1022) 
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𝑖𝑙𝑟(2) = √
1

2
𝑙𝑛

𝑠𝑖𝑙𝑡

𝑐𝑙𝑎𝑦
,                      (1123) 

For a more uniform comparison of the descriptive statistics, the ordering of three components of soil psf followed sand-silt-

clay, and we added the third equation for the ALR and ILR. Although all the information could be included in the first two 

equations, note that in the process of model traininginterpolation, only the first two equations were used for ALR and ILR:  

𝑎𝑙𝑟(3) = 𝑙𝑛
𝑐𝑙𝑎𝑦

𝑠𝑎𝑛𝑑
,                       (1224) 5 

𝑖𝑙𝑟(3) = √
2

3
𝑙𝑛

𝑐𝑙𝑎𝑦

√𝑠𝑎𝑛𝑑×𝑠𝑖𝑙𝑡
,                     (1325) 

The equations for 𝑎𝑙𝑟(1), 𝑎𝑙𝑟(2), 𝑎𝑙𝑟(3) were equivalent to 𝑎𝑙𝑟(𝑠𝑎𝑛𝑑), 𝑎𝑙𝑟(𝑠𝑖𝑙𝑡), 𝑎𝑙𝑟(𝑐𝑙𝑎𝑦) in ALR, the same as in ILR. 

The back-transformed equations for ALR, CLR and ILR were recommended in our previous research (Wang and Shi, 2017), 

and were computed in the “compositions” R package (van den Boogaart and Tolosana-Delgado, 2008), which were defined as 

follows:. 10 

𝑎𝑙𝑟(𝑥𝑗) =
𝑒𝑥𝑝(𝑎𝑙𝑟(𝑥𝑗))

∑ 𝑒𝑥𝑝(𝑎𝑙𝑟(𝑥𝑗))𝐷
𝑗=1

 ,                  (26) 

𝑐𝑙𝑟(𝑥𝑗) =
𝑒𝑥𝑝(𝑐𝑙𝑟(𝑥𝑗))

∑ 𝑒𝑥𝑝(𝑐𝑙𝑟(𝑥𝑗))𝐷
𝑗=1

 ,                  (27) 

𝑌(𝑥𝑗) = ∑
𝑖𝑙𝑟(𝑥𝑗)

√𝑗×(𝑗+1)

𝐷
𝑗=1 − √

𝑗−1

𝑗
× 𝑖𝑙𝑟(𝑥𝑗) ,               (28) 

𝑖𝑙𝑟(𝑥0) = 𝑖𝑙𝑟(𝑥𝐷) = 0 ,                   (29) 

𝑖𝑙𝑟(𝑥𝑗) =
𝑒𝑥𝑝(𝑌(𝑥𝑗))

∑ 𝑒𝑥𝑝(𝑌(𝑥𝑗))𝐷
𝑗=1

 ,                   (30) 15 

For the original (untransformed) method, the standardization function was used to ensure predictions of soil psf were 

between 0 and 100 and that their sum was 100%:  

𝑠𝑎𝑛𝑑𝑠 =
𝑠𝑎𝑛𝑑

(𝑠𝑎𝑛𝑑+𝑠𝑖𝑙𝑡+𝑐𝑙𝑎𝑦)
× 100,                                 (1431) 

where, 𝑠𝑎𝑛𝑑𝑠 is the content of sand after standardization, the same as silt and clay component. 

2.6 Validation 20 

2.6.1 Validation method 

A total of 45 methods that we simulated are presented in Table 1; five machine-learning models were combined with one 

original (ORI) and three log ratio approachesmethods (ALR, CLR, ILR). Five machine-learning methods were applied for 

direct soil texture classification; additionally, these methods were combined with original (untransformed) and log ratio 

transformed data for a total of 40 methods for indirect soil texture classification (20) and soil psf interpolation (20). The data 25 

were randomly divided into two sets to guarantee prediction accuraciesaccuracy; for instance, one (70 % = 448 soil samples) 
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was employed for training models and the other (30 % = 192 soil samples) was set aside for validation. This process was 

repeated 30 times for soil texture classification and soil psf interpolation, and different indicators were chosen to evaluate 

different performances of models (or methods). 

Table 1. The method system of soil texture classification and soil psf interpolation. 

Methods 

Soil texture classification Soil psf interpolation 

Direct classification Indirect classification — 

Original data  

(ORI) 
KNN, MLP, RF, SVM, XGB KNN_ORI, MLP_ORI, RF_ORI, SVM_ORI, XGB_ORI  

Log-ratio 

transformed data  

(ALR, CLR, ILR) 

— 
KNN_ALR, KNN_CLR, KNN_ILR, MLP_ALR, MLP_CLR, 

MLP_ILR, RF_ALR, RF_CLR, RF_ILR, SVM_ALR, 

SVM_CLR, SVM_ILR, XGB_ALR, XGB_CLR, XGB_ILR,  

2.6.2 Validation indicators for soil texture classification 5 

The overall accuracy (Brus et al., 2011) and kappa coefficient were selected to evaluate the overall effects of soil texture types 

predicted by different models. Moreover, the receiver operating characteristic (ROC) curve, precision-recall curve (PRC), area 

under the ROC curve (AUC), area under the precision-recall curve (AUPRC) and abundance index were applied to evaluate 

the performance of different soil texture types. 

