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Abstract. There are various methods available for annual groundwater recharge estimation with in-situ observations. How-

ever, a great number of watersheds around the world still remain ungauged, i.e., without in-situ observations of hydrologic

responses. One approach for making estimates at ungauged watersheds is through regionalization, namely, transferring in-

formation obtained at gauged watersheds to ungauged ones. The reliability of regionalization depends on (1) the underlying

system of hydrologic similarity, i.e., the similarity in how watersheds respond to precipitation input, as well as (2) the approach5

by which information is transferred.

In this paper we present a set of ready-to-use tools for obtaining informative estimates of hydrologic responses at ungauged

watersheds, using a nested tree-based modeling approach to condition the estimates on ex-situ data. It invokes a two-leveled

hierarchical hydrologic similarity, where the higher level determines the relative importance of various watershed characteris-

tics under different conditions, and the lower level performs the regionalization and estimation of hydrologic responses based10

on the watershed characteristics of the ungauged watershed of interest.

We apply the nested tree-based modeling approach to investigate the complicated relationship between mean annual ground-

water recharge and watershed characteristics, and to test the applicability and usefulness of the hierarchical hydrologic similar-

ity. Our findings reveal the decisive role of soil available water content in hydrologic similarity at regional and annual scales,

as well as certain conditions under which it is risky to resort to climate variables for determining hydrologic similarity. These15

findings contribute to the understanding of the physical principles governing robust information transfer.

1 Introduction

Groundwater resources supply approximately 50% of the drinking water and roughly 40% of the irrigation water worldwide

(National Ground Water Association, 2016). Yet, the groundwater has increasingly been depleted since the late 20th century

(Wada et al., 2010). Therefore, groundwater recharge, here broadly defined as the replenishing of water to a groundwater20

reservoir, plays a critical role in sustainable water resources management (de Vries and Simmers, 2002). Several studies have

reviewed and compared multiple methods for recharge estimation at a wide spectrum of temporal and spatial scales, including

lysimeter tests, seepage tests, water table fluctuation, chemical and heat tracers, baseflow analysis, water budget, and numerical

modeling (Scanlon et al., 2002; Healy, 2010; Heppner et al., 2007). However, the aforementioned methods rely on in-situ data,
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while many watersheds worldwide still remain effectively ungauged (i.e., ungauged, poorly gauged, or previously gauged)

(Loukas and Vasiliades, 2014).

This fact leads us to a critical question: How can one estimate hydrologic responses without in-situ data? Studying ungauged

watersheds has been a popular research topic for more than a decade, especially since The Prediction in Ungauged Basins

(PUB) initiative by the International Association of Hydrological Sciences (IAHS) (Sivapalan et al., 2003). Facing the lack5

of in-situ data, studies have attempted transferring ex-situ information from gauged watersheds to ungauged ones; this data

transfer is also termed "regionalization". Regionalization has been applied to constrain the estimates of the parameters of

hydrologic models (especially rainfall-runoff models), which could then be used to make predictions at ungauged watersheds

(Kuczera, 1982; Singh et al., 2014; Razavi and Coulibaly, 2017; Wagener and Montanari, 2011; Blöschl et al., 2013). Such

constraining is expected to lead to more accurate and precise estimates, and could be in the form of (1) relationships between10

model parameters and watershed characteristics, (2) subsets of the parameter space, or (3) plausible parameter values from

models built for other hydrologically similar watersheds (Singh et al., 2014).

However, the application of regionalization is not without challenges. One of the key factors of predictive uncertainty iden-

tified by the PUB initiative is the unsuitability of information transfer techniques, due to a lack of comparative studies across

watersheds and a lack of understanding of the physical principles governing robust regionalization (Hrachowitz et al., 2013).15

Different regionalization techniques have been applied in different cases with different assumptions. For example, Li et al.

(2018) attempted a simple form of regionalization, where kernel density estimation was applied on recharge values obtained

from various hydrologically similar sites, in order to build an ex-situ prior distribution (i.e., a prior distribution conditioned

on ex-situ data). However, one limitation in Li et al. (2018) was that hydrologic similarity was treated as a Boolean variable,

and therefore, there was no way to systematically distinguish a highly similar site from a slightly similar site. To pursue this20

further in this study, we must ask the following question: How can we tell that two watersheds are hydrologically similar? Saw-

icz et al. (2011) applied Bayesian mixture clustering to watersheds across the eastern U.S. They found that spatial proximity

was a valuable first indicator of hydrological similarity because it reflected strong climatic control in their study area. Oudin

et al. (2008) reported similar findings based on 913 French watersheds, despite acknowledging the lack of some key physical

descriptors in their data set. However, Smith et al. (2014) attempted regionalization of hydrologic model parameters in eastern25

Australia, and suggested that spatial proximity was an unreliable metric of hydrological similarity. For their part, Tague et al.

(2013) presented successful regionalization of hydrologic parameters based on geologic similarity at watersheds in the U.S.

Oregon Cascades, a mountain range that features geological heterogeneity. Although not directly shown, their findings also

went against the use of applying spatial proximity, for they discussed the sharp contrasts in hydrology at proximal watersheds

based primarily on geological differences. The indication from these findings is that, although spatial proximity is of practical30

importance due to its common usage, its simplicity, and its demonstrated effectiveness in specific areas (Smith et al., 2014), it

is not the true controlling factor, but rather a confounding factor.

One can resort to other physical characteristics of watersheds for the determination of hydrologic similarity. However, what

those characteristics are may be a complicated question. Razavi and Coulibaly (2017) tested the effect of combinations of

neural-network-based classification techniques and regionalization techniques in Canada, and found that classifying water-35
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sheds before regionalization improves regionalization for streamflow, baseflow, and peak flow predictions, but also discovered

that the best combination of techniques varied from one watershed to another. Singh et al. (2014) applied classification and

regression tree (CART) to determine the relationship between catchment similarity and regionalization in the U.S., finding that

the dominant controls of successful regionalization vary significantly with the spatial scale, with the region of interest, and with

the objective function used. Similarly, Kuentz et al. (2017) found that different physiographic variables controlled various flow5

characteristics across Europe, showing how different descriptors could account for different dominant hydrologic processes

and flow characteristics. These studies indicate an important challenge, that the factors determining hydrologic similarity may

vary under different conditions, and a universal system of hydrologic similarity still remains unavailable. Loritz et al. (2018)

suggested an interesting perspective describing a dynamic hydrologic similarity system, where similarity and uniqueness are

not mutually exclusive; rather, they suggested that hydrologic systems operate by gradually changing to different levels of10

organization in which their behaviors are partly unique and partly similar.

