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Abstract 35 

Rapid population growth is increasing pressure on the world water resources.  Agriculture will require crops to be 36 

grown with less water. This is especially the case for the closed Yellow River basin necessitating a better 37 

understanding of the fate of irrigation water in the soil. In this manuscript, we report on a field experiment and 38 

develop a physically based model for the shallow groundwater in the Hetao irrigation district in Inner Mongolia, in 39 

the arid middle reaches of the Yellow River. Unlike other approaches, this model recognizes that field capacity is 40 

reached when the matric potential is equal to the height above the groundwater table and not by a limiting soil 41 

conductivity. The field experiment was carried out in 2016 and 2017. Daily moisture contents at 5 depths in the top 42 

90 cm and groundwater table depths were measured in two fields with a corn crop. The data collected were used for 43 

model calibration and validation. The calibration and validation results show that the model-simulated soil moisture 44 

and groundwater depth fitted well. The model can be used in areas with shallow groundwater to optimize irrigation 45 

water use and minimize tailwater losses. 46 

Key words: Hydrological model, Shallow aquifer, Equilibrium state, Soil moisture characteristic curve 47 

1 Introduction 48 

With global climate change and increasing human population, much of the world is facing substantial water shortage 49 

(Alcamo et al., 2007). The water crisis has caused widespread concern among public governmental officials and 50 

scientists (Guo and Shen, 2016; Oki and Kanae, 2006). Years of rapid population growth has squeezed the world 51 

water resources. The available fresh water per capita decreased from 13400 m
3
 in 1962 to 5900 m

3
 in 2014 (World 52 

Bank Group, 2019).  53 

Water supply in China is especially stressed. When averaged over the whole country, available water per capita 54 

is at the water stress threshold of 1700 m
3
 per year (Falkenmark, 1989; Brown and Matlock, 2011). It is even less in 55 

the arid to semi-arid Yellow river basin that produces 33% of the total agricultural production in China. To 56 

overcome water shortages in the Yellow river basin, crops are irrigated from surface and groundwater. This 57 

irrigation has directly changed the hydrology of the basin. While, 50 years ago, the semi-arid North China Plain had 58 

springs, shallow groundwater and rivers feeding the Yellow River, at the present rivers and springs have dried up 59 

where groundwater is used for irrigation (Yang et al., 2015a). At the same time, in the arid Inner Mongolia, along 60 

the Yellow River, the once deep groundwater is now within 3 m of the soil surface in the large irrigation projects 61 
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such as the Hetao irrigation district because of downward percolation of the excess irrigation water that has been 62 

applied.  63 

In the Yellow River basin, crop irrigation accounts for 96% of the total water use (Li et al., 2004). Due to the 64 

increased demand for irrigation, the river has stopped flowing downstream for an average of 70 days per year 65 

(Hinrichsen, 2002). Saving water upstream in Inner Mongolia by improved management practices mean that more 66 

water will be available downstream (Gao et al., 2015).  In addition, the Hetao district is suffering from salinization 67 

which leads to the land degradation (Guo et al., 2018; Huang et al., 2018) . Salinization is caused by upward 68 

migration of water (and salt) from shallow groundwater table that leads to salt accumulation at the surface (Ren et 69 

al., 2016; Yeh and Famiglietti, 2009). Designing improved management practices to save water and decrease 70 

salinization can be achieved by field trials or with the aid of computer simulation mode measuring the fluxes. Field 71 

trials are time consuming, expensive and only a limited set of water management practices can be investigated. 72 

Models can test many management practices; however, the modeling results are often questionable because they 73 

have not been validated under local field condition and have not been validated for the future conditions. A 74 

combination of field experiments together with models has the benefits of both approaches with few negative effects.   75 

Central to modeling irrigation management practices under shallow groundwater conditions (such as in the 76 

Yellow river basin) is simulating the soil moisture content accurately (Batalha et al., 2018, Gleeson et al., 2016; 77 

Jasechko and Taylor, 2015; Venkatesh et al., 2011a) because the moisture content plays a critical role in the growth 78 

of crops (Rodriguez-Iturbe, 2000), groundwater recharge (Hodnett and Bell, 1986), upward movement of water to 79 

the root zone in areas (Gleeson et al., 2016; Jasechko and Taylor, 2015; Venkatesh et al., 2011a; Batalha et al., 80 

2018). The latter is unique to shallow groundwater areas where the moisture content and thus the unsaturated 81 

conductivity are high and where the drying of the surface soil sets up hydraulic gradient that causes the upward 82 

capillary  movement from the shallow groundwater (Kahlown et al., 2005; Liu et al., 2016; Luo and Sophocleous, 83 

2010; Yeh and Famiglietti, 2009). The upward moving water contains salt that is deposit in the root zone and at the 84 

surface.  85 

Modeling moisture contents  86 

There is tendency with the ever increasing computer power, to include all processes and the highly 87 

heterogeneous field conditions in hydrological models (Asher et al., 2015). In case of simulating moisture contents 88 

these models become complex and often fully distributed in 3-D (Cui et al., 2017). Examples of these fully 89 
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developed models are HYDRUS (Šimůnek et al., 1998), SWAP (Dam et al., 1997) and MODFLOW (Mcdonald and 90 

Harbaugh, 2003; Langevin, et al., 2017). These models have long run times when applied to scenarios simulations 91 

for real world problems. In addition, calibration effort increases exponentially with the number of model parameters 92 

(Rosa et al., 2012; Flint et al., 2002). This makes the use of the complex models for real time management and 93 

decision support cumbersome where many model runs are needed (Cui et al., 2017).  94 

To overcome the disadvantages of the full and completer models, computationally efficient surrogate models 95 

have been developed to speed up the modeling process without sacrificing accuracy or detail. Surrogate models are 96 

known under several names such as metamodels, reduced models, model emulators, proxy models and response 97 

surfaces (e.g., Razavi et al., 2012a; Asher et al., 2015). The complex models we will call “full” or comprehensive 98 

models.  99 

Computational efficiency is the main reason for applying surrogate models in place of full models. Other 100 

advantages of surrogate models are shortening the time needed for calibration; identifying insensitive and irrelevant 101 

parameters in the full models (Young and Ratto, 2011). Most importantly, surrogate models allow investigating 102 

structural model uncertainty (Matott and Rabideau, 2008). Finally, surrogate models might be able to deal better 103 

with the self- organization of complex system prevalent in hydrology than the full models (Hoang et al., 2017). For 104 

example, full models based on small scale physics (Kirchner, 2006) not necessarily can model the repetitive wetting 105 

patterns observed in humid watersheds and for that reason.  Simple surrogate models often outperform their complex 106 

