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Abstract 

Worldwide, groundwater resources are under a constant threat of overexploitation and pollution due to 

anthropogenic and climatic pressures. For sustainable management and policy making a reliable prediction of 

groundwater levels for different future scenarios is necessary. Uncertainties are present in these groundwater 

level predictions and originate from greenhouse gas scenarios, climate models, conceptual hydro(geo)logical 15 

models (CHMs) and groundwater abstraction scenarios. The aim of this study is to quantify the individual 

uncertainty contributions using an ensemble of 2 greenhouse gas scenarios (representative concentration 

pathway 4.5 and 8.5), 22 global climate models, 15 alternative CHMs and 5 groundwater abstraction scenarios. 

This multi-model ensemble approach was applied to a drought prone study area in Bangladesh. Findings of this 

study, firstly, point at the strong dependence of the groundwater levels on the CHMs considered. All 20 

groundwater abstraction scenarios showed a significant decrease in groundwater levels. If the current 

groundwater abstraction trend continues, the groundwater level is predicted to decline about 5 to 6 times faster 

for the future period 2026-2047 compared to the baseline period (1985–2006). Even with a 30% lower 

groundwater abstraction rate, the mean monthly groundwater level would decrease by up to 14 m in the 

southwestern part of the study area. The groundwater abstraction in the northwestern part of Bangladesh has to 25 

reduce by 60% of the current abstraction to ensure sustainable use of groundwater. Finally, the difference in 

abstraction scenarios was identified as the dominant uncertainty source. CHM uncertainty contributed about 23% 

of total uncertainty. The alternative CHM uncertainty contribution is higher than the recharge scenario 

uncertainty contribution, including the greenhouse gas scenario and climate model uncertainty contributions. It is 

recommended that future groundwater level prediction studies should use multi-model and multiple climate and 30 

abstraction scenarios. 
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1. Introduction 

Groundwater is one of the major sources of high-quality fresh water across the world and one of the most 

important but scarce natural resources in many arid and semi-arid regions. However, these resources are under a 

constant threat of overexploitation and pollution all over the world due to anthropogenic and climatic pressure. 35 

Globally, groundwater provides 45 – 70 % of irrigation water (Döll et al., 2012; Shamsudduha et al., 2011; 

Taylor et al., 2013; Wada et al., 2013, 2014; Wisser et al., 2008) and the use of groundwater is continuously 

increasing. Overexploitation of groundwater for irrigation is worldwide one of the main causes of groundwater 

level depletion (Mustafa et al., 2017b; Rodell et al., 2009; Scanlon et al., 2012; Wada et al., 2014). Climate 

change will probably also have an impact on the future availability of the groundwater resources (Brouyère et al., 40 

2004; Chen et al., 2004; Goderniaux et al., 2009, 2011; van Roosmalen et al., 2009; Scibek et al., 2007; Taylor et 

al., 2013; Woldeamlak et al., 2007). 

Food security of Bangladesh is highly dependent on sustainable use of groundwater for irrigation. However, in 

the northwestern part of Bangladesh, these resources are under a constant threat of overexploitation due to 

anthropogenic pressure. Mustafa et al. (2017b) report that overexploitation of groundwater for irrigation is the 45 

main cause of groundwater level decline in the northwestern part of Bangladesh. In this context, the government 

of Bangladesh has plans to use more surface water instead of groundwater. However, the amount of groundwater 

that can be sustainably used for irrigation is still unknown. Also, the probable impact of shifting to more surface 

water use instead of groundwater is also unknown. Hence, research is needed to quantify the amount of 

groundwater that can be abstract sustainably for irrigated agriculture in the northwestern part of Bangladesh. 50 

Accurate predictions of groundwater systems, as well as sustainable water management practices, are essential 

for policy making. Transient numerical groundwater flow models are used to understand and forecast 

groundwater flow systems under anthropogenic and climatic influences. They provide primary information for 

decision-making and risk analysis. However, the reliability of groundwater model predictions is strongly 

influenced by uncertainties resulting from the model parameters, input data, and the CHMs structure (Refsgaard 55 

et al., 2006). Also, formulation of unknown future conditions, such as climatic change scenarios and 

groundwater abstraction strategies, increases the uncertainty in groundwater model predictions. 

It is important to assess the different sources of uncertainty to ensure accurate prediction and reliable decision 

support in sustainable water resources management. The conventional treatment of uncertainty in groundwater 

modelling focuses on parameter uncertainty. Uncertainties due to model structure and due to scenario change are 60 
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often neglected (Gaganis and Smith, 2006; Rojas et al., 2010). However, many researchers have recently 

acknowledged that the uncertainty arising from the CHMs structure has a significant effect on model prediction 

(Neuman, 2003; Refsgaard et al., 2006). The incomplete and biased representation of the processes and the 

complex structure of a geological system often result in uncertainty in model prediction (Refsgaard et al., 2006; 

Rojas et al., 2008). Højberg & Refsgaard (2005) presented a case of a multi-aquifer system in Denmark by 65 

building three different CHMs using three alternative geological assumptions. They found that CHMs structure 

uncertainty dominated over parameter uncertainty when the models were used for extrapolation. Many studies 

have recently suggested that uncertainty derived from the definition of alternative CHMs is one of the major 

sources of total uncertainty, and the parameter uncertainty does not cover the entire uncertainty range 

(Bredehoeft, 2005; Neuman, 2003; Refsgaard et al., 2006; Rojas et al., 2008; Troldborg et al., 2007). Therefore, 70 

neglecting the CHM uncertainty may result in unreliable prediction and underestimate the total predictive 

uncertainty. 

Studies using a single CHM may fail to adequately sample the relevant space of plausible CHMs. Single model 

techniques are unable to account for errors in model output resulting from the structural deficiencies of the 

specific model. Rojas et al. (2010) noted that a CHM is assumed to be correct when the model is calibrated and 75 

validated successfully following an appropriate method as described by Hassan (2004a, 2004b). However, a 

well-calibrated model does not always accurately predict the behaviour of the dynamic system (Van Straten and 

Keesman, 1991). Bredehoeft (2005) presented different examples where data collection and unforeseen elements 

challenged well-established CHMs. Choosing a single model out of equally important alternative models may 

contribute to either type I (reject true model) or type II (fail to reject false model) model errors (Li and Tsai, 80 

2009; Neuman, 2003). 

Although the concept of using alternative CHMs is increasingly applied among surface water modellers, in 

groundwater modelling the use of multi-model methods are limited. Recently, some studies have used multi-

model methods in groundwater modelling to quantify the CHM uncertainty (Li and Tsai, 2009; Rojas et al., 

2010). However, conceptual model uncertainty arising from the simplified representation of the hydro(geo)logic 85 

processes, geological stratification and/or boundary conditions has received less attention (Refsgaard et al., 

2006; Rojas et al., 2010). Rojas et al. (2010), investigated uncertainty related to alternative CHM structures and 

recharge scenarios in groundwater modelling. However, the uncertainty arising from other sources such as 

General Circulation Models (GCMs), Regional Circulation Models (RCMs), downscaling methods and 

abstraction scenarios in groundwater flow modelling still needs to be included in such approaches.  90 
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Climate change may significantly impact groundwater recharge. Recharge is one of the major input data in 

groundwater levels simulation. The future groundwater recharge is unknown, so it should be estimated based on 

different future climate scenarios. The GCMs project different climate scenarios based on the greenhouse gas 

emission scenarios (GHSs). The Special Report on the Emission Scenario-SRES (Nakicenovic et al., 2000) has 

reported different GHS emission scenarios. Besides, there are many GCMs to predict climate scenarios, and 95 

different GCMs use a different representation of the climate system (Flato et al., 2013; Gosling et al., 2011; 

Teklesadik et al., 2017). That means that different GCMs develop different climate projections for a single GHG 

emission scenario. Therefore, uncertainties arise in climate projections from GCMs and GHG emission 

scenarios. Another important source of uncertainties in climate projection is the internal variability of the climate 

system, i.e., the natural variability of the weather (Deser et al., 2012). Future climate change uncertainty arises 100 

from three main sources: external forcing, climate models response and internal variability (Hawkins and Sutton, 

2009; Tebaldi and Knutti, 2007). Using an ensemble of climate scenarios has become common practice in 

analysis of climate change impact in the field of hydrology. Uncertainty analysis of groundwater simulations 

related to climate change has received relatively limited attention (Goderniaux et al., 2009; Taylor et al., 2013). 

Holman et al. (2012) recommended that climate scenarios from multiple GCMs or RCMs should be used to 105 

predict the impact of climate change on groundwater. Recently, several researchers have studied the impact of 

climate change on the groundwater system incorporating uncertainty from the input of different GCMs or RCMs 

scenarios and different greenhouse gas emission scenarios (Ali et al., 2012; Dams et al., 2012; Jackson et al., 

2011; Neukum and Azzam, 2012; Stoll et al., 2011; Sulis et al., 2012). The uncertainty analysis is, however, 

usually limited to the climatic part. Very recently, Goderniaux et al. (2015) included uncertainty related to model 110 

calibration in predicting groundwater flow along with uncertainty from the GCMs and RCMs and downscaling 

methods. However, the uncertainty arising from other sources, such as the model conceptualization and 

abstraction scenarios, is not evaluated. 