The overall accuracy represents all samples of soil texture types correctly classified by machine-learning models, divided 10 

by the total number of samples of soil texture types used in the validation. The higher overall accuracy, the more accurate soil 

map (Brus et al., 2011):  

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
,                         (1532) 

where 𝑇, 𝐹, 𝑃 and 𝑁 denote True, False, Positive, and Negative and 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁 were true positive, true negative, false 

positive, and false negative, respectively. When the numbers of samples in different classes are imbalanced in the data set, the 15 

kappa coefficient can explain the agreement of classes (Marchetti et al., 2011), which is calculated based on the confusion 

matrix, the equation is defined as:  

𝑘𝑎𝑝𝑝𝑎 =
𝑝𝑜−𝑝𝑒

1−𝑝𝑒
,                      (1633) 

where, 𝑝𝑜 is the probability of observed agreement (overall accuracy) and 𝑝𝑒 is the probability of agreement when two 

classes are unconditionally independent. The strength of the kappa coefficients is interpreted in the following manner: 0.01-20 

0.20: slight, 0.21-0.40: fair, 0.41-0.60: moderate, 0.61-0.80: substantial, 0.81-1.00: almost perfect (Landis and Koch, 1977). 
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The probabilities of different soil texture types (sum to 1) obtained during the training and predicting processes of machine-

learning models were selected to calculate the sensitivity, specificity, precision and recall: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,                    (1734) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
,                      (1835) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,                       (1936) 5 

In general, sensitivity, precision and recall indicate the extent of identifying positive cases, and specificity demonstrates the 

extent of identifying the negative cases of models. ROC analysis is commonly used in two-class problems. However, soil 

texture types are more than two classes. In our point of view, a one-vs-rest strategy was employed to produce different ROC 

graphs for each soil texture type. 

𝑃𝑖 = 𝑐𝑖,                         (2037) 10 

𝑁𝑖 = ⋃ 𝑗 ≠ 𝑖𝑐𝑗 ∈ 𝐶,                       (2138) 

where C is the set including all classes, 𝑃𝑖  is the positive class, 𝑁𝑖 is the negative class, including all classes except 𝑐𝑖 in 

ROC graph i (Fawcett, 2006). 

In practice, the weakness of the ROC curve is that it cannot indicate the differences among the models in the cases of 

imbalanced samples between positive and negative. Soil texture data are a class-imbalanced data set of positive and negative, 15 

and the negative classifier would be overvalued under these circumstances because of the overabundance of majority (negative) 

examples, additionally revealing overly optimistic findings (Davis and Goadrich, 2006). However, precision and recall curves 

(PRC) are more informative than ROC curves in dealing with class-imbalanced data (Fu et al., 2017). The R package “precrec” 

(Saito and Rehmsmeier, 2017) generated ROC and PRC curves and computed AUC and AUPRC for each soil texture type. 

This process was repeated 30 times and eventually, the average ROC and PRC curves with their average areas under these 20 

curves were obtained. 

Abundance index was applied to describe the proportion of all soil texture types and well-classified soil texture types in the 

prediction map, which was defined as follows: 

𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 = 𝑝/𝑡,         (2239) 

where p is all soil texture types in the prediction map and t is well-classified soil texture type(s) in test sets. For the sake of 25 

ensuring the balance of the soil texture types, all nine soil texture types were involved in test sets, covering clay loam (ClLo: 

12), loam (Lo: 57), loamy sand (LoSa: 18), sand (Sa: 23), sandy clay loam (SaClLo: 4), sandy loam (SaLo: 58), silt (Si: 31), 

silty clay loam (SiClLo: 37), and silt loam (SiLo: 400); most were SiLo (62.5%) and the fewest were SaClLo (0.63%). 

2.6.3 Validation indicators for soil psf interpolation 

The accuracy and performance of machine-learning models mentioned above for the original (untransformed) and different 30 

log ratio transformation approachesmethods were evaluated using five statistical indicators, containing coefficient of 
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determination (R2), root mean square error (RMSE), mean absolute error (MAE), Aitchison distance (AD, Aitchison, 1992), 

and standardized residual sum of squares (STRESS, Martin-Fernandez et al., 2001). The equations for the validation indicators 

R2, RMSE, MAE, AD and STRESS are as follows: 

𝑅2 =
∑ (𝑌𝑖,𝑚−𝑌𝑖,𝑒)𝑛

𝑖=1

∑ (𝑌𝑖,𝑚−�̄�𝑖,𝑚)𝑛
𝑖=1

,                       (2340) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑌𝑖,𝑚 − 𝑌𝑖,𝑒)2𝑛

𝑖=1 ,                    (2441) 5 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑌𝑖,𝑚 − 𝑌𝑖,𝑒|𝑛

𝑖=1 ,                    (2542) 

where 𝑌𝑖,𝑚, 𝑌𝑖,𝑒 , �̄�𝑖,𝑚 and n are the measured, predicted and the mean of measured soil psf and the number of observations (soil 

sampling points for validation). Closer to 1 and higher values of R2 and the lower values of RMSE and MAE show better 

performance of models and methods. 

𝐴𝐷 = [∑ [𝑙𝑜𝑔
𝑥𝑖

𝑔(𝑥)
− 𝑙𝑜𝑔

𝑋𝑖

𝑔(𝑋)
]𝐷

𝑖=1

2

]
1/2

,                   (2643) 10 

𝑆𝑇𝑅𝐸𝑆𝑆 = [
∑ (𝐴𝐷𝑥,𝑖𝑗−𝐴𝐷𝑋,𝑖𝑗)2

𝑖<𝑗

∑ (𝐴𝐷𝑥,𝑖𝑗)2
𝑖<𝑗

]
1/2

,                    (2744) 

where 𝑥 is the observed value; 𝑋 is the predicted value; 𝐷 is the number of dimensions (for soil psf is 3); 𝑔(𝑥) denotes 

the geometric mean (𝑥1. . . 𝑥𝐷)1/𝐷; 𝐴𝐷𝑥,𝑖𝑗  and 𝐴𝐷𝑋,𝑖𝑗 are the 𝐴𝐷𝑠 between the observed soil psf and the predicted soil psf 

at sites 𝑖 and 𝑗. Both present that model performances are better when the values are lower. 