counterparts in predicting runoff when a perched water table is present in sloping terrains (Moges et al, 2017; Hoang 107 

et al 2017). 108 

Surrogate models can be classified in two categories (Todini, 2007; Asher et al., 2015): data driven and 109 

physically derived. Data driven surrogates analyze relationships between the data available and physically derived 110 

surrogates simplify the underlying physics or reduce numerical resolution. In recent years, most emphasis in the 111 

research literature has been data driven surrogate approaches (Razavi et al. 2012a). Relatively little research has 112 

been published on physically derived approaches.  Despite its popularity, data-driven surrogates can be an inefficient 113 

and unreliable approach to optimizing complex field situations especially when data is scarce such as in 114 

groundwater systems  (Razavi et al. 2012b)  The physically derived surrogates overcome many of the limitations of 115 

data-driven approaches and are therefore superior over data driven methods (Asher et al., 2015).   116 
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In the Yellow River basin various water accounting models have been developed to simulate the soil water 117 

content and water fluxes (Xu, et al., 2012; Chen et al., 2014; Xue and Ren, 2017; Yang et al., 2017; Ren et al., 2019). 118 

Numerical implementations are the finite element model HYDRUS-1D by Ren et al. (2016) and Luo and 119 

Sophocleous (2010) and a finite difference model by Moiwo et al., (2010). Surrogate models for the North China 120 

plain where the groundwater is more than 20 m deep have been published by Wang et al. (2001); Kendy et al (2003); 121 

Chen et al. (2010); Ma et al. (2013);  Yang et al. (2015, 2017a,b); Li et al., (2017). In these models, the matric 122 

potential is ignored, and the hydraulic potential is equal to the gravity potential and thus the gradient of the hydraulic 123 

potential is unity (at least when it is expressed in head units). Under these conditions the water flux becomes 124 

negligible when the soil reaches field capacity at -33 KPa (equivalent to -3.3 m in head units) at what point the 125 

hydraulic conductivity becomes limiting. These models are not valid for irrigation projects along the Yellow river 126 

with shallow groundwater because the matric potential cannot be ignored over the short distance between the water 127 

table and the surface of the soil. Since the gravity and matric potential are of the same order, the  water moves either 128 

down to the groundwater  or up from the groundwater to the root zone depending on the matric potential at the soil 129 

(Gardner 1958; Gardener et al, 1970a,b). In summary, for shallow groundwater at less than 3.3 m from the surface 130 

equilibrium is reached (i.e. fluxes negligible) when hydraulic gradient is zero (i.e., matric potential and gravity 131 

potential add up to constant value) and thus not when the conductivity becomes limited at a matric potential of -33 132 

KPa.  133 

For the irrigation perimeters with shallow groundwater in the Yellow River basin, we could find only two 134 

surrogate models developed by Xue et al. (2018) and Gao et al. (2017a, b). These two models do not consider the 135 

dynamics of groundwater depth and matric potential. By including these dynamics more realistic predictions of 136 

moisture contents and upward flow can be obtained and would give better results when extended outside the area 137 

where they are developed for (Wang and Smith, 2004). The reason is that for areas with shallow groundwater, 138 

evapotranspiration sets up hydraulic gradient that causes the upward capillary water movement to sustain the 139 

evapotranspiration demands and crop water use (Kahlown et al., 2005; Liu et al., 2016; Luo and Sophocleous, 2010; 140 

Yeh and Famiglietti, 2009).  141 

Advantages of physically driven surrogates are particularly relevant groundwater studies where water tables are 142 

simulated over entire large area as shown by Brooks et al. (2007). Despite this, Asher et al. (2015) poses that 143 

physically driven methods have not been applied widely to groundwater problems and even fewer with the 144 
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interaction of moisture contents in the vadose zone which are key in salinization and plant growth of the many 145 

cropped irrigated field in arid and semi-arid regions. In these water short areas it is extremely important to develop 146 

models that show directions how to save water. The main objective of this study is, therefore, to develop a novel 147 

surrogate model and validating this approach using experimental data collected in a field with shallow groundwater 148 

with the ultimate goal is to save water in irrigation districts. In addition, sensitive and insensitive model parameters 149 

were identified for simulating moisture content in shallow groundwater area to optimize future data collection 150 

efforts. The experimental fields are located in the Hetao irrigation district, Inner Mongolia, China, where on two 151 

maize fields, the moisture content and the groundwater table depth were measured over a two-year period. 152 

The surrogate model developed is a one dimensional model simulating the moisture content in the root zone 153 

using the groundwater depth and information of soil moisture characteristic curve. It can be easily adapted to field 154 

scale by including the lateral movement of the regional groundwater. However, over short times, lateral movement 155 

can be neglected in nearly level areas outside a strip of 5-100 m from the river (Saleh et al., 1989) such as deltas and 156 

lakes (Dam et al., 1997; Kendy et al 2003).  157 

2 Materials and Methods 158 

2.1 Study Area  159 

The Hetao Irrigation District (HID) is the third largest irrigation district of China. It covers an area of 1.12×10
6
 160 

ha of which half is irrigated (Xu et al., 2015). About 5 billion m
3
 water are diverted from the Yellow River each year 161 

(Xu et al., 2010). The primary irrigation method used is surface flood irrigation (Sun et al., 2013). The groundwater 162 

table is very shallow ranging between 0.5 m to 3 m. The overall hydraulic gradient is 0.1-0.25‰ (Ren et al., 2018). 163 

Soil salinization is serious, and the chemical composition of groundwater salinity mainly consists of NaCl, KCl, 164 

CaSO4. The Hetao District has a typical arid continental climate with high evaporation and low rainfall. The average 165 

annual precipitation is 180 mm and the annual potential evapotranspiration is 2225 mm (Luan et al., 2018). The soil 166 

is mainly alluvial deposits with a silty loam texture. It is frozen 5 to 6 months per year from late November to the 167 

middle of May. Maize and wheat are the main food crops and sunflower is the main cash crop. 168 

2.2 Field experiment and data collection 169 

The experiment was carried out in Fenzidi, Bayannur city (41°9′N, 107°39′E) in the Hetao District in 2016 and 170 

2017 (Fig.1). In 2016, the experiment was carried out separately in site A (about 3100 m
2
) and site B (about 7000 m

2
) 171 
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(Fig.1). In 2017, Field B was split into Fields B1 and B2 and experiments were carried out in these two fields. Field 172 

B1 was about 3400 m
2
 and B2 about 3600 m

2
. Experimental fields were planted both years with maize. The sowing 173 

dates were April 24, 2016 and May 13, 2017, respectively. The harvest date was October 1
st
 in both 2016 and 2017. 174 

