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Response to Editor and Reviewer comments 

HESS-2018-580 

Title: Multi-model approach to quantify groundwater level prediction uncertainty using an 

ensemble of global climate models and multiple abstraction scenarios 

Authors: Syed M. Touhidul Mustafa*, M. Moudud Hasan, Ajoy Kumar Saha, Rahena Parvin Rannu, Els 

Van Uytven, Patrick Willems and Marijke Huysmans 

We would like to thank the editor and reviewers for reviewing our manuscript very carefully and for 

their constructive comments. We have considered all the comments and changed the manuscript 

accordingly. Below is a list of our responses to the editor and reviewer comments (comments in 

italic, answers in regular font).  

Please kindly note that the line numbers in the responses refer to the numbering in the revised 

manuscript, unless specified. 

Editor:  

General comments: 

You did only partly answered to the reviewers comments. Therefore, provide a revised version of the 

manuscript with your suggested revisions and improve your answers on the following comments: 

RESPONSE: AGREE AND CHANGES MADE 

We have clarified our answers to some of the comments as requested and adapted the manuscript 

and response letter accordingly. 

1. - comment 2, rev.1: you have to explain why the calibrated parameters reach the boundary. It 

makes the calibration questionable. 

RESPONSE: AGREE AND CHANGES MADE (lines: 336 - 352). 

The following additional explanation about the calibration has been added in the manuscript (lines: 

336 - 352).   

The optimized value of specific yield varies between 0.17 and 0.35 for different conceptual models. 

The results are in line with previous finding of specific yield values in the area which indicate that 

specific yield in the study area varies between 0.08 and 0.32, having higher values in the southern 

part of the Barind area (Jahan et al., 1994; Mustafa et al., 2018). However, the optimized value of 

specific yield for some conceptual models are equal to  the upper boundary of the pre-defined 
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parameter range.  This could be because of the simplified representation of hydrogeological layers 

and properties of the system defined in some of the conceptual models. However, even with 

different conceptual models, the optimized value of specific yield is equal to the upper boundary of 

the parameter range, indicating that the calibrated values of the specific yield could not reach the 

real optimum. This could be because of uncertain groundwater abstraction and recharge data in this 

study area. Mustafa et al. (2018) has proven that groundwater abstraction and groundwater 

recharge data in space and time in this study area are highly uncertain. They have also reported that 

input uncertainty (uncertainties arising from groundwater abstraction and recharge) has a significant 

impact on the specific yield values. However, in this study, uncertainty of the input data has not been 

considered. Additionally, spatial and seasonal variability of the groundwater abstraction has not been 

considered in this study. This might be another reason for the high specific yield value. Further 

improvement of model calibration would require additional and more reliable groundwater 

abstraction and groundwater recharge data, such as time series of pumping discharge from 

individual wells and exact locations  of all abstraction wells. 

Jahan, C.S., Mazumder, Q.H., Ghose, S.K., Asaduzzaman, M., 1994. Specific yield evaluation: Barind 

area, Bangaladesh. Geol. Soc. India 44(3), 283–290. 

Mustafa, S.M.T., Nossent, J., Ghysels, G., Huysmans, M., 2018. Estimation and impact assessment of 

input and parameter uncertainty in predicting groundwater flow with a fully distributed 

model. Water Resour. Res. 54(9), 6585-6608. 

 

2. - comment 3, rev.1: you have to explain why the variances are all equal. 

RESPONSE: AGREE AND CHANGES MADE 

By definition, RMSE values are equal to the square root of the variance. Therefore, there is no added 

value in using both measures to judge the quality of the models and the variance value and its 

calculation procedure have been removed from the manuscript. 

 

3. - comment 5, rev. 1: Improve the discussion of the calibration results. Some of the differences are 

important. Are they located in some specific locations? 

RESPONSE: AGREE AND CHANGES MADE (lines: 527 – 541) 

We believe that the observations wells with high differences between modelled and observed 

hydraulic heads are located close to pumping wells about which the information about their 
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locations and pumping discharge is highly uncertain in this study area. In order to discuss this issue in 

the manuscript, the relevant section in the original manuscript has been updated with additional 

information and explanation as follows.   

Figure 5 shows the scatter plot for model L2B5. One of the possible causes of the observed 

differences is the spatial and temporal variation in groundwater abstraction. The zone-wise spatially 

distributed groundwater abstraction rate was one of the most important input data in this study. In 

reality, groundwater abstraction varies spatially within those zones. Agricultural and industrial areas 

abstract more groundwater than wetlands or forest areas. Moreover, groundwater abstraction rate 

also varies in time following cropping seasons and precipitation patterns. However, an average 

constant groundwater abstraction rate was assumed for six months (from November to April) in the 

model. The difference between observed and simulated are high for some observation wells. Those 

observation wells might be located near to abstraction wells. For observation wells close to 

groundwater abstraction wells, drawdown by groundwater abstraction could affect observed 

groundwater heads. This spatial and temporal difference in actual groundwater abstraction and 

modeled groundwater abstraction causes spatial and temporal variation in simulated and observed 

groundwater levels. The simplified representation of hydrogeological layers and properties could be 

also a possible cause of the differences between simulated and observed groundwater levels. For 

simplification, the aquifer was assumed homogeneous but in reality the aquifer is heterogeneous and 

this may affect groundwater flow in the aquifer. Also, measurement errors in observation data may 

influence model performance. 

 

Reviewer #1:  

General comments: 

The aim of the paper is to make a prediction of a future groundwater level, and to quantify the 

uncertainty of multiple sources of the models. This is achieved by using multiple conceptual 

hydrogeological models, climate scenarios and abstraction scenarios. I think the authors conducted a 

challenging project and present worthwhile results. A relatively simple hydrogeological model is 

applied which makes that the results have to be judged to that background. The paper has a clear 

structure and is well written. 

 Specific comments: 

1. Line 273 The magnitude of the river bed conductance is given as 0.18 mˆ2/s (∼15500 mˆ2/d). It is 

unclear what this quantity means. Usually, in MODFLOW the river bed conductance depends on the 

river length (L) and width (L) within a grid cell, and the (vertical) hydraulic conductivity (L/T) and the 
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thickness (L) of the river bed. This yields a value with dimension (Lˆ2/T). This is also the dimension of 

the given conductance, instead of the expected dimension (L/T). 

I ask the authors to explain the interpretation of this quantity.  

RESPONSE: AGREE AND CHANGES MADE (lines: 273 - 280) 

Riverbed conductance is indeed defined as a lumped parameter in MODFLOW defined as: 

CRIV = 
𝐾𝑟𝑖𝑣 × 𝐿 ×𝑊  

𝑀𝑟𝑖𝑣
 

Where, CRIV= Riverbed hydraulic conductance (L2T-1) 

Kriv = riverbed sediment hydraulic conductivity (LT-1) 

L = Length of the river within a grid cell (L) 

W = Width of the river within a grid cell (L) 

Mriv = Thickness of the riverbed within a grid cell (L). 

From the equation, it is clear that riverbed hydraulic conductance depends on grid-size, riverbed 

sediment hydraulic conductivity and thickness of the riverbed. Mehl and Hill (2010) have reported 

that riverbed conductance depends heavily on grid-size of the model.  Hence, direct interpretation 

on the quantity of riverbed hydraulic conductance is not straightforward.  

This additional explanation and motivation were added to the manuscript (lines: 273 - 280). 

Mehl, S., & Hill, M. C. (2010). Grid-size dependence of Cauchy boundary conditions used to simulate 

stream–aquifer interactions. Advances in water resources, 33(4), 430-442. 

 

2. Line 304 The model is calibrated using PEST. The values of the calibrated parameters are given in 

the supplementary materials in Table SM-2. The calibrated values of the L1 models are 6.00E-3 m/s 

(518 m/d) and 4.45E-3 m/s (384 m/d) which seem to be unrealistic high values for the described 

subsurface. The same order of magnitude holds for the second layer of the L2 models, and for the 

third layer of the L3 models. 

Many calibrated parameters are set to the upper boundary of the parameter range. This suggests 

that the calibrated values could not reach the real optimum, or that conceptual problems in the 

models prevent a good calibration. 
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From these observations it may be concluded that the calibration of the hydrogeological model needs 

more attention. The achieved results, as described in the paper, have to be judged with in relation to 

the quality of the hydrogeological models. 

I ask the authors to add a discussion of the quality of the calibration, and to explain the magnitude of 

the conductivity values and their validity in the model. 

I suggest the authors to add in the discussion an improvement of the calibration in a future study 

 

RESPONSE: AGREE AND CHANGES MADE (lines: 317 – 331; 336 – 352 and 786 – 790) 

The optimized horizontal hydraulic conductivity of the one-layered models varies between 4.45 ×10-

03 m/s and 6.00 ×10-03 m/s. This high value of horizontal hydraulic conductivity corresponds to well-

sorted coarse sand and gravel (Fetter, 2001). We consider these values to be realistic since a major 

portion of the aquifer consists of coarse sand and coarse sand with gravel.  The average horizontal 

hydraulic conductivity of Bengal basin found by Michael & Voss (2009b) was also high (5 ×10-04 m/s). 

They also reported that based on the drill-log analysis horizontal hydraulic conductivity of Bengal 

basin may varies from 6 ×10-06 m/s to 3.00 ×10-03 m/s. The area of the Bengal basin is about 2.8× 105 

km2, but the study area is only a small part of the Bengal basin. Therefore, it is possible that the 

horizontal hydraulic conductivity is relatively higher in our study area. Bonsor et al. (2017) have also 

reported in their review report that aquifer materials in the Bengal basin are highly permeable. 

Mustafa et al. (2018) have also reported that average horizontal hydraulic conductivity of this study 

area is high and around 2.5 × 10-3 and 4.5 × 10-3 m/s.  

Additionally, spatial variability of horizontal hydraulic conductivity has not been considered in this 

study. We consider an average horizontal conductivity for all individual layers. This might be another 

reason for high horizontal hydraulic conductivity.  

We agree with the reviewer’s view that the calibration of the hydrogeological model needs more 

attention to constrain model parameters. Model calibration using a global optimization method is 

more reliable than a optimization tool like PEST. However, Mustafa et al. (2018) have also reported in 

their research paper on uncertainty estimation and impact assessment using global optimization that 

average horizontal hydraulic conductivity of this study area is high and around 2.5 × 10-3 - 4.5 × 10-3 

m/s. 

All the details on the magnitude of hydraulic conductivity and model calibration processes have been 

added to the revised manuscript (lines: 317 – 331). 
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The following additional explanation about the calibration has been added in the manuscript (lines: 

336 - 352).   

The optimized value of specific yield varies between 0.17 and 0.35 for different conceptual models. 

The results are in line with previous finding of specific yield values in the area which indicate that 

specific yield in the study area varies between 0.08 and 0.32, having higher values in the southern 

part of the Barind area (Jahan et al., 1994; Mustafa et al., 2018). However, the optimized value of 

specific yield for some conceptual models are equal to  the upper boundary of the pre-defined 

parameter range.  This could be because of the simplified representation of hydrogeological layers 

and properties of the system defined in some of the conceptual models. However, even with 

different conceptual models, the optimized value of specific yield is equal to the upper boundary of 

the parameter range, indicating that the calibrated values of the specific yield could not reach the 

real optimum. This could be because of uncertain groundwater abstraction and recharge data in this 

study area. Mustafa et al. (2018) has proven that groundwater abstraction and groundwater 

recharge data in space and time in this study area are highly uncertain. They have also reported that 

input uncertainty (uncertainties arising from groundwater abstraction and recharge) has a significant 

impact on the specific yield values. However, in this study, uncertainty of the input data has not been 

considered. Additionally, spatial and seasonal variability of the groundwater abstraction has not been 

considered in this study. This might be another reason for the high specific yield value. Further 

improvement of model calibration would require additional and more reliable groundwater 

abstraction and groundwater recharge data, such as time series of pumping discharge from 

individual wells and exact locations  of all abstraction wells. 

We have also added to the discussion section that in this study, alternative conceptual models have 

been calibrated using PEST. However, different calibration methods can result in different calibrated 

model parameters. Hence, further studies could be conducted using different calibration methods 

(e.g. global parameters optimization methods). We also advice that more field data would be 

collected, such as reliable groundwater abstraction data, river flow information, spatially distributed 

horizontal hydraulic conductivity and detailed information about the boundary conditions. (lines: 786 

– 790). 

Bonsor, H.C., MacDonald, A.M., Ahmed, K.M., Burgess, W.G., Basharat, M., Calow, R.C., et al., 2017. 