2.6.4 Indirect soil texture classification by soil psf interpolation 15 

Seventy percent of the 640 soil sampling points were used for training each machine-learning model, and the remaining 30 % 

were used for the soil psf interpolation; thereafter, we transformed the content of three components (sand, silt and clay) into 

the soil texture types in the USDA soil texture classification using the R package “soiltexture” (Moeys, 2018). Eventually, the 

overall accuracy and kappa coefficient were computed and evaluated. This process was repeated 30 times, and the averages of 

these consequences were employed to compare the classification performance of for each model. The direct and indirect soil 20 

texture classifications were also compared with the overall accuracy and kappa coefficient. The training and testing sets for 

each time were the same by setting seeds, and all calculations and analysis were performed with the freely available software 

R (R Core Team, 2018). 

2.7 Statistical analysis for the original and log-ratio transformed data 

The mean, median, minimum (Min), maximum (Max), median absolute deviation (MAD), skewness (Skew), kurtosis and 25 

Kolmogorov-Smirnov test (p>0.05) were employed for descriptive statistical analysis of the original (untransformed) and log 



28 
 

ratio transformed soil psf data. The arithmetic mean of log-ratio transformation data should be back-transformed to the original 

space. For 𝑋 = [𝑋1, . . . , 𝑋𝑛], the MAD can be calculated according to the Eq. (28) as below: 

𝑀𝐴𝐷(𝑋) = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)|).        (2845) 

3 Results 

3.1 The descriptive statistics for the original and log-ratio transformed soil psf data 5 

With respect to the original (untransformed) data of sand, the mean fraction (30.64 %) was much higher than that of median 

fraction (25.10 %); conversely, both silt and clay were the opposite, with lower mean fractions (silt: 55.79 %, clay: 13.57 %) 

than median fractions (silt: 59.47 %, clay: 13.78 %). For the log ratio transformed data, the means of sand (28.69 %) and silt 

(60.54 %) were closer to the median values of the original data, aside from clay, with mean of 10.78 %. 

  All MADs of log ratio transformed data were much smaller than those of the original data in all cases; for instance, ILR 10 

contained the best value of MAD for sand (0.66) and clay (0.44), and CLR generated the lowest MAD for silt (0.43) among 

different log ratio approachesmethods (Fig. 2). All log ratio approachesmethods had lower skews (ALR: 0.77, CLR: 0.88, ILR: 

-1.20) than those of the original data (1.24) for of sand. Moreover, CLR (-0.4) declined the original skew (-0.93) for of silt. 

However, it was negligible for log ratio transformation data compared with the original skew of clay (0.4). The kurtosis of all 

log ratio approachesmethods was were much higher compared with the consequences generated from original (untransformed) 15 

data. In terms of the k-s test (p < 0.05), although the p values of the original (untransformed) and different log ratio transformed 

data were not significant and all histograms were not subject to normal distribution, log ratios made the images of the data 

more symmetric (Fig. 2).  
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Figure 2. Descriptive statistical analysis for the original (untransformed) and logratio transformed soil sampling data. Note 

that the means generated from log ratio transformed data were back-transformed to the real space. 

3.2 Comparison of the machine learning models in the classification of soil texture types 

3.2.1 Comparison of the validation indicators for soil texture classification 

The overall accuracy of each model ranged from 0.610 to 0.647 (Fig. 3a). SVM had the highest overall accuracy (0.647) among 5 

the five models, followed closely by the accuraciesaccuracy of KNN (0.631) and RF (0.629). XGB (0.611) and MLP (0.610) 

were relatively lower among these models. The highest kappa coefficient was generated from XGB (0.240), followed by RF 

(0.238), KNN (0.234) and MLP (0.230), and the worst performer was SVM, with kappa coefficient dropping to 0.186 (Fig. 

3b). 

 10 

Figure 3. (a) The overall accuraciesaccuracy and (b) kappa coefficients for different machine learning models of KNN, MLP, 

RF, SVM and XGB. 

The AUC with regard to each soil texture type of 640 soil sampling points predicted from five different models demonstrated 

that the ranking of the AUC was RF>XGB>SVM>KNN>MLP in the case of fewer soil sampling points (ClLo, LoSa, Sa, 

SaClLo and Si). However, in the case of the types with more soil sampling points (Lo, SaLo, SiLo, SiClLo), the ROC curves 15 

exhibited roughly the same shape for each model (Fig. 4); therefore, the order of performance was as follows: 

RF>SVM>XGB>MLP>KNN. 
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Figure 4. The AUC for different machine learning methods of each soil texture type (a) ClLo (b) Lo (c) LoSa (d) Sa (e) SaClLo 

(f) SaLo (g) Si (h) SiClLo (i) SiLo; n was the sampling points for different soil texture types. 