The plant growth stages are given in Table 1. The fields were flood irrigated three or four times during the heading 175 

and filling stages starting in late June or early July (Table 2). 176 

Precipitation, air temperature, relative humidity, sunshine duration and wind speed were collected from the 177 

weather station at the experimental station. The reference evapotranspiration (ET0) was calculated based on the 178 

FAO-Penman-Monteith equation with the daily meteorological data (Allen et al., 1998). Precipitation and ET0 179 

during the growing season are shown in Fig. 2. The soil moisture was monitored daily in the top 90 cm using Hydra 180 

Probe Soil Sensors (Stevens Water Monitoring System Inc., Portland, OR, USA) installed in both experimental 181 

fields. Soil moisture was measured at 5 depths: 0-10 cm, 10-30 cm, 30-50 cm, 50-70 cm, and 70-90 cm. The sensors 182 

were connected to data loggers and downloaded via wireless transmission. Calibration was conducted by oven 183 

drying soil samples (Wang et al., 2018; Gao et al., 2017a). The groundwater depth was measured by piezometers 184 

(HOBO Water Level Logger-U20, Onset, Cape Cod, MA, USA) recorded at 30 min intervals.  185 

 186 

Figure. 1 Location of the field experiment in Hetao irrigation district. The blue line is the Yellow River. 187 

Table 1  188 

Crop growth stage in 2016 and 2017 for corn growth on the Fenzidi experimental fields in the Hetao district 189 

Year\Growth stage seeding jointing heading filling  maturing harvesting 

2016 24-Apr 25-May 16-Jul 6-Aug 3-Sep 1-Oct 

2017 13-May 11-Jun 18-Jul 8-Aug 5-Sep 1-Oct 
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Table 2 190 

 Irrigation scheduling carried out at Fenzidi experimental fields in 2016 and 2017 191 

Year Field Irrigation events Date Irrigation depth(mm) 

2016 

A 

First July 13 115 

Second July 26 86 

Third August 8 122 

B 

First June 23 57 

Second July 13 119 

Third July 26 86 

Fourth August 8 122 

2017 

B1 

First July 13 153 

Second July 23 104 

Third August 9 134 

B2 

First July 13 165 

Second July 23 107 

Third August 9 128 

 192 

Figure. 2 Daily reference evaporation, ET0, and precipitation during the growing season in (a) 2016 and (b) 2017 193 

Soil samples were collected in rings from the same five layers where moisture contents were measured and 194 

used for determining soil physical properties including soil moisture at field capacity (θfc), soil moisture at saturation 195 

(θs), dry bulk density (ρ), and saturated hydraulic conductivity (Ks) (Table 3). For Fields A, B, B1 and B2, the 196 

saturated hydraulic conductivity was determined by the constant head method. Field capacity was determined at - 33 197 
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kPa and bulk density was determined by oven drying and dividing by the volume of the ring. Soil texture of Fields A 198 

and B were analyzed with the laser particle size analyzer (Mastersizer 2000, Malvern Instruments Ltd. United 199 

Kingdom) in the laboratory and are shown in Table 4. The American soil texture classification was used in this 200 

study. The soils vary from silty loam to silty clay loam. 201 

Table 3  202 

Soil physical properties of the Fenzidi experimental fields 203 

Year Field 
Soil depth 

(cm) 
θfc (cm

3
/cm

3
) θs (cm

3
/cm

3
) Ks (cm/d) ρ (g/cm

3
) 

2016 

A 

0-10 0.31 0.47 11.65 1.47 

10-30 0.31 0.47 11.65 1.47 

30-50 0.32 0.51 48.71 1.36 

50-70 0.39 0.44 17.48 1.39 

70-100 0.41 0.44 40.54 1.45 

B 

0-10 0.31 0.49 11.39 1.52 

10-30 0.31 0.49 11.39 1.52 

30-50 0.35 0.48 48.68 1.40 

50-70 0.40 0.49 11.06 1.42 

70-100 0.40 0.43 46.68 1.42 

2017 

B1 

0-10 0.36 0.42 5.18 1.52 

10-30 0.36 0.46 5.18 1.52 

30-50 0.35 0.47 11.92 1.38 

50-70 0.42 0.48 4.41 1.37 

70-100 0.21 0.47 6.23 1.69 

B2 

0-10 0.37 0.41 4.69 1.44 

10-30 0.37 0.45 4.69 1.44 

30-50 0.39 0.45 6.81 1.42 

50-70 0.42 0.46 10.86 1.42 

70-100 0.29 0.42 10.86 1.76 

Note: θfc is the soil water content at -33 kPa, θs is the saturated soil water content, Ks is the saturated hydraulic 204 

conductivity, ρ is the bulk density. 205 

 206 

 207 

 208 
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Table 4 209 

 Soil texture of Fields A and B 210 

Site Depth (cm) Soil type 
Sand (%) 

 (50-2000μm) 

Silt (%)   

(2-50μm) 

Clay (%)            

(0.01-2μm) 

A 

0-30 silty clay loam 5 75 2 

30-50 silty loam 22 7 8 

50-70 silty clay loam 3 8 17 

70-100 silty loam 39 57 4 

B 

0-30 silty loam 15 67 18 

30-50 silty loam 35 6 5 

50-70 silty clay loam 3 74 23 

70-100 silty clay loam 8 69 23 

2.3 The Shallow Aquifer - Vadose Zone surrogate model 211 

In developing the Shallow Aquifer - Vadose Zone surrogate model for modeling moisture contents in the 212 

vadose zone, we followed the standards of good modeling practice by Jakeman et al. (2006). We made the model as 213 

simple as possible, provide justification for our surrogate technique, test the surrogate model performance and 214 

finally provide detail on the method to encourage discussion on the technique followed. 215 

2.3.1 Theoretical background 216 

For shallow groundwater (less than 3.3 m deep), the matric potential is a function of depth under equilibrium 217 

conditions. Since the soil moisture characteristic curve for each soil is the relationship of moisture content and 218 

matric potential, the moisture content is also a function of the depth of the water table under equilibrium conditions.  219 

Soil moisture characteristic curve 220 

There are several formulations describing the soil moisture characteristic curve (Bauters et al., 2000; Brooks 221 

and Corey, 1964; Gupta and Larson, 1979; Haverkamp and Parlange, 1986; van Genuchten, 1980); the van 222 

Genuchten and Brooks & Corey models are widely used in hydrological and soil sciences. Here, we selected the 223 

Brooks and Corey model for its simplicity.  224 

The Brooks-Corey model can be expressed as (Gardner et al., 1970a; Gardner et al., 1970b; Mccuen et al., 1981; 225 

Williams et al., 1983). 226 
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   (
  
  
)
  

                |  |   |  |                                           (  ) 