In this study, we would like to integrate the perspective in Loritz et al. (2018), that similarity and uniqueness are not mutually

exclusive, into our regionalization framework for groundwater recharge estimation at ungauged watersheds. It is thus critical to

identify a number of plausible controlling factors. Although few studies have directly identified the controlling factors, some

insights can be learned from previous studies. For example, the effective recharge (i.e., the net source term in the groundwa-15

ter flow equation) in a steady, depth-integrated, and unbounded groundwater flow was found to be correlated with the spatial

distributions of transmissivity and hydraulic head (Rubin and Dagan, 1987a, b). From a recharge-mechanism-based perspec-

tive, previous studies have also found a list of plausible controlling factors of recharge via recharge potential mapping (Yeh

et al., 2016, 2009; Naghibi et al., 2015; Rahmati et al., 2016). These variables include watershed topography, land cover, soil

properties, and geology. At regional scale, climate variables have been found to be among the primary controlling factors of20

groundwater table depth (Fan et al., 2013), mean annual groundwater recharge (Nolan et al., 2007), and mean annual baseflow

(Rumsey et al., 2015), the latter of which is often used as a surrogate of recharge under the steady state assumption. Other

examples include Xie et al. (2017), who showed that evapotranspiration data provided more conditioning power and more

uncertainty reduction than soil moisture data in long-term mean recharge estimation, and Hartmann et al. (2017), who reported

variations of the sensitivity of annual groundwater recharge to annual precipitation with aridity. Although these studies did25

not apply regionalization explicitly and did not target ungauged watersheds directly, their findings provide guidance for us to

identify some watershed characteristics—especially climate variables—that might play an important role in the regionalization

process for recharge estimation.

Given a set of watershed characteristics, the next important question is how the regionalization is carried out. Gibbs et al.

(2012) provided a generic framework of regression regionalization, which involves a multi-objective optimization for calibra-30

tion, a sensitivity analysis to determine the most important model parameters, and a final step relating watershed characteristics

with model parameters. However, the framework does not include a straightforward quantification of uncertainties in calibration

and in regionalization. On the other hand, Smith et al. (2014) applied a hierarchical Bayesian model (which they termed Bayes

empirical Bayes in their study) for the statistical pooling of information from multiple donor watersheds. It was able to transfer
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parametric distributions rather than plausible parameter sets, thus allowing for full Bayesian quantification of uncertainty, but

it required a set of donor watersheds determined a priori.

The objectives of this study are twofold. First, to address the aforementioned challenges in regionalization technique, we

propose a data-driven, Bayesian, and non-linear regression approach, which features simultaneous full Bayesian quantification

of uncertainty and non-linear regression to model the predictor-response relationship. Second, we augment the approach with5

a classification-tree-based model comparison component, and propose a hypothesis of hierarchical hydrologic similarity. The

augmented approach and the hypothesis are applied to a case study to estimate mean annual groundwater recharge at ungauged

watersheds, with the goal of revealing the key controlling factors of a dynamic hydrologic similarity system, which could

ultimately contribute to robust information transfer.

The remainder of this paper is organized as follows. The details of the methodology are provided in Sect. 2. The data, the10

study area, and the application of the approach in the case study are explained in Sect. 3. Sect. 4 presents and compares the

results, while Sect. 5 provides further discussion. Finally, we conclude in Sect. 6.

2 Methodology

The data-driven, Bayesian, and non-linear regression approach is powered by Bayesian Additive Regression Tree (BART). The

details of BART, including the establishment of prior distribution (which we term prior), the calculation of likelihoods, and15

the posterior inference statistics are well documented in Chipman et al. (2010) and in Kapelner and Bleich (2016). Here, we

provide a brief conceptual introduction to the implementation and advantages of BART, as well as how BART it augmented in

this study.

2.1 BART

Consider a fundamental problem of making inference about an unknown function that estimates a response variable of interest20

using a set of predictor variables available at hand. The general form of this problem can be expressed as follows:

R= R̂+ ε= f (θ,x) + ε, (1)

where R is the response variable, f (·) is a model that outputs the estimate of the response variable, R̂ is the estimate, θ is the

vector of model parameters, x is the vector of predictors, and ε is a Gaussian white noise with finite variance, i.e., ε∼N(0,σ2).

The observation of R is denoted by r.25

BART solves this problem by applying a Bayesian version of the additive ensemble tree model. The additive ensemble tree

model is the sum of J individual tree models (Fig. 1, (a) and (b)), each of which consists of a tree structure (Tj , j = 1, ...,J)

and a set of terminal node (or leaf node) values (Mj , j = 1, ...,J), shown as follows:

R̂= f(θ,x) =
J∑

j=1

g (Tj ,Mj ,x) . (2)
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where θ = {T1,M1, ...,TJ ,MJ}. Each tree model, g(·), functions similarly as a CART model: Tj recursively applies binary

partitioning to the predictor space, and Mj provides a set of different outputs corresponding to the partitioned predictor sub-

spaces (Breiman, 1984; Chipman et al., 1998).

BART defines the following joint prior of all the tree structures, all the leaf node value sets, and the white noise variance:

p
(
T1,M1, ...,Tj ,Mj ,σ

2
)

= p(σ2)
J∏

j=1

p(Tj)P (Mj |Tj). (3)5

BART then applies a tailored version of backfitting Markov Chain Monte Carlo (MCMC) simulation algorithm to condition the

prior on r, where backfitting means the jth tree model is iteratively updated with its partial residual. The stationary distribution

toward which the MCMC simulations converge is then used to approximate the true posterior distribution (which we term

posterior):

p
(
T1,M1, ...,Tj ,Mj ,σ

2|r
)
. (4)10

A schematic diagram of the MCMC simulation iteration procedure is shown in Fig. 1 (c). For each MCMC simulation,

both Tj and Mj for each tree in the ensemble tree model are iteratively simulated using a Metropolis-within-Gibbs sampler

(the loop in the blue circle in Fig. 1 (c)). After simulating all the trees, the error variance (σ2) is simulated with a Gaussian-

Gamma-conjugate Gibbs sampler. Together, this process completes one MCMC simulation. We can see by the loop in the red

square in Fig. 1 (c), the MCMC simulation is continuous, until the simulated values converge to a stationary distribution. These15

post-convergence simulated values approximate realizations from Eq. 4, and thus we approximate the true posterior in Eq. 4 by

the stationary distribution obtained by MCMC simulation. At this point, we have reached a BART model that is conditioned on

data r, because all the BART parameters (tree structures, leaf node values, and the white noise variance) have been conditioned

on r.

Given the aforementioned conditioned BART model, we now turn our attention to estimating recharge at an ungauged20

watershed that was not included in the data on which the BART model was conditioned. Here, we let x̃ denote the predictor

vector at an ungauged watershed. We wish to transfer and apply the information we learned with the conditioned model to this

ungauged watershed, and obtain an informative predictive distribution of recharge. Firstly, Eq. 1 can be rewritten as:

R∼N
(
R̂,σ2

)
. (5)

Both the mean and the variance in Eq. 5 are uncertain, and have their respective posteriors. By combining Eqs. 2 and 5, and after25

plugging in the post-convergence MCMC simulated values and x̃, we obtain a plausible realization (indexed by the superscript

l, l = 1, ...,L) of predictive distribution as follows:

N
(
R̂(l),(σ2)(l)

)
=

N
(
f
(
θ(l), x̃

)
,(σ2)(l)

)
=

N




J∑

j=1

g
(
T

(l)
j ,M(l)

j , x̃
)
,(σ2)(l)


 . (6)30
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Figure 1. Schematic diagrams of (a) a regression tree model, (b) an ensemble tree model which consists of J additive regression tree models,

and (c) the loops structure that BART uses to draw MCMC simulations, consisting of an inner loop for J additive regression tree models and

an outer loop that continues until we have a total of L MCMC simulations after convergence toward a stationary distribution.