We combined the PRCs with five machine-learning methods to evaluate the performance of these models with respect to 

predicting each soil texture type using soil psf imbalanced data with different samples of soil texture types (Fig. 5). We found 5 

that the AUPRC of types with fewer positive examples were typically small, especially in the case of SaClLo (only four 

samples), which resulted in unsatisfying consequences because the lack of soil sampling points made models learn poorly 

during the training process. Hence, the soil texture types (Lo, SaLo, SiLo, SiClLo) with more positive examples delivered 

superior results to those with fewer positive examples. Moreover, these soil texture types had significant differences in 
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AUPRCs. For example, SiLo, which had the largest number of samples, was the most effective among these nine types. The 

total AUPRC calculated by the weights of samples for AUPRC of each type was applied to evaluate the effect of each model, 

and the order was as follows: RF (0.646)>XGB (0.616)>KNN (0.601)>MLP (0.600)>SVM (0.599). 

 

Figure 5. The AUPRC for different machine learning methods of each soil texture type (a) ClLo (b) Lo (c) LoSa (d) Sa (e) 5 

SaClLo (f) SaLo (g) Si (h) SiClLo (i) SiLo; n was the sampling points for different soil texture types. 
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3.2.2 Comparison of the prediction maps for soil texture classification  

Prediction maps of soil texture types in the HRB using machine-learning models delivered quite different spatial distributions 

in the overall performance of different models (Fig. 6). The abundance indices pointed out that all models could not predict 

the type of SaClLo; in other words, KNN and XGB predicted 8 of 9 types, followed closely by RF (7 of 9 types) and MLP (6 

of 9 types). However, SVM predicted only two types, which was an unsatisfactory result associated with the lowest kappa 5 

coefficient (Fig. 3). Additionally, the prediction effects of different models were different in the distributions of soil texture 

types in the HRB. The consequences of RF and XGB illustrated that the main soil texture types in the northwest of the lower 

reaches of HRB were mostly LoSa, while other prediction models produced SaLo. On the upper reaches of the HRB, soil 

texture types generated from RF were more abundant and more in accordance with the real environment. 

 10 

Figure 6. Soil texture classification prediction map of different soil texture types of (a) KNN, (b) MLP, (c) RF, (d) SVM and 

(e) XGB. 
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3.3 Comparison of the machine learning models combined with log-ratio transformed methods in the interpolation of 

soil psf 

3.3.1 Comparison of the validation indicators for interpolation of soil psf 

We compared the performance of each machine-learning model combined with the original (untransformed) and the log ratio 

transformed data of soil psf. The results indicated that the accuraciesaccuracy of STRESS of the methods combined with log 5 

ratio transformed data were superior to other approachesmethods using original (untransformed) data (Table 2). With respect 

to KNN, MLP, RF and XGB, the RMSE, MAE, R2 and AD generated from original (untransformed) data outperformed log 

ratio transformed data; for SVM, log ratio transformed data delivered superior improvement. For instance, SVM_CLR and 

SVM_ILR had higher R2 and lower RMSE and MAE than SVM_ORI of sand, silt and clay. 

By comparison among different log ratio transformed data of the same machine-learning model, ILR and CLR 10 

outperformed ALR in these models, other than MLP, showing a slight difference. As shown in Table 2, KNN_CLR 

demonstrated the most remarkable performance among the three KNN models using different log ratio transformed data with 

highest R2 (sand: 48.48 %; silt: 38.37 %; clay: 41.43 %) and lowest RMSE (sand: 15.82 %; silt: 14.77 %; clay: 7.09 %) and 

MAE (sand: 11.21 %; silt: 10.74 %; clay: 5.58 %). Furthermore, CLR and ILR generated relatively similar consequences for 

each model of RF and SVM; with respect to XGB, XGB_ILR showed the best performance with all indicators we measured, 15 

aside from RMSE (6.75 %) and MAE (5.36 %) of clay, and STRESS (0.63). 

We also compared five different machine-learning models using the same log ratio transformation approachesmethods. In 

the case of ALR, ALR_RF had talent, with the lowest RMSE (sand: 15.50 %; silt: 14.43 %; clay: 6.62 %) and MAE (sand: 

10.90 %; silt: 10.52 %; clay: 5.24 %), the highest R2 (sand: 50.57 %; silt: 41.23 %; clay: 48.90 %), and the lowest AD (0.86) 

and STRESS (0.61), followed by SVM_ALR, XGB_ALR, KNN_ALR and MLP_ALR. Regarding CLR and ILR, RF also 20 

produced the most preferable performance followed by SVM, XGB, KNN and MLP. For original (untransformed) data, RF 

outperformed other models in accordance with log ratio approachesmethods, and the next were XGB, SVM, KNN and MLP. 

Therefore, it is clear that RFs demonstrated the most extraordinary indicators of RMSE, MAE, R2 and AD from the 

untransformed model and the best STRESS from the log ratio models (RF_ALR, RF_CLR and RF_ILR).
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Table 2. The comparisons of accuraciesaccuracy of different machine-learning models combined with original (untransformed) and transformed 

data. 