Groundwater levels are often heavily influenced by the groundwater abstraction rate. For example, in the Indian 

subcontinent, groundwater abstraction has increased from 10-20 km3/year to approximately 260 km3/year during 115 

the last 50 years (Shamsudduha et al., 2011). In the northwestern part of Bangladesh, about 97% of the total 

groundwater abstraction is used for irrigated agriculture (Mustafa et al., 2017b; Shahid, 2009). Shahid (2011) 

found an increasing trend in irrigation application rate in Boro rice, the major irrigated crop in the area. Details 

on current groundwater abstraction, trends in the abstraction and irrigated area can be found in Mustafa et al. 

(2017b). This increasing trend is ascribed to climate change. In contrast, improvement in agricultural water use 120 
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efficiency can reduce the water use in irrigated agriculture. Therefore, multiple abstraction scenarios should be 

used to predict a reliable uncertainty band.  

Existing literature on future groundwater level prediction uncertainty quantification has focused on hydrological 

model calibration and climate model uncertainty considering one single CHM and parameter uncertainty. As far 

as the authors are aware, little research has been done so far to quantify future groundwater level prediction 125 

uncertainty considering the uncertainty arising from the CHM structure, climate change and groundwater 

abstraction scenarios. This is the first attempt to evaluate the combined effect of CHM structure, the climate 

change and groundwater abstraction scenarios on future groundwater level prediction uncertainty.  

The general objective of this study is to quantify groundwater level prediction uncertainty in climate change 

impact studies using a multi model ensemble, i.e. an ensemble of representative concentration pathways, global 130 

climate models, multiple alternative CHMs and abstraction scenarios to provide probabilistic and informative 

predictions of groundwater levels. The specific objectives to achieve the general goal of this study are to: (i) 

quantify the groundwater level prediction uncertainties arising from the definition of alternative CHMs; (ii) 

analyse the effect of climate change on the groundwater levels using ensemble global climate models and 

estimate the uncertainty linked to climate scenarios; (iii) analyse the effect of groundwater abstraction scenarios 135 

on the future groundwater levels; (iv) quantify the amount of water that can be abstracted sustainably for 

irrigated agriculture in the northwestern part of Bangladesh (v) evaluate the combined effect of CHMs structure, 

the climate change and groundwater abstraction scenarios on future groundwater level prediction uncertainty; 

and (vi) compare the uncertainty arising from the alternative CHMs, climate scenarios and abstraction scenarios. 

2. Methodology 140 

2.1 Study area 

The study area is located in the northwestern part of Bangladesh (Fig. 1a). The study area is a subtropical region 

with two distinct seasons: the dry winter season (November to April) and the rainy monsoon season (May to 

October). The average annual precipitation amount varies between 1400 and 1550 mm but is not uniformly 

distributed over the year (Supplementary materials: Fig. SM-2). Almost 83% of the total annual amount occurs 145 

in the monsoon season. The average temperature varies between 25–35 °C for March to June, and 9–15 °C for 

November to February. Groundwater depth in the study area is continuously increasing (Supplementary 

materials: Fig. SM-3). The study area consists of six northwestern districts (Rajshahi, Naogaon, C’Nawabganj, 

Joypurhat, Bogra and Nator) and cover about 7112 km2. In comparison to other districts of Bangladesh, these 
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districts are more affected by drought (Shahid and Behrawan, 2008). The study area is situated between latitude 150 

24°19´´0´´ N to 25°12´0´´ N and longitude 88°6´36´´ E to 89°31´12´´ E. The surface elevation in the study area 

varies from 11 m to 40 m (Supplementary materials: Fig. SM-1). There is a mild gradient towards the southeast 

corner and this corner is close to a large wet-land. 

The aquifer in the study area is comprised of several layers such as clay, loamy clay, fine sand, medium sand, 

coarse sand and gravel with a dominance of medium to coarse sand (Fig. 1c). The thickness of each stratigraphic 155 

unit moreover varies spatially. The top layer consists of clay, clayey loam and fine sand with an average 

thickness of 18 m. It is underlain by a 20 m thick medium sand layer. Below the medium sand layer, a 35 m 

thick layer of coarse sand and coarse sand with gravel is present. The upper aquifer is unconfined or semi-

confined with a thickness ranging from 10 m to 40 m (Asad-uz-Zaman and Rushton, 2006; Faisal et al., 2005; 

Jahani and Ahmed, 1997; Michael and Voss, 2009b; Rahman and Shahid, 2004). The area is dominated by 160 

agriculture and almost 80 % is crop land. Irrigated agriculture plays an important role in the food production and 

security of Bangladesh, home to over 150 million people. In the northwestern part of Bangladesh irrigated 

agriculture is the major user of groundwater and accounts for 97 % of total groundwater abstraction (Shahid, 

2009). Overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-

level decline in areas where abstraction is high and surface geology inhibits direct recharge to the underlying 165 

shallow aquifer (Mustafa et al., 2017b). 
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Figure 1: Description of the study area: (a) Location of the study area in the northwestern part of Bangladesh; (b) 

study area with precipitation measurement stations (triangles) and groundwater observation wells (circles); (c) 170 

stratigraphy of the study area; (d) cross-sectional (A-A’) view of different models: (a) one-layered model (L1), (b) two-

layered model (L2), (c) three-layered model (L3).  
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2.2 Data 

Thirty-two years (1979–2011) of weekly groundwater level and daily precipitation data of the Bangladesh Water 175 

Development Board (BWDB) and Bangladesh Meteorological Department (BMD) were collected from the 

Water Resources Planning Organization (WARPO), Bangladesh, for respectively 140 and 30 sites in the study 

area. Available river discharge data of the BWDB for the existing small rivers within the study area were also 

collected from WARPO. Daily minimum and maximum temperature, wind speed and other climatic data were 

collected from the BMD for all the available stations in the country. Reference evapotranspiration (ET0), 180 

considered as potential evapotranspiration in this study, was calculated using the FAO Penman-Monteith 

equation from the observed climatic data (Allen et al., 1998; Mustafa et al., 2017b). 

The monthly observed groundwater head data of 50 observation wells were used for model calibration and 

validation and are plotted in a box-plot (Supplementary materials: Fig. SM-2). The groundwater levels vary 

between 3 to 22 m above mean sea level (amsl) and display a clear seasonal variation. The groundwater level is 185 

relatively low in April and high in October. 

The hydraulic properties of the aquifers were selected based on observed data and previous reports on the 

geology and lithology of the study area (Michael and Voss, 2009a, 2009b). Topography and borehole data were 

collected from Barind Multipurpose Development Authority (BMDA), Bangladesh. The log data from twenty-

three boreholes within the study area were collected from BMDA. 190 

The climate model data is available through the website of the Earth System Grid Federation 

(https://esgf.llnl.gov). 

2.3 MODFLOW model 

Processing MODFLOW or PMWIN (Chiang and Kinzelbach, 1998) is a physically-based, fully-distributed, grid 

based, integrated simulation system for modelling groundwater flow and pollution. PMWIN was designed as a 195 

pre- and postprocessor for the groundwater flow model MODFLOW (Harbaugh and McDonald, 1996; 

McDonald and Harbaugh, 1988) to bring various codes together in a simulation system. The MODFLOW model 

is a physically-based, fully-distributed three-dimensional finite-difference numerical flow model developed by 

the U.S. Geological Survey (USGS). MODFLOW solves the three-dimensional partial-differential groundwater 

flow equation for porous media using a finite-difference method. 200 
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2.4 Multi-step multi-model methodology 

A four-steps methodology was used to achieve the objectives of the study (Fig. 2). In the first step, the climate 

model data for precipitation, minimum, mean and maximum temperature and ET0 were extracted and 

downscaled as explained in section 2.6. In the second step, monthly groundwater recharge was simulated using a 

spatially distributed water balance model (WetSpass) (Abdollahi et al., 2017; Batelaan and De Smedt, 2001) for 205 

the baseline period and for different scenarios as explained in sections 2.5.2 and 2.7. In the third step, 15 

alternative conceptual hydrogeological models were constructed using different geological interpretations and 

boundary conditions. All alternative CHMs were calibrated using observed groundwater level data. The 

performance of each model was evaluated based on different performance evaluation coefficients and 

information criterion statistics. The Bayesian model averaging (BMA) method was applied to obtain an average 210 

prediction from the alternative models. Also, the performance of alternative models was evaluated based on the 

maximum likelihood BMA weight of each model. The better performing models among the alternative models 

were used to project groundwater levels under different climatic and abstraction scenarios. The averaged 

projection and its uncertainty were estimated using BMA of the ensemble of alternative CHMs. In the final step, 

climate change impact was assessed. The details of the different materials and methods of each step are 215 

described in the following sections. 
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Figure 2: Multi-step multi-model methodology. GCM: General Circulation Model; RCP: Representative 