Hydrogeological typologies of the Indo‐Gangetic basin alluvial aquifer, South AsiaTypologies. 

Hydrogeol. J. 1–30. 

Fetter, C.W., 2001. Applied Hydrogeology. 4th Edition, Prentice Hall, Upper Saddle River, 2, 8. 
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Jahan, C.S., Mazumder, Q.H., Ghose, S.K., Asaduzzaman, M., 1994. Specific yield evaluation: Barind 

area, Bangaladesh. Geol. Soc. India 44(3), 283–290. 

Michael, H.A., Voss, C.I., 2009b. Controls on groundwater flow in the Bengal Basin of India and 

Bangladesh: regional modeling analysis. Hydrogeol. J. 17, 1561. 

Mustafa, S.M.T., Nossent, J., Ghysels, G., Huysmans, M., 2018. Estimation and impact assessment of 

input and parameter uncertainty in predicting groundwater flow with a fully distributed 

model. Water Resour. Res. 54(9), 6585-6608. 

 

3. Line 480 The RMSE and the variance are both used to test the goodness of fit of the models. In 

table SM-5 and SM-6, however, all RMSE values are exactly equal to the square root of the variance. 

The description of the variance in line 319 also seems to be the same as the calculation of the RMSE. 

This suggests that there is no added value to use both measures to judge the quality of the models. 

Are the authors convinced about the correctness of the implementation of these measures? Or are 

the calculations of both measures inherently equal? 

Please make clear what the value of the variance is or, in the case of equality of both measures, I 

would suggest to remove the presentation of one of the measures (RMSE or variance) from the 

results. 

RESPONSE: AGREE AND CHANGES MADE  

By definition, RMSE values are equal to the square root of the variance. Therefore, there is no added 

value in using both measures to judge the quality of the models and the variance value and its 

calculation procedure have been removed from the manuscript. 

 

4. Another presented performance measure is the PBIAS in Eq. 2. This equation is applied to the 

observed and calculated groundwater levels. Since groundwater levels are measured against an 

arbitrary reference level I think the PBIAS is not a suitable measure to apply on these values. The 

numerator of the formula of PBIAS is not affected by the choice of the reference level but the 

denominator is. The PBIAS measure seems more suitable for quantities without an arbitrary reference 

level, like fluxes. 

I ask the authors to make clear why PBIAS is a good performance indicator in the current study and 

why it can be used, or to replace it by another indicator or, if they agree with my objections, to 

remove it from the article. 
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RESPONSE: AGREE AND CHANGES MADE 

PBIAS and its calculation procedure have been removed from the manuscript.   

 

  5.  Line 496 The authors describe the cause of the outliers in Fig. 5. It is not explicitly mentioned 

which observations the authors call the outliers, but it seems to be the observations beyond the 95% 

interval. Obviously, about 5% of the observations will lie beyond the 95% interval. The presented 

graph does not have extreme outliers, relatively to the total data cloud. More important is to what 

extent a difference between observed and calculated values is accepted in this study. 

I ask the authors to make clear what they consider the acceptable difference between observed and 

calculated values, or which acceptable interval. 

 

RESPONSE: AGREE AND CHANGES MADE (lines: 527 – 541) 

There are indeed no extreme outliers. To avoid confusion, the relevant sentences have been updated 

by removing the word “outliers”.  

We believe that the observations wells with high differences between modelled and observed 

hydraulic heads are located close to pumping wells about which the information about their 

locations and pumping discharge is highly uncertain in this study area. In order to discuss this issue in 

the manuscript, the relevant section in the original manuscript has been updated with additional 

information and explanation as follows.   

Figure 5 shows the scatter plot for model L2B5. One of the possible causes of the observed 

differences is the spatial and temporal variation in groundwater abstraction. The zone-wise spatially 

distributed groundwater abstraction rate was one of the most important input data in this study. In 

reality, groundwater abstraction varies spatially within those zones. Agricultural and industrial areas 

abstract more groundwater than wetlands or forest areas. Moreover, groundwater abstraction rate 

also varies in time following cropping seasons and precipitation patterns. However, an average 

constant groundwater abstraction rate was assumed for six months (from November to April) in the 

model. The difference between observed and simulated are high for some observation wells. Those 

observation wells might be located near to abstraction wells. For observation wells close to 

groundwater abstraction wells, drawdown by groundwater abstraction could affect observed 

groundwater heads. This spatial and temporal difference in actual groundwater abstraction and 

modeled groundwater abstraction causes spatial and temporal variation in simulated and observed 
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groundwater levels. The simplified representation of hydrogeological layers and properties could be 

also a possible cause of the differences between simulated and observed groundwater levels. For 

simplification, the aquifer was assumed homogeneous but in reality the aquifer is heterogeneous and 

this may affect groundwater flow in the aquifer. Also, measurement errors in observation data may 

influence model performance. 

 

6.  Line 562 In Fig. 7c the temperature changes calculated in the different scenarios are presented. 

Herein, the Tmax is lower (instead of higher) depicted than the Tmean and Tmin, which is confusing. 

Please explain what these values do represent? 

RESPONSE: AGREE AND CHANGES MADE (lines: 579 – 580; 595 – 597) 

Figure 7 shows the changes in monthly climatic parameters between the control and scenario period 

ranging between 1961-1990 and 2021-2050, respectively. Figure 7c shows the absolute changes in 

monthly minimum, mean and maximum daily temperature between the control and scenario period. 

Here, the figures show that the changes in Tmax are lower compared to the changes of Tmean and 

Tmin. 

This section has been updated with this additional clarification to avoid confusion.  

 

7.  Line 548 and Line 575 In these lines the period ‘dry season’ is mentioned. It would help the reader 

to repeat here which months are considered the dry season. 

 

RESPONSE: AGREE AND CHANGES MADE (lines: 582 and 609) 

Months considered for the dry season have been added.  

 

Technical corrections: 

8. Line 65: first occurrence of CHMs should be singular 

RESPONSE: AGREE AND CHANGES MADE (line: 65) 

The additional “S” has been removed from “CHMs”. 
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9. Line 74 increasing -> increasingly 

RESPONSE: AGREE AND CHANGES MADE (line: 74) 

The word increasing has been replaced by increasingly.  

 

10. Lines 86 abbreviation GHS is explained, Line 87 GHG is used 

RESPONSE: AGREE AND CHANGES MADE (line: 87) 

Line 87 of the original manuscript has been updated with GHS instead of GHG. 

 

11. The words ‘groundwater level’ is often written as singular, where it should be plural. 

RESPONSE: AGREE AND CHANGES MADE 

This has been corrected.  

 

12. I would suggest to add in long sentences commas (“,”) for readability. 

 

RESPONSE: AGREE AND CHANGES MADE 

Commas (“,”) have been added to the long sentences.  

 

 

 

Reviewer # 2  

General comments: 

This paper deals with uncertainties in groundwater level predictions due to greenhouse gas scenarios, 

climate models, conceptual hydrogeological models (CHMs) and groundwater abstraction scenarios. 

To achieve this aim, ensemble of alternative CHMs, recharge and abstraction scenarios were used. 

The study confirms Bayesian Model Averaging (BMA) is the most suitable technique designed both to 

develop multi-model ensemble approach and to help account for the uncertainty inherent in the 

model selection process. The topic of the note lies within the aims and scope of Hydrology and Earth 

System Sciences and deals with a topic of considerable interest. 

Multi-model approaches can be profitably associated with sensitivity analysis in order to answer the 

following questions: for a given set of measurements, which conceptual picture of the physical 

processes, as embodied in a mathematical model or models, is most appropriate? What are the most 
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valuable space-time locations for measurements, depending on the model selected? How is model 

parameter uncertainty propagated to model output, and how does this propagation affect model 

calibration? Recent examples of methods to combine sensitivity-based calibration and model 

selection have been presented in literature right in the context of groundwater modelling. I suggest to 

the authors to deepen this topic since, at this stage, the paper does not introduce significant scientific 

advances respect to the state of art. It’s true that typically parametric uncertainty dominates in 

literature with respect to the uncertainty related to models and scenarios. Nevertheless, this is not 

enough to make the paper self contained. This is a general evaluation on the study that brought me 

to the decision that the work still needs major revisions to make it acceptable for publication. 

 

RESPONSE: AGREE AND CHANGES MADE: ADDITIONAL EXPLANATION IN THE TEXT (lines: 791 – 796) 

We agree with the reviewer that multi-model approaches are associated with sensitivity analysis in 

order to answer the following questions: for a given set of measurements, which conceptual picture 

of the physical processes, as embodied in a mathematical model or models, is most appropriate? 

What are the most valuable space-time locations for measurements, depending on the model 

selected? How is model parameter uncertainty propagated to model output, and how does this 

propagation affect model calibration?  

However, the main objective of this study was not to identify the optimum parameters set or the 

best conceptual model structure. Our main objective was to evaluate the combined effect of 

conceptual hydro(geo)logical models (CHMs) structure, climate change and groundwater abstraction 

scenarios on future groundwater level prediction uncertainty.  That is why we have incorporated all 

possible alternatives based on the available field data. Additionally, a separate study on the effect of 

input and parameter uncertainty has been published in Water Resources Research (Mustafa et al., 

2018).  

In order to highlight the important of sensitivity analysis, the following sentences have been added to 

the revised manuscript: “Keeping in mind that the complexity of hydrogeological models is 

increasing, further studies should be conducted on global sensitivity analysis (SA) to (i) identify the 

influential and non-influential parameters on the model prediction and (ii) better understand the 

importance of the different components of the complex model structure. Identification of influential 

parameters will play an important role in model parameterization and in reducing uncertainty due to 

overparameterization. The identification of non-influential parameters using SA will be a very 

important step in simplifying model structure”.  
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Mustafa, S. M. T., Nossent, J., Ghysels, G., & Huysmans, M. (2018). Estimation and impact assessment 

of input and parameter uncertainty in predicting groundwater flow with a fully distributed model. 

Water Resources Research, 54(9), 6585-6608. 

 

Specific suggestions to improve the quality of the paper are listed below: 

1)  I suggest to add a schematic representation of the system investigated for the sake of clarity. This 

will help identifying the calibration parameters in one/two/three-layered models respectively.  

RESPONSE: AGREE AND CHANGES MADE (lines: supplementary materials: Table SM-1) 

A schematic representation of the system with all details of the calibration parameters used in the 

one/two/three-layered models, including the number of parameters, has been added in the 

supplementary materials (Table SM-1). 

 

2)  With the goal of facilitating the understanding of the study, it may be worthwhile to insert the 

equations used in the analysis and not just references.  

RESPONSE: AGREE AND CHANGES MADE: ADDITIONAL EXPLANATION ADDED TO THE TEXT  

All the relevant equations are given in the manuscript (Equations: 1-15).  

   

3)  Please reword paragraphs 2.7 “Future groundwater recharge scenario” providing more details 

about model adopted and 2.10 “Data analysis” explaining more clearly the procedure followed.  

RESPONSE: AGREE AND CHANGES MADE (lines: 421 – 422 and 490) 

All the details about the model adopted for this study are explained in section 2.6 of the original 

manuscript. However, for the sake of clarity, the following sentence has been added in the section 

2.7. “Details about the considered climate model runs for this study are explained in section 2.6 and 

they are listed in the supplementary materials (Table SM-7)”. 

Section 2.10 has been updated by adding the following sentence: “Details about the procedure 

followed for data analysis is explained in sections 2.4 to 2.9”. 

 

4)  Improve the quality/size of the figures to highlight the results of the analysis  

RESPONSE: AGREE AND CHANGES MADE   
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The quality of the figures (Figure 1, 2, 4, 5, 7, 8, 10, and 13) has been improved.  

Minor points: 

5) Check line 65, “CHMs”, remove “s”.  

RESPONSE: AGREE AND CHANGES MADE (line: 65) 

The additional “S” has been removed from “CHMs”. 

6) Check line 192, in “step” a “s” is missing. 

RESPONSE: AGREE AND CHANGES MADE (line: 193) 

The sentence has been updated by adding an additional “s”. 

7) Check line 424, reference is missing. 

RESPONSE: AGREE AND CHANGES MADE (line: 460) 

 A reference has been added.  

8) Check Line 480, reference is missing. 