The collection of many plausible realizations yields an approximated posterior of predictive distributions. Thus, at the

ungauged watershed of interest we have now obtained a fully Bayesian Gaussian predictive model, where the mean and the

variance have their respective posteriors, achieved by transferring the information gained from conditioning the BART model

on r and x to the ungauged watershed of interest.

2.2 Advantages of BART5

The key advantage of BART is that it combines the non-linear regression for the predictor-response relationship with Bayesian

inference, allowing for the determination of a full Bayesian posterior of predictive distribution, rather than one or a few

estimates/predictions.

The estimation and the regionalization processes are data-driven. Prior knowledge of the physics is only minimally accounted

for in terms of the composition of the predictor sets and the user-defined prior of the splitting rules (which are embedded in10

the tree structure variable, Tj). The underlying physics is inferred from the ex-situ data via obtaining conditional simulations

of the tree structures and the terminal nodes (similar to the calibration stage), and thus, is implicitly embedded rather than

explicitly defined. Therefore, the extent to which physics could be inferred is restricted by the training data —here, the ex-situ

data, which is a common limitation of data-driven approaches.

However, in compensation, we avoid two disadvantages of the application of physically based models in the case of un-15

gauged watersheds. First of all, the limited information at the ungauged watershed comes in as is, and it is unrealistic to expect

that certain watershed characteristics should be known. Data availability could hinder the implementation of powerful hydro-
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logic models (Razavi and Coulibaly, 2017) because some of the required model inputs may be unavailable at the ungauged

watersheds (Xie et al., 2017; Gemitzi et al., 2017). It is possible to treat missing inputs as part of the parameters, and run sim-

ulations to impute them or apply stochastic methods to estimate them. Nonetheless, the corresponding computational demand

grows in power law with the number and the plausible range of the missing inputs, which is of great practical importance

when evaluating the pros and cons of an approach. Second, at ungauged watersheds, the conceptual model uncertainty due5

to misconceptions of physically based models is often compensated for, and thus disguised by, parameter uncertainty. The

application of BART allows for estimates conditioned on and only on the available data at hand, without requiring specific

predictors/inputs. Conceptual model uncertainty can be either directly accounted for, which will be explained in Sect. 2.3, or

indirectly represented, which will be explained in Sect. 2.4. These advantages make our approach practically feasible at almost

every ungauged watershed.10

Note that in this study there is no intention to show the superiority of either the data-driven or the physically based ap-

proaches. As Wagener and Montanari (2011) pointed out, the ultimate goal is not to define parameters of a model, but rather, to

understand what behavior we should expect at the ungauged watersheds of interest. We have simply shown why our approach

is suitable in this study, and we will show how it helps us understand the behavior at ungauged watersheds in Sect. 2.4.

2.3 Bayesian model averaging15

This subsection shows how one can account for conceptual model uncertainty with Bayesian model averaging. Suppose that

one establishes K different BART models, denoted as Bk,k = 1, ...,K, to estimate recharge at an ungauged watershed with

watershed characteristics (i.e., the predictors) x̃. To do so, one would revisit Eq. 5, in which the posteriors of the mean and the

variance depend on the model. That dependence would now need to be explicitly shown and addressed since one would now

like to account for model uncertainty. This can be done via Bayesian model averaging, where we average the posterior of the20

estimate over the conditional probability mass function of the K models:

p
(
R̂|x̃, r

)
=

K∑

k=1

p
(
R̂|x̃, r,Bk

)
p(Bk|r) , (7)

where p
(
R̂|x̃, r,Bk

)
can be approximated with MCMC simulations in the same way as that shown in Eq. 6, except that the

previously omitted dependence on the kth model is now explicitly shown. The conditional probability mass function of the

models, p(Bk|r), can be obtained by invoking Bayes rule and the Total Probability rule:25

p(Bk|r) =
p(r|Bk)p(Bk)

∑K
k=1 p(r|Bk)p(Bk)

. (8)

The integrated likelihood, p(r|Bk), can be obtained by integration over the parameter space of Bk:

p(r|Bk) =
∫ ∫

p
(
r|Bk,θk,σ

2
k

)
p
(
θk,σ

2
k|Bk,

)
dθkdσ

2
k, (9)

which can be approximated with a total of L MCMC simulations:

p(r|Bk)≈ 1
L

L∑

l=1

p
(
r|Bk,θ

(l)
k ,(σ2

k)(l)
)
. (10)30
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The last missing piece is p(Bk), signifying the prior probability mass function of the models. As opposed to a uniform

distribution p(Bk) = 1/K, one could adjust the prior based on the characteristics of the ungauged watershed. This is where

physical knowledge as well as the knowledge about hydrologic similarity come into play, which will be elaborated on in Sect.

2.4. With p(Bk) defined, one can now follow Eqs. 7 through 10 to obtain an estimate with the model uncertainty accounted for.

2.4 Nested tree-based modeling and the hierarchical similarity hypothesis5

The second main objective of this study is revealing the key controlling factors of a dynamic hydrologic similarity system for

mean annual groundwater recharge, which could contribute to a better determination of p(Bk) in future applications. Here the

details of how it works are provided.

First, we propose a hypothesis of hierarchical similarity. We hypothesize that hydrologic similarity is controlled by a hierar-

chy that follows two levels:10

– The lower level is the predictor similarity, meaning that if two watersheds have some similar predictor values, then their

hydrologic responses will be similar.

– The higher level is the regionalization similarity, meaning that if two watersheds share regionalization similarity, then

their predictor similarities will be governed by similar predictors.

Put simply, regionalization similarity determines the predictor-predictor relationship and tells us which predictors to extract in-15

formation from, while predictor similarity determines the predictor-response relationship that actually estimates the hydrologic

response. This could explain why the controlling factors of hydrologic similarity change under different conditions.

To test this hypothesis, we define a nested tree-based modeling approach by nesting multiple BART models under a CART

model for classification, and apply it to a case study. The details of the case study are provided in Sect. 3, while a brief general

introduction is given here.20

First, we apply the holdout method to divide a set of gauged watersheds into two subsets: the training watersheds and the

testing watersheds. We represent conceptual model uncertainty indirectly by building multiple BART models using various

plausible predictor sets, and fit the models to the data at the training watersheds. These data are the ex-situ data with respect

to the testing watersheds. After model fitting, at each testing watershed, we evaluate the performance of the BART models, by

comparing the data at the testing watershed with the predictive distributions from the BART models. Then, a label is given to25

each testing watershed, indicating which BART model has the highest predictive accuracy. Finally, we use a CART model to

classify the testing watersheds based on their labels.