Concentration Pathway; ET0: potential evapotranspiration; P: precipitation; T: temperature; DEM: digital elevation 

model; BMA: Bayesian model averaging. 220 
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2.5 Alternative conceptual groundwater flow models  

To estimate the uncertainty due to the conceptualization of groundwater models, 15 different alternative CHMs 

were developed based on geological stratification and boundary conditions. The cross sectional (A-A') view of 

the models is shown in Fig. 1d. First, three simplified alternative conceptual groundwater models were defined 225 

based on the geological stratification. The three models are a one-layered (L1), two-layered (L2) and three-

layered (L3) model. In the one-layered model (L1), the entire model domain was considered as one hydro-

stratigraphic unit and the hydraulic properties are assumed homogeneous and isotropic. The two-layered model 

(L2) consists of two layers where the average thickness of the top layer was 10 m (clay and loamy clay soil) and 

rest of the thickness was considered as the bottom layer. The model domain was divided into three different 230 

hydro-stratigraphic units to develop a three-layered model (L3). Below the top layer, a fine sand layer with an 

average thickness of 8 m was added in the three-layered model. The bottom layer of three-layered model consists 

of medium sand, coarse sand and coarse sand with gravel. 

Boundary conditions strongly influence the CHM uncertainty (Wu and Zeng, 2013). They are often very 

uncertain, and, moreover, strongly influence the model results. Previous studies in the Bengal basin (Michael and 235 

Voss, 2009a, 2009b) identified a north to south groundwater flow direction. On the other hand, there is a large 

wetland at the southeastern corner of the study area as well as a large river (known as Ganges/Padma) within a 

few kilometers from the south boundary. Since exact boundary conditions were not known, based on above 

information, five different potential sets of boundary conditions were conceptualized and shown in Fig. 3. For 

boundary condition B1, a no flow boundary condition was assumed on every side of the model. In other words, 240 

there is no interaction between the model domain and the environment (Michael and Voss, 2009a, 2009b). For 

boundary condition B2, a constant head boundary is assumed at the north side where most of the river branches 

originated assuming that groundwater flow direction is parallel to the river flow and perpendicular to the model 

boundary. No flow boundary conditions were assumed for all other sides. For boundary condition B3, a constant 

head boundary was considered on the north side like for B2 and southeastern side, i.e. the side where a large 245 

wetland is located. Boundary condition B4 is based on boundary condition B3. The constant head boundary in 

the southeastern part of the model was extended to the south part of the model domain in boundary condition B4 

because the great Ganges/Padma river is very near to the south boundary. In boundary condition B5, a constant 

head boundary was considered at the north and northwestern boundary and also at the southeastern corner of the 

model domain based on the information that groundwater is flowing from north and northwestern to south 250 
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(Michael and Voss, 2009a, 2009b). A constant head is assigned at the southeastern corner of the model domain 

representing the Chalan Beel wetland as well. No-flow boundaries are assumed at the south and northeastern 

boundaries since these boundaries are parallel to the groundwater flow direction (Michael and Voss, 2009a, 

2009b). The long-term monthly average groundwater levels (normal) were considered as the constant 

groundwater heads for the constant head boundary. As there is seasonal variability in the groundwater level of 255 

this study area, every month was assigned a different constant groundwater head corresponding to the long-term 

average groundwater level for that month.  

In total, 15 alternative groundwater models were developed using 5 different boundary conditions and 3 different 

layer types. A list of the 15 models is included as supplementary material (Table SM-1). 

 260 

Figure 3: Boundary conditions used to develop alternative conceptual models (dark blue line indicates constant head 

boundary). B1: no flow boundary; B2: constant head at north boundary; B3: constant head at north and southeast 

boundary; B4: constant head at north, south and southeast boundary; B5: constant head at north, northwestern and 

southeastern boundary. 

 265 

2.5.1 Model setup 

The BIock Centered Flow Package (BCF) of MODFLOW-96 within the PMWIN interface was used for 

groundwater flow simulation. The study area covers an area of 7112 km2 discretized into smaller cells having 

117 rows and 118 columns. The grid cell dimension is 900 m x 900 m. All models are transient with a monthly 

time step. A no-flow boundary is considered at the model domain bottom as the vertical groundwater flow is 270 
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restricted by the relatively impermeable hard rock below the aquifer in the study area. On the model top surface, 

a spatially distributed recharge boundary is considered. 

The initial groundwater heads correspond to a long-term average groundwater table obtained by running the 

models in steady state conditions. 

The range of hydrogeological parameter values was selected based on typical values for aquifer materials 275 

(Domenico and Mifflin, 1965; Domenico and Schwartz, 1998; Johnson, 1967) and previous research findings in 

the study area (Michael and Voss, 2009a, 2009b). They are listed in supplementary materials. Michael & Voss 

(2009a) used 9.4×10-5 m-1 as specific storage value for Bengal basin. The initial specific storage was taken as 

9.4×10-5 m-1 when it is within the specific storage limits of the aquifer materials according to literature. 

Otherwise, the initial specific storage was taken as the average of the maximum and minimum value of the 280 

aquifer materials found in literature. The rivers in the study area are typically small and mainly driven by 

precipitation runoff. Generally, there is no flow in the rivers during dry months (January to March). The “River 

flow package” of MODFLOW was used to define rivers in the model domain and a third type boundary 

condition was assumed for the rivers. Riverbed conductance is indeed defined as a lumped parameter in 

MODFLOW defined as: 285 

 CRIV = 
𝐾𝑟𝑖𝑣 × 𝐿 ×𝑊  

𝑀𝑟𝑖𝑣
 (1) 

Where, CRIV= Riverbed hydraulic conductance (L2T-1), Kriv = riverbed sediment hydraulic conductivity (LT-1), 

L = Length of the river within a grid cell (L), W = Width of the river within a grid cell (L) and Mriv = Thickness 

of the riverbed within a grid cell (L). 

From the equation, it is clear that riverbed hydraulic conductance depends on grid-size, riverbed sediment 

hydraulic conductivity and thickness of the riverbed. Mehl and Hill (2010) have reported that riverbed 290 

conductance depends heavily on grid-size of the model.  Due to lacking field data for river bed materials, the 

river bed conductance was obtained through manual calibration: river bed conductance is 0.18 m2/s while 

riverbed thickness is 0.5 m. 

2.5.2 Simulation of spatially distributed groundwater recharge 

Spatially distributed monthly groundwater recharge was simulated using the WetSpass-M model (Abdollahi et 295 

al., 2017; Batelaan and De Smedt, 2001) on the same grid as the groundwater flow (MODFLOW) model. 

WetSpass-M is a physically based distributed model, in which the groundwater recharge is estimated from a 

grid-based water balance. To allow land cover heterogeneity within each cell, every raster cell is split into four 
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fractions: vegetated, bare-soil, open-water and impervious. The water balances of each fraction are used to 

calculate the total water balance of a raster cell, whereas recharge is calculated as the residual term of the water 300 

balance for each cell. The inputs of the model are spatially distributed maps of land cover, soil texture, 

topography, groundwater depth and climatic data. Precipitation (including of rainy days), ET0, temperature and 

wind speed were used as climatic information. Details on model setup and data preparation for groundwater 

recharge calculation data can be found in Mustafa et al. (2017b). Monthly groundwater recharge was simulated 

for twenty-two years (1985-2006) and considered as the baseline groundwater recharge. 305 

2.5.3 Groundwater abstraction estimation 

Groundwater abstraction for irrigation was calculated from the available data. Unfortunately, detailed 

groundwater abstraction information e.g. amounts of water pumped from individual wells, co-ordinates of the 

abstraction wells, capacity of the pumps or duration of pumping were not available. Hence, the groundwater 

abstraction was assessed based on the irrigated area by shallow tube wells (STWs), deep tube wells (DTWs) and 310 

other irrigation equipment. Upazila-wise (an upazila is the second lowest tier of regional administration in 

Bangladesh) yearly seasonal groundwater abstraction for irrigation from the groundwater was calculated using 

an empirical equation based on Boro rice irrigation requirements and the irrigated area. The irrigation water 

withdrawal was considered as the total abstraction for each upazila. To obtain monthly abstraction for each 

upazila, the calculated seasonal abstraction values are initially equally divided over the months of the dry 315 

seasons (November to April). Also, as the location of the pumps is unknown, the total abstraction from each 

upazila is initially considered uniformly distributed over the full upazila. Considering the individual upazila as 

one zone of abstraction, a total of 34 abstraction zones were considered. Details on the irrigation data can be 

found in Mustafa et al. (2017b) and Shamsudduha et al. (2015). 