 RMSE (%) MAE (%) R2 (%) AD STRESS 

 Sand Silt Clay Sand Silt Clay Sand Silt Clay   

KNN_ALR 16.05 15.04 7.12 11.35 10.93 5.59 47.02 36.11 41.07 0.90 0.62 

KNN_CLR 15.82 14.77 7.09 11.21 10.74 5.58 48.48 38.37 41.43 0.88 0.62 

KNN_ILR 15.82 14.82 7.14 11.22 10.84 5.60 48.46 37.88 40.74 0.88 0.64 

KNN_ORI 15.51 14.47 7.05 11.12 10.51 5.49 50.59 40.92 42.24 0.84 0.66 

MLP_ALR 15.83 15.07 7.43 11.42 11.06 5.97 48.50 35.82 35.79 0.92 0.66 

MLP_CLR 15.84 15.07 7.41 11.45 11.05 5.96 48.42 35.86 36.19 0.92 0.66 

MLP_ILR 15.84 15.07 7.40 11.46 11.04 5.95 48.40 35.85 36.32 0.92 0.66 

MLP_ORI 15.80 14.72 6.96 11.50 10.85 5.52 48.75 38.84 43.72 0.90 0.68 

RF_ALR 15.50 14.43 6.62 10.90 10.52 5.24 50.57 41.23 48.90 0.86 0.61 

RF_CLR 15.28 14.22 6.61 10.70 10.25 5.21 51.95 42.89 49.16 0.86 0.61 

RF_ILR 15.27 14.25 6.66 10.66 10.26 5.26 51.99 42.60 48.28 0.86 0.61 

RF_ORI 15.09 13.86 6.31 10.65 9.99 5.00 53.28 45.77 53.75 0.84 0.66 

SVM_ALR 15.66 14.59 6.76 11.66 10.88 5.34 49.61 39.87 46.89 0.88 0.66 

SVM_CLR 15.27 14.36 6.87 11.01 10.41 5.41 52.12 41.85 45.14 0.87 0.65 

SVM_ILR 15.29 14.37 6.84 10.92 10.43 5.42 51.99 41.69 45.58 0.87 0.65 

SVM_ORI 15.30 14.38 6.92 10.94 10.32 5.43 51.98 41.71 44.45 0.87 0.67 

XGB_ALR 15.82 14.92 6.72 11.32 11.01 5.35 48.57 37.23 47.44 0.88 0.64 

XGB_CLR 15.70 14.80 6.75 10.96 10.67 5.39 49.23 38.10 46.90 0.88 0.62 

XGB_ILR 15.45 14.57 6.75 10.91 10.52 5.36 50.88 40.01 47.01 0.88 0.63 

XGB_ORI 15.15 14.05 6.47 10.88 10.15 5.15 52.85 44.27 51.36 0.86 0.68 
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3.3.2 Comparison of the interpolation maps of soil psf  

Interpolation maps of soil psf (sand, silt and clay) using log ratio transformed data (ILR) and original (untransformed) data 

were represented in Figs. 7, S1 and S2. At first glance, there was a negligible difference between ILR and ORI based on the 

same machine-learning model. However, the maps generated from models combined with ILR transformed data showed closer 

ranges to the original soil sampling data in the case of sand (0.98-99.66 %), silt (0.17-95.87 %) and clay (0.03-39.77 %), and 5 

the texture features were more suitable for the distributions of the real environment (Figs. 7, S1 and S2). With respect to 

different machine-learning models, RF and XGB delivered more detailed information about texture features in prediction maps 

than did KNN, SVM and MLP. 
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Figure 7. The interpolation maps of sand fraction. All the ranges of prediction maps of sand (approximately 9.0—90.0 %) 

were within the range of the original data (0.98—99.66 %). RF_ILR (7.9—94.7 %) and XGB_ORI (1.8—92.4 %) generated 

wider output distributions and were relatively closer to the range of the distribution of original data than other prediction maps 

such as KNN_ILR (7.3—88.6 %), KNN_ORI (7.8—80.8 %), MLP_ILR (8.8—90.8 %), MLP_ORI (9.0—90.3 %), RF_ORI 

(9.0—81.0 %), SVM_ILR (6.5—85.6 %), SVM_ORI (7.3—90.0 %) and XGB_ILR (5.0—88.5 %). 5 

3.4 Comparison of direct and indirect soil texture classification 

3.4.1 Comparison of the validation indicators for direct and indirect soil texture classification 

Compared with the classification performance of the five machine-learning models using original (untransformed) data, the 

overall accuraciesaccuracy and kappa coefficients of models combined using log ratio transformed data were improved, 

especially RF and XGB, which combined with all three log ratio approachesmethods were superior to the interpolation methods 10 

using original data. Table 3 shows showed that the overall accuracy (0.631) and kappa coefficient (0.245) of the original 

method in KNN models were better than any other log ratio transformed methods. In summary, the ILR transformation method 

of five machine-learning models showed the highest overall accuracy among three log ratio transformation approachesmethods 

(KNN: 0.628; MLP: 0.614; RF: 0.631; SVM: 0.631; XGB: 0.632), which also demonstrated the best performance with regard 

to kappa coefficients (KNN: 0.244; RF: 0.291; SVM: 0.239; XGB: 0.252), except for MLP (ALR: 0.216; CLR: 0.216; ILR: 15 

0.214). We also compared direct classification (Fig. 3) with indirect classification and found that the highest values of overall 

accuracy of indirect classification (KNN: 0.631; MLP: 0.614; RF: 0.628; SVM: 0.638; XGB: 0.632) were slightly decreased 

in comparison of direct classification (KNN: 0.631; MLP: 0.610; RF: 0.629; SVM: 0.647; XGB: 0.611) for RF and SVM, and 

improved or kept stable for MLP and XGB, and KNN, respectively. In turn, the kappa coefficients were greatly modified using 

indirect classification (KNN: 0.245; MLP: 0.216; RF: 0.291; SVM: 0.239; XGB: 0.252) compared with direct classification 20 

(KNN: 0.234; MLP: 0.230; RF: 0.238; SVM: 0.186; XGB: 0.240), other than MLP; peculiarly, RF_ILR increased the kappa 

coefficient to 0.291 (21.3 % improvement) while keeping accuracy stable, which showedshowing the highest kappa coefficient 

among these methods. 