RESPONSE: AGREE AND CHANGES MADE (line: 515) 

A reference has been added.  
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Abstract 

Worldwide, groundwater resources are under a constant threat of overexploitation and pollution due to 1 

anthropogenic and climatic pressures. For sustainable management and policy making a reliable prediction of 2 

groundwater levels for different future scenarios is necessary. Uncertainties are present in these groundwater 3 

level predictions and originate from greenhouse gas scenarios, climate models, conceptual hydro(geo)logical 4 

models (CHMs) and groundwater abstraction scenarios. The aim of this study is to quantify the individual 5 

uncertainty contributions using an ensemble of 2 greenhouse gas scenarios (representative concentration 6 

pathway 4.5 and 8.5), 22 global climate models, 15 alternative CHMs and 5 groundwater abstraction scenarios. 7 

This multi-model ensemble approach was applied to a drought prone study area in Bangladesh. Findings of this 8 

study, firstly, point at the strong dependence of the groundwater levels on the CHMs considered. All 9 

groundwater abstraction scenarios showed a significant decrease in groundwater levels. If the current 10 

groundwater abstraction trend continues, the groundwater level is predicted to decline about 5 to 6 times faster 11 

for the future period 2026-2047 compared to the baseline period (1985–2006). Even with a 30% lower 12 

groundwater abstraction rate, the mean monthly groundwater level would decrease by up to 14 m in the 13 

southwestern part of the study area. The groundwater abstraction in the northwestern part of Bangladesh has to 14 

reduce by 60% of the current abstraction to ensure sustainable use of groundwater. Finally, the difference in 15 

abstraction scenarios was identified as the dominant uncertainty source. CHM uncertainty contributed about 23% 16 

of total uncertainty. The alternative CHM uncertainty contribution is higher than the recharge scenario 17 

uncertainty contribution, including the greenhouse gas scenario and climate model uncertainty contributions. It is 18 

recommended that future groundwater level prediction studies should use multi-model and multiple climate and 19 

abstraction scenarios. 20 

mailto:syed.mustafa@vub.be
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Keywords  21 

Multi-model ensemble approach; Groundwater modelling; Conceptual models; Climate change; Abstraction 22 

scenarios; Uncertainty. 23 

1. Introduction 24 

Groundwater is one of the major sources of high-quality fresh water across the world and one of the most 25 

important but scarce natural resources in many arid and semi-arid regions. However, these resources are under a 26 

constant threat of overexploitation and pollution all over the world due to anthropogenic and climatic pressure. 27 

Globally, groundwater provides 45 – 70 % of irrigation water (Döll et al., 2012; Shamsudduha et al., 2011; 28 

Taylor et al., 2013; Wada et al., 2014, 2013; Wisser et al., 2008) and the use of groundwater is continuously 29 

increasing. Overexploitation of groundwater for irrigation is worldwide one of the main causes of groundwater 30 

level depletion (Mustafa et al., 2017a; Rodell et al., 2009; Scanlon et al., 2012; Wada et al., 2014). Climate 31 

change will probably also have an impact on the future availability of the groundwater resources (Brouyère et al., 32 

2004; Chen et al., 2004; Goderniaux et al., 2011, 2009; Scibek et al., 2007; Taylor et al., 2013; van Roosmalen et 33 

al., 2009; Woldeamlak et al., 2007). 34 

Food security of Bangladesh is highly dependent on sustainable use of groundwater for irrigation. However, in 35 

the northwestern part of Bangladesh, these resources are under a constant threat of overexploitation due to 36 

anthropogenic pressure. Mustafa et al. (2017a) report that overexploitation of groundwater for irrigation is the 37 

main cause of groundwater level decline in the northwestern part of Bangladesh. In this context, the government 38 

of Bangladesh has plans to use more surface water instead of groundwater. However, the amount of groundwater 39 

that can be sustainably used for irrigation is still unknown. Also, the probable impact of shifting to more surface 40 

water use instead of groundwater is also unknown. Hence, research is needed to quantify the amount of 41 

groundwater that can be abstract sustainably for irrigated agriculture in the northwestern part of Bangladesh. 42 

Accurate predictions of groundwater systems, as well as sustainable water management practices, are essential 43 

for policy making. Transient numerical groundwater flow models are used to understand and forecast 44 

groundwater flow systems under anthropogenic and climatic influences. They provide primary information for 45 

decision-making and risk analysis. However, the reliability of groundwater model predictions is strongly 46 

influenced by uncertainties resulting from the model parameters, input data, and the CHMs structure (Refsgaard 47 

et al., 2006). Also, formulation of unknown future conditions, such as climatic change scenarios and 48 

groundwater abstraction strategies, increases the uncertainty in groundwater model predictions. 49 
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It is important to assess the different sources of uncertainty to ensure accurate prediction and reliable decision 50 

support in sustainable water resources management. The conventional treatment of uncertainty in groundwater 51 

modelling focuses on parameter uncertainty. Uncertainties due to model structure and due to scenario change are 52 

often neglected (Gaganis and Smith, 2006; Rojas et al., 2010). However, many researchers have recently 53 

acknowledged that the uncertainty arising from the CHMs structure has a significant effect on model prediction 54 

(Neuman, 2003; Refsgaard et al., 2006). The incomplete and biased representation of the processes and the 55 

complex structure of a geological system often result in uncertainty in model prediction (Refsgaard et al., 2006; 56 

Rojas et al., 2008). Højberg & Refsgaard (2005) presented a case of a multi-aquifer system in Denmark by 57 

building three different CHMs using three alternative geological assumptions. They found that CHMs structure 58 

uncertainty dominated over parameter uncertainty when the models were used for extrapolation. Many studies 59 

have recently suggested that uncertainty derived from the definition of alternative CHMs is one of the major 60 

sources of total uncertainty, and the parameter uncertainty does not cover the entire uncertainty range 61 

(Bredehoeft, 2005; Neuman, 2003; Refsgaard et al., 2006; Rojas et al., 2008; Troldborg et al., 2007). Therefore, 62 

neglecting the CHM uncertainty may result in unreliable prediction and underestimate the total predictive 63 

uncertainty. 64 

Studies using a single CHMs may fail to adequately sample the relevant space of plausible CHMs. Single model 65 

techniques are unable to account for errors in model output resulting from the structural deficiencies of the 66 

specific model. Rojas et al. (2010) noted that a CHM is assumed to be correct when the model is calibrated and 67 

validated successfully following an appropriate method as described by Hassan (2004a, 2004b). However, a 68 

well-calibrated model does not always accurately predict the behaviour of the dynamic system (Van Straten and 69 

Keesman, 1991). Bredehoeft (2005) presented different examples where data collection and unforeseen elements 70 

challenged well-established CHMs. Choosing a single model out of equally important alternative models may 71 

contribute to either type I (reject true model) or type II (fail to reject false model) model errors (Li and Tsai, 72 

2009; Neuman, 2003). 73 

Although the concept of using alternative CHMs is increasingly applied among surface water modellers, in 74 

groundwater modelling the use of multi-model methods are limited. Recently, some studies have used multi-75 

model methods in groundwater modelling to quantify the CHM uncertainty (Li and Tsai, 2009; Rojas et al., 76 

2010). However, conceptual model uncertainty arising from the simplified representation of the hydro(geo)logic 77 

processes, geological stratification and/or boundary conditions has received less attention (Refsgaard et al., 78 

2006; Rojas et al., 2010). Rojas et al. (2010), investigated uncertainty related to alternative CHM structures and 79 
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recharge scenarios in groundwater modelling. However, the uncertainty arising from other sources such as 80 

General Circulation Models (GCMs), Regional Circulation Models (RCMs), downscaling methods and 81 

abstraction scenarios in groundwater flow modelling still needs to be included in such approaches.  82 

Climate change may significantly impact groundwater recharge. Recharge is one of the major input data in 83 

groundwater levels simulation. The future groundwater recharge is unknown, so it should be estimated based on 84 

different future climate scenarios. The GCMs project different climate scenarios based on the greenhouse gas 85 

emission scenarios (GHSs). The Special Report on the Emission Scenario-SRES (Nakicenovic et al., 2000) has 86 

reported different GHSG emission scenarios. Besides, there are many GCMs to predict climate scenarios, and 87 

different GCMs use a different representation of the climate system (Flato et al., 2013; Gosling et al., 2011; 88 

Teklesadik et al., 2017). That means that different GCMs develop different climate projections for a single GHG 89 

emission scenario. Therefore, uncertainties arise in climate projections from GCMs and GHG emission 90 

scenarios. Another important source of uncertainties in climate projection is the internal variability of the climate 91 

system, i.e., the natural variability of the weather (Deser et al., 2012). Future climate change uncertainty arises 92 

from three main sources: external forcing, climate models response and internal variability (Hawkins and Sutton, 93 

2009; Tebaldi and Knutti, 2007). Using an ensemble of climate scenarios has become common practice in 94 

analysis of climate change impact in the field of hydrology. Uncertainty analysis of groundwater simulations 95 

related to climate change has received relatively limited attention (Goderniaux et al., 2009; Taylor et al., 2013). 96 

Holman et al. (2012) recommended that climate scenarios from multiple GCMs or RCMs should be used to 97 

predict the impact of climate change on groundwater. Recently, several researchers have studied the impact of 98 

climate change on the groundwater system incorporating uncertainty from the input of different GCMs or RCMs 99 

scenarios and different greenhouse gas emission scenarios (Ali et al., 2012; Dams et al., 2012; Jackson et al., 100 

2011; Neukum and Azzam, 2012; Stoll et al., 2011; Sulis et al., 2012). The uncertainty analysis is, however, 101 

usually limited to the climatic part. Very recently, Goderniaux et al. (2015) included uncertainty related to model 102 

calibration in predicting groundwater flow along with uncertainty from the GCMs and RCMs and downscaling 103 

methods. However, the uncertainty arising from other sources, such as the model conceptualization and 104 

abstraction scenarios, is not evaluated. 105 

Groundwater levels are often heavily influenced by the groundwater abstraction rate. For example, in the Indian 106 

subcontinent, groundwater abstraction has increased from 10-20 km3/year to approximately 260 km3/year during 107 

the last 50 years (Shamsudduha et al., 2011). In the northwestern part of Bangladesh, about 97% of the total 108 

groundwater abstraction is used for irrigated agriculture (Mustafa et al., 2017a; Shahid, 2009). Shahid (2011) 109 
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found an increasing trend in irrigation application rate in Boro rice, the major irrigated crop in the area. Details 110 

on current groundwater abstraction, trends in the abstraction and irrigated area can be found in Mustafa et al. 111 

(2017a). This increasing trend is ascribed to climate change. In contrast, improvement in agricultural water use 112 

efficiency can reduce the water use in irrigated agriculture. Therefore, multiple abstraction scenarios should be 113 

used to predict a reliable uncertainty band.  114 

Existing literature on future groundwater level prediction uncertainty quantification has focused on hydrological 115 

model calibration and climate model uncertainty considering one single CHM and parameter uncertainty. As far 116 

as the authors are aware, little research has been done so far to quantify future groundwater level prediction 117 

uncertainty considering the uncertainty arising from the CHM structure, climate change and groundwater 118 

abstraction scenarios. This is the first attempt to evaluate the combined effect of CHM structure, the climate 119 

change and groundwater abstraction scenarios on future groundwater level prediction uncertainty.  120 

The general objective of this study is to quantify groundwater level prediction uncertainty in climate change 121 

impact studies using a multi model ensemble, i.e. an ensemble of representative concentration pathways, global 122 

climate models, multiple alternative CHMs and abstraction scenarios to provide probabilistic and informative 123 

predictions of groundwater levels. The specific objectives to achieve the general goal of this study are to: (i) 124 

quantify the groundwater level prediction uncertainties arising from the definition of alternative CHMs; (ii) 125 

analyse the effect of climate change on the groundwater levels using ensemble global climate models and 126 

estimate the uncertainty linked to climate scenarios; (iii) analyse the effect of groundwater abstraction scenarios 127 

on the future groundwater levels; (iv) quantify the amount of water that can be abstracted sustainably for 128 

irrigated agriculture in the northwestern part of Bangladesh (v) evaluate the combined effect of CHMs structure, 129 

the climate change and groundwater abstraction scenarios on future groundwater level prediction uncertainty; 130 

and (vi) compare the uncertainty arising from the alternative CHMs, climate scenarios and abstraction scenarios. 131 

2. Methodology 132 

2.1 Study area 133 

The study area is located in the northwestern part of Bangladesh (Figure 1a). The study area is a subtropical 134 

region with two distinct seasons: the dry winter season (November to April) and the rainy monsoon season (May 135 

to October). The average annual precipitation amount varies between 1400 and 1550 mm but is not uniformly 136 

distributed over the year (Supplementary materials: Figure SM-2). Almost 83% of the total annual amount 137 

occurs in the monsoon season. The average temperature varies between 25–35 °C for March to June, and 9–15 138 
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°C for November to February. Groundwater depth in the study area is continuously increasing (Supplementary 139 

materials: Figure SM-3). The study area consists of six northwestern districts (Rajshahi, Naogaon, 140 