2.5.4 Calibration and validation of alternative CHMs 320 

All alternative CHMs were calibrated for the period 1990-1994. Model parameters were estimated using manual 

calibration and automatic calibration. During auto-calibration, PEST (Doherty, 1994) was used to optimize the 

model parameter values. 

The initial values, allowable ranges and optimized values of the parameters of the different models are given as 

supplementary materials (Table SM-2, SM-3, SM-4). One-layered type models were calibrated for three 325 

parameters: horizontal hydraulic conductivity, specific storage and specific yield. The two-layered and three-

layered models were calibrated for respectively 8 and 12 parameters. The process of selecting initial values and 
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the allowable range of the different parameters is described in section 2.5.1. The optimized horizontal hydraulic 

conductivity of the one-layered models varies between 4.45 ×10-03 m/s and 6.00 ×10-03 m/s. This high value of 

horizontal hydraulic conductivity corresponds to well-sorted coarse sand and gravel (Fetter, 2001). We consider 330 

these values to be realistic since a major portion of the aquifer consists of coarse sand and coarse sand with 

gravel.  The average horizontal hydraulic conductivity of Bengal basin found by Michael & Voss (2009a) was 

also high (5 ×10-04 m/s). They also reported that based on the drill-log analysis horizontal hydraulic conductivity 

of Bengal basin may varies from 6 ×10-06 m/s to 3.00 ×10-03 m/s. The area of the Bengal basin is about 2.8× 105 

km2, but the study area is only a small part of the Bengal basin. Therefore, it is possible that the horizontal 335 

hydraulic conductivity is relatively higher in our study area. Bonsor et al. (2017) have also reported in their 

review report that aquifer materials in the Bengal basin are highly permeable. Mustafa et al. (2018) have also 

reported that average horizontal hydraulic conductivity of this study area is high and around 2.5 × 10-3 and 4.5 × 

10-3 m/s.  

Additionally, spatial variability of horizontal hydraulic conductivity has not been considered in this study. We 340 

consider an average horizontal conductivity for all individual layers. This might be another reason for high 

horizontal hydraulic conductivity.  

The optimized specific storage of the one-layered model with boundary condition-5 (L1B5) was 4.92×10-05 m-1. 

Michael & Voss (2009a) also reported a similar specific storage value (9.4×10-05 m-1) for the Bengal basin. 

However, different conceptual models are suggesting different specific storage values within the typical values 345 

for aquifer materials depending on the number of layers and boundary conditions (Table SM-2, SM-3, SM-4). 

The optimized value of specific yield varies between 0.17 and 0.35 for different conceptual models. The results 

are in line with previous finding of specific yield values in the area which indicate that specific yield in the study 

area varies between 0.08 and 0.32, having higher values in the southern part of the Barind area (Jahan et al., 

1994; Mustafa et al., 2018). However, the optimized value of specific yield for some conceptual models are 350 

equal to  the upper boundary of the pre-defined parameter range.  This could be because of the simplified 

representation of hydrogeological layers and properties of the system defined in some of the conceptual models. 

However, even with different conceptual models, the optimized value of specific yield is equal to the upper 

boundary of the parameter range, indicating that the calibrated values of the specific yield could not reach the 

real optimum. This could be because of uncertain groundwater abstraction and recharge data in this study area. 355 

Mustafa et al. (2018) has proven that groundwater abstraction and groundwater recharge data in space and time 
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in this study area are highly uncertain. They have also reported that input uncertainty (uncertainties arising from 

groundwater abstraction and recharge) has a significant impact on the specific yield values. However, in this 

study, uncertainty of the input data has not been considered. Additionally, spatial and seasonal variability of the 

groundwater abstraction has not been considered in this study. This might be another reason for the high specific 360 

yield value. Further improvement of model calibration would require additional and more reliable groundwater 

abstraction and groundwater recharge data, such as time series of pumping discharge from individual wells and 

exact locations  of all abstraction wells.  

Using the optimized parameters, each of the alternative CHMs was validated for the period of 1995 to 1999. 

2.5.5 Model performance evaluation 365 

The performance of alternative conceptual groundwater models (CHMs) was evaluated using information 

criterions, statistical indicators and by graphical presentation of simulated groundwater levels. Root Mean 

Square Error (RMSE) and  Nash-Sutcliffe Efficiency (NSE, Eq. 2) and of the alternative CHMs were calculated 

using the formula reported by Moriasi et al. (2007). The notation of Mustafa et al. (2017a) has been followed. 

 NSE = 1 - 
∑ (𝑂𝑖−𝑆𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−𝑂̅)2𝑛
𝑖=1

 (2) 

   

Here, Oi and Si are representing observed and simulated values respectively, 𝑂̅ is the mean of Oi and n is the 370 

number of observations.  

NSE varies from – α to +1 and is dimensionless. NSE values closer to 1 mean better simulation efficiency. NSE 

values > 0.7, 0.35 – 0.7, 0.0 – 0.35 and < 0.0 represent respectively, excellent, good, fair and poor performance.  

Information criteria are often used for model ranking (Zhou and Herath, 2017). Different information criteria 

such as the Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICc), Kashyap 375 

Information Criterion (KIC) and Bayesian Information Criterion (BIC) were used to evaluate the alternative 

CHMs. 

The Akaike information criterion is defined as (Zhou and Herath, 2017): 

 𝐴𝐼𝐶 = 𝑛 ln(𝜎2) + 2𝑝 (3) 

 𝐴𝐼𝐶𝑐 = 𝑛 ln(𝜎2) + 2𝑝 +
2𝑝(𝑝 + 1)

𝑛 − 𝑝 − 1
 (4) 

 𝜎2 =
𝑆𝑊𝑆𝑅

𝑛
 (5) 
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Where n is the number of observations (same for all models), p is the number of model parameters = NPE+1, 

NPE is the number of process model parameters and 𝜎2 is the residual variance. SWSR is the sum of weighted 380 

squared residuals.  

The Bayesian information criterion (BIC) and Kashyap information criterion (KIC) are defined in Eq. (6) and 

(7), respectively (Zhou and Herath, 2017): 

 𝐵𝐼𝐶 = 𝑛 ln(𝜎2) + 𝑝 ln(𝑛) (6) 

 𝐾𝐼𝐶 = (𝑛 − (𝑝 − 1)) ln(𝜎2) − (𝑝 − 1) ln(2𝜋) + ln|𝑋𝑇𝜔𝑋| (7) 

Where X is the sensitivity matrix (Jacobian matrix). The weighted factor 𝜔 applies when the errors are 

independent from each other. 385 

The different information criteria values were obtained from MODFLOW by running PEST in sensitivity 

analysis mode. The best model among the alternative CHMs has a minimum information criteria value 

(minimum AIC or AICc or BIC or KIC) (Zhou and Herath, 2017). A posterior model probability (pk) was 

calculated using Eq. (8) for each information criteria method for each alternative CHMs. The posterior model 

probability was used to select the best CHMs. The better model corresponds to a larger posterior model 390 

probability (Zhou and Herath, 2017). 

 𝑝𝑘 =
𝑒−0.5∆𝑘

∑ 𝑒−0.5∆𝑗𝐾
𝑗=1

 (8) 

 ∆𝑘= 𝐴𝐼𝐶𝑘 − 𝐴𝐼𝐶𝑚𝑖𝑛 (9) 

Where AICk is the AIC value for model k and AICmin is the minimum AIC values of all models. The value of ∆𝑘 

was also calculated for AICc, BIC and KIC. 

2.5.6 Bayesian model averaging 

Bayesian model averaging (BMA) was used to deduce more reliable predictions of groundwater levels than the 395 

predictions produced by the individual groundwater models. Draper (1994) and Hoeting et al. (1999) present an 

extensive overview of BMA. Recently, BMA has received attention of researchers of diverse fields because of 

its more reliable and accurate predictions than other model averaging methods. Vrugt (2016) has developed a 

model averaging MATLAB toolbox called MODELAVG for post-processing of forecast ensembles. The 

MODELAVG has different model averaging methods including BMA and was used in this study. Details of the 400 

model averaging method are described in the MODELAVG manual (Vrugt, 2016). The value of 𝛽𝐵𝑀𝐴 

(maximum likelihood Bayesian weight) was used as a criterion to select the better performing models that have a 

significant contribution in model averaging. 

The general equation used to calculate the weighted average prediction in various model averaging strategies is 

as follows: 405 
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 𝑦̃𝑗 = ∑ 𝛽𝑘𝐷𝑗𝑘

𝐾

𝑘=1

 (10) 

Where Djk is the bias corrected point forecasts of each model, k= {1,……, K} is model number and j= {1,…..n} 

is the forecast number, 𝑦̃𝑗= { 𝑦̃1,…., 𝑦̃𝑛} is the weighted average forecast for jth forecast number, β ={β1,…., βk} 

denotes the weight vector. 