                                |  |   |  |                                           (  ) 

in which Se is the effective saturation,    is the bubbling pressure (cm),
 
  is matric potential (cm), and λ is the pore 227 

size distribution index. The effective saturation is defined as  228 

   
    
     

                                                                                       ( ) 

in which   is the volumetric moisture content,    is the volumetric saturated moisture content,    is the residual air 229 

dry moisture content (all in cm
3
/cm

3
). Equation 2 can be simplified to the form by setting       230 

   
 

  
                                                                                                  ( ) 

  For cases when the groundwater is close to the surface, under equilibrium conditions when the water flow is 231 

negligible, (i.e., hydraulic potential is constant with depth), the matric potential can be expressed as height above 232 

the water table. For our field experiment the bubbling pressure,     and the pore size distribution index,  , in the 233 

Brooks and Corey model can be obtained through a trial and error procedure by using the measured moisture 234 

content and matric potential derived from the groundwater depth after an irrigation event when equilibrium state 235 

was reached and sum of the gravity potential and matric potential was constant with depth.   236 

2.3.2 Parameters based on soil moisture characteristic curve 237 

The soil of the crop root zone is divided into several soil layers and each soil layer has its specific soil moisture 238 

characteristic curve. After a sufficiently large irrigation and rainfall event, the moisture content is at equilibrium 239 

after the drainage stops. After such an event, the soil moisture of vadose zone stays at the equilibrium moisture 240 

content as long as the evapotranspiration is less than upward flux from the groundwater.  241 

Equilibrium moisture content 242 

The equilibrium soil moisture content,     , in a layer can be determined by first replacing the matric potential 243 

in Eq (1a) by the matric potential of the layer   
   

 that is dependent on the depth of the groundwater and depth of 244 

the soil layer, z, e.g. 245 

  
                                                                                        ( ) 
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where   
   

 is the matric potential under equilibrium moisture content at a depth z below the surface and h is the 246 

depth of the groundwater below the surface 247 

   
      

 (
   

  
 )

  

                        ⌈   ⌉  |  
 |                          (  ) 

   
      

                                              ⌈   ⌉  ⌈  
 ⌉                            (  ) 

where    
   

 is the equilibrium soil moisture at the depth z below the surface while the groundwater depth is h. Note 248 

that the superscripts z and h indicate the dependence on the distance from the soil surface, z, and the depth, h, of the 249 

groundwater table. 250 

Drainable porosity 251 

The drainable porosity, or specific yield, is defined as the amount of water drained from the soil for a unit 252 

decrease of the groundwater table when the soil moisture is at equilibrium. It is a crucial parameter in modeling the 253 

moisture content in our case or amount of runoff for a shallow perched water table when there is rain (Brooks et al., 254 

2007).   255 

By subtracting the total moisture content at equilibrium in the profile at the initial water table depth and at the 256 

new position one unit lower, we obtain the drainable porosity. For example, the area between the orange and blue 257 

curve is the amount of water drained for a decrease in the water table from 130cm to 150cm (Fig.3). 258 

 259 

Figure. 3 Illustration of drainable porosity for a soil moisture characteristic curve with a bubbling pressure of 40 cm. 260 

The yellow and the blue line are the equilibrium moisture contents for the groundwater depth at 130 and 150 cm, 261 
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respectively. The area between the two lines represents the amount of water for the decrease of groundwater table 262 

drained from the profile when the groundwater decreases from 130 to 150 cm. 263 

The total water content amount of the soil over a prescribed depth with a water table at depth h can be 264 

expressed as  265 

   
   ∑  (   

   )
 

̅̅ ̅̅ ̅̅ ̅̅ ̅
 

   

                          ( ) 

where    
   ̅̅ ̅̅ ̅

 is the average equilibrium moisture content of layer j for h taken at the midpoint of the layer, n is the 266 

number of layers in the profile, Lj is the height of soil layer j. And the drainable porosity,     with the groundwater 267 

at depth h, can simply be found as  268 

   
   
        

    

   
                       ( ) 

where Δh =0.5  . 269 

2.3.3 Calculating fluxes in the soil 270 

The model accounts for the downward flux due to the irrigation and rainfall, evapotranspiration by plants and 271 

soil, and upward flux from the groundwater to satisfy some or all the evapotranspiration demand by the crop and soil. 272 

There are sets of rules implemented in an Excel spreadsheet to calculate the fluxes. 273 

Evapotranspiration 274 

1. The plant evapotranspiration was calculated in two steps. First the daily reference evapotranspiration (ET0) 275 

was calculated by Penman-Monteith equation (Allen et al., 1998). We assumed that the moisture content 276 

was limiting therefore the plant evapotranspiration rate was obtained by multiplying the reference 277 

evapotranspiration by a crop coefficient (Allen et al., 1998; Sau et al., 2004; DeJonge et al., 2012). Values 278 

for the crop coefficients were calibrated according to the water balance in the soil and found to agree with 279 

published values for stage of crop development and soil salinity.  280 

2. (a) On days without rain or irrigation, the evapotranspiration lowers the water table and the moisture 281 

content in the soil decreases due to upward movement of water to the plant roots and soil surface.  282 

(b) On days with rain or irrigation, the potential evapotranspiration is subtracted from the irrigation and/or 283 

rainfall and water moves downward. 284 

Upward flux from groundwater  285 
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3. The upward flux from the groundwater,   
 , is either limited by the potential evapotranspiration or the 286 

maximum flux of groundwater. The maximum flux,       
 , depends on the depth of the groundwater, the 287 

type of soil moisture characteristic curve, and the condition at the surface (Gardner, 1958). These equations 288 

have an exponential form (Gardner, 1958; Yang et al., 2011; Zammouri, 2001),  289 

      
  

 

     
              

                ( ) 

where a and b are constants and     is the potential evapotranspiration.  The upward flux from the 290 

groundwater can be written as:   291 

  
       (           

 )                                ( ) 

On days without rain or irrigation, the soil moisture content is calculated by taking the difference of 292 

the equilibrium moisture content associated with the change in depth of groundwater. If in addition the 293 

upward flux is less than evapotranspiration, the difference between the upward flux and the 294 

evapotranspiration is extracted out of the root zone according to a predetermined distribution,  , e.g., 295 

(      )̅̅ ̅̅ ̅̅ ̅̅ ̅
  ( 

        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
 
 (   

     )̅̅ ̅̅ ̅̅ ̅̅ ̅
 
 (   

        )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
 
 
  (        

 ) 

  
   (  ) 

Where (      )̅̅ ̅̅ ̅̅ ̅̅ ̅
  is the average soil moisture content at time t of layer j, (   