Table 3. Overall accuraciesaccuracy and kappa coefficients calculated from soil texture classification by the interpolated maps 

from five models using original (untransformed) data and log ratio transformed data. 25 

Methods Overall accuracy Kappa coefficient 

KNN_ALR 0.623  0.236  

KNN_CLR 0.627  0.241  

KNN_ILR 0.628  0.244  

KNN_ORI 0.631  0.245  

MLP_ALR 0.614  0.216  
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MLP_CLR 0.614  0.216  

MLP_ILR 0.614  0.214  

MLP_ORI 0.611  0.216  

RF_ALR 0.619  0.284  

RF_CLR 0.625  0.276  

RF_ILR 0.628  0.291  

RF_ORI 0.619  0.279  

SVM_ALR 0.591  0.205  

SVM_CLR 0.630  0.227  

SVM_ILR 0.631  0.239  

SVM_ORI 0.638  0.232  

XGB_ALR 0.610  0.226  

XGB_CLR 0.612  0.240  

XGB_ILR 0.632  0.252  

XGB_ORI 0.619  0.239  

3.4.2 The prediction performance of soil texture types from different methods  

The distributions of soil texture classes using original (untransformed) data and ILR transformed data are illustrated in the 

USDA soil texture triangle (Fig. 8). The triangle of the original data (Fig. 8a) shows wider ranges of spatial dispersion than 

the interpolation data using machine-learning models, revealing the properties of aggregate from the sides to the center of 

triangles. With respect to these machine-learning models, RF showed the most dispersed feature in accordance with the original 5 

data. The distributions predicted from models combined with ILR transformed data were more discrete and more associated 

with the original soil psf data than those resulting from ORI approachesmethods. The results of prediction represented striking 

differences in that the error ratio (red color) of soil sampling points on types of LoSa, SaLo and Lo (left side of triangles) were 

significantly more than those on types of SiLo and Si (the right side of triangles) for most models, especially KNN and MLP. 

The log ratio approachesmethods overestimated the content of silt in the process of transformation (Fig. 2); in this way, these 10 

points were biased to the right of the USDA soil texture triangle based on overall contraction (regression smoothing effects), 

crossing the classification boundary and becoming other soil texture types. RF_ILR (Fig. 8f) delivered the highest right ratio 

(RR) among these models, and the classification accuracy was enhanced using the ILR method (83.9%) compared with the 

ORI method (81.7%). In the case of other models, the differences between original and log ratio approachesmethods were 

negligible. We also compared the RR of indirect classification models with those of direct classification, demonstrating all 15 

RRs of direct classification were higher (KNN: 67.97 %; MLP: 75.16 %; RF: 100 %; SVM: 66.09 %; XGB: 81.09 %), 
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especially RF and XGB; however, we removed this evaluation indicator because the same data sets were employed in the 

processes of training and predicting. 

 

Figure 8. Soil texture types of 640 soil samples shown in USDA texture triangle. The results of soil psf were generated from 

(a) original (untransformed) data, (b) KNN_ILR (65.0 %), (c) KNN_ORI (65.9 %), (d) MLP_ILR (63.3 %), (e) MLP_ORI 5 

(63.6 %), (f) RF_ILR (83.9 %), (g) RF_ORI (81.7 %), (h) SVM_ILR (66.1 %), (i) SVM_ORI (66.4 %), (j) XGB_ILR (67.8 %), 

and (k) XGB_ORI (68.0 %). Note that the predicted right-ratios (RRs) of the soil texture types were in the bracket after 

interpolators 
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3.4.3 Comparison of prediction maps of direct and indirect soil texture classification 

Fig. 9 indicatedshows the similaritiessimilarity of the three log -ratio transformation methods. The soil texture maps predicted 

using original data is different from those generated fromby log-ratio transformed data, and the classification maps from the 

machine learning models combined with the log-ratio transformed data had more detailed information. Three log-ratio 

transformation methods of the same machine learning model are were similar in the number of each type predicted; however, 5 

there are some differences between methods using original data and those using log-ratio transformed data. All machine 

learning models combined with original data predicted more types of Lo and SaLo, and less types of LoSa and Si, which could 

also be presented in Fig. 9. The performance of different machine learning models, especially in the lower fewer reaches of 

the Heihe River Basin was were also compared, for log-ratio transformation methods, for KNN, KNN_ALR and KNN_CLR 

predicted more type of LoSa than KNN_ILR in the north of lower reaches; for each model of MLP and RF, the differences 10 

were slight; more types of Lo in the northwest of lower reaches and less LoSa near the Heihe River were generated by 

SVM_ALR, compared with SVM_CLR and SVM_ILR; for XGB, the performance of three maps were different due to the 

prediction of LoSa. We also compared the prediction of the soil texture types by direct classification (Fig. 6) with those 

generated by from indirect classification using the same machine learning model, revealingand found completely difference 

between them on the lower reaches of Heihe River Basin, such as the distribution of LoSa; on the middle and upper reaches 15 

of Heihe River Basin, all the prediction maps were similar, mainly distributed with SiLo. 
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Figure 9. Soil texture classification prediction maps by soil psf interpolation (ALR, CLR, ILR log-ratio transformation 

methods and the original method) of KNN, MLP, RF, SVM and XGB. 