2.6 Climate change scenarios 

The climate model data for precipitation, minimum, mean and maximum temperature are extracted for the grid 410 

cells covering the reference location within the catchment. This reference location is set at 24.81° north and 

88.95° east and is indicated by a red dot in Fig. 1b. Using the FAO Penman-Monteith equation based on the 

temperature from climate model data, ET0 is calculated. 

Within this case study, CMIP5 (Coupled Model Intercomparison Project Phase 5) climate model runs for RCP 

4.5 and RCP 8.5 are considered (Taylor et al., 2012; Van Vuuren et al., 2011). RCP 8.5 is the highest RCP-based 415 

greenhouse gas scenario (GHS) and considers a radiative forcing of 8.5 W/m² by 2100. The corresponding global 

temperature rise ranges between 2.6 and 4.8°C. RCP 4.5 is a more intermediate scenario, whereby the radiative 

forcing is limited to 4.5W/m² by 2100 and corresponding temperature rise between 1.4 and 3.1°C (IPCC, 2013). 

The total climate model ensemble includes 44 runs, where the RCP 4.5 and RCP 8.5 sub-ensembles each include 

22 runs. The considered climate model runs are listed in the supplementary materials (Table SM-7). 420 

The goal number six of the United Nations (UN) sustainable development Goals (SDGs) states “Ensuring 

availability and sustainable management of water and sanitation for all by 2030”. Based on this information, the 

climate change signals, are defined between 1975 and 2035, where the control and scenario period range 

between 1961-1990 and 2021-2050, respectively. The precipitation and evapotranspiration changes are specified 

on a relative basis, while for the temperature changes an absolute basis is considered. Using the delta change 425 

method, the climate change signals are applied to the observed time series (Ntegeka et al., 2014). The delta 

change method is a simple statistical downscaling method which applies mean monthly average changes (top 

box of Fig. 2). 

2.7 Future groundwater recharge scenario 

The projected spatially distributed monthly groundwater recharge was simulated for the 44 projected time series 430 

using the WetSpass-M model (Abdollahi et al., 2017; Batelaan and De Smedt, 2001) as explained in section 

2.5.2 and in Mustafa et al. (2017b). Details about the considered climate model runs for this study are explained 
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in section 2.6 and they are listed in the supplementary materials (Table SM-7). The baseline groundwater 

recharge was calculated for a period of 22 years (1985–2006). Future groundwater recharge was simulated for 

the same number of years (2026–2047). Simulated groundwater recharges of the baseline period were compared 435 

to the simulated future groundwater recharge to estimate the combined influence of the greenhouse gas scenarios 

or representative concentration pathways, climate models and internal variability. 

2.8 Development of future groundwater abstraction scenario 

It is challenging to estimate future groundwater abstraction scenarios because it largely depends on human 

activities as well as on climate. In this study, we have developed different future abstraction scenarios. The 440 

groundwater abstraction data of the study area show a linearly increasing trend during 1985 to 2006 (Fig. SM-4: 

Supplementary materials). The increasing rate is different in different groundwater abstraction zones. The 

average groundwater abstraction rate in 2006 was about five times higher than that in 1985. A similar increasing 

trend in groundwater abstraction in the study area was also found by Mustafa et al., (2017b). Shahid (2011) 

predicts an increasing trend in future irrigation application for Boro rice production due to climate change. He 445 

also predicts that the length of Boro rice growing period may decrease in future which may lead to increased 

cropping intensity in the area. Increased cropping intensity may increase the overall yearly groundwater 

abstraction rate. Moreover, it is estimated that population of Bangladesh will increase from 145 million in 2008 

to 182 million by 2030 (Qureshi et al., 2014). Thus, water use for food production will increase tremendously. 

As groundwater is the major source of water in the study area, groundwater withdrawal rate will be much higher. 450 

However, there has not been an effective groundwater abstraction policy before 2017. Recently, the Integrated 

Minor Irrigation Policy 2017 and the Groundwater Management Law 2018 for agriculture have been proposed to 

ensure sustainable irrigation management. Both the Integrated Minor Irrigation Policy 2017 and the 

Groundwater Management Law 2018 have recommended to minimize the groundwater abstraction in the study 

area to maintain sustainable groundwater abstraction. They also encourage to use surface water instead of 455 

groundwater for the irrigation. Unfortunately, no quantitative or specific action for example how much 

abstraction should be reduced, has been mentioned either in the proposed Integrated Minor Irrigation Policy 

2017 or in the Groundwater Management Law 2018. The policy planning and management strategies should be 

updated based on the quantitative or specific information. 

Groundwater abstraction can be reduced by improving agricultural water use efficiency. The agricultural water 460 

use efficiency is extremely low in Bangladesh. On average, crops use only 25–30% of applied irrigation water 
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and the rest is lost due to inefficient irrigation systems (Karim, 1997; Mondal, 2005, 2010). Using efficient 

irrigation distribution and application techniques can increase agricultural water use efficiency. The BMDA has 

introduced a buried PVC pipe water conveyance system in the study area to increase conveyance efficiency to 

more than 90%, whereas the national average value is 40% (Rahman et al., 2011). Alternate Wetting and Drying 465 

(AWD) rice irrigation technique can save 30 to 70% of water compared to conventional irrigation methods 

(Rahman and Bulbul, 2015). Deficit irrigation in wheat cultivation in the study area can save 121–197 mm of 

water per season (Mustafa et al., 2017a). Food habit changes and/or crop diversification may also have an impact 

on crop water use efficiency. 

Considering the uncertainties on the total groundwater abstraction amount, five different groundwater abstraction 470 

scenarios are developed ( Table 1). The first scenario is developed based on the current increasing trend. The 

second scenario assumes an improved irrigation water use. As such the conveyance efficiency will compensate 

the increasing future demand and the groundwater abstraction rate will remain constant. In other words, this 

scenario considers the groundwater abstraction rate for 2010. The third, fourth and fifth scenarios assume 

respectively 30%, 50% and 60% lower groundwater abstraction, where the groundwater abstraction rate in 2010 475 

was considered as a basis. 

Table 1: Description of future groundwater abstraction scenarios. 

Groundwater abstraction 

scenario 

Description 

PLinear  Linear increase of groundwater abstraction rate based on current increasing 

trend 

PConstant Groundwater abstraction rate of 2010 assumed to be constant in future 

PReduced_30  30% less groundwater abstraction than in 2010  

PReduced_50  50% less groundwater abstraction than in 2010  

PReduced_60 60% less groundwater abstraction than in 2010 

 

2.9 Uncertainty estimation 

The spread of the 95% prediction interval was taken as the uncertainty band of the ensemble. The uncertainty 480 

band was estimated using Eq. (11). 
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 𝑈𝑏𝑎𝑛𝑑
𝑛 = 𝐷97.5

𝑛 − 𝐷2.5
𝑛  (11) 

  𝑈𝑎𝑣𝑔 =
1

𝑁
∑ 𝑈𝑏𝑎𝑛𝑑

𝑛

𝑁

𝑛=1

 (12) 

Where 𝑈𝑏𝑎𝑛𝑑
𝑛  is the uncertainty band of a time step, Uavg is the average uncertainty band, N is the total number of 

predictions, 𝐷97.5
𝑛

 and 𝐷2.5
𝑛

 represent the 97.5th and 2.5th percentile of the ensemble at a time step, respectively. 

In the case of alternative CHM uncertainty quantification, the same abstraction and recharge scenarios of the 

baseline period were used to simulate groundwater levels of the 22-year period. To quantify the recharge 485 

scenario uncertainty, the groundwater level was simulated for 44 recharge scenarios by the best performing 

groundwater flow model where the groundwater abstraction scenario was kept the same. The groundwater level 

was simulated for 5 abstraction scenarios by the best performing groundwater flow model where the same 

recharge scenario was used to estimate abstraction scenario uncertainty. The groundwater levels in 50 

observation wells for a period of 22 years were used to estimate the spread of the 95% prediction interval. 490 

The contribution of the different sources of uncertainty in future groundwater level prediction was calculated 

considering all the probable combinations of the CHMs, recharge and abstraction scenarios. The average 

prediction interval at each time step was calculated using the following equations: 

 𝑈𝐶𝑀𝑎𝑣𝑔
𝑛 =

1

𝐴𝑆 × 𝑅𝑆
∑ ∑ 𝑈𝐶𝑀𝐴𝑆,𝑅𝑆

𝑛

𝑅𝑆

𝑅𝑆=1

𝐴𝑆

𝐴𝑆=1

 (13) 

 𝑈𝑅𝑎𝑣𝑔
𝑛 =

1

𝐾 × 𝐴𝑆
∑ ∑ 𝑈𝑅𝐾,𝐴𝑆

𝑛

𝐴𝑆

𝐴𝑆=1

𝐾

𝐾=1

 (14) 