C’Nawabganj, Joypurhat, Bogra and Nator) and cover about 7112 km2. In comparison to other districts of 141 

Bangladesh, these districts are more affected by drought (Shahid and Behrawan, 2008). The study area is situated 142 

between latitude 24°19´´0´´ N to 25°12´0´´ N and longitude 88°6´36´´ E to 89°31´12´´ E. The surface elevation 143 

in the study area varies from 11 m to 40 m (Supplementary materials: Figure SM-1). There is a mild gradient 144 

towards the southeast corner and this corner is close to a large wet-land. 145 

The aquifer in the study area is comprised of several layers such as clay, loamy clay, fine sand, medium sand, 146 

coarse sand and gravel with a dominance of medium to coarse sand (Figure 1c). The thickness of each 147 

stratigraphic unit moreover varies spatially. The top layer consists of clay, clayey loam and fine sand with an 148 

average thickness of 18 m. It is underlain by a 20 m thick medium sand layer. Below the medium sand layer, a 149 

35 m thick layer of coarse sand and coarse sand with gravel is present. The upper aquifer is unconfined or semi-150 

confined with a thickness ranging from 10 m to 40 m (Asad-uz-Zaman and Rushton, 2006; Faisal et al., 2005; 151 

Jahani and Ahmed, 1997; Michael and Voss, 2009a; Rahman and Shahid, 2004). The area is dominated by 152 

agriculture and almost 80 % is crop land. Irrigated agriculture plays an important role in the food production and 153 

security of Bangladesh, home to over 150 million people. In the northwestern part of Bangladesh irrigated 154 

agriculture is the major user of groundwater and accounts for 97 % of total groundwater abstraction (Shahid, 155 

2009). Overexploitation of groundwater for irrigation, particularly during the dry season, causes groundwater-156 

level decline in areas where abstraction is high and surface geology inhibits direct recharge to the underlying 157 

shallow aquifer (Mustafa et al., 2017a). 158 
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 160 

Figure 1: Description of the study area: (a) Location of the study area in the northwestern part of Bangladesh; (b) 161 

study area with precipitation measurement stations (triangles) and groundwater observation wells (circles); (c) 162 

stratigraphy of the study area; (d) cross-sectional (A-A’) view of different models: (a) one-layered model (L1), 163 

(b) two-layered model (L2), (c) three-layered model (L3).  164 

2.2 Data 165 

Thirty-two years (1979–2011) of weekly groundwater level and daily precipitation data of the Bangladesh Water 166 

Development Board (BWDB) and Bangladesh Meteorological Department (BMD) were collected from the 167 
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Water Resources Planning Organization (WARPO), Bangladesh, for respectively 140 and 30 sites in the study 168 

area. Available river discharge data of the BWDB for the existing small rivers within the study area were also 169 

collected from WARPO. Daily minimum and maximum temperature, wind speed and other climatic data were 170 

collected from the BMD for all the available stations in the country. Reference evapotranspiration (ET0), 171 

considered as potential evapotranspiration in this study, was calculated using the FAO Penman-Monteith 172 

equation from the observed climatic data (Allen et al., 1998; Mustafa et al., 2017a). 173 

The monthly observed groundwater head data of 50 observation wells were used for model calibration and 174 

validation and are plotted in a box-plot (Supplementary materials: Figure SM-2). The groundwater levels vary 175 

between 3 to 22 m above mean sea level (amsl) and display a clear seasonal variation. The groundwater level is 176 

relatively low in April and high in October. 177 

The hydraulic properties of the aquifers were selected based on observed data and previous reports on the 178 

geology and lithology of the study area (Michael and Voss, 2009a, 2009b). Topography and borehole data were 179 

collected from Barind Multipurpose Development Authority (BMDA), Bangladesh. The log data from twenty-180 

three boreholes within the study area were collected from BMDA. 181 

The climate model data is available through the website of the Earth System Grid Federation 182 

(https://esgf.llnl.gov). 183 

2.3 MODFLOW model 184 

Processing MODFLOW or PMWIN (Chiang and Kinzelbach, 1998) is a physically-based, fully-distributed, grid 185 

based, integrated simulation system for modelling groundwater flow and pollution. PMWIN was designed as a 186 

pre- and postprocessor for the groundwater flow model MODFLOW (Harbaugh and McDonald, 1996; 187 

McDonald and Harbaugh, 1988) to bring various codes together in a simulation system. The MODFLOW model 188 

is a physically-based, fully-distributed three-dimensional finite-difference numerical flow model developed by 189 

the U.S. Geological Survey (USGS). MODFLOW solves the three-dimensional partial-differential groundwater 190 

flow equation for porous media using a finite-difference method. 191 

2.4 Multi-step multi-model methodology 192 

A four-steps methodology was used to achieve the objectives of the study (Figure 2). In the first step, the climate 193 

model data for precipitation, minimum, mean and maximum temperature and ET0 were extracted and 194 

downscaled as explained in section 2.6. In the second step, monthly groundwater recharge was simulated using a 195 

spatially distributed water balance model (WetSpass) (Abdollahi et al., 2017; Batelaan and De Smedt, 2001) for 196 
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the baseline period and for different scenarios as explained in sections 2.5.2 and 2.7. In the third step, 15 197 

alternative conceptual hydrogeological models were constructed using different geological interpretations and 198 

boundary conditions. All alternative CHMs were calibrated using observed groundwater level data. The 199 

performance of each model was evaluated based on different performance evaluation coefficients and 200 

information criterion statistics. The Bayesian model averaging (BMA) method was applied to obtain an average 201 

prediction from the alternative models. Also, the performance of alternative models was evaluated based on the 202 

maximum likelihood BMA weight of each model. The better performing models among the alternative models 203 

were used to project groundwater levels under different climatic and abstraction scenarios. The averaged 204 

projection and its uncertainty were estimated using BMA of the ensemble of alternative CHMs. In the final step, 205 

climate change impact was assessed. The details of the different materials and methods of each step are 206 

described in the following sections. 207 
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 209 

Figure 2: Multi-step multi-model methodology. GCM: General Circulation Model; RCP: Representative 210 

Concentration Pathway; ET0: potential evapotranspiration; P: precipitation; T: temperature; DEM: digital 211 

elevation model; BMA: Bayesian model averaging. 212 
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2.5 Alternative conceptual groundwater flow models  213 

To estimate the uncertainty due to the conceptualization of groundwater models, 15 different alternative CHMs 214 

were developed based on geological stratification and boundary conditions. The cross sectional (A-A') view of 215 

the models is shown in Figure 1d. First, three simplified alternative conceptual groundwater models were defined 216 

based on the geological stratification. The three models are a one-layered (L1), two-layered (L2) and three-217 

layered (L3) model. In the one-layered model (L1), the entire model domain was considered as one hydro-218 

stratigraphic unit and the hydraulic properties are assumed homogeneous and isotropic. The two-layered model 219 

(L2) consists of two layers where the average thickness of the top layer was 10 m (clay and loamy clay soil) and 220 

rest of the thickness was considered as the bottom layer. The model domain was divided into three different 221 

hydro-stratigraphic units to develop a three-layered model (L3). Below the top layer, a fine sand layer with an 222 

average thickness of 8 m was added in the three-layered model. The bottom layer of three-layered model consists 223 

of medium sand, coarse sand and coarse sand with gravel. 224 

Boundary conditions strongly influence the CHM uncertainty (Wu and Zeng, 2013). They are often very 225 

uncertain, and, moreover, strongly influence the model results. Previous studies in the Bengal basin (Michael and 226 

Voss, 2009a, 2009b) identified a north to south groundwater flow direction. On the other hand, there is a large 227 

wetland at the southeastern corner of the study area as well as a large river (known as Ganges/Padma) within a 228 

few kilometers from the south boundary. Since exact boundary conditions were not known, based on above 229 

information, five different potential sets of boundary conditions were conceptualized and shown in Figure 3. For 230 

boundary condition B1, a no flow boundary condition was assumed on every side of the model. In other words, 231 

there is no interaction between the model domain and the environment (Michael and Voss, 2009a, 2009b). For 232 

boundary condition B2, a constant head boundary is assumed at the north side where most of the river branches 233 

originated assuming that groundwater flow direction is parallel to the river flow and perpendicular to the model 234 

boundary. No flow boundary conditions were assumed for all other sides. For boundary condition B3, a constant 235 

head boundary was considered on the north side like for B2 and southeastern side, i.e. the side where a large 236 

wetland is located. Boundary condition B4 is based on boundary condition B3. The constant head boundary in 237 

the southeastern part of the model was extended to the south part of the model domain in boundary condition B4 238 

because the great Ganges/Padma river is very near to the south boundary. In boundary condition B5, a constant 239 

head boundary was considered at the north and northwestern boundary and also at the southeastern corner of the 240 

model domain based on the information that groundwater is flowing from north and northwestern to south 241 

(Michael and Voss, 2009a, 2009b). A constant head is assigned at the southeastern corner of the model domain 242 
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representing the Chalan Beel wetland as well. No-flow boundaries are assumed at the south and northeastern 243 

boundaries since these boundaries are parallel to the groundwater flow direction (Michael and Voss, 2009a, 244 

2009b). The long-term monthly average groundwater levels (normal) were considered as the constant 245 

groundwater heads for the constant head boundary. As there is seasonal variability in the groundwater level of 246 

this study area, every month was assigned a different constant groundwater head corresponding to the long-term 247 

average groundwater level for that month.  248 

In total, 15 alternative groundwater models were developed using 5 different boundary conditions and 3 different 249 

layer types. A list of the 15 models is included as supplementary material (Table SM-1). 250 

 251 

Figure 3: Boundary conditions used to develop alternative conceptual models (dark blue line indicates constant 252 

head boundary). B1: no flow boundary; B2: constant head at north boundary; B3: constant head at north and 253 

southeast boundary; B4: constant head at north, south and southeast boundary; B5: constant head at north, 254 

northwestern and southeastern boundary. 255 

2.5.1 Model setup 256 

The BIock Centered Flow Package (BCF) of MODFLOW-96 within the PMWIN interface was used for 257 

groundwater flow simulation. The study area covers an area of 7112 km2 discretized into smaller cells having 258 

117 rows and 118 columns. The grid cell dimension is 900 m x 900 m. All models are transient with a monthly 259 

time step. A no-flow boundary is considered at the model domain bottom as the vertical groundwater flow is 260 

restricted by the relatively impermeable hard rock below the aquifer in the study area. On the model top surface, 261 

a spatially distributed recharge boundary is considered. 262 
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The initial groundwater heads correspond to a long-term average groundwater table obtained by running the 263 

models in steady state conditions. 264 

The range of hydrogeological parameter values was selected based on typical values for aquifer materials 265 

(Domenico and Mifflin, 1965; Domenico and Schwartz, 1998; Johnson, 1967) and previous research findings in 266 

the study area (Michael and Voss, 2009a, 2009b). They are listed in supplementary materials. Michael & Voss 267 

(2009b) used 9.4×10-5 m-1 as specific storage value for Bengal basin. The initial specific storage was taken as 268 

9.4×10-5 m-1 when it is within the specific storage limits of the aquifer materials according to literature. 269 

Otherwise, the initial specific storage was taken as the average of the maximum and minimum value of the 270 

aquifer materials found in literature. The rivers in the study area are typically small and mainly driven by 271 

precipitation runoff. Generally, there is no flow in the rivers during dry months (January to March). The “River 272 

flow package” of MODFLOW was used to define rivers in the model domain and a third type boundary 273 

condition was assumed for the rivers. Riverbed conductance is indeed defined as a lumped parameter in 274 

MODFLOW defined as: 275 

 CRIV = 
𝐾𝑟𝑖𝑣 × 𝐿 ×𝑊  

𝑀𝑟𝑖𝑣
 (1) 

 276 

CRIV = 
𝐾𝑟𝑖𝑣 × 𝐿 ×𝑊  

𝑀𝑟𝑖𝑣
 277 

Where, CRIV= Riverbed hydraulic conductance (L2T-1), Kriv = riverbed sediment hydraulic conductivity (LT-1), 278 