With this setup, we use the BART models to explore predictor similarity with different predictor sets, and use the CART

model to explore regionalization similarity. The latter indicates under what condition does a certain BART model stand out in

terms of predictive power, thus showing how the dominant factors of hydrologic similarity change under different conditions.30
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3 Case study

In this case study, we are going to apply the methodology described in Sects. 2.1 and 2.4 to investigate the predictor similar-

ity and the regionalization similarity in the study and to test the hypothesis of hierarchical similarity, with the goal of better

understanding of the physical principles governing robust regionalization and better determination of p(Bk) in future applica-

tions. The Bayesian model averaging in Sect. 2.3 is not demonstrated in this case study, as it is not necessary for achieving the5

aforementioned goal.

This Sect. provides the details about the case study setup, including the watersheds, the recharge data, the watershed char-

acteristics data, the partitioning of data, and the evaluation metrics.

3.1 Watersheds and recharge estimates

The conterminous United States can be divided into eight major river basins (MRBs), each of which consists of thousands10

of watersheds (The United States Geological Survey, 2005; Brakebill and Terziotti, 2011). At each and every watershed,

watershed-average annual recharge estimate and watershed characteristics data are retrieved from publicly available databases,

and will be described in the following subsections. In our work, the recharge estimates are used as the target response while

the characteristics are used as predictors in the regionalization process.

Figure 2. Annotated map of the coverage of the MRBs (left hand side), modified from The United States Geological Survey (2005), and a

zoomed-in view of the study area (right hand side), which includes MRB 1 and MRB 2.

It is important to note that the predictors considered in this case study are not supposed to constitute a comprehensive list15

of controlling factors of recharge, nor are their respective spatiotemporal heterogeneities and uncertainties well accounted

for. Rather, we provide them as an example of what could be available at ungauged watersheds, where one tries to condition

recharge estimates with only a limited amount of information.

9
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In 2002, annual groundwater recharge at each watershed was estimated via baseflow analyses by the U.S. Geological Survey

(USGS) (Wieczorek and LaMotte, 2010h; Wolock, 2003). The reliability of baseflow analyses for recharge estimations depends

on the spatiotemporal homogenization of recharge. Given the long-term steady-state assumption embedded in baseflow anal-

ysis, we made a working assumption in this study that the recharge mechanism remains steady at annual (or larger) temporal

scale, so the inter-annual variability in recharge is solely due to the inter-annual variability of watershed characteristics.5

The more arid U.S. Midwest may have more pronounced localized recharge (de Vries and Simmers, 2002), which cannot

be effectively captured by baseflow analysis (Scanlon et al., 2002). This, then, does not fit well with our working assumption.

Therefore, following the suggestion of Nolan et al. (2007), our study area includes only the relatively humid eastern parts of

the U.S., namely MRB 1 and 2 (Fig. 2). After excluding watersheds with less desirable data coverage, we consider a total of

3609 watersheds in MRB 1 and 7413 watersheds in MRB 2. The distributions of the recharge data from all the watersheds in10

the study area are shown in Fig. 3 (a).

3.2 Climate

As discussed in Sect. 1, climate predictors are found to be among the most important factors to control recharge at regional

scale. At each watershed included in the study the following data are retrieved from publicly available databases: the long-term

average annual precipitation (P̄ ) averaged from 1970 to 2000 (Wieczorek and LaMotte, 2010a), the annual precipitation in the15

year 2002 (P ) (Wieczorek and LaMotte, 2010b), and the long-term average annual potential evapotranspiration (Ep) averaged

from 1960 to 1990 (Title and Bemmels, 2017). Given the precipitation and evapotranspiration, we obtained two additional

climate variables: the long-term aridity index, estimated as φ̄= Ep/P̄ , and the 2002 aridity index, estimated as φ= Ep/P .

Given that the recharge data are based on baseflow analysis for the year 2002, P and φ represent the climate controls of that

same year, while P̄ , Ep, and φ̄ represent climate controls over the long-term.20

The distributions of P are shown in Fig. 3 (b). The annual recharge data (in volume of water per unit watershed area) can

be normalized by P (also in volume of water per unit watershed area), as in Fig. 3 (c). This stems from the concept of water

budgets and has been commonly used in hydrological studies worldwide (e.g., Magruder et al., 2009; Rangarajan and Athavale,

2000; Obuobie et al., 2012; Heppner et al., 2007; Takagi, 2013; Yang et al., 2009). Here, we apply logit transformation, which

is common for proportions or probabilities (Gelman et al., 2014), to that normalized recharge, relaxing the physical bounds25

(0 and 1) of the values of the target variable (Fig. 3 (d)). This step is advantageous as it opens the opportunity to estimate

recharge with parametric statistical models without special accommodations for the bounds. Therefore, in this case study the

logit normalized recharge is used as the target variable.

3.3 Non-climate watershed characteristics

We also consider various non-climate watershed characteristics in this study, including topography, land cover, soil properties,30

and geology. The land cover is based on data published in 2001, which we feel is close enough to 2002 to provide the ap-

propriate information. The other characteristics are based on raw data obtained in different years before 2002; it is assumed
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Figure 3. Distributions of (a) annual recharge in 2002, (b) annual precipitation in 2002, (c) normalized recharge, and (d) logit normalized

recharge at all the watersheds in MRB 1 and 2.

that they remain steady at sub-century time scales. We provide the details of these watershed characteristics in the following

subsections.

3.3.1 Topography and land cover

The topographic predictors are taken from publicly available databases (Wieczorek and LaMotte, 2010g); they are summarized

in Table 1. The land cover variables are the percentages of watershed area corresponding to each land cover class (Wieczorek5

and LaMotte, 2010f); these are summarized in Table 2. The land cover classes are based on the 2001 National Land Cover

Database (NLCD2001), the categories of which include water, developed land, barren land, forest, shrubland, herbaceous land,

cultivated land, and wetland, with each having its own sub-classes. The details of NLCD2001 can be found in Homer et al.

(2007).

3.3.2 Soil property10

The soil property predictors include watershed scale statistics (e.g., average, upper bound, and lower bound) of soil properties

(Wieczorek and LaMotte, 2010e); these are summarized in Table 3. The spatial statistics of the soil properties within each

watershed were obtained over gridded source data values from the State Soil Geographic database (STATSGO) (Schwarz and

Alexander, 1995), which were depth-averaged over all soil layers (Wolock, 1997).

3.3.3 Geology15

The geology predictors used in this study were retrieved from publicly available databases (Wieczorek and LaMotte, 2010c, d)

and they can be classified into two subcategories: surficial geology (surface sediment) and bedrock geology. As the predictors,

we used fractions of the watershed area corresponding to each of the 45 surficial geology types (Wieczorek and LaMotte,

11
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2010d; Clawges and Price, 1999) and each of the 162 bedrock geology types (Wieczorek and LaMotte, 2010c; Schruben et al.,

1994). Details regarding each geology type can be found in Wieczorek and LaMotte (2010c) and Wieczorek and LaMotte

(2010d). Note that in geological terminology, rock type or rock composition data are referred to as lithology data. Compared

to lithology, structural geology data might be more informative for groundwater studies (e.g., orientation, fracture properties,

discontinuity, etc.). However, structural geology information usually requires in-situ investigation, which cannot be expected5

at ungauged watersheds. Therefore, we consider only lithology data in this study.