3.4.4 Comparison of time-spending for each model in soil texture classification and soil psf interpolation 

Time spending for models was computed to compare the efficiency of different machine-learning models in soil texture 

classification and soil psf interpolation (Fig. 10). Because the differences in time spending spent among ORI and log ratio 5 

approachesmethods were similar, time spent of ILR was selected for soil psf interpolation. For the different models, RFs 

required the longest time for both classification (453.73 s) and regression (188.87 s), which may cause it to lose advantages 

when dealing with big data sets. KNN (classification: 4.2 s, regression: 23.6 s) and SVM (classification: 4.15 s, regression: 

12.4 s) both showed shorter time in not only classification but also regression. Likewise, XGB (classification: 21.6 s, regression: 

17.13 s) was much more stable and used less time, and the data processes were simpler compared with MLP (classification: 10 

47.28 s, regression: 152.31 s). Moreover, XGBit delivered better performance than KNN and SVM in prediction maps of HRB, 

demonstrating an effective way of dealing with larger data. 

 

Figure 10. Average time spent running 30 times for KNN, MLP, RF, SVM and XGB of soil texture classification and soil psf 

interpolation. 15 
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4 Discussion 

4.1 The systematic comparison of the five machine learning models 

As mentioned previously, we compared the performance of different machine-learning methods containing KNN, MLP, RF, 

SVM and XGB. The results demonstrate demonstrated that SVM had the highest overall accuracy and XGB generated the 

highest kappa coefficient with respect to direct soil texture classification; considering the comprehensive evaluation of AUC 5 

and AUPRC, RF showed the best performance among these machine-learning models. In the case of soil psf interpolation, the 

indicators of RMSE, MAE, R2, AD and STRESS showed that RFs outperformed other machine-learning models, which also 

indicated additional information in prediction maps of sand, silt and clay as well asand models of XGB. For the indirection 

classification of soil texture, the USDA soil texture triangles generated from RF were the closest to the distribution of the 

original data (Fig. 8a), with the highest classification right ratio. Prediction maps of indirect soil texture classification were 10 

also considered, demonstrating; moreover, RF and MLP models were more suitable for the real environment, especially the 

models combined with log ratio transformation approachesmethods. Time spending spent of different machine-learning models 

showed that KNN, SVM and XGB required less time than RF and MLP to fit large data sets. 

The comparisons of machine-learning models were also mentioned in previous reports. Heung et al. (2016) demonstrated 

that tree learners, such as RFs, delivered better performance than KNN and SVM due to the advantages of the interpretability 15 

of the results for classification problems in soil science; tree learners (decision trees) were also shown by Taghizadeh-Mehrjardi 

et al. (2015), indicating that the decision trees and ANN outperformed KNN, RF and SVM. ANNs, however, were typically 

complicated, which was true for our study due to the standardization and back transformation of MLP. In contrast, Wu et al. 

(2018) proposed that SVM revealed reliable consequences in direct soil texture classification, which was quite different from 

our results. In general, as binary classifiers, multi-class tasks can be handled as well using SVM; however, this is no longer 20 

the case in our study, as only 2 types of soil texture were generated from SVM, showing unsatisfactory results in both kappa 

coefficients and prediction maps. The consequences may be explained by the imbalanced data of soil texture types. For more 

information about tree learners in soil science for regression, Hengl et al. (2017) found lower R2 using XGB than RF on a 

global-scale prediction. Zeraatpisheh et al. (2018) put forward the lowest RMSE and the highest R2 using RF compared with 

multiple linear regression and regression trees for the prediction of clay, and this conclusion was similar to our study. For the 25 

total computing time, RF revealed the longest time with respect to both classification (453.73 s) and regression (188.87 s); 

however, it is the most accurate among five machine-learning methods in our study. In addition, for trade-offs of the total 

computing time of model and sub-optimal accuracy, XGB was superior to any other model, reducing the computing time 

significantly, while maintaining the accuracy not drop too much. With respect to the generality results of a transition of these 

machine-learning methods to other areas, it can be considered hierarchically. First, for the quick and imprecise machine-30 

learning methods, XGB was recommended (sub-optimal accuracy), which was fast at the expense of a loss in precision. Second, 

considering the precise methods, RF can deliver the most accurate results, but it takes the longest computing time. Therefore, 
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XGB should be selected when researchers deal with larger data sets and regional scale study area; if they have enough time 

while want to produce more accurate results, RF is recommended. 

4.2 The systematic comparison of the models combined with three log-ratio transformed data and original data 

We compared the performance of models combined with three types of log ratio transformed data and original (untransformed) 

data for soil psf interpolation and indirect soil texture classification, and the results showed that the models using original data 5 

performed better in the case of indicators, such as RMSE, MAE, R2 and AD, while the models using log ratio transformed data 

improved the STRESS. The interpolation maps of soil psf using the ILR method illustrated closer ranges of soil sampling data 

than those based on the ORI method. With respect to the indirect soil texture classification, models using log ratio transformed 

data improved the overall accuraciesaccuracy and kappa coefficients, such as RF and XGB. The USDA soil texture triangles 

showed more discrete distribution and more accordance with soil sampling data using the ILR transformation method. Better 10 

performance was shown in soil texture classification prediction maps generated from log ratio transformed data. Among the 

three log ratio approachesmethods, ILR and CLR were superior to ALR for the reason of more accurate indicators of soil psf 

interpolation and indirect soil texture classification, as well the performance of prediction maps. Additionally, log ratio 

approachesmethods modified soil sampling data to become more symmetric (Filzmoser et al., 2009); however, this 

improvement was not greatly effective. Fig.2 illustrated that soil sampling data for sand and clay were right-skewed, and silt 15 

was left-skewed because the silt component was predominant. The ALR transformed method enhanced soil sampling data of 

sand; nevertheless, the ALR_sand was still right-skewed, similar to the CLR_sand, presenting the lack of adjustment. In 

contrast, the ILR_sand changed from right-skewed to left-skewed; from this point of view, the over-adjustment was revealed. 