L = Length of the river within a grid cell (L), W = Width of the river within a grid cell (L) and Mriv = Thickness 279 

of the riverbed within a grid cell (L). 280 

From the equation, it is clear that riverbed hydraulic conductance depends on grid-size, riverbed sediment 281 

hydraulic conductivity and thickness of the riverbed. Mehl and Hill (2010) have reported that riverbed 282 

conductance depends heavily on grid-size of the model.   Due to lacking field data for river bed materials, the 283 

river bed conductance was obtained through manual calibration: river bed conductance is 0.18 m2/s while 284 

riverbed thickness is 0.5 m. 285 

2.5.2 Simulation of spatially distributed groundwater recharge 286 

Spatially distributed monthly groundwater recharge was simulated using the WetSpass-M model (Abdollahi et 287 

al., 2017; Batelaan and De Smedt, 2001) on the same grid as the groundwater flow (MODFLOW) model. 288 

WetSpass-M is a physically based distributed model, in which the groundwater recharge is estimated from a 289 

grid-based water balance. To allow land cover heterogeneity within each cell, every raster cell is split into four 290 
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fractions: vegetated, bare-soil, open-water and impervious. The water balances of each fraction are used to 291 

calculate the total water balance of a raster cell, whereas recharge is calculated as the residual term of the water 292 

balance for each cell. The inputs of the model are spatially distributed maps of land cover, soil texture, 293 

topography, groundwater depth and climatic data. Precipitation (including of rainy days), ET0, temperature and 294 

wind speed were used as climatic information. Details on model setup and data preparation for groundwater 295 

recharge calculation data can be found in Mustafa et al. (2017a). Monthly groundwater recharge was simulated 296 

for twenty-two years (1985-2006) and considered as the baseline groundwater recharge. 297 

2.5.3 Groundwater abstraction estimation 298 

Groundwater abstraction for irrigation was calculated from the available data. Unfortunately, detailed 299 

groundwater abstraction information e.g. amounts of water pumped from individual wells, co-ordinates of the 300 

abstraction wells, capacity of the pumps or duration of pumping were not available. Hence, the groundwater 301 

abstraction was assessed based on the irrigated area by shallow tube wells (STWs), deep tube wells (DTWs) and 302 

other irrigation equipment. Upazila-wise (an upazila is the second lowest tier of regional administration in 303 

Bangladesh) yearly seasonal groundwater abstraction for irrigation from the groundwater was calculated using 304 

an empirical equation based on Boro rice irrigation requirements and the irrigated area. The irrigation water 305 

withdrawal was considered as the total abstraction for each upazila. To obtain monthly abstraction for each 306 

upazila, the calculated seasonal abstraction values are initially equally divided over the months of the dry 307 

seasons (November to April). Also, as the location of the pumps is unknown, the total abstraction from each 308 

upazila is initially considered uniformly distributed over the full upazila. Considering the individual upazila as 309 

one zone of abstraction, a total of 34 abstraction zones were considered. Details on the irrigation data can be 310 

found in Mustafa et al. (2017a) and Shamsudduha et al. (2015). 311 

2.5.4 Calibration and validation of alternative CHMs 312 

All alternative CHMs were calibrated for the period 1990-1994. Model parameters were estimated using manual 313 

calibration and automatic calibration. During auto-calibration, PEST (Doherty, 1994) was used to optimize the 314 

model parameter values. 315 

The initial values, allowable ranges and optimized values of the parameters of the different models are given as 316 

supplementary materials (Table SM-2, SM-3, SM-4). One-layered type models were calibrated for three 317 

parameters: horizontal hydraulic conductivity, specific storage and specific yield. The two-layered and three-318 

layered models were calibrated for respectively 8 and 12 parameters. The process of selecting initial values and 319 



30 
 

the allowable range of the different parameters is described in section 2.5.1.  The optimized horizontal hydraulic 320 

conductivity of the one-layered models varies between 4.45 ×10-03 m/s and 6.00 ×10-03 m/s. This high value of 321 

horizontal hydraulic conductivity corresponds to well-sorted coarse sand and gravel (Fetter, 2001). We consider 322 

these values to be realistic since a major portion of the aquifer consists of coarse sand and coarse sand with 323 

gravel.  The average horizontal hydraulic conductivity of Bengal basin found by Michael & Voss (2009b) was 324 

also high (5 ×10-04 m/s). They also reported that based on the drill-log analysis horizontal hydraulic conductivity 325 

of Bengal basin may varies from 6 ×10-06 m/s to 3.00 ×10-03 m/s. The area of the Bengal basin is about 2.8× 105 326 

km2, but the study area is only a small part of the Bengal basin. Therefore, it is possible that the horizontal 327 

hydraulic conductivity is relatively higher in our study area. Bonsor et al. (2017) have also reported in their 328 

review report that aquifer materials in the Bengal basin are highly permeable. Mustafa et al. (2018) have also 329 

reported that average horizontal hydraulic conductivity of this study area is high and around 2.5 × 10 -3 and 4.5 × 330 

10-3 m/s.  331 

Additionally, spatial variability of horizontal hydraulic conductivity has not been considered in this study. We 332 

consider an average horizontal conductivity for all individual layers. This might be another reason for high 333 

horizontal hydraulic conductivity.  334 

The optimized specific storage of the one-layered model with boundary condition-5 (L1B5) was 4.92×10-05 m-1. 335 

Michael & Voss (2009b) also reported a similar specific storage value (9.4×10-05 m-1) for the Bengal basin. 336 

However, different conceptual models are suggesting different specific storage values within the typical values 337 

for aquifer materials depending on the number of layers and boundary conditions (Table SM-2, SM-3, SM-4). 338 

The optimized value of specific yield varies between 0.17 and 0.35 for different conceptual models. The results 339 

are in line with previous finding of specific yield values in the area which indicate that specific yield in the study 340 

area varies between 0.08 and 0.32, having higher values in the southern part of the Barind area (Jahan et al., 341 

1994; Mustafa et al., 2018). However, the optimized value of specific yield for some conceptual models are 342 

equal to  the upper boundary of the pre-defined parameter range.  This could be because of the simplified 343 

representation of hydrogeological layers and properties of the system defined in some of the conceptual models. 344 

However, even with different conceptual models, the optimized value of specific yield is equal to the upper 345 

boundary of the parameter range, indicating that the calibrated values of the specific yield could not reach the 346 

real optimum. This could be because of uncertain groundwater abstraction and recharge data in this study area. 347 

Mustafa et al. (2018) has proven that groundwater abstraction and groundwater recharge data in space and time 348 
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in this study area are highly uncertain. They have also reported that input uncertainty (uncertainties arising from 349 

groundwater abstraction and recharge) has a significant impact on the specific yield values. However, in this 350 

study, uncertainty of the input data has not been considered. Additionally, spatial and seasonal variability of the 351 

groundwater abstraction has not been considered in this study. This might be another reason for the high specific 352 

yield value. Further improvement of model calibration would require additional and more reliable groundwater 353 

abstraction and groundwater recharge data, such as time series of pumping discharge from individual wells and 354 

exact locations  of all abstraction wells.  355 

Using the optimized parameters, each of the alternative CHMs was validated for the period of 1995 to 1999. 356 

2.5.5 Model performance evaluation 357 

The performance of alternative conceptual groundwater models (CHMs) was evaluated using information 358 

criterions, statistical indicators and by graphical presentation of simulated groundwater levels. Root Mean 359 

Square Error (RMSE) and, Model Residual (error) Variance (σ2), Nash-Sutcliffe Efficiency (NSE, Eq. 21) and 360 

Percent Bias (PBIAS, Eq. 2) of the alternative CHMs were calculated using the formula reported by Moriasi et 361 

al. (2007). Here, variance is defined as the mean squared error between observed and simulated value. The 362 

notation of Mustafa et al. (2017b) has been followed. 363 

 NSE = 1 - 
∑ (𝑂𝑖−𝑆𝑖)2𝑛

𝑖=1

∑ (𝑂𝑖−�̅�)2𝑛
𝑖=1

 (21) 

 PBIAS =[
∑ (𝑂𝑖−𝑆𝑖)𝑛

𝑖=1 ∗(100)

∑ 𝑂𝑖
𝑛
𝑖=1

] (2) 

 364 

Here, Oi and Si are representing observed and simulated values respectively, �̅� is the mean of Oi and n is the 365 

number of observations.  366 

NSE varies from – α to +1 and is dimensionless. NSE values closer to 1 mean better simulation efficiency. NSE 367 

values > 0.7, 0.35 – 0.7, 0.0 – 0.35 and < 0.0 represent respectively, excellent, good, fair and poor performance. 368 

The unit of PBIAS is percentage and values closer to zero mean better simulation capacity. Positive and negative 369 

values are indicating respectively underestimation bias and overestimation bias (Gupta et al., 1999). 370 

Information criteria are often used for model ranking (Zhou and Herath, 2017). Different information criteria 371 

such as the Akaike Information Criterion (AIC), Corrected Akaike Information Criterion (AICc), Kashyap 372 

Information Criterion (KIC) and Bayesian Information Criterion (BIC) were used to evaluate the alternative 373 

CHMs. 374 
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The Akaike information criterion is defined as (Zhou and Herath, 2017): 375 

 𝐴𝐼𝐶 = 𝑛 ln(𝜎2) + 2𝑝 (3) 

 𝐴𝐼𝐶𝑐 = 𝑛 ln(𝜎2) + 2𝑝 +
2𝑝(𝑝 + 1)

𝑛 − 𝑝 − 1
 (4) 

 𝜎2 =
𝑆𝑊𝑆𝑅

𝑛
 (5) 

Where n is the number of observations (same for all models), p is the number of model parameters = NPE+1, 376 

NPE is the number of process model parameters and 𝜎2 is the residual variance. SWSR is the sum of weighted 377 

squared residuals.  378 

The Bayesian information criterion (BIC) and Kashyap information criterion (KIC) are defined in Eq. (6) and 379 

(7), respectively (Zhou and Herath, 2017): 380 

 𝐵𝐼𝐶 = 𝑛 ln(𝜎2) + 𝑝 ln(𝑛) (6) 

 𝐾𝐼𝐶 = (𝑛 − (𝑝 − 1)) ln(𝜎2) − (𝑝 − 1) ln(2𝜋) + ln|𝑋𝑇𝜔𝑋| (7) 

Where X is the sensitivity matrix (Jacobian matrix). The weighted factor 𝜔 applies when the errors are 381 

independent from each other. 382 

The different information criteria values were obtained from MODFLOW by running PEST in sensitivity 383 

analysis mode. The best model among the alternative CHMs has a minimum information criteria value 384 

(minimum AIC or AICc or BIC or KIC) (Zhou and Herath, 2017). A posterior model probability (pk) was 385 

calculated using Eq. (8) for each information criteria method for each alternative CHMs. The posterior model 386 

probability was used to select the best CHMs. The better model corresponds to a larger posterior model 387 

probability (Zhou and Herath, 2017). 388 

 𝑝𝑘 =
𝑒−0.5∆𝑘

∑ 𝑒−0.5∆𝑗𝐾
𝑗=1

 (8) 

 ∆𝑘= 𝐴𝐼𝐶𝑘 − 𝐴𝐼𝐶𝑚𝑖𝑛 (9) 

Where AICk is the AIC value for model k and AICmin is the minimum AIC values of all models. The value of ∆𝑘 389 

was also calculated for AICc, BIC and KIC. 390 

2.5.6 Bayesian model averaging 391 

Bayesian model averaging (BMA) was used to deduce more reliable predictions of groundwater levels than the 392 

predictions produced by the individual groundwater models. Draper (1994) and Hoeting et al. (1999) present an 393 

extensive overview of BMA. Recently, BMA has received attention of researchers of diverse fields because of 394 

its more reliable and accurate predictions than other model averaging methods. Vrugt (2016) has developed a 395 

model averaging MATLAB toolbox called MODELAVG for post-processing of forecast ensembles. The 396 

MODELAVG has different model averaging methods including BMA and was used in this study. Details of the 397 

model averaging method are described in the MODELAVG manual (Vrugt, 2016). The value of 𝛽𝐵𝑀𝐴 398 



33 
 

(maximum likelihood Bayesian weight) was used as a criterion to select the better performing models that have a 399 

significant contribution in model averaging. 400 

The general equation used to calculate the weighted average prediction in various model averaging strategies is 401 

as follows: 402 

 �̃�𝑗 = ∑ 𝛽𝑘𝐷𝑗𝑘

𝐾

𝑘=1

 (10) 

Where Djk is the bias corrected point forecasts of each model, k= {1,……, K} is model number and j= {1,…..n} 403 

is the forecast number, �̃�𝑗= { �̃�1,…., �̃�𝑛} is the weighted average forecast for jth forecast number, β ={β1,…., βk} 404 

denotes the weight vector. 405 

2.6 Climate change scenarios 406 

The climate model data for precipitation, minimum, mean and maximum temperature are extracted for the grid 407 

cells covering the reference location within the catchment. This reference location is set at 24.81° north and 408 