     )̅̅ ̅̅ ̅̅ ̅̅ ̅
 
 is the average equilibrium 296 

soil moisture content of layer j when the groundwater depth is h at time t,    is a reduction factor of the 297 

potential evapotranspiration for saline soil water and canopy and    is the root function that determines the 298 

portion of the evapotranspiration is taken up by the roots in layer j. The value z is taken at the midpoint of 299 

layer j. The time t is expressed in days and time, t-Δt, is the previous day. 300 

The downward flux 301 

4. The rules for downward flux on days with the effective rain and/or irrigation are relatively simple. If the net 302 

flux at the surface (irrigation plus rainfall minus actual evapotranspiration) is greater than needed to bring 303 

the soil up to equilibrium moisture content, the groundwater will be recharged and the distance to soil 304 

surface decreases and the moisture content will be equal to the equilibrium moisture content at the new 305 

depth.  306 

5. When the groundwater is not recharged, the following water balance will be calculated: the rainfall and the 307 

irrigation are added to first layer. This layer will be brought up to the equilibrium moisture content and the 308 
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remaining water fills up the next layer to the equilibrium moisture content and so on. The calculations can 309 

be expressed as follows: 310 

(      )̅̅ ̅̅ ̅̅ ̅̅ ̅
     [(   

     )̅̅ ̅̅ ̅̅ ̅̅ ̅
 
 (         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

 
 
      

  
]             (   ) 

where for j ≥2, Rj-1 is the flux from the layer above and        311 

        

((   
     )̅̅ ̅̅ ̅̅ ̅̅ ̅

 
 (         ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ))   

   
                             (  ) 

For j=1, R1 is equal to the rainfall plus the irrigation amounts minus potential evaporation 312 

Groundwater table depth 313 

6. The groundwater in Hetao irrigation district has a small hydraulic gradient of 0.10-0.25 ‰(Ren et al., 2016). 314 

In addition, the soil varies from a silt loam to a clay loam (Table 4) that has saturated hydraulic 315 

conductivity of less than 2 m/day.  This means that the lateral fluxes are small compared the vertical fluxes 316 

and can therefore neglected for the calculation of the groundwater depth.  Based on this assumption, the net 317 

change in groundwater depth,     can be calculated on days without rainfall or irrigation as  318 

     
  
 

  
                                                                      (   ) 

 and days with rain or irrigation as 319 

      
  
  
                                                                         (   ) 

where the upward flux,   
 , is calculated with Eq 9, the percolation of the bottom layer    with Eq 12 and the 320 

drainable porosity,    with Eq 7. When the groundwater is close to the surface, the drainable porosity is zero.  This 321 

would make the change in groundwater infinite. Thus, we limited the maximum decrease in groundwater after the 322 

irrigation event to be 10-20 cm based on field observations. 323 

2.3.4 Model calibration and validation 324 

The soil moisture contents were measured from May 30
th

 to September 25
th

 in 2016 and 2017. Groundwater 325 

depth was observed from June 13
th

 to September 26
th

 in 2016 and 2017. For the convenience of simulation, the 326 

period of June 13
th

 to September 25
th

 was set as the simulation period. The model parameters were calibrated with 327 

the 2016 data and the validation with data collected in 2017 growing seasons. Soil moisture content of the top 90 cm 328 



16 

(0-10 cm, 10-30 cm, 30-50 cm, 50-70 cm, 70-90 cm) and the groundwater depth were simulated for model 329 

calibration and validation. 330 

Relatively few parameters can be calibrated in the Shallow Aquifer-Vadose Zone Model. These are the crop 331 

coefficients Kc value, the two groundwater parameters and the root function. The other input data needed for model 332 

were the parameters in the Brooks and Corey equation (e.g.,      ,    ,  ) and were obtained by fitting the equation 333 

to the soil moisture characteristic curve of each layer of the soil. The saturated moisture content was measured 334 

independently as well and agreed with values obtained from the fit.  Reference evapotranspiration was calculated 335 

directly from observed meteorological data.   336 

For better understanding the model fitting performance, statistical indicators were used to evaluate the 337 

hydrological model goodness-of-fit (Ritter and Muñoz-Carpena, 2013). The statistical indicators including the mean 338 

relative error (MRE) (Dawson et al., 2006), the root mean square error (RMSE) ( Abrahart and See, 2000; Bowden et 339 

al., 2002), the  Nash-Sutcliffe efficiency coefficient (NSE)  (Nash and Suscliff, 1970), the regression coefficient (b) 340 

(Xu et al., 2015), the determination coefficient (R
2
) and the regression slope (Krause et al., 2005)were used to 341 

qualify the model fitting performance during the model calibration and validation in this study. These statistical 342 

indicators can be expressed as follows: 343 
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where N is the total number of observations, Oi and Pi are the i
th

 observed and predicted values (i=1, 2,…, N), and 349 

O  and P  are the mean observed values and mean predicted values, respectively. For MRE and RMSE, the values 350 

closest to 0 indicates good model predictions. NSE=1.0 means a perfect fit, and the negative NSE values indicate 351 

that the mean observed value is a better predictor than the simulated value (Moriasi et al., 2007). For b and R
2
, the 352 

values closest to 1 indicates good model predictions.  353 

3 Results  354 

In this section, we present first the 2016 and 2017 experimental observations of the Fenzidi experimental fields 355 

in the Hetao irrigation district (Fig.1). This is followed by the calibration and validation of the Shallow Aquifer-356 

Vadose Zone Model of moisture content in each of the five layers and the groundwater table depth. 357 

3.1 Results of the field experiment  358 

 The total precipitation at the experimental during growing season was 62 mm in 2016 and 67 mm in 2017. The 359 

maximum daily rainfall was 23 mm in July 2017 (Fig. 2). The reference evapotranspiration varied between 1 360 

mm/day to 5.5 mm/day and the total ET0 was 517 mm and 442 mm in the growing seasons during 2016 and 2017, 361 

respectively (Fig.2). Daily observation consisted of groundwater depth (blue spheres, Fig.4) and soil moisture 362 

content at five soil depths up to 90 cm (blue spheres, Fig.5) and for Fields A and B in 2016 and Fields B1 and B2 in 363 

2017.  364 
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 365 

Figure.4 Simulated and observed groundwater depth during the growing period for the Fenzidi experimental fields 366 

in the Hetao irrigation district: (a,b) calibration in 2016 and (c,d) validation in 2017. (Notes: Additional irrigation 367 

means the irrigation recharge from the adjacent field which leads to the water table rise and was not planned). 368 

 369 
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 370 

 371 
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Figure. 5 Simulated and observed soil moisture content for five soil depths during the growing period for the Fenzidi 372 

experimental fields in the Hetao irrigation district: (a, b) calibration in 2016 and (c, d) validation in 2017. 373 