 𝑈𝐴𝑎𝑣𝑔
𝑛 =

1

𝐾 × 𝑅𝑆
∑ ∑ 𝑈𝐴𝐾,𝑅𝑆

𝑛

𝑅𝑆

𝑅𝑆=1

𝐾

𝐾=1

 (15) 

Where, 𝑈𝐶𝑀𝑎𝑣𝑔
𝑛 , 𝑈𝑅𝑎𝑣𝑔

𝑛  and 𝑈𝐴𝑎𝑣𝑔
𝑛  represent the average prediction interval at each time step due to CHMs, 

recharge scenario and abstraction scenario, respectively. The K, AS and RS represent the number of CHMs, 495 

abstraction scenarios and recharge scenarios, respectively. The 𝑈𝐶𝑀𝐴𝑆,𝑅𝑆
𝑛  is the prediction interval due to different 

CHMs for a particular recharge and abstraction scenario. The 𝑈𝑅𝐾,𝐴𝑆
𝑛  and 𝑈𝐴𝐾,𝑅𝑆

𝑛  represent the prediction interval 

due to different recharge scenario and abstraction scenario, respectively for a particular CHMs and 

abstraction/recharge scenario. 
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2.10 Data analysis  500 

Details about the procedure followed for data analysis is explained in sections 2.4 to 2.9. For data analysis and 

plotting, different Matlab, R and Python packages were used such as Pandas (McKinney, 2010), Scipy, ggplot2, 

Numpy (Walt et al., 2011) and Matplotlib (Hunter, 2007). The null hypotheses for equal distributions of 

simulated groundwater levels of alternative CHMs were tested using two-sample Kolmogorov-Smirnov tests 

(Chakravarti and Laha, 1967). The nonparametric modified Mann-Kendal trend test (Hamed and Rao, 1998) was 505 

conducted to detect trends in annual groundwater level and the slope was estimated using Sen’s method (Sen, 

1968).  

3. Results and discussion 

3.1 Groundwater levels simulation 

The simulated groundwater levels of each alternative groundwater flow model were compared to the observed 510 

groundwater levels as well as to the simulated groundwater levels of the other models. The null hypotheses for 

the equal distribution test between simulation results of alternative models in the calibration and validation 

period were tested (Fig. 4). A significant difference (significance level of 0.05 or p<0.05) between most of the 

alternative model's simulation results was observed. This indicates that the use of different geological 

stratifications and boundary conditions in groundwater flow models can result in significant differences in 515 

groundwater levels prediction and confirms the finding of Rojas et al. (2010). In contrast, some of the models 

did not predict statistically different results. 
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Figure 4: Significance of difference in simulation results for combinations of alternative conceptual models (p<0.05, 

two sample K-S test) for (a) calibration and (b) validation period. L1, L2 and L3 are representing respectively the one, 520 

two and three-layered model. B1, B2, B3, B4 and B5 are representing respectively Boundary condition-1,2,3,4 and 5. 

For example: L1B1: One-layered model with Boundary condition-1, L3B5: Three-layered model with Boundary 

condition-5. 

 

3.1.1 Goodness of fit of alternative CHMs 525 

Based on different statistical coefficients, the performance was different for alternative models, and the models 

performed differently in the calibration and validation period (Supplementary materials: Table SM-5). 

Based on RMSE, and NSE value, the L2B3 model was the best model in the calibration period, whereas in the 

validation period it was L2B5. In general, the two-layered models had a relatively lower RMSE than the one-

layered and three-layered models. Overall, based on both RMSE and NSE, the two-layered models outperformed 530 

the one-layered and three-layered models in the calibration and validation period. 

The simplified one-layered models have a comparatively higher bias in prediction. Comparatively, a large 

number of processed parameters made the three-layered models over-parameterized. The three-layered models 

performed better than the one-layered models during calibration, but they performed similarly in most of the 

cases in the validation period. The performance of the two layered models also differed between calibration and 535 

validation period. It is difficult to calibrate over-parameterized models efficiently (Willems, 2012), so the two-

layered models with eight calibrated parameters can be a balance between oversimplified and over-

parameterized models. 

Fig. 5 shows the scatter plot for model L2B5. One of the possible causes of the observed differences is the 

spatial and temporal variation in groundwater abstraction. The zone-wise spatially distributed groundwater 540 

abstraction rate was one of the most important input data in this study. In reality, groundwater abstraction varies 

spatially within those zones. Agricultural and industrial areas abstract more groundwater than wetlands or forest 

areas. Moreover, groundwater abstraction rate also varies in time following cropping seasons and precipitation 

patterns. However, an average constant groundwater abstraction rate was assumed for six months (from 

November to April) in the model. The difference between observed and simulated are high for some observation 545 

wells. Those observation wells might be located near to abstraction wells. For observation wells close to 

groundwater abstraction wells, drawdown by groundwater abstraction could affect observed groundwater heads. 
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This spatial and temporal difference in actual groundwater abstraction and modeled groundwater abstraction 

causes spatial and temporal variation in simulated and observed groundwater levels. The simplified 

representation of hydrogeological layers and properties could be also a possible cause of the differences between 550 

simulated and observed groundwater levels. For simplification, the aquifer was assumed homogeneous but in 

reality the aquifer is heterogeneous and this may affect groundwater flow in the aquifer. Also, measurement 

errors in observation data may influence model performance. 

 

Figure 5: Scatter plot for the simulated versus observed groundwater level for Model L2B5: (a) calibration period and 555 

(b) validation period. 

 

3.1.2 Model selection for future groundwater level simulation and uncertainty analysis 

To select the best performing model, the simulation results of the calibration and validation period were used to 

calculate information criteria statistics. The posterior probability (pk) was calculated using Eq. (8) for AIC, 560 

AICc, BIC and KIC methods. The L2B4 model obtained the highest posterior probability of 1, whereas all other 

models had negligible posterior probability for all information criteria as shown in Fig. 6. 
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Figure 6: Posterior probability (pk) and BMA maximum likelihood weight (βBMA) of alternative models calculated 

using 10 years of data. The value above the bar represents the maximum likelihood Bayesian weight. 565 

 

One of the objectives was to estimate future groundwater levels using model averaging. Ten years (1990–1999) 

of monthly simulated groundwater levels of the alternative models and observed data of 50 observation wells 

were used as training data in MODELAVG to estimate the maximum likelihood BMA weight (βBMA) of each 

alternative model. The long training period was selected so that a reliable BMA weight can be estimated for 570 

climate change impact analysis. 

The performance evaluation statistics of BMA mean prediction along with the best model and median is shown 

in supplementary materials (Table SM-6). The best model was selected based on the information criteria ranking. 

The prediction of BMA method obtained better performance in all evaluation criteria than the best model and 

ensemble median for both periods. The results are in line with the findings of Ye et al., (2004) and Poeter and 575 

Anderson (2005). 

During the training period, the 95% prediction interval covers about 85% of observed data, and the average 

spread of the 95% prediction interval is 6.23 m. The maximum likelihood BMA weight (βBMA) of all alternative 

models is shown in Fig. 6. It is observed that models L1B5 and L2B4 obtained higher βBMA than other models. 

The model L2B4 has both maximum posterior model probability and higher βBMA. It is noteworthy that the L1B5 580 

model obtained significant βBMA as it had a comparatively poor performance in both calibration and validation 

period compared to most of the other models. One possible cause could be the relatively better performance of 

the one-layered model in the model boundary area. 
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Fig. 6 shows that only three models (L1B5, L2B4, L2B5) together correspond to 91% of the total weight and 

another three models (L2B3, L3B4, L3B5) correspond to 8% of the total weight. The rest of the models had no 585 

significant contribution. The models having low βBMA can be excluded from the analysis to minimize the 

calculation time and effort (Vrugt, 2016). Therefore, models L1B5, L2B4 and L2B5 were selected to predict 

future groundwater levels under different scenarios. Ultimately, βBMA was recalculated using the prediction of 

those selected models and the new βBMA of L1B5, L2B4 and L2B5 was 0.35, 0.39 and 0.26, respectively. During 

this recalculation, the 95% prediction interval covers about 82% of observation data meaning exclusion of 12 590 

models resulted in a loss of only 3% of observed data. 