88.95° east and is indicated by a red dot in Figure 1b. Using the FAO Penman-Monteith equation based on the 409 

temperature from climate model data, ET0 is calculated. 410 

Within this case study, CMIP5 (Coupled Model Intercomparison Project Phase 5) climate model runs for RCP 411 

4.5 and RCP 8.5 are considered (Taylor et al., 2012; Van Vuuren et al., 2011). RCP 8.5 is the highest RCP-based 412 

greenhouse gas scenario (GHS) and considers a radiative forcing of 8.5 W/m² by 2100. The corresponding global 413 

temperature rise ranges between 2.6 and 4.8°C. RCP 4.5 is a more intermediate scenario, whereby the radiative 414 

forcing is limited to 4.5W/m² by 2100 and corresponding temperature rise between 1.4 and 3.1°C (IPCC, 2013). 415 

The total climate model ensemble includes 44 runs, where the RCP 4.5 and RCP 8.5 sub-ensembles each include 416 

22 runs. The considered climate model runs are listed in the supplementary materials (Table SM-7). 417 

The goal number six of the United Nations (UN) sustainable development Goals (SDGs) states “Ensuring 418 

availability and sustainable management of water and sanitation for all by 2030”. Based on this information, the 419 

climate change signals, are defined between 1975 and 2035, where the control and scenario period range 420 

between 1961-1990 and 2021-2050, respectively. The precipitation and evapotranspiration changes are specified 421 

on a relative basis, while for the temperature changes an absolute basis is considered. Using the delta change 422 

method, the climate change signals are applied to the observed time series (Ntegeka et al., 2014). The delta 423 

change method is a simple statistical downscaling method which applies mean monthly average changes (top 424 

box of figure 2). 425 
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2.7 Future groundwater recharge scenario 426 

The projected spatially distributed monthly groundwater recharge was simulated for the 44 projected time series 427 

using the WetSpass-M model (Abdollahi et al., 2017; Batelaan and De Smedt, 2001) as explained in section 428 

2.5.2 and in Mustafa et al. (2017a). Details about the considered climate model runs for this study are explained 429 

in section 2.6 and they are listed in the supplementary materials (Table SM-7). The baseline groundwater 430 

recharge was calculated for a period of 22 years (1985–2006). Future groundwater recharge was simulated for 431 

the same number of years (2026–2047). Simulated groundwater recharges of the baseline period were compared 432 

to the simulated future groundwater recharge to estimate the combined influence of the greenhouse gas scenarios 433 

or representative concentration pathways, climate models and internal variability. 434 

2.8 Development of future groundwater abstraction scenario 435 

It is challenging to estimate future groundwater abstraction scenarios because it largely depends on human 436 

activities as well as on climate. In this study, we have developed different future abstraction scenarios. The 437 

groundwater abstraction data of the study area show a linearly increasing trend during 1985 to 2006 (Figure SM-438 

4: Supplementary materials). The increasing rate is different in different groundwater abstraction zones. The 439 

average groundwater abstraction rate in 2006 was about five times higher than that in 1985. A similar increasing 440 

trend in groundwater abstraction in the study area was also found by Mustafa et al., (2017a). Shahid (2011) 441 

predicts an increasing trend in future irrigation application for Boro rice production due to climate change. He 442 

also predicts that the length of Boro rice growing period may decrease in future which may lead to increased 443 

cropping intensity in the area. Increased cropping intensity may increase the overall yearly groundwater 444 

abstraction rate. Moreover, it is estimated that population of Bangladesh will increase from 145 million in 2008 445 

to 182 million by 2030 (Qureshi et al., 2014). Thus, water use for food production will increase tremendously. 446 

As groundwater is the major source of water in the study area, groundwater withdrawal rate will be much higher. 447 

However, there has not been an effective groundwater abstraction policy before 2017. Recently, the Integrated 448 

Minor Irrigation Policy 2017 and the Groundwater Management Law 2018 for agriculture have been proposed to 449 

ensure sustainable irrigation management. Both the Integrated Minor Irrigation Policy 2017 and the 450 

Groundwater Management Law 2018 have recommended to minimize the groundwater abstraction in the study 451 

area to maintain sustainable groundwater abstraction. They also encourage to use surface water instead of 452 

groundwater for the irrigation. Unfortunately, no quantitative or specific action for example how much 453 

abstraction should be reduced, has been mentioned either in the proposed Integrated Minor Irrigation Policy 454 
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2017 or in the Groundwater Management Law 2018. The policy planning and management strategies should be 455 

updated based on the quantitative or specific information. 456 

Groundwater abstraction can be reduced by improving agricultural water use efficiency. The agricultural water 457 

use efficiency is extremely low in Bangladesh. On average, crops use only 25–30% of applied irrigation water 458 

and the rest is lost due to inefficient irrigation systems (Karim, 1997; Mondal, 2010, 2005). Using efficient 459 

irrigation distribution and application techniques can increase agricultural water use efficiency. The BMDA has 460 

introduced a buried PVC pipe water conveyance system in the study area to increase conveyance efficiency to 461 

more than 90%, whereas the national average value is 40% (Rahman et al., 2011). Alternate Wetting and Drying 462 

(AWD) rice irrigation technique can save 30 to 70% of water compared to conventional irrigation methods 463 

(Rahman and Bulbul, 2015). Deficit irrigation in wheat cultivation in the study area can save 121–197 mm of 464 

water per season (Mustafa et al., 2017b). Food habit changes and/or crop diversification may also have an impact 465 

on crop water use efficiency. 466 

Considering the uncertainties on the total groundwater abstraction amount, five different groundwater abstraction 467 

scenarios are developed (Error! Reference source not found. Table 1). The first scenario is developed based on 468 

the current increasing trend. The second scenario assumes an improved irrigation water use. As such the 469 

conveyance efficiency will compensate the increasing future demand and the groundwater abstraction rate will 470 

remain constant. In other words, this scenario considers the groundwater abstraction rate for 2010. The third, 471 

fourth and fifth scenarios assume respectively 30%, 50% and 60% lower groundwater abstraction, where the 472 

groundwater abstraction rate in 2010 was considered as a basis. 473 

Table 1: Description of future groundwater abstraction scenarios. 474 

Groundwater abstraction 

scenario 

Description 

PLinear  Linear increase of groundwater abstraction rate based on current increasing 

trend 

PConstant Groundwater abstraction rate of 2010 assumed to be constant in future 

PReduced_30  30% less groundwater abstraction than in 2010  

PReduced_50  50% less groundwater abstraction than in 2010  

PReduced_60 60% less groundwater abstraction than in 2010 

 475 
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2.9 Uncertainty estimation 476 

The spread of the 95% prediction interval was taken as the uncertainty band of the ensemble. The uncertainty 477 

band was estimated using Eq. (11). 478 

 𝑈𝑏𝑎𝑛𝑑
𝑛 = 𝐷97.5

𝑛 − 𝐷2.5
𝑛  (11) 

  𝑈𝑎𝑣𝑔 =
1

𝑁
∑ 𝑈𝑏𝑎𝑛𝑑

𝑛

𝑁

𝑛=1

 (12) 

 479 

Where 𝑈𝑏𝑎𝑛𝑑
𝑛  is the uncertainty band of a time step, Uavg is the average uncertainty band, N is the total number of 480 

predictions, 𝐷97.5
𝑛

 and 𝐷2.5
𝑛

 represent the 97.5th and 2.5th percentile of the ensemble at a time step, respectively. 481 

In the case of alternative CHM uncertainty quantification, the same abstraction and recharge scenarios of the 482 

baseline period were used to simulate groundwater levels of the 22-year period. To quantify the recharge 483 

scenario uncertainty, the groundwater level was simulated for 44 recharge scenarios by the best performing 484 

groundwater flow model where the groundwater abstraction scenario was kept the same. The groundwater level 485 

was simulated for 5 abstraction scenarios by the best performing groundwater flow model where the same 486 

recharge scenario was used to estimate abstraction scenario uncertainty. The groundwater levels in 50 487 

observation wells for a period of 22 years were used to estimate the spread of the 95% prediction interval. 488 

The contribution of the different sources of uncertainty in future groundwater level prediction was calculated 489 

considering all the probable combinations of the CHMs, recharge and abstraction scenarios. The average 490 

prediction interval at each time step was calculated using the following equations: 491 

 𝑈𝐶𝑀𝑎𝑣𝑔
𝑛 =

1

𝐴𝑆 × 𝑅𝑆
∑ ∑ 𝑈𝐶𝑀𝐴𝑆,𝑅𝑆

𝑛

𝑅𝑆

𝑅𝑆=1

𝐴𝑆

𝐴𝑆=1

 (13) 

 𝑈𝑅𝑎𝑣𝑔
𝑛 =

1

𝐾 × 𝐴𝑆
∑ ∑ 𝑈𝑅𝐾,𝐴𝑆

𝑛

𝐴𝑆

𝐴𝑆=1

𝐾

𝐾=1

 (14) 

 𝑈𝐴𝑎𝑣𝑔
𝑛 =

1

𝐾 × 𝑅𝑆
∑ ∑ 𝑈𝐴𝐾,𝑅𝑆

𝑛

𝑅𝑆

𝑅𝑆=1

𝐾

𝐾=1

 (15) 

Where, 𝑈𝐶𝑀𝑎𝑣𝑔
𝑛 , 𝑈𝑅𝑎𝑣𝑔

𝑛  and 𝑈𝐴𝑎𝑣𝑔
𝑛  represent the average prediction interval at each time step due to CHMs, 492 

recharge scenario and abstraction scenario, respectively. The K, AS and RS represent the number of CHMs, 493 

abstraction scenarios and recharge scenarios, respectively. The 𝑈𝐶𝑀𝐴𝑆,𝑅𝑆
𝑛  is the prediction interval due to different 494 
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CHMs for a particular recharge and abstraction scenario. The 𝑈𝑅𝐾,𝐴𝑆
𝑛  and 𝑈𝐴𝐾,𝑅𝑆

𝑛  represent the prediction interval 495 

due to different recharge scenario and abstraction scenario, respectively for a particular CHMs and 496 

abstraction/recharge scenario. 497 

2.10 Data analysis  498 

Details about the procedure followed for data analysis is explained in sections 2.4 to 2.9. For data analysis and 499 

plotting, different Matlab, R and Python packages were used such as Pandas (McKinney, 2010), Scipy, ggplot2, 500 

Numpy (Walt et al., 2011) and Matplotlib (Hunter, 2007). The null hypotheses for equal distributions of 501 

simulated groundwater levels of alternative CHMs were tested using two-sample Kolmogorov-Smirnov tests 502 

(Chakravarti and Laha, 1967). The nonparametric modified Mann-Kendal trend test (Hamed and Rao, 1998) was 503 

conducted to detect trends in annual groundwater level and the slope was estimated using Sen’s method (Sen, 504 

1968).  505 

3. Results and discussion 506 

3.1 Groundwater levels simulation 507 

The simulated groundwater levels of each alternative groundwater flow model were compared to the observed 508 

groundwater levels as well as to the simulated groundwater levels of the other models. The null hypotheses for 509 

the equal distribution test between simulation results of alternative models in the calibration and validation 510 

period were tested (Figure 4). A significant difference (significance level of 0.05 or p<0.05) between most of the 511 

alternative model's simulation results was observed. This indicates that the use of different geological 512 

stratifications and boundary conditions in groundwater flow models can result in significant differences in 513 

groundwater levels prediction and confirms the finding of Rojas et al. (2010). In contrast, some of the models 514 

did not predict statistically different results. 515 
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 516 

 517 

Figure 4: Significance of difference in simulation results for combinations of alternative conceptual models 518 

(p<0.05, two sample K-S test) for (a) calibration and (b) validation period. L1, L2 and L3 are representing 519 

respectively the one, two and three-layered model. B1, B2, B3, B4 and B5 are representing respectively 520 

Boundary condition-1,2,3,4 and 5. For example: L1B1: One-layered model with Boundary condition-1, L3B5: 521 

Three-layered model with Boundary condition-5. 522 

3.1.1 Goodness of fit of alternative CHMs 523 

Based on different statistical coefficients, the performance was different for alternative models, and the models 524 

performed differently in the calibration and validation period (Supplementary materials: Error! Reference source 525 

not found. Table SM-5). 526 
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Based on RMSE, σ2 and NSE value, the L2B3 model was the best model in the calibration period, whereas in the 527 

validation period it was L2B5. In general, the two-layered models had a relatively lower RMSE and σ2 than the 528 

one-layered and three-layered models. Overall, based on both RMSE and NSE, the two-layered models 529 

outperformed the one-layered and three-layered models in the calibration and validation period. 530 