3.1.1 Groundwater observations 374 

In 2016, the groundwater depth was generally more than 100 cm except during the last two irrigation events on 375 

Field B when it reached a depth of 72 cm for one or two days (Fig. 4). In 2017, groundwater tables were slightly 376 

closer to the surface than in 2016, especially in Field B2. The minimum groundwater depth was 61 cm on June 21, 377 

2017 in Field B2 after an irrigation event.   378 

In general, groundwater rose during an irrigation event and then decreased slowly due to upward movement of 379 

water to the plant roots to meet the transpiration demand. However, in the beginning of the growing season, we can 380 

see that the water table increased without an irrigation event.  This occurred on Field A on June 24, 2016 and Fields 381 

B1 and B2 on June 20, 2017 (Fig. 4). This is curious and could be due to water originating from irrigation in a 382 

nearby field. 383 

The water table at the end of the period of observation on September 25, 2016 is approximately 2 m deep, 384 

whereas on June 15, 2017, the depth decreased to around 125 cm. This is due to an irrigation application after the 385 

crops were harvested to leach the salt from the surface to deeper in the profile bringing the water table up to near the 386 

surface. Evapotranspiration during the winter is small but sufficient to bring the water table down. There was also a 387 

rainfall event on June 5, 2017 of 13 mm (Fig. 2) before the water table was measured, increasing the water level.    388 

3.1.2 Soil Moisture 389 

Moisture contents are shown for the five layers and the two fields for 2016 and 2017 in Fig. 5. The moisture 390 

contents were near saturation when irrigation water was added and subsequently decreased (Fig. 5). For example, 391 

the soil moisture content changed in the 0-10 cm layer from 0.26 cm
3
/cm

3
 to 0.42 cm

3
/cm

3
 after the irrigation on 392 

July 13, 2016 in Field A and then gradually decreased to 0.34 cm
3
/cm

3
. The moisture content decreased faster in the 393 

10-30 cm depth than at any other depth for Fields A, B and B1 but not for Field B2. The moisture content in Field A 394 

also showed a decrease at the 50-70 cm depth. For all plots, the moisture content at the 70-90 cm depth stayed nearly 395 

constant and only decreased during the growing season when the water table decreased below the 150 cm depth (Fig. 396 

5). In Field A, the initial moisture content when the observation started was less than saturation and then after the 397 

first irrigation, remained close to the saturated moisture content.   398 
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It is interesting that while the soil profile was saturated (Fig. 4), the groundwater table was between 75-100 cm 399 

(Fig. 5).  Before equilibrium moisture content was reached the water table was likely near the surface during the 400 

irrigation event. Because the drainable porosity was extremely small, even a minimum amount of evapotranspiration 401 

or drainage would cause the water table to decrease to roughly the height of the capillary fringe equal to the 402 

bubbling pressure,   , in Eq. 5. The values of bubbling pressure are listed in Table 5. 403 

3.1.3 Soil moisture characteristic curve 404 

In 2016 and 2017, the observed reduced moisture contents were plotted versus the height above the water table 405 

for the five soil layers of the two field sites in Fig. 6. These plots were used to define the soil moisture characteristic 406 

curves which were of critical importance in simulating the moisture contents. 407 

To define the soil moisture characteristic curve, the Brooks-Corey equation (Eq. 1) was fitted through the 408 

points closest to saturation at each matric potential representing the equilibrium conditions after an irrigation event. 409 

The fitted parameter values are shown in Table 5. Points to the left of the soil moisture characteristic curve are a 410 

result of evapotranspiration drying out the soil when the upward movement of water was insufficient to replenish the 411 

moisture content in these layers and thus matric potential and groundwater depth were not in equilibrium. In 412 

addition, the few points to the right indicate the soil moisture was greater than the equilibrium moisture content. 413 

Many of the outlier soil moisture contents occurred in the layer from 0-10 cm indicating that the soil was still 414 

draining after a rainfall event shortly before the measurements. Thus, the soil was not at the equilibrium moisture 415 

content. 416 

The saturated moisture contents in Table 5 agree in general with the one measured in Table 1 but are not exact. 417 

This is not a surprise as the alluvial soil deposited by the rivers with layers vary over short distances. The variation 418 

within the field was also obvious from the soil’s physical measurements. Fields B1 and B2 are within Field B. The 419 

soil’s physical properties of the various layers (Table 4) were not the same for the three sites, clearly showing the 420 

variability within the field. 421 

Generally, large values of pore size index coefficient λ are for sandy soils and lower values are for clay soils 422 

(Bahmani and Bayram, 2018). We find this to be true for our site: for example, in Field A, the λ=0.23 corresponds to 423 

a sandy layer with only 8% clay in the 30-50 cm layer (Tables 4 and 5). In the 70-90 cm layer of Field B, the λ=0.07 424 

corresponds with the clay layer of 23% clay. In addition, bubbling pressure,   , are greater for soils with a large 425 
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clay content (Bahmani and Bayram, 2018). This is demonstrated for Field A in the 10-30 cm layer where the 426 

bubbling pressure of 75 cm corresponded with the clay layer of 20% clay. However, the correspondence between 427 

Tables 4 and 5 is not always perfect. This is especially obvious for the layer of 70-90 cm in Field A where the values 428 

in Table 5 clearly indicate that the soil has a dense clay layer; however, the soil description in Table 4 shows that the 429 

soil is 39% sand. This is due to the alluvial deposition patterns with changes in soil texture over short distances as 430 

mentioned before.   431 
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Figure.6 Soil moisture characteristic curve of the four experiment fields for the Fenzidi experimental fields. The red 433 

line is the fit with the Brooks and Corey equation. 434 

Table 5 435 

 Fitted Brooks and Corey parameters for the soil moisture characteristic curve 436 

Soil depth Lamda(λ) 
bubbling pressure saturated moisture content 

(  )cm (cm
3
/cm

3
) 

Field A B B1 B2 A B B1 B2 A B B1 B2 

0-10 0.18 0.2 0.2 0.2 55 50 50 60 0.47 0.49 0.42 0.41 

10-30 0.15 0.18 0.17 0.2 75 60 70 50 0.47 0.48 0.46 0.45 

30-50 0.23 0.15 0.25 0.2 75 70 50 57 0.51 0.48 0.47 0.45 

50-70 0.08 0.1 0.25 0.2 70 25 30 50 0.44 0.49 0.48 0.46 

70-90 0.06 0.07 0.3 0.16 75 33 45 59 0.44 0.43 0.47 0.42 

3.2 Modeling results 437 

The four parameters that can be calibrated in the Shallow Aquifer-Vadose Zone Model are the crop coefficients 438 