3.2 Climate change impact on precipitation, temperature and evapotranspiration 

Fig. 7 shows the changes in monthly climatic parameters between the control and scenario period ranging 

between 1961-1990 and 2021-2050, respectively. Fig. 7a shows the changes in the monthly precipitation 

amount. Small positive changes in monthly precipitation amounts are observed for the wet season. For the dry 595 

season (November to April), in contrary, the changes are less consistent: decreasing precipitation amounts are 

found for April and December while March display a significant increase. The effect of the greenhouse gas 

scenario (GHS) on the monthly precipitation amount changes is shown by Fig. 7b. One would expect 

increasing/decreasing change signals under increasing GHSs. This uni-directional behavior is, however, limited 

to the months July, August, September and November. Most likely, 2035 is situated before the time of 600 

emergence, whereby the effect of the increasing GHS remains mainly masked by noise inherent to the internal 

climate variability (Hawkins and Sutton, 2012). This, moreover, indicates that the months July, August, 

September and November are most likely more sensitive to the GHSs compared to the other months. 
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Figure 7: Climate impact signal for all selected climate models (1975 – 2035): (a) relative changes in monthly 605 

precipitation amount (all GHS combined), (b) relative changes in monthly precipitation amount as function of the 

GHSs, (c) absolute changes in monthly minimum, mean and maximum daily temperature (all GHSs combined), and 

(d) relative changes in potential evapotranspiration as function of the GHSs. 

 

Fig. 7c presents the climate scenarios for minimum, mean and maximum daily temperature. It shows the 610 

absolute changes in monthly minimum, mean and maximum daily temperature between the control and scenario 

period. Generally, higher increases in minimum and mean daily temperatures are projected during the wet 
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season. An inter-comparison between the different variables shows, furthermore, higher changes for the 

minimum daily temperature than for the mean and maximum daily temperature.  

The changes in monthly potential evapotranspiration are shown in Fig. 7d. Except for May, increases are 615 

observed for all months. For some months, the changes seem not sensitive to the GHS. Changes for the months 

March, April, June, October and December seem particularly sensitive to the GHS. Similar as for the 

precipitation results, a possible explanation can be found in the “time of emergence” concept. 

The climate change signals for a representative month in the dry and wet season are included in supplementary 

materials (Table SM-8). 620 

3.3 Climate change impact on groundwater recharge  

The changes in the monthly groundwater recharge due to climate change are highly uncertain (Fig. 8a). Like 

precipitation, small increasing changes in monthly groundwater recharge are observed for the wet season. For the 

dry season (November to April), in contrary, the changes are less consistent. The majority of the global climate 

model runs project generally an increasing groundwater recharge. However, for April and December, significant 625 

decreases are noted. The effect of the GHSs on the monthly groundwater recharge changes is shown by Fig. 8b. 

The months July, August, September and November seem to be more sensitive to the GHSs compared to the 

other months. For both RCP 8.5 and RCP 4.5, April and December show decreasing changes in monthly 

groundwater recharge. 

 630 

Figure 8: Change in groundwater recharge due to climate change: (a) relative changes in monthly groundwater 

recharge (all GHS combined), (b) relative changes in monthly groundwater recharge as a function of the GHSs. 
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Projected spatial variation of the mean groundwater recharge change between the future and the baseline period 

due to climate change is presented in Fig. 9. Spatial variation is observed only for two extreme recharge 635 

scenarios: high recharge scenario is indicating maximum recharge at each time step among all the ensembles and 

low recharge scenario is indicating minimum recharge. Both for April and September, the high recharge scenario 

shows a zero to positive change in groundwater recharge, while the low recharge scenario shows a zero to 

negative change in groundwater recharge. No clear spatial trends are observed in the change of groundwater 

recharge. In the high recharge scenario, mean monthly groundwater recharge would increase by 25 mm (April) 640 

and 100 mm (September). In the low recharge scenario, mean monthly groundwater recharge would decrease by 

16 mm (April) and 35 mm (September). Crosbie et al. (2010), also, reported that changes in groundwater 

recharge due to climate change are uncertain. 

 

Figure 9: Spatial variation of mean groundwater recharge change due to climate change for (a) high recharge 645 

scenario in April, (b) low recharge scenario in April, (c) high recharge scenario in September and (b) low recharge 

scenario in September. 
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3.4 Future groundwater level analysis 

The baseline and future groundwater levels were simulated using three selected groundwater flow models 650 

(L1B5, L2B4, L2B5). Then, the model average was calculated by Eq. (10) using simulated groundwater levels 

and the maximum likelihood Bayesian weight of the respective groundwater flow models. The change in 

groundwater level for different scenarios is discussed below. 

3.4.1 Baseline groundwater level simulation 

Groundwater levels in the baseline scenario show a decreasing trend. The mean decreasing rate of groundwater 655 

level is 0.18 m/year (Sen’s slope). The summary of the trend analysis for 50 observation wells is shown in 

supplementary materials (Table SM-9). The calculated decreasing rate varies spatially and ranges between 0.05 

to 0.49 m/year. Mustafa et al. (2017b) studied observed groundwater level data of the same study area and 

reported that the average groundwater level dropped by 4.5–4.9 m over the last 29 years at a rate of 0.15–0.17 

m/year. The annual groundwater level fluctuation of 3 to 5 m in the baseline scenario is also supported by the 660 

findings of Shamsudduha et al. (2009). Overall, the simulated groundwater levels correspond well with the 

findings of other researchers for the baseline period. Therefore, the simulated groundwater level of the baseline 

period was used for comparison with the simulated groundwater levels of the future scenarios. 

3.4.2 Impact of climate change on groundwater level 

Impact of climate change on groundwater level is highly uncertain in the study area (Fig. 10a). The uncertainty 665 

ranges of the change in mean monthly groundwater level due to different GCMs and GHSs obtained from the 

three selected conceptual groundwater flow models are presented with the box-plot for each month. Climate 

change could increase the mean monthly groundwater level by up to 2.5 m and could decrease by 0.5 m. 

However, the SDGs suggest 0-0.5 m increase in groundwater level due to climate change. The impact of climate 

change seems higher from May to September than from October to April. This seasonal variation of climate 670 

change impact can be explained by the precipitation pattern of the study area (Supplementary materials: Fig. 

SM-2a). Large precipitation amounts occur from May to October in Bangladesh, so that climate change has a 

higher impact on this period. Uncertainty of groundwater level due to climate change is highest from June to 

December. The precipitation pattern can also explain the monthly variation of climate change impact 

uncertainty. Groundwater levels increase more during the rainy season in a high recharge scenario (high 675 

precipitation), but in a low recharge scenario, groundwater levels decrease due to the lack of recharge in the 
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rainy seasons. Therefore, the uncertainty band increases in this period for extreme scenarios. Similar to 

precipitation and groundwater recharge, the effect of the GHSs are not very significant on groundwater level 

changes (Fig. 10b). Most of the GCMs project that the increase of groundwater level would be higher for RCP 

8.5 compared to RCP 4.5 for all months. 680 

 

Figure 10: Mean monthly change of groundwater levels in the simulated future period (2026-2047) compared to the 

baseline period (1980-2006) due to climate change: (a) all GHS combined, (b) as a function of the GHSs. 

 

The impact of climate change on groundwater level also varies spatially. The projected impact of climate change 685 

on groundwater level is relatively higher in the southwestern part (Fig. 11) although this pattern does not 

correspond to the spatial pattern of groundwater recharge (Fig. 9). This can be explained by the effect of the river 

on groundwater level. In a high recharge scenario mean monthly groundwater level would increase up to 4 m 

(April) and 8 m (September). However, in a low recharge scenario, mean monthly groundwater level would 

decrease up to 1.6 m. Overall, the impact of climate change on groundwater level was not linear. 690 
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Figure 11: Spatial variation of mean groundwater level change due to climate change for the (a) high recharge 

scenario in April, (b) low recharge scenario in April, (c) high recharge scenario in September, and (b) low recharge 

scenario in September. 

 695 

3.4.3 Future groundwater level under different abstraction scenarios 

The mean monthly groundwater level for the PLinear abstraction scenario decreases about 10 to 14 m compared to 

the baseline period (Fig. 12a). The scenario of PConstant resulted in a 4 to 7 m decrease in groundwater level (Fig. 

12b). For the 30% reduced (PReduced_30) abstraction scenario, the mean groundwater level would decrease about 

1.5 to 3.8 m (Fig. 12c). Even for the 50% reduced (PReduced_50) abstraction scenario, the mean groundwater level 700 

would decrease about 1.0 to 1.5 m (Fig. 12d). Groundwater abstraction in the study area has to be reduced by 

60% compared to the groundwater abstraction rate in 2010, to keep a sustainable groundwater level (Fig. 12e). 

This indicates that the groundwater abstraction rate of 2010 is much higher than the future recharge potential. 