In both the calibration and validation period, PBIAS was negative for one-layered models indicating that the 531 

models were overestimating groundwater head. On the contrast, two-layered and three-layered models generally 532 

underestimated the groundwater heads as PBIAS was positive in the calibration and validation period. The L2B5 533 

and L2B4 model had the lowest bias in the calibration and validation period, respectively. Overall, the two-534 

layered models outperformed the one-layered and three-layered models in the calibration and validation period. 535 

The simplified one-layered models have a comparatively higher bias in prediction. Comparatively, a large 536 

number of processed parameters made the three-layered models over-parameterized. The three-layered models 537 

performed better than the one-layered models during calibration, but they performed similarly in most of the 538 

cases in the validation period. The performance of the two layered models also differed between calibration and 539 

validation period. It is difficult to calibrate over-parameterized models efficiently (Willems, 2012), so the two-540 

layered models with eight calibrated parameters can be a balance between oversimplified and over-541 

parameterized models. 542 

Figure 5 shows the scatter plot for model L2B5. One of the possible causes of the outliers in the scatter plot and 543 

the observed differences in model performance between the calibration and validation period is the spatial and 544 

temporal variation in groundwater abstraction. The zone-wise spatially distributed groundwater abstraction rate 545 

was one of the most important input data in this study. In reality, groundwater abstraction varies spatially within 546 

those zones. Agricultural and industrial areas abstract more groundwater than wetlands or forest areas. 547 

Moreover, groundwater abstraction rate also depends temporallyvaries in time following on cropping seasons 548 

and precipitation patterns. However, an average constant groundwater abstraction rate was assumed for six 549 

months (from November to April) in the model. The difference between observed and simulated are high for 550 

some observation wells. Those observation wells might be located near to abstraction wells. For observation 551 

wells close to groundwater abstraction wells, drawdown by groundwater abstraction, could affect the observed 552 

groundwater heads. This spatial and temporal difference in actual groundwater abstraction and modeled 553 

groundwater abstraction causesd spatial and temporal variation in simulated and observed groundwater levels. 554 

The simplified representation of hydrogeological layers and properties could be also a possible cause of the 555 
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differences between simulated and observed groundwater levels. For simplification, the aquifer was assumed 556 

homogeneous but in reality, the aquifer is heterogeneous and this may affect groundwater flow in the aquifer. 557 

Also, measurement errors in observation data may influence model performance. 558 

 559 

 560 

Figure 5: Scatter plot for the simulated versus observed groundwater level for Model L2B5: (a) calibration 561 

period and (b) validation period. 562 

3.1.2 Model selection for future groundwater level simulation and uncertainty analysis 563 

To select the best performing model, the simulation results of the calibration and validation period were used to 564 

calculate information criteria statistics. The posterior probability (pk) was calculated using Eq. (8) for AIC, 565 

AICc, BIC and KIC methods. The L2B4 model obtained the highest posterior probability of 1, whereas all other 566 

models had negligible posterior probability for all information criteria as shown in Figure 6. 567 
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 568 

Figure 6: Posterior probability (pk) and BMA maximum likelihood weight (βBMA) of alternative models 569 

calculated using 10 years of data. The value above the bar represents the maximum likelihood Bayesian weight. 570 

One of the objectives was to estimate future groundwater levels using model averaging. Ten years (1990–1999) 571 

of monthly simulated groundwater levels of the alternative models and observed data of 50 observation wells 572 

were used as training data in MODELAVG to estimate the maximum likelihood BMA weight (βBMA) of each 573 

alternative model. The long training period was selected so that a reliable BMA weight can be estimated for 574 

climate change impact analysis. 575 

The performance evaluation statistics of BMA mean prediction along with the best model and median is shown 576 

in supplementary materials (Table SM-6). The best model was selected based on the information criteria ranking. 577 

The prediction of BMA method obtained better performance in all evaluation criteria than the best model and 578 

ensemble median for both periods. The results are in line with the findings of Ye et al., (2004) and Poeter and 579 

Anderson (2005). 580 

During the training period, the 95% prediction interval covers about 85% of observed data, and the average 581 

spread of the 95% prediction interval is 6.23 m. The maximum likelihood BMA weight (βBMA) of all alternative 582 

models is shown in Figure 6. It is observed that models L1B5 and L2B4 obtained higher βBMA than other models. 583 

The model L2B4 has both maximum posterior model probability and higher βBMA. It is noteworthy that the L1B5 584 

model obtained significant βBMA as it had a comparatively poor performance in both calibration and validation 585 

period compared to most of the other models. One possible cause could be the relatively better performance of 586 

the one-layered model in the model boundary area. 587 

Figure 6 shows that only three models (L1B5, L2B4, L2B5) together correspond to 91% of the total weight and 588 

another three models (L2B3, L3B4, L3B5) correspond to 8% of the total weight. The rest of the models had no 589 

0.35

0.01

0.35

0.21

0.01
0.06

0.00

0.50

1.00

L1B1 L1B2 L1B3 L1B4 L1B5 L2B1 L2B2 L2B3 L2B4 L2B5 L3B1 L3B2 L3B3 L3B4 L3B5

p
K

o
r 

β
B

M
A

BMA AIC AICc BIC KIC



42 
 

significant contribution. The models having low βBMA can be excluded from the analysis to minimize the 590 

calculation time and effort (Vrugt, 2016). Therefore, models L1B5, L2B4 and L2B5 were selected to predict 591 

future groundwater levels under different scenarios. Ultimately, βBMA was recalculated using the prediction of 592 

those selected models and the new βBMA of L1B5, L2B4 and L2B5 was 0.35, 0.39 and 0.26, respectively. During 593 

this recalculation, the 95% prediction interval covers about 82% of observation data meaning exclusion of 12 594 

models resulted in a loss of only 3% of observed data. 595 

3.2 Climate change impact on precipitation, temperature and evapotranspiration 596 

Figure 7 shows the changes in monthly climatic parameters between the control and scenario period ranging 597 

between 1961-1990 and 2021-2050, respectively. Figure 7a shows the changes in the monthly precipitation 598 

amount. Small positive changes in monthly precipitation amounts are observed for the wet season. For the dry 599 

season (November to April), in contrary, the changes are less consistent: decreasing precipitation amounts are 600 

found for April and December while March display a significant increase. The effect of the greenhouse gas 601 

scenario (GHS) on the monthly precipitation amount changes is shown by Figure 7b. One would expect 602 

increasing/decreasing change signals under increasing GHSs. This uni-directional behavior is, however, limited 603 

to the months July, August, September and November. Most likely, 2035 is situated before the time of 604 

emergence, whereby the effect of the increasing GHS remains mainly masked by noise inherent to the internal 605 

climate variability (Hawkins and Sutton, 2012). This, moreover, indicates that the months July, August, 606 

September and November are most likely more sensitive to the GHSs compared to the other months. 607 
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 609 

Figure 7: Climate impact signal for all selected climate models (1975 – 2035): (a) relative changes in monthly 610 

precipitation amount (all GHS combined), (b) relative changes in monthly precipitation amount as function of 611 

the GHSs, (c) absolute changes in monthly minimum, mean and maximum daily temperature (all GHSs 612 

combined), and (d) relative changes in potential evapotranspiration as function of the GHSs. 613 

Figure 7c presents the climate scenarios for minimum, mean and maximum daily temperature. It shows the 614 

absolute changes in monthly minimum, mean and maximum daily temperature between the control and scenario 615 

period. Generally, higher increases in minimum and mean daily temperatures are projected during the wet 616 

season. An inter-comparison between the different variables shows, furthermore, higher changes for the 617 

minimum daily temperature than for the mean and maximum daily temperature.  618 
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The changes in monthly potential evapotranspiration are shown in Figure 7d. Except for May, increases are 619 

observed for all months. For some months, the changes seem not sensitive to the GHS. Changes for the months 620 

March, April, June, October and December seem particularly sensitive to the GHS. Similar as for the 621 

precipitation results, a possible explanation can be found in the “time of emergence” concept. 622 

The climate change signals for a representative month in the dry and wet season are included in supplementary 623 

materials (Table SM-8). 624 

3.3 Climate change impact on groundwater recharge  625 

The changes in the monthly groundwater recharge due to climate change are highly uncertain (Figure 8a). Like 626 

precipitation, small increasing changes in monthly groundwater recharge are observed for the wet season. For the 627 

dry season (November to April), in contrary, the changes are less consistent. The majority of the global climate 628 

model runs project generally an increasing groundwater recharge. However, for April and December, significant 629 

decreases are noted. The effect of the GHSs on the monthly groundwater recharge changes is shown by Figure 630 

8b. The months July, August, September and November seem to be more sensitive to the GHSs compared to the 631 

other months. For both RCP 8.5 and RCP 4.5, April and December show decreasing changes in monthly 632 

groundwater recharge. 633 

 634 



46 
 

 635 

Figure 8: Change in groundwater recharge due to climate change: (a) relative changes in monthly groundwater 636 

recharge (all GHS combined), (b) relative changes in monthly groundwater recharge as a function of the GHSs. 637 

Projected spatial variation of the mean groundwater recharge change between the future and the baseline period 638 

due to climate change is presented in Figure 9. Spatial variation is observed only for two extreme recharge 639 

scenarios: high recharge scenario is indicating maximum recharge at each time step among all the ensembles and 640 

low recharge scenario is indicating minimum recharge. Both for April and September, the high recharge scenario 641 

shows a zero to positive change in groundwater recharge, while the low recharge scenario shows a zero to 642 

negative change in groundwater recharge. No clear spatial trends are observed in the change of groundwater 643 

recharge. In the high recharge scenario, mean monthly groundwater recharge would increase by 25 mm (April) 644 

and 100 mm (September). In the low recharge scenario, mean monthly groundwater recharge would decrease by 645 

16 mm (April) and 35 mm (September). Crosbie et al. (2010), also, reported that changes in groundwater 646 

recharge due to climate change are uncertain. 647 
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 648 

Figure 9: Spatial variation of mean groundwater recharge change due to climate change for (a) high recharge 649 

scenario in April, (b) low recharge scenario in April, (c) high recharge scenario in September and (b) low 650 

recharge scenario in September. 651 

3.4 Future groundwater level analysis 652 

The baseline and future groundwater levels were simulated using three selected groundwater flow models 653 

(L1B5, L2B4, L2B5). Then, the model average was calculated by Eq. (10) using simulated groundwater levels 654 

and the maximum likelihood Bayesian weight of the respective groundwater flow models. The change in 655 

groundwater level for different scenarios is discussed below. 656 

3.4.1 Baseline groundwater level simulation 657 

Groundwater levels in the baseline scenario show a decreasing trend. The mean decreasing rate of groundwater 658 

level is 0.18 m/year (Sen’s slope). The summary of the trend analysis for 50 observation wells is shown in 659 
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supplementary materials (Table SM-9). The calculated decreasing rate varies spatially and ranges between 0.05 660 

to 0.49 m/year. Mustafa et al. (2017a) studied observed groundwater level data of the same study area and 661 

reported that the average groundwater level dropped by 4.5–4.9 m over the last 29 years at a rate of 0.15–0.17 662 

m/year. The annual groundwater level fluctuation of 3 to 5 m in the baseline scenario is also supported by the 663 

findings of Shamsudduha et al. (2009). Overall, the simulated groundwater levels correspond well with the 664 

findings of other researchers for the baseline period. Therefore, the simulated groundwater level of the baseline 665 

period was used for comparison with the simulated groundwater levels of the future scenarios. 666 

3.4.2 Impact of climate change on groundwater level 667 

Impact of climate change on groundwater level is highly uncertain in the study area (Figure 10a). The 668 

uncertainty ranges of the change in mean monthly groundwater level due to different GCMs and GHSs obtained 669 

from the three selected conceptual groundwater flow models are presented with the box-plot for each month. 670 

Climate change could increase the mean monthly groundwater level by up to 2.5 m and could decrease by 0.5 m. 671 

However, the SDGs suggest 0-0.5 m increase in groundwater level due to climate change. The impact of climate 672 

change seems higher from May to September than from October to April. This seasonal variation of climate 673 

change impact can be explained by the precipitation pattern of the study area (Supplementary materials: Figure 674 