3.4 Data partitioning

This Sect. explains the setup of the holdout method (i.e., the partitioning of data into two mutually exclusive subsets) for

the watersheds, as well as the partitioning of the predictors into various subsets in order to evaluate the effects of different

predictors.10

3.4.1 Watershed partitioning

Because we cannot evaluate predictive accuracy at real ungauged watersheds due to the lack of in-situ recharge observations,

we follow the holdout method described in Sect. 2.4 to partition the watersheds: the watersheds in MRB 1 are the testing

watersheds and the watersheds in MRB 2 are the training watersheds. The ex-situ data (i.e., data in MRB 2) are used to fit

multiple BART models (to be explained shortly), which are then used to obtain predictive distributions of recharge at all the15

testing watersheds.

There are two reasons for this MRB-based data partitioning:

– For reasons touched on in Sect. 1, we do not consider spatial proximity as a predictor in this study. Separating the two

MRBs partly ensures the exclusion of the confounding effect of spatial proximity, and thus the regionalization is solely

based on the watershed characteristics.20

– Considering the logit normalized recharge (Fig. 3 (d)), the range of values in MRB 2 fully covers the range of values in

MRB 1. However, the reverse is not true. It is thus advantageous to train the models with MRB 2 to avoid poor model

fitting due to lack of data coverage.

After partitioning the watersheds, we now turn our attention to the partitioning of predictors.

3.4.2 Predictor partitioning25

As mentioned in Sect. 1, climate variables are among the most important factors in hydrologic similarity at regional scale, but

there might be other controlling factors to consider as well, and the dominance of climate variables may not be always present.

To investigate the various effects of different predictors, we define a total of six different predictor sets to build six unique

BART models, which are indexed by k, k = 1,2, ...6 (Table 4). Note that the determination of the six predictor sets is guided

by the idea of testing the relative importance of different categories of predictors under different conditions, instead of aiming30

12
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for high accuracy and precision. Therefore, by no means is Table 4 an exhaustive list of all possible sets, nor does it necessarily

include the "best" set. The design of the six predictor sets simply facilitates the investigation of the effects of various categories

of predictors on predictive accuracy and uncertainty.

In addition to the six BART models, we also build a simple model by using the estimated distribution of logit normalized

recharge at the training watersheds (via kernel density estimation) as the predictive distribution for the testing watersheds,5

without considering any predictor. This is a model that ignores hydrologic similarity altogether, and it can be considered as an

extreme case of the ex-situ prior in Li et al. (2018), with a lot more watersheds and much less stringent criteria of similarity.

From this point forward, we refer to this model as the benchmark model, for it is used as a benchmark against which the BART

models are compared.

3.5 Evaluation of predictive distributions10

As mentioned in Sect. 2.4, we label each testing watershed by the best-performing model. Thus, the metric with which we

evaluate predictive distributions matters.

In this study, two different accuracy metrics are adopted. The first is the root mean squared error (RMSE), defined as

Ei,k =

√√√√ 1
L

L∑

l=1

(
R̂

(l)
i,k − r̃i

)2

(11)

where r̃i is the recharge data at the ith testing watershed, and Ei,k is the RMSE of the kth model at the ith testing watershed.15

Note that R̂(l)
i,k is obtained by following Eq. 6, but now subscripts are added to indicate that we plug in the predictors from the

ith testing watershed to the kth model . This metric evaluates the predictive performance in an estimation problem, where we

wish to obtain a "best estimate" of recharge with minimal expected error.

The second metric is the median log predictive probability density (LPD) at the value of recharge observation, defined as

Li,k = medianl=1,...,L

{
ln
[
p
(
R= r̃i|R̂(l)

i,k,(σ
2)(l)k

)]}
(12)20

whereLi,k is the LPD of the kth model at the ith testing watershed. The subscript of (σ2)(l)k indicates the kth model. This metric

evaluates the predictive performance in a simulation problem, where we wish the realizations from the predictive distributions

are likely to be the same as the observation.

In addition to accuracy, we also quantify the predictive uncertainty. This is done by first recognizing the two components of

uncertainty for the kth model at the ith testing watershed:25

1. σ2
k, which we refer to as the predictive variance, and is approximated as the sample median of (σ2)(l)k over l = 1, ...,L,

and

2. the posterior variance of R̂i,k, which we refer to as the estimate variance, and is approximated as the sample variance of

R̂
(l)
i,k over l = 1, ...,L.
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The predictive variance indicates how informative the inferred predictor-response relationship is, while the estimate variance

indicates how certain a BART model can infer that relationship. In this case study we weigh the two components equally, as we

wish to obtain an informative relationship with certainty. To that end, we define the total predictive variance as the summation

of the two components, and use it as the metric of predictive uncertainty in this study.

4 Results5

As discussed above, we built six BART models (Table 4) with ex-situ data. In-situ predictors were then fed into the models to

yield posterior realizations of predictive distributions (Eq. 6). With the metrics of accuracy and uncertainty defined, we are then

able to quantify the predictive performance of the BART models, and classify them based on either the RMSE-based labels or

the LPD-based labels with the nested tree-based modeling approach. This allows for the investigation of the effects of various

predictors under different conditions, which will be presented in this Sect.10

4.1 Evaluation of predictive distributions

The following subsections present the effects of different predictor sets on predictive accuracy and uncertainty.

4.1.1 Predictive uncertainty

The effect of regionalization with the different predictor sets on predictive uncertainty is shown in Fig. 4. The estimate vari-

ance (Fig. 4 (a)) represents how well the BART models capture the predictor-response relationships. We see that the geology15

predictors lead to the lowest estimate variance, probably because of the significantly larger number of predictors used (see

Table 4). Yet, there is a surprise in Fig. 4 (a). First, at k = 1 and k = 2 the estimate variances are generally quite low, despite

the low number of predictors. However, at k = 3, the estimate variances increase significantly. Intuitively, since aridity is the

ratio of evapotranspiration to precipitation, one would expect that the variances at k = 3 would be similar to, if not lower than,

those at k = 1 and k = 2. One plausible explanation here is that although aridity indices and precipitation/evapotranspiration20

carry ample information to be extracted and conditioned upon, the respective predictor-response relationships we get might be

significantly different. When used together, the BART models were not able to formulate a universal relationship. This will be

revisited in Sect. 5.2.

The predictive variance (Fig. 4 (b)) represents how informative the predictor-response relationships are, which is a different

aspect of uncertainty compared to the estimate variance. One could obtain a predictor-response relationship fairly confidently25

(low estimate variance), but the relationship is less informative (high predictive variance), like that found at k = 6. The opposite

case is that one could not confidently obtain a predictor-response relationship, but once that relationship is obtained it is quite

informative, like that found at k = 5.

The total predictive variance (Fig. 4 (c)) provides an overall metric that considers the above two sources of uncertainties.