33 
 

The situation will be worse if the current increasing groundwater abstraction trend continues. A spatial variation 

in groundwater level change for different abstraction scenarios was also observed. In a low recharge scenario, 705 

even for a 30 % reduced (PReduced_30) abstraction scenario, groundwater level decreased about 14 m in the 

southwestern part of the study area. In a high recharge scenario, on the other hand, groundwater level increased 

about 2 m in the northeastern part of the study area for the PReduced_30 abstraction scenario. The results also show 

that 50% lower groundwater abstraction than the 2010-rate is not enough to stop groundwater level declining in 

the southwestern part of the study area. 710 
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Figure 12: Monthly mean change in groundwater levels in the simulated future period (2026-2047) compared to the 

baseline period (1985-2006) due to groundwater abstraction: (a) for PLinear abstraction scenario; (b) for PConstant 

abstraction scenario; (c) for 30 % reduced (PReduced_30) abstraction scenario; (d) for 50 % reduced (PReduced_50) 

abstraction scenario and (e) for 60 % reduced (PReduced_60) abstraction scenario. 715 
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The summary of annual groundwater level trend analysis of 50 observation wells for the high and low recharge 

scenario and for different abstraction scenarios (PLinear, PConstant, and PReduced_30) is shown in Table 2. Only the 

significant (p<0.05) trends were considered in this analysis. Scenario PConstant and PReduced_30 have a mean 

decreasing rate that is two to three times higher than the baseline scenario. Therefore, proper groundwater 720 

abstraction policy is necessary to maintain sustainable use of this resource. 

Table 2: The summary of annual groundwater level trend statistics of 50 observation wells for the baseline 

(1985–2006) and simulated future (2026–2047) period under different abstraction scenarios (PLinear, PConstant, 

PReduced_30) and recharge scenarios (Low, High). 

Statistics 

 
Baseline 

period 

 Simulated future period 

PLinear  PConstant  PReduced_30 

Low High  Low High  Low High 

Slope (m/year) 

Mean   -0.18  -1.10 -1.02  -0.50 -0.47  -0.37 -0.30 

Maximum  -0.05  -0.06 -0.06  -0.03 -0.04  -0.04 -0.09 

Minimum  -0.49  -3.89 -3.71  -1.88 -1.54  -1.13 -0.79 

Median  -0.15  -0.39 -0.38  -0.37 -0.35  -0.27 -0.18 

Standard deviation  0.11  1.23 1.12  0.51 0.40  0.29 0.25 

 725 

3.5 Sources of uncertainty in groundwater level prediction  

3.5.1 Alternative conceptual model (CHMs) uncertainty 

The 95% prediction intervals of the three best performing models are shown in Fig. 13a. The average spread of 

the 95% prediction interval of the three alternative CHMs was about 3 m with a maximum spread of about 16 m. 

It is observed that the spread of the prediction interval is wider for low and high groundwater levels. This is not 730 

surprising as the one-layered model overestimates low groundwater levels and underestimates high groundwater 

levels in most of the observation wells. The wide uncertainty band of the alternative CHMs indicates that the use 

of a single model in groundwater levels prediction may lead to biased conclusions. 



36 
 

 

Figure 13: The 95% prediction interval of groundwater level of a representative observation well (BOG001) for (a) 735 

different conceptual models and (b) different abstraction scenarios. 

 

3.5.2 Recharge scenarios uncertainty 

The average spread of the 95% prediction interval due to recharge scenarios is 1.11 m with a maximum of 6.07 

m. The predictive uncertainty due to the recharge scenario is higher during periods with high groundwater levels 740 

and recharge. Although the mean uncertainty resulting from recharge scenarios is relatively lower than for other 

sources of uncertainty, there is large temporal and spatial variation in groundwater level prediction due to 

recharge scenarios (as described in section 3.4.2). The recharge scenarios were developed using future climate 

scenarios of different climate models so that the uncertainty from recharge scenarios represents the uncertainty 
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from climate scenarios in groundwater levels prediction. This uncertainty analysis suggests that all possible 745 

climate scenarios should be considered to predict groundwater levels with a reliable uncertainty band. 

3.5.3 Abstraction scenarios uncertainty 

The 95% prediction interval of groundwater level for different abstraction scenarios increases with time (Fig. 

13b). The average spread of the 95% prediction interval is 8.38 m and the maximum is 43 m. The uncertainty of 

groundwater level related to the abstraction scenario is very high. 750 

3.5.4 Comparison of sources of uncertainties 

The uncertainties due to alternative CHMs, recharge scenarios and abstraction scenarios are compared (Fig. 14). 

The spread of the prediction interval of groundwater levels resulting from different CHMs, recharge scenarios 

and abstraction scenarios was estimated using Eq. (13), (14) and (15), respectively. The contribution of each 

source was calculated based on the median value of the spread of the prediction interval. The contribution of an 755 

individual source is calculated as the ratio of the median value of the spread of the prediction interval for the 

respective source to the median value of the spread of the prediction interval for the total uncertainty. The 

abstraction scenarios are the dominant source of the total uncertainty in groundwater level prediction in this 

overexploited aquifer. About 68% of the total uncertainty arises from the abstraction scenarios. CHM uncertainty 

contributed about 23% of total uncertainty. This result is in agreement with the findings by Rojas et al. (2008). 760 

They reported CHM uncertainty contributions up to 30%. In this case, the alternative CHM uncertainty 

contribution is higher than the recharge scenario uncertainty contribution, including the greenhouse gas scenario, 

climate model and stochastic climate uncertainty contributions. Goderniaux et al. (2015) reported that 

uncertainty related to the calibration of hydrological models can be more important than uncertainty related to 

climate models in groundwater modeling. The uncertainty due to recharge scenarios was relatively lower than 765 

the other sources but the uncertainty arising from recharge scenarios was very high in the southwestern part of 

the study area (described in section 3.4.2). Hence, use of a single model or single recharge or abstraction 

scenario may lead to biased estimation of groundwater levels. Therefore, a multi-model and multi-scenario 

approach should be used for reliable groundwater levels prediction. 
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 770 

Figure 14: Comparison of uncertainties arising from alternative conceptual models, recharge scenarios and 

abstraction scenarios. The recharge scenario uncertainty includes the greenhouse gas scenario uncertainty, the 

climate model uncertainty and the stochastic uncertainty. 

 

4 Conclusions 775 

The main objective of this study was to quantify groundwater level prediction uncertainty in climate change 

impact studies using an ensemble of representative concentration pathways, global climate models, multiple 

alternative CHMs and abstraction. In this study, 15 alternative CHMs, 22 climate model runs for representative 

concentration pathways 4.5 and 8.5 (in total 44 climate model runs) and 5 groundwater abstraction scenarios 

were used to achieve this aim. The BMA technique was used to predict reliable groundwater level using 780 

predictions of alternative CHMs. 

It was observed that different conceptual groundwater models (CHMs) can simulate significantly different 

groundwater levels due to differences in the number of layers and the boundary conditions. The simple one-

layered models were unable to simulate seasonal variation, but had a relatively better performance close to the 

model boundaries than the other multi-layered models. The three-layered models were more detailed, but the 785 

performance was not superior to the two-layered models. The performance of the two-layered models was 

mostly better than the one-layered and three-layered models. 

Ranking of models differed in the calibration and validation period. The best model in the calibration period only 

got the 4th rank in the validation period suggesting the importance of the use of multiple CHMs for reliable 

prediction. 790 
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The impact of groundwater abstraction on groundwater levels is very high. For 2026–2047, the groundwater 

level would decline about 5 to 6 times faster than in the baseline period (1985–2006) if the current increasing 

groundwater abstraction trend continues. Even with a 30% lower groundwater abstraction rate compared to the 

2010-rate, the mean monthly groundwater level would decrease by up to 14m in the southwestern part of the 

study area. Groundwater abstraction has to be reduced by 60% compared to the 2010-rate to keep groundwater 795 

level sustainable. This indicates that the groundwater abstraction rate of 2010 was far higher than recharge 

potential. 

The differences in groundwater abstraction scenarios were the dominant source of uncertainty in groundwater 

level prediction. The uncertainty due to alternative CHMs was also found to be significant and higher than the 

uncertainty from the recharge scenarios. The uncertainty due to different recharge scenarios was very high in 800 

southwestern part of study area. Therefore, use of a single model and/or single recharge and abstraction scenario 

can lead to biased groundwater levels prediction. 

This study suggests that a multi-model approach should be used in groundwater level prediction to avoid biased 

estimation of groundwater levels. The BMA is probably the most suitable technique for developing a multi-

model average based on the best available data and future alternative scenarios. This study recommends that the 805 

uncertainty due to alternative CHMs, recharge and abstraction scenarios should be considered in future 

groundwater levels prediction. 

In this study, alternative conceptual models have been calibrated using PEST. However, different calibration 

methods can result in different calibrated model parameters. Hence, further studies could be conducted using 

different calibration methods (e.g. global parameters optimization methods). We also advice that more field data 810 

would be collected, such as reliable groundwater abstraction data, river flow information, spatially distributed 

horizontal hydraulic conductivity and detailed information about the boundary conditions.  

Keeping in mind that the complexity of hydrogeological models is increasing, further studies should be 

conducted on global sensitivity analysis (SA) to (i) identify the influential and non-influential parameters on the 

model prediction and (ii) better understand the importance of the different components of the complex model 815 

structure. Identification of influential parameters will play an important role in model parameterization and in 

reducing uncertainty due to overparameterization. The identification of non-influential parameters using SA will 

be a very important step in simplifying model structure.  
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