Kc value and the root function both related to removal of water by the atmosphere and the two groundwater 439 

parameters that determine the upward movement of water from the groundwater. 440 

3.2.1 Calibration of the parameters related to moisture content 441 

The first step in the calibration was to fit the Kc value from the water balance. From the moisture contents and 442 

the groundwater depth, we can calculate approximately the amount of water lost to evapotranspiration. By 443 

comparing these values to the reference evapotranspiration calculated with the Penman-Monteith equation, we found 444 

that initially during the early stages the crop coefficient was 0.3 until the filling stage and then increased to 0.7 445 

during the filling stage to the maturing stage (Table 6). These values are in accordance with the findings of Katerji et 446 

al., (2003) that salinity reduces the evapotranspiration (Katerji et al., 2003). According to the observed total salt 447 

content, the mean total salt content of experiment field in 0-100cm soil layer during crop growth period were 448 

2.29g/kg in field A, 1.79g/kg in field B,  2.33g/kg in Field B1, 20.9g/kg in Field B2, respectively. 449 

The second step was calibrating the moisture content by adapting the root function indicating from what layers 450 

the water was taken up. Calibration was done manually by trial and error. We found that we could use the same root 451 

function for Fields A, B, B1, and B2 (Table 6). The calibrated soil moisture contents of the five soil layers for the 452 

two fields in general are in agreement with the measured values in 2016 (Fig 5a, b) with the coefficient of 453 
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determination R
2
 ranging between 0.48 to 0.94 with slopes of around 1; the mean relative error (MRE) between -9.38% 454 

and 6.96% and the root mean square error (RMSE) varied from 0.01 to 0.04 cm
3
/cm

3 
for the five layers (Table 7-1). 455 

Finally, the parameters behaved physically realistically as water was extracted from shallow layers when the 456 

groundwater was close to the surface and from the deeper layers when the groundwater and the associated capillary 457 

fringe went down.  458 

Table 6 459 

Calibrated parameter values of the Vadose Zone Shallow Aquifer model 460 

Items 
 

Date Calibrated value 

Crop parameter,Kc  
June 13-July 14 0.3 

 
July 15-September 25 0.7 

Root function, rj 

0-10cm 

June 13-August 7 0.2 

August 8-September 3 0.1 

September 4-October 1 0.1 

10-30cm 

June 13-August 7 0.4 

August 8-September 3 0.4 

September 4-October 1 0.4 

30-50cm 

June 13-August 7 0.3 

August 8-September 3 0.3 

September 4-October 1 0.3 

50-70cm 

June 13-August 7 0.1 

August 8-September 3 0.2 

September 4-October 1 0.1 

70-90cm 

June 13-August 7 0 

August 8-September 3 0 

September 4-October 1 0.1 

a 
Field A 

80 

b 0.021 

a 
Field B, B1 ,B2 

110 

b 0.025 

3.2.2. Validation of the parameters related to moisture content 461 

The moisture contents predicted by the Shallow Aquifer-Vadose Zone Model were validated with the 2017 data 462 

on Fields B1 and B2.  Although the validation statistics of the five layers were slightly worse than for calibration in 463 
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Table 7, the overall fit was still good as shown in Fig. 5c, d. The coefficient of determination varied between 0.39 464 

and 0.90. The MRE varied between -9.34% and 19.48%, and the mean RMSE range was from 0.01 to 0.07 cm
3
/cm

3
 465 

for the five soil layers (Table 7-2). 466 

3.2.3 Calibration of the parameters related to groundwater depth 467 

The final step was to calibrate the groundwater table coefficients with the 2016 data for both fields. We found 468 

that for fields not in the same location (e.g., A, B) the subsurface was sufficiently different so that the same set of 469 

parameters could not be used (Table 6). The difference between the calibrated parameters for the two fields was 470 

small (Table 6). The measured and simulated groundwater depths were in good agreement with the chosen set of 471 

parameters (Fig. 4a, b) with coefficient of determination R
2
 being 0.67 for Field A and 0.85 for Field B (Table 7-1). 472 

Only from July 15 to July 25 did the observed water table on Field B decrease slower than the simulated water table. 473 

This is partly related to the fact that the properties of the soil below 90 cm were not measured, and the assumption 474 

was made the soil moisture characteristic curve below 90 cm was the same as that from 70-90 cm. Thus the 475 

drainable porosity of the soil which is very sensitive parameter might be different than what was used in the model. 476 

Another reason might be that the equation for upward movement might be too simple. Other statistical indicators 477 

show a good fit as well (Table 7-1).  478 

Table 7-1 479 

Model statistics for calibration of the Shallow Aquifer model in 2016 Mean relative error, MRE; root mean square 480 

error, RMSE; Regression slope; Coefficient of determination, R
2
; Regression coefficient, b. 481 

Calibration (2016) 

  

SWC (cm3/cm3) 

GWD (cm) 
0-10cm 

10-

30cm 

30-

50cm 

50-

70cm 

70-

90cm 
0-90cm 

A 

MRE(%) 6.96 -9.38 -1.72 -5.74 -2.31 -2.44 -16.27 

RMSE(cm3/cm3 or cm) 0.04 0.04 0.02 0.03 0.01 0.03 46.52 

Regression Slope 0.51 0.94 1.34 1.01 1.05 0.50 0.50 

NSE 0.32 0.64 0.11 0.76 0.48 0.74 -0.31 

R2 0.49 0.85 0.72 0.92 0.94 0.79 0.67 

b 1.05 0.91 0.99 0.95 0.98 0.97 0.81 

B 

MRE(%) -0.69 4.21 3.83 -0.41 -0.87 1.22 1.89 

RMSE(cm3/cm3 or cm) 0.02 0.03 0.03 0.01 0.01 0.02 18.28 

Regression Slope 0.93 0.72 0.37 0.76 1.14 0.76 0.85 

NSE 0.69 0.80 0.34 0.74 -0.19 0.77 0.81 

R2 0.73 0.85 0.48 0.74 0.69 0.77 0.85 

b 0.99 1.03 1.03 0.99 0.99 1.00 1.02 
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3.2.4 Validation of the parameters related to groundwater depth 482 

Since Fields B1 and B2 are in the same location as Field B, we used the same set of groundwater parameters 483 

for the three fields (Table 6). The resulting fit between observed and predicted daily groundwater depths for Fields 484 

B1 and B2 in 2017 was better than for the calibration in 2016 (Fig. 4c, d) with R
2
 values of 0.84 for Field B1 and 485 

0.86 for Field B2 (Table 7-2). In both cases, the slope of the regression line was close to 1. The other statistics 486 

indicated a good fit as well (Table 7-2) with the mean relative error (MRE) being -0.05 for Field B1 and -0.02 for 487 