Similarly, the lack of adjustments was also shown in CLR_silt and ILR_silt; over-adjustments included ALR_silt, ALR_clay, 

CLR_clay and ILR_clay, making images that were different from normal distribution, and the p values of k-s tests were not 20 

significant. In our previous research (Wang and Shi, 2017), the ILR method had better performance than ALR and CLR, with 

the highest R2 and lowest AD. The CLR method also performed well due to the lowest RMSE and mean error (ME) among 

the three log ratio approachesmethods. When comparing the original (untransformed) and log ratio approachesmethods, kriging 

approaches based on the log ratio delivered slightly decreased accuraciesaccuracy, which was similar to the conclusion in our 

study. 25 

4.3 The systematic comparison of the direct and indirect classification for soil psf 

Indirect classification showed not only better performance with respect to accuracy evaluation but also more accordance with 

the real environment than direct classification. The highest kappa coefficient generated from indirect classification (RF_ILR: 

0.291) demonstrated obvious improvement (approximately 21.3 %) compared with that of direct classification (XGB: 0.240), 

keeping the highest overall accuracy stable (-1.4 %) at the same time (direct: 0.647; indirect: 0.638, respectively). 30 
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Compared with the real soil texture distribution and environment of the HRB, SiLo overlaid the upper reaches of HRB, and 

SaLo and Lo were in the south of the upper reaches of HRB showed strip distribution. Moreover, an uncovered area was 

detected in the northwest of the lower reaches of HRB, where it cannot be predicted due to a lack of information (soil samples) 

input in the process of model training. The main soil texture types of the lower reaches of the HRB were SiLo, LoSa and small 

amounts of SaLo and Lo distributed in uncovered area. The main soil texture types predicted by direct classification using 5 

machine-learning models were SaLo and SiLo; RF and XGB delivered much more LoSa than other direct classification models. 

However, all these models predicted that the main soil type of the lower reaches of HRB was SaLo, which was not fitted for 

the real environment (LoSa). In fact, LoSa and SaLo were obviously most confused classes; however, they are fairly similar 

to each other (see Fig. 8). In addition, because of the limitation of the train sets, direct classification can only predict types in 

the training data; in contrast, indirect classification broke such limitations, and new prediction types arose due to the 10 

transformation from soil psf to soil texture types. Moreover, more suitable matching performance with the real environment 

should be considered, such as the log ratio approachesmethods of MLP, RF, KNN_ ALR, KNN_ ILR and XGB_CLR. The 

direct soil texture classification generated relative unsatisfactory consequences. Although the indirect soil texture classification 

outperformed the direct one, kappa coefficients for indirect classification at fair-level (0.21-0.40) also need to be enhanced. 

Hence, soil sampling data appear to be comprehensively meaningful, considering accuracy improvement. In the case of soil 15 

sampling data, the laser diffraction approach we mentioned above was applied to obtain the discrete representation of particle 

size curves based on the given quantiles of these curves, i.e., soil particle size fractions (psf, sand, silt and clay). Subsequently, 

soil psf data were separately modeled for prediction and validation. Another perspective of soil psf should be considered, i.e., 

the probability density functions of particle size curves (so-called functional compositions), which are non-negative values 

that integrate to 1 (or 100 %) and can be considered as compositional data with infinitesimal parts (Menafoglio et al., 2014). 20 

Unlike conventional approaches, the viewpoints of functional compositions are beneficial to acquiring complete and 

continuous information rather than discrete information (sand, silt and clay) and soil texture and soil particle size fractions can 

be extracted using the stochastic simulation of soil particle-size curves (Menafoglio et al., 2016b). Previous studies applied 

such functional-compositional data for the simulation of particle size curves combined with geostatistical or machine-learning 

methods such as kriging and bayes approachesmethods (Menafoglio et al., 2016a) in hydrogeology, demonstrating more 25 

remarkable results compared with traditional methods. Therefore, which data should be used is the key points of accuracy 

improvement in future research. 

5 Conclusion 

We systematically compared a total of 45 models for direct and indirect soil texture classification, and soil psf interpolation 

using five machine-learning approachesmethods combined with original (untransformed) and three different log ratio 30 

transformed data in the HRB. The results indicate indicated that as flexible and stable models, tree learners such as RF delivered 

powerful performance in both classification and regression and were superior to other machine-learning models mentioned 
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above. As a new and sub-optimal machine-learning method in soil science, XGB appeared to be more meaningful and more 

computationally efficient when dealing with large data sets. In addition, the log ratio approachesmethods had advantages of 

modifying STRESS in soil psf interpolation. Moreover, the indirect soil texture classification outperformed the direct one, 

especially when combined with the log ratio approachesmethods. The indirect soil texture classification generated preferable 

consequences in both cases of accuracy indicators and prediction maps. More appropriate environmental covariates and 5 

interpolation techniques, more symmetric distribution of soil sampling data (or multiple perspectives of compositional data 

selection), and systematic parameter adjustment algorithms of compositional data are key to improving accuracy in the future. 
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