While the medians are rather similar, the spread of the box plots does vary significantly with k. The condensed box plots (e.g.,30

k = 1 and k = 6) indicate that the total predictive variances are essentially constant throughout all testing watersheds, while the
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Figure 4. The box plots of the estimate variances at the testing watersheds (a), the bar plot of the predictive variances with 95% intervals

shown by the error bars (b), and the box plots of the total predictive variances at the testing watersheds (c). The red line indicates the variance

of the benchmark model for comparison.

spread-out box plots (e.g., k = 5) indicate that the effect of the predictors may vary significantly from one testing watershed

to another. This indicates that there might not be one single predictor set that always leads to the lowest uncertainty, and thus

the effects of predictors on predictive uncertainty may vary from one condition to another. That said, regardless of the testing

watersheds and predictor sets, the total predictive variance is always lower than the variance of the benchmark model, which

clearly shows that regionalization using watershed characteristics definitely improves predictive precision.5

4.1.2 Predictive accuracy

The effect of regionalization with the different predictor sets on RMSE is shown in Fig. 5. The RMSE of the benchmark model

(Fig. 5 (a)) at each testing watershed is simply the difference between the sample mean of the ex-situ recharge data and the

in-situ recharge observation. For the BART models (Fig. 5 (b)), it is calculated by the root of the average squared errors over

post-convergence MCMC simulations.10

Regardless of k, we see that, compared with the benchmark model, RMSE is reduced at least at half of the testing water-

sheds. Surprisingly, the largest overall RMSE reduction is observed when only the aridity indices are used for regionalization,

indicating that at most of the watersheds tested in this study, aridity similarity implies recharge similarity at regional and annual

scales to a high degree. On the other hand, we observe some outliers that have high RMSE reduction at k = 4 through k = 6,
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indicating that topography, land cover, soil properties, and geology may not have an overall effect that is as strong, but under

certain circumstances, they could still be important factors.
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Figure 5. The box plot of the RMSE of the benchmark model at the testing watersheds (a), and the box plots of the RMSE reduction

introduced by applying the BART models at the testing watersheds (b). The red line indicates zero RMSE reduction for comparison.

The effect of regionalization with different predictor sets on LPD is shown in Fig. 6. It is immediately clear that the accuracy

improvement is not as prominent as that in Fig. 5. Only when k = 1 is LPD increased at most of the watersheds . We also find

that all of the distributions of LPD are heavily negatively skewed with a lot of outliers.5

Looking at Figs. 4 through 6 together, one can observe the different effects of the predictor sets on predictive accuracy,

stemming from the different natures of an estimation and a simulation problem. From the point of view of the overall effect, for

k = 2 through k = 5 (i.e., the predictors other than aridity indices) RMSE is reduced at more than half of the testing watersheds,

but LPD does not increase to the same extent. This suggests that the predictive distributions are centered closer to the in-situ

observations due to regionalization, but that the conditioning also significantly reduces the predictive variances, causing the10

predictive distribution to be too narrow. Therefore, compared to a relatively flat, spread-out, and uninformative or weakly

informative distribution, the predictive density decays too quickly when deviating from the predictive mean, resulting in low

LPD. This might be a sign of over-conditioning, or the disproportional reduction of predictive uncertainty, as exemplified in

Fig. 7. The cyan curve is an example of an over-conditioned distribution. Although its mean is close to the true value, the

small variance causes rapid decay of probability density; therefore, at the true value the predictive density is lower than that15

of the weakly informative distribution, and is essentially the same as that of the uninformative uniform distribution. The only

predictor set that improves both RMSE and LPD at most of the testing watersheds is k = 1, the aridity indices, and one could

expect the corresponding predictive distributions to be more similar to the case of the dark blue curve in Fig. 7.
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Figure 6. The box plot of the LPD of the benchmark model at the testing watersheds (a), and the box plots of the LPD increase introduced

by applying the BART models at the testing watersheds (b). The red line indicates zero LPD increase, used for comparison.

Over-conditioning can occur when model fitting or model calibration leads to well-constrained parameters that are, in fact,

subject to different forms of model uncertainty (Hutton et al., 2014; Beven et al., 2008). In this study, it could be that the

uncertainty regarding the predictor-recharge relationship at the testing watersheds is characterized differently compared to the

uncertainty at the training watersheds. For the sake of comparing the relative importance of the different predictor sets, instead

of accounting for model uncertainty, we evaluated and compared the models directly. However, in another application where5

the estimates are to be refined, model uncertainty should be and can be considered (as shown in Sect. 2.3).

4.2 Regionalization similarity

The box plots in Fig. 4 through 6 showed different distributions of the predictive performance metrics for the different predictor

sets. An interesting follow-up question here would be how model performance varies with watershed characteristics. It was

shown that, in consistency with previous studies, aridity is indeed the most important controlling factor at regional and annual10

scales on average, but there are few cases where this aridity dominance is replaced. In other words, how might we identify the

conditions under which a specific predictor set could be more informative than others?

To investigate this further, we give each testing watershed two labels: the model with the lowest RMSE, and the model with

the highest LPD; we refer to these labels as the RMSE labels and the LPD labels, respectively. The possible values of each

label include k = 1 through k = 6 and benchmark, representing the six BART models and the benchmark model, respectively.15

Then, using all the available predictors, we built two CART models to classify watersheds based on the RMSE labels (Fig. 8),

and the LPD labels (Fig. 9).
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Figure 7. An example of over-conditioning: the probability density at the true value (indicated by the red vertical line) of the over-conditioned

distribution is not higher than that of the non-informative distribution or that of the weakly informative distribution, not because the condi-

tioning does not work, but because of the disproportional reduction of the variance of the distribution.

4.2.1 RMSE labels

The available water content (AWC) is the first indicator of regionalization similarity (Fig. 8 node 1): at watersheds with high

AWC, aridity stands out as the dominant factor, consistent with various previous studies cited in Sect. 1. However, there is

a potential risk if one uses aridity as the primary indicator of hydrologic similarity regardless of AWC. In previous studies,

AWC was found to be an important predictor correlated with surface runoff, baseflow, and groundwater recharge (Arnold et al.,5

2000), and it was among the most important parameters to which water balance models are sensitive (Finch, 1998). In the

current study, we are not claiming that AWC cannot be a predictor, but rather, we are suggesting a hierarchical structure in

which AWC is placed —together with other predictors —to help estimate recharge at ungauged watersheds. Since AWC is

governed by field capacity and wilting point, it is an indicator of the storage capacity of the soil for usable/consumable water:

the larger the storage capacity, the higher the degree to which the system is supply-limited, thus pointing to aridity. If the10

storage capacity is low, on the other hand, the more complicated interplay among various predictors needs to be considered,

and one cannot simply assume that aridity is the primary indicator of hydrologic similarity.