Field B2; the root mean square error (RMSE) is 18.02 cm for Field B1 and 16.95 cm for Field B2; the regression 488 

coefficient b is 0.94 and 1 for Fields B1 and B2, respectively. The general agreement between the measured and 489 

simulated groundwater depth suggests that the two parameters are adequate, and the model can be used as a tool to 490 

simulate the change of the groundwater depth. 491 

Table 7-2 492 

Model statistics for validation  of the Shallow Aquifer model in 2017- Mean relative error, MRE; root mean square 493 

error, RMSE; Regression slope; Coefficient of determination, R
2
; Regression coefficient, b. 494 

Validation (2017) 

  
SWC 

GWD 
0-10cm 10-30cm 30-50cm 50-70cm 70-90cm 0-90cm 

B1 

MRE(%) -0.76 19.48 -2.84 3.60 4.83 4.86 -4.11 

RMSE(cm3/cm3 or cm) 0.02 0.07 0.03 0.03 0.03 0.03 18.02 

Regression Slope 1.03 0.57 1.38 1.49 0.70 0.76 0.80 

NSE -0.70 0.58 0.53 0.29 0.78 0.66 0.84 

R2 0.39 0.65 0.87 0.88 0.88 0.69 0.84 

b 0.99 1.03 0.99 1.05 1.03 1.02 0.94 

B2 

MRE(%) -3.67 -9.34 -6.34 -5.06 -1.75 -4.92 1.35 

RMSE(cm3/cm3 or cm) 0.02 0.05 0.04 0.03 0.01 0.03 16.95 

Regression Slope 1.11 1.92 2.24 1.89 1.02 1.32 0.94 

NSE -0.12 -3.07 -1.86 -0.81 0.63 0.02 0.85 

R2 0.62 0.68 0.90 0.90 0.83 0.74 0.86 

b 0.96 0.92 0.95 0.96 0.98 0.96 1.00 

4 Discussion 495 

In this manuscript, a novel surrogate model was developed for irrigation systems where the groundwater is 496 

close to the surface. The model uses the soil moisture characteristic curve to derive the drainable porosity and to 497 

predict the moisture contents in the soil. It is based on a less often used definition of field capacity (or equilibrium 498 

moisture content as it is called in this manuscript) based on the observation that the flow becomes negligible when 499 



28 

the hydraulic gradient is zero. In other words, the system is in equilibrium when the sum of the matric potential and 500 

the gravity potential is constant. Thus, when we chose the groundwater level as the reference point for the gravity 501 

potential, the matric potential is equal to the height above the groundwater. This is different from other application 502 

of Darcy’s law where the groundwater is below 3.3 m. In these cases, groundwater movement stops when the 503 

conductivity becomes negligible at -33 kPa or 3.3 m in head units. The hydraulic conductivity value above -33 kPa 504 

(3.3 m in head units) does not limit the system reaching equilibrium for daily time steps. No need therefore exists to 505 

measure this parameter in great detail for surrogate models. The opposite is true for the soil moisture characteristic 506 

curve for determining the spatial distribution of moisture content with depth above the groundwater.   507 

In general, this surrogate model simulated the soil moisture content in each soil layer well, certainly when 508 

compared to other models that attempted the soil moisture contents in the Yellow River basin such as North China 509 

Plain (Kendy et al., 2003) and the Hetao Irrigation District by Gao et al. (2017b) during the crop growth period. Our 510 

simulation results suggest that the reduction factor of the potential evaporation for soil saline Kc and root function 511 

parameters, together with the information of the soil moisture characteristic curves, can be used to adequately 512 

predict the soil moisture content. To predict the groundwater depth, two additional parameters are needed for the 513 

exponential function that defines the upward movement of groundwater. 514 

The simulations, together with the observed data, indicated that information about the soil is very important to 515 

obtain the exact moisture content in the soil. However, generalized soil moisture characteristic curves for each soil 516 

type can be used in the simulation and will not result in great differences in water use by plants since percolation to 517 

deeper layers was negligible and thus the only loss of water was by evapotranspiration independent of the soil 518 

moisture content.  519 

Finally, in the simulations we did not consider the influence of crop type and the influence of crop growth on 520 

soil moisture and groundwater depth. It would be of interest to investigate in future work whether the simulations 521 

would be improved by considering the dynamic crop characteristics during the growing season (Singh et al., 2018; 522 

Talebizadeh et al., 2018).  A mature crop model, such as the EPIC model (Williams et al., 1989) that needs 523 

relatively few parameters, will certainly help to predict the crop yield but might not change the water use predictions. 524 

Actually, the EPIC model already applied in Hetao irrigation district by many researchers to analyze the crop growth 525 

during the crop growth period (Jia et al., 2012; Xu et al., 2015).  526 
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5 Conclusion 527 

A novel surrogate vadose zone model for an irrigated area with a shallow aquifer was developed to simulate the 528 

fluctuation of groundwater depth and soil moisture during the crop growth stage in the shallow groundwater district. 529 

To validate and calibrate the surrogate model we carried out a two-year field experiment in the Hetao irrigation 530 

district in upper Mongolia with groundwater close to the surface. Using meteorological data and the soil moisture 531 

characteristic curve and upward capillary movement, the surrogate model predicted the soil water content with depth 532 

and groundwater height on daily time step with acceptable accuracy during validation and was an improvement two 533 

previous models applied in the Hatao district that could predict the overall water content in the root zone but not the 534 

distribution with depth.  535 

The surrogate modeling results show that after an irrigation event as long as the upward flux from the 536 

groundwater to the root zone was greater than the plant evapotranspiration rate, the moisture contents in the vadose 537 

zone could be found directly from the soil moisture characteristic curve by equating the depth to the groundwater 538 

with the absolute value of the matric potential. When plant evapotranspiration rate exceeded the upward movement 539 

moisture contents would be indicated by groundwater depth and was predicted by a root zone function. Another 540 

finding was that the daily moisture contents were simulated without using the unsaturated hydraulic conductivity 541 

function in the surrogate model.  For a daily time step equilibrium (defined as the hydraulic potential being constant) 542 

in moisture contents in the profile was attained so that precise unsaturated conductivity was not needed.  Of course, 543 

for shorter time steps, predicting the transient fluxes and groundwater the conductivity function is needed. For 544 

management purposes a daily time step is acceptable.  545 

Future improvement to this model will focus on coupling the EPIC model and apply it to simulate other crops 546 

and other location with shallow groundwater table. The surrogate model should also be compared with a “full” 547 

model, to test under what conditions the surrogate model will fall short. 548 
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