SM-2a). Large precipitation amounts occur from May to October in Bangladesh, so that climate change has a 675 

higher impact on this period. Uncertainty of groundwater level due to climate change is highest from June to 676 

December. The precipitation pattern can also explain the monthly variation of climate change impact 677 

uncertainty. Groundwater levels increase more during the rainy season in a high recharge scenario (high 678 

precipitation), but in a low recharge scenario, groundwater levels decrease due to the lack of recharge in the 679 

rainy seasons. Therefore, the uncertainty band increases in this period for extreme scenarios. Similar to 680 

precipitation and groundwater recharge, the effect of the GHSs are not very significant on groundwater level 681 

changes (Figure 10b). Most of the GCMs project that the increase of groundwater level would be higher for RCP 682 

8.5 compared to RCP 4.5 for all months. 683 
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 684 

 685 

Figure 10: Mean monthly change of groundwater levels in the simulated future period (2026-2047) compared to 686 

the baseline period (1980-2006) due to climate change: (a) all GHS combined, (b) as a function of the GHSs. 687 

The impact of climate change on groundwater level also varies spatially. The projected impact of climate change 688 

on groundwater level is relatively higher in the southwestern part (Figure 11) although this pattern does not 689 

correspond to the spatial pattern of groundwater recharge (Figure 9). This can be explained by the effect of the 690 

river on groundwater level. In a high recharge scenario mean monthly groundwater level would increase up to 4 691 

m (April) and 8 m (September). However, in a low recharge scenario, mean monthly groundwater level would 692 

decrease up to 1.6 m. Overall, the impact of climate change on groundwater level was not linear. 693 
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 694 

Figure 11: Spatial variation of mean groundwater level change due to climate change for the (a) high recharge 695 

scenario in April, (b) low recharge scenario in April, (c) high recharge scenario in September, and (b) low 696 

recharge scenario in September. 697 

3.4.3 Future groundwater level under different abstraction scenarios 698 

The mean monthly groundwater level for the PLinear abstraction scenario decreases about 10 to 14 m compared to 699 

the baseline period (Figure 12a). The scenario of PConstant resulted in a 4 to 7 m decrease in groundwater level 700 

(Figure 12b). For the 30% reduced (PReduced_30) abstraction scenario, the mean groundwater level would decrease 701 

about 1.5 to 3.8 m (Figure 12c). Even for the 50% reduced (PReduced_50) abstraction scenario, the mean 702 

groundwater level would decrease about 1.0 to 1.5 m (Figure 12d). Groundwater abstraction in the study area has 703 

to be reduced by 60% compared to the groundwater abstraction rate in 2010, to keep a sustainable groundwater 704 

level (Figure 12e). This indicates that the groundwater abstraction rate of 2010 is much higher than the future 705 

recharge potential. The situation will be worse if the current increasing groundwater abstraction trend continues. 706 
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A spatial variation in groundwater level change for different abstraction scenarios was also observed. In a low 707 

recharge scenario, even for a 30 % reduced (PReduced_30) abstraction scenario, groundwater level decreased about 708 

14 m in the southwestern part of the study area. In a high recharge scenario, on the other hand, groundwater level 709 

increased about 2 m in the northeastern part of the study area for the PReduced_30 abstraction scenario. The results 710 

also show that 50% lower groundwater abstraction than the 2010-rate is not enough to stop groundwater level 711 

declining in the southwestern part of the study area. 712 

 713 
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Figure 12: Monthly mean change in groundwater levels in the simulated future period (2026-2047) compared to 714 

the baseline period (1985-2006) due to groundwater abstraction: (a) for PLinear abstraction scenario; (b) for 715 

PConstant abstraction scenario; (c) for 30 % reduced (PReduced_30) abstraction scenario; (d) for 50 % reduced 716 

(PReduced_50) abstraction scenario and (e) for 60 % reduced (PReduced_60) abstraction scenario. 717 

The summary of annual groundwater level trend analysis of 50 observation wells for the high and low recharge 718 

scenario and for different abstraction scenarios (PLinear, PConstant, and PReduced_30) is shown in Table 2. Only the 719 

significant (p<0.05) trends were considered in this analysis. Scenario PConstant and PReduced_30 have a mean 720 

decreasing rate that is two to three times higher than the baseline scenario. Therefore, proper groundwater 721 

abstraction policy is necessary to maintain sustainable use of this resource. 722 

Table 2: The summary of annual groundwater level trend statistics of 50 observation wells for the baseline 723 

(1985–2006) and simulated future (2026–2047) period under different abstraction scenarios (PLinear, PConstant, 724 

PReduced_30) and recharge scenarios (Low, High). 725 

Statistics 

 
Baseline 

period 

 Simulated future period 

PLinear  PConstant  PReduced_30 

Low High  Low High  Low High 

Slope (m/year) 

Mean   -0.18  -1.10 -1.02  -0.50 -0.47  -0.37 -0.30 

Maximum  -0.05  -0.06 -0.06  -0.03 -0.04  -0.04 -0.09 

Minimum  -0.49  -3.89 -3.71  -1.88 -1.54  -1.13 -0.79 

Median  -0.15  -0.39 -0.38  -0.37 -0.35  -0.27 -0.18 

Standard deviation  0.11  1.23 1.12  0.51 0.40  0.29 0.25 

 726 

3.5 Sources of uncertainty in groundwater level prediction  727 

3.5.1 Alternative conceptual model (CHMs) uncertainty 728 

The 95% prediction intervals of the three best performing models are shown in Figure 13a. The average spread 729 

of the 95% prediction interval of the three alternative CHMs was about 3 m with a maximum spread of about 16 730 

m. It is observed that the spread of the prediction interval is wider for low and high groundwater levels. This is 731 

not surprising as the one-layered model overestimates low groundwater levels and underestimates high 732 

groundwater levels in most of the observation wells. The wide uncertainty band of the alternative CHMs 733 

indicates that the use of a single model in groundwater levels prediction may lead to biased conclusions. 734 
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 736 

Figure 13: The 95% prediction interval of groundwater level of a representative observation well (BOG001) for 737 

(a) different conceptual models and (b) different abstraction scenarios. 738 

3.5.2 Recharge scenarios uncertainty 739 

The average spread of the 95% prediction interval due to recharge scenarios is 1.11 m with a maximum of 6.07 740 

m. The predictive uncertainty due to the recharge scenario is higher during periods with high groundwater levels 741 

and recharge. Although the mean uncertainty resulting from recharge scenarios is relatively lower than for other 742 

sources of uncertainty, there is large temporal and spatial variation in groundwater level prediction due to 743 

recharge scenarios (as described in section 3.4.2). The recharge scenarios were developed using future climate 744 

scenarios of different climate models so that the uncertainty from recharge scenarios represents the uncertainty 745 
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from climate scenarios in groundwater levels prediction. This uncertainty analysis suggests that all possible 746 

climate scenarios should be considered to predict groundwater levels with a reliable uncertainty band. 747 

3.5.3 Abstraction scenarios uncertainty 748 

The 95% prediction interval of groundwater level for different abstraction scenarios increases with time (Figure 749 

13b). The average spread of the 95% prediction interval is 8.38 m and the maximum is 43 m. The uncertainty of 750 

groundwater level related to the abstraction scenario is very high. 751 

3.5.4 Comparison of sources of uncertainties 752 

The uncertainties due to alternative CHMs, recharge scenarios and abstraction scenarios are compared (Figure 753 

14). The spread of the prediction interval of groundwater levels resulting from different CHMs, recharge 754 

scenarios and abstraction scenarios was estimated using Eq. (13), (14) and (15), respectively. The contribution of 755 

each source was calculated based on the median value of the spread of the prediction interval. The contribution 756 

of an individual source is calculated as the ratio of the median value of the spread of the prediction interval for 757 

the respective source to the median value of the spread of the prediction interval for the total uncertainty. The 758 

abstraction scenarios are the dominant source of the total uncertainty in groundwater level prediction in this 759 

overexploited aquifer. About 68% of the total uncertainty arises from the abstraction scenarios. CHM uncertainty 760 

contributed about 23% of total uncertainty. This result is in agreement with the findings by Rojas et al. (2008). 761 

They reported CHM uncertainty contributions up to 30%. In this case, the alternative CHM uncertainty 762 

contribution is higher than the recharge scenario uncertainty contribution, including the greenhouse gas scenario, 763 

climate model and stochastic climate uncertainty contributions. Goderniaux et al. (2015) reported that 764 

uncertainty related to the calibration of hydrological models can be more important than uncertainty related to 765 

climate models in groundwater modeling. The uncertainty due to recharge scenarios was relatively lower than 766 

the other sources but the uncertainty arising from recharge scenarios was very high in the southwestern part of 767 

the study area (described in section 3.4.2). Hence, use of a single model or single recharge or abstraction 768 

scenario may lead to biased estimation of groundwater levels. Therefore, a multi-model and multi-scenario 769 

approach should be used for reliable groundwater levels prediction. 770 
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 771 

Figure 14: Comparison of uncertainties arising from alternative conceptual models, recharge scenarios and 772 

abstraction scenarios. The recharge scenario uncertainty includes the greenhouse gas scenario uncertainty, the 773 

climate model uncertainty and the stochastic uncertainty. 774 

4 Conclusions 775 

The main objective of this study was to quantify groundwater level prediction uncertainty in climate change 776 

impact studies using an ensemble of representative concentration pathways, global climate models, multiple 777 

alternative CHMs and abstraction. In this study, 15 alternative CHMs, 22 climate model runs for representative 778 

concentration pathways 4.5 and 8.5 (in total 44 climate model runs) and 5 groundwater abstraction scenarios 779 

were used to achieve this aim. The BMA technique was used to predict reliable groundwater level using 780 

predictions of alternative CHMs. 781 

It was observed that different conceptual groundwater models (CHMs) can simulate significantly different 782 

groundwater levels due to differences in the number of layers and the boundary conditions. The simple one-783 

layered models were unable to simulate seasonal variation, but had a relatively better performance close to the 784 

model boundaries than the other multi-layered models. The three-layered models were more detailed, but the 785 

performance was not superior to the two-layered models. The performance of the two-layered models was 786 

mostly better than the one-layered and three-layered models. 787 

Ranking of models differed in the calibration and validation period. The best model in the calibration period only 788 

got the 4th rank in the validation period suggesting the importance of the use of multiple CHMs for reliable 789 

prediction. 790 
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The impact of groundwater abstraction on groundwater levels is very high. For 2026–2047, the groundwater 791 

level would decline about 5 to 6 times faster than in the baseline period (1985–2006) if the current increasing 792 

groundwater abstraction trend continues. Even with a 30% lower groundwater abstraction rate compared to the 793 

2010-rate, the mean monthly groundwater level would decrease by up to 14m in the southwestern part of the 794 

study area. Groundwater abstraction has to be reduced by 60% compared to the 2010-rate to keep groundwater 795 

level sustainable. This indicates that the groundwater abstraction rate of 2010 was far higher than recharge 796 

potential. 797 

The differences in groundwater abstraction scenarios were the dominant source of uncertainty in groundwater 798 

level prediction. The uncertainty due to alternative CHMs was also found to be significant and higher than the 799 

uncertainty from the recharge scenarios. The uncertainty due to different recharge scenarios was very high in 800 

southwestern part of study area. Therefore, use of a single model and/or single recharge and abstraction scenario 801 

can lead to biased groundwater levels prediction. 802 

This study suggests that a multi-model approach should be used in groundwater level prediction to avoid biased 803 

estimation of groundwater levels. The BMA is probably the most suitable technique for developing a multi-804 

model average based on the best available data and future alternative scenarios. This study recommends that the 805 

uncertainty due to alternative CHMs, recharge and abstraction scenarios should be considered in future 806 

groundwater levels prediction. 807 

In this study, alternative conceptual models have been calibrated using PEST. However, different calibration 808 

methods can result in different calibrated model parameters. Hence, further studies could be conducted using 809 

different calibration methods (e.g. global parameters optimization methods). We also advice that more field data 810 

would be collected, such as reliable groundwater abstraction data, river flow information, spatially distributed 811 

horizontal hydraulic conductivity and detailed information about the boundary conditions.  812 

 813 

Keeping in mind that the complexity of hydrogeological models is increasing, further studies should be 814 

conducted on global sensitivity analysis (SA) to (i) identify the influential and non-influential parameters on the 815 

model prediction and (ii) better understand the importance of the different components of the complex model 816 

structure. Identification of influential parameters will play an important role in model parameterization and in 817 

reducing uncertainty due to overparameterization. The identification of non-influential parameters using SA will 818 

be a very important step in simplifying model structure.  819 
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