Further down the classification tree, watersheds with lower AWC are classified roughly as arid or humid watersheds by the

long-term aridity index. For the more humid watersheds (Fig. 8, nodes 4 through 14), regionalization similarity is controlled

by different predictors, but the dominant predictors for recharge estimation are almost always the climate variables (nodes 6, 8,15

11 and 12, which contain 1576 watersheds in total). Only at a handful of watersheds (nodes 13 and 14, which contain only 185

watersheds in total) are aridity indices not dominant. However, some interesting conjectures can be made by taking a closer

look at these two nodes.
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Figure 8. CART model classifying the RMSE labels of the testing watersheds. Splitting rules are shown in white nodes, while terminal nodes

are colored based on the classification results. On top of every node, in brackets, is the node number, provided for convenient referencing.

The predictors in the splitting rules are expressed in code names for convenience; a reference list is found in Table 5. The width of the tree

branch (grey line) is proportional to the impurity of the node that the branch leads to, where impurity is defined as the probability that two

randomly chosen watersheds within the node have different labels. For each terminal node, the class of the highest multinomial probability

is shown first, which is the classification result, followed by the class of the second highest probability to indicate how impure the node is.

Underneath each terminal node box is the number of watersheds belonging to the node.

Node 14 is a small but unique cluster, featuring watersheds that have low AWC, are humid, and have relatively homogeneous

paragneiss and/or schist bedrock. Both of these bedrock types belong to the category of crystalline rock, and often feature

layering in a particular orientation. The groundwater movement in such rock formation often depends on foliation, i.e., rock

breaks along approximately parallel surfaces, which affect the direction of the regional groundwater flow (Singhal and Gupta,

2010). Hence we observe a condition where the ample water supply cannot be substantially held by the soil due to low AWC,5

and the regional groundwater movement might be controlled by bedrock layering and foliation. Low AWC is an indication

of less clayey soils, and implies that infiltration/percolation through the soil layer might be facilitated by relatively higher

permeability. Water could thus easily enter the bedrock layer, which is rather horizontally homogeneous. To that end, those

predictor sets other than k = 6 become less informative, while the predictor set k = 6 becomes relatively more informative.

In fact, these watersheds are mostly the positive outliers at k = 6 in Fig. 5 (b), where the predictive power of the geology10

predictors is at its best.

Node 13 features watersheds that have low AWC, are humid, are not dominated by homogeneous paragneiss and/or schist,

have a relatively steep average slope, and have large amount of annual precipitation. The low aridity is primarily driven by

precipitation rather than evapotranspiration. In fact, these watersheds are mostly outliers featuring extremely low aridity index

(below 0.65) due to ample precipitation. Under such condition, evapotranspiration is expected to operate to its full potential, i.e.,15
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it is shifting from water-limited state to energy-limited and canopy-controlled state. Because the evapotranspiration demand

of the canopy can be met, the land cover type now starts to play a dominant role in hydrologic similarity. It is noteworthy to

point out node 20 here. Node 20 features watersheds that are relatively humid among the arid watersheds (φ̄ in the range from

0.9 to 0.99) and have ample precipitation. The similarity of node 20 with node 13 supports our conjecture that the dominance

of land cover predictors is due to the precipitation-driven humid environment that is relatively more capable of catering to the5

evapotranspiration water demand.

On the other side of the tree (Fig. 8, node 15 through 21), the resulting classification is quite diverse, and the purity of

each node is relatively lower. Aridity no longer plays the dominant role, and the hierarchical similarity structure becomes

complicated that it is difficult to make straightforward physical interpretations. The most important message we get is the

significant risk one would face if one considers aridity, or any climate variable in general, as the primary indicator of hydrologic10

similarity when AWC is low and aridity index is high. In summary, although climate predictors are still the most important

ones on average, within the context of the hierarchical similarity we have identified certain conditions under which either non-

climate predictors become dominant or no dominant predictor set can be straightforwardly identified, all of which contribute

to the understanding of the dynamic hydrologic similarity.

4.2.2 LPD labels15

The classification of the LPD labels is shown in Fig. 9. In general, the root part of the classification tree (node 1 through 3)

is quite similar to that found in Fig. 8, where AWC and long-term aridity define two sequential overarching separations of

watersheds. However, further down the tree the leaf part is significantly different. The classification essentially leads to only

three big clusters (Fig. 9, nodes 2, 7, and 9), and the other terminal nodes only contain a few watersheds. Node 9 features arid

watersheds with low AWC, where we end up with a highly impure terminal node, and even the highest multinomial probability20

is only 0.27. No further splitting rule could significantly reduce classification error. This is supportive towards our previous

argument that when aridity index is high and AWC is low, it is risky to resort to climate variables for hydrologic similarity,

as shown here that it is difficult to even identify a dominant predictor set. As mentioned in Sect. 4.1.2, underestimation of the

predictive variance (σ2
k) leads to low LPD, and thus it is difficult to make physical interpretation our of the results in Fig. 9,

except for node 1 through 3, which are quite similar to their counterparts in Fig. 8. Therefore, with the LPD labels we are only25

able to identify the overarching regionalization similarity controlled by AWC and long-term aridity.

RMSE and LPD represent views of predictive accuracy in an estimation problem and a simulation problem, respectively.

Intuitively, if one only considers unimodal predictive distribution with limited skewness, a high predictive density at a value

directly implies a closeness of the distribution central tendency to that value. However, the reverse is not necessarily true:

either over- or underestimation of variance might possibly lead to low predictive density, even if the mean is close to the30

target value (e.g., Fig. 7). Based on whether RMSE or LPD is used as the accuracy metric —which implies the scope of

recharge estimation —we can observe some common features as well as some distinctions of the structure of the hypothesized

hierarchical similarity.
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Figure 9. Same as Fig. 8, except that here the classification is done using the LPD labels. The predictors in the splitting rules are expressed

in code names for convenience; a reference list is found in Table 5.

Fortunately, regardless of the metric of predictive accuracy, in both Figs. 8 and 9 the first three nodes are remarkably

consistent, and the effect of the metric of predictive accuracy is only manifested at watersheds with low AWC. This supports

the suggestion that AWC plays a pivotal role in hydrologic similarity for mean annual groundwater recharge estimation.

5 Discussion

In this section, we discuss the key findings as well as the limitations of the case study.5

5.1 The hierarchical similarity hypothesis and the shift in dominant physical processes

With BART’s ability to simultaneously model non-linear and/or interaction effects and present uncertainty in a fully Bayesian

fashion, we are able to show how the controlling factors of hydrologic similarity vary among different watersheds, among

different conditions, and among different accuracy metrics. These are all manifested in the case study under the context of the

hierarchical similarity hypothesis.10
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Climate variables have been identified as the dominant factors in previous studies (see Sect. 1), and they are indeed on

average the most dominant factors in our case study. However, the hierarchical similarity shows potential risks if one resorts

to climate variables to define hydrologic similarity without considering other physical watershed characteristics, especially the

soil available water content.

The details of the hierarchical similarity are inferred from the data in the fashion of supervised machine learning, using a5

nested application of tree-based modeling approach, consisting of six BART models and one benchmark model nested under

one CART model. It is of great importance to have two levels in such a system, as it allows for identification of the shifts of

dominant factors under different conditions. These shifts indicate shifts in dominant physical processes, as exemplified by node

13 and 20 in Fig. 8 where we observed the shift from water-limited evapotranspiration to energy-limited evapotranspiration.

Therefore, we conjecture that it is the shift in dominant physical processes that is driving, and thus is reflecting, the shift in the10

controlling factors of hydrologic similarity under different conditions.

5.2 Limitations of the case study

Here, we provide discussions about the limitations of the case study from the aspects of the target response and the partitioning

of watersheds.

5.2.1 Scale of the target response15

A major limitation of the case study is that the target hydrologic response is the logit normalized watershed-averaged annual

groundwater recharge. This is a large-scale spatiotemporally homogenized response, and in this study, the data were based on

baseflow analyses. Streamflow-based estimation of recharge, such as baseflow analysis, is commonly used in humid regions. As

put forward by Healy (2010), there are three key questions that should be carefully checked before applying baseflow analysis:

(1) Is all recharging water eventually discharged into the stream where the baseflow is measured? (2) Do low flows consist20

entirely of groundwater discharge? (3) Does the contributing area of the aquifer differ significantly from that of the watershed?

At an ungauged watershed, it is unlikely that one would have enough data to verify the answers to these three questions. To

that end, a working assumption about the reliability of the baseflow analysis was made without a rigorous proof. The findings

of the case study are all under the context of this working assumption, and thus, they should not be applied to recharge at other

spatiotemporal scales or other hydrologic responses without careful considerations. Fortunately, from a post hoc check, the25

recharge estimates fall within the typical scales at which baseflow analysis is more suitable: a recharge scale from hundreds to

thousands mm per year, a spatial scale of hundreds of m2 to hundreds of km2, and temporal scales from months to decades

(Scanlon et al., 2002).

5.2.2 Artifact due to the partitioning of watersheds: φ versus P and Ep

Intuitively, since aridity index is the ratio of potential evapotranspiration to precipitation (φ= Ep/P ), one might be surprised30

by the differences among the cases of k = 1, k = 2, and k = 3 in the results. The main reason is revealed in Fig. 10. The Ep
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values at the training and testing watersheds are so distinct that, essentially, all the testing watersheds are outliers from the

point of view of a BART model trained at the training watersheds. On the other hand, the φ values at the training and testing

watersheds share the range from about 0.6 to 1.2, and only differ at the two extreme ends. In other words, the predictor-response

relationships inferred by using φ can be transferred due to the overlapping range (Fig. 10 (c)), but the relationships inferred

using Ep > 1000mm cannot be effectively transferred to watersheds with Ep < 1000mm (Fig. 10 (b)). Although it is not5

shown, a similar case can be found by comparing φ̄ with Ep.
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Figure 10. Distributions of (a) P , (b) Ep, and (c) φ, at watersheds in MRB 1 (the testing watersheds) and MRB 2 (the training watersheds).

Although this might have been avoidable by using a more sophisticated design of cross-validation, we kept the MRB-based

holdout method on purpose. In addition to the reasons that were explained in Sect. 3.4.1, another motivation is that, in reality,

the data at hand come in as is. This means there is no guarantee that the measurements will cover a particular range or that the

watershed characteristics of the ungauged watersheds of interest are within a desirable range. The prevailing superiority of φ10

and φ̄ over P , P̄ , and Ep found in our results shows an important advantage of dimensionless predictors, that they tend to be

more transferable from one site to another, and hence, they may be more suitable for studies targeting ungauged watersheds.

6 Conclusions

In this work, we proposed a nested tree-based modeling approach with three key features: (1) data-driven and non-linear

regression for regionalization and estimation, (2) full Bayesian representation of the predictive uncertainty, and (3) CART-15

based model comparison, and an additional potential feature of accounting for conceptual model uncertainty via Bayesian
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model averaging. We applied the nested tree-based modeling approach to obtain recharge estimates conditioned on ex-situ data

at ungauged watersheds in a case study in the eastern U.S. We hypothesized a hierarchical similarity structure to account for

the dynamic hydrologic similarity underlying the regionalization.

The findings of this study contribute to the understanding of one aspect of the key factors of predictive uncertainty identified

in the PUB initiative: the physical principles governing robust regionalization among watersheds. Firstly, in consistency with5

previous studies, we found that the climate variables are on average the most important controlling factors of hydrologic

similarity at regional and annual scales, which means a climate-based regionalization technique is on average more likely to

result in better estimates. However, with our hierarchical similarity hypothesis we revealed certain conditions under which

non-climate variables become more dominant than climate variables. In particular, we demonstrated how soil available water

content stood out to be the pivotal indicator of the variable importance of aridity in hydrologic similarity. Moreover, we10

showed that with hierarchical similarity one could identify shifts in dominant physical processes that are reflecting shifts in

the controlling factors of hydrologic similarity under different conditions, such as water-limited evapotranspiration versus

energy-limited evapotranspiration, or homogeneous and foliated bedrock versus heterogeneous bedrock. As the controlling

factors change from one condition to another, the suitable regionalization technique also changes. We demonstrated how the

hierarchical similarity hypothesis could indicate mechanisms by which available water content, aridity, and other watershed15

characteristics dynamically affect hydrologic similarity. The nested tree-based modeling approach can be applied to identify

plausible sets of watershed characteristics to be considered in the regionalization process.

The contributions of this study may be viewed differently depending on individual cases. In a situation where groundwater

recharge is the ultimate target variable at ungauged watersheds, the nested tree-based modeling approach offers a systematic

way to obtain informative predictive distributions that are conditioned on ex-situ data. In a difference case, where recharge20

estimation at ungauged watersheds is but one component of a greater project, the aforementioned informative predictive dis-

tributions can be treated as informative ex-situ priors, which could be further updated and/or integrated into simulation-based

stochastic analyses where recharge is an input/component of other models/functions. At ungauged watersheds that will become

gauged in the foreseeable future, the informative predictive distributions again serve as informative ex-situ priors that could

guide the design of the sampling campaign, as different recharge flux magnitudes require different quantifying techniques25

(Scanlon et al., 2002; Healy, 2010). The hierarchical similarity hypothesis offers one plausible explanation of the dynamic

nature of hydrologic similarity, which affects the application of regionalization. Lastly, it should be pointed out that the nested

tree-based modeling approach is independent of the target response and the predictors of interest, so it could be integrated into

future studies within or beyond the field of hydrology in search of a hierarchical predictor-response relationship.
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Table 1. Watershed topography predictors.

Variable Explanation

Basin index Watershed area divided by watershed perimeter squared (dimensionless).

Stream density Reach length divided by watershed area (m−1).

Sinuosity Reach length divided by the length of the straight line connecting the beginning and the ending of the reach (dimensionless).

Slope Mean watershed slope calculated from digital elevation data (degree).
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Table 2. Land cover classification by NLCD2001.

Class Subclass

Water
Open water

Perennial ice

Developed

Open space

Low intensity

Medium intensity

High intensity

Barren Barren land

Forest

Deciduous

Evergreen

Mixed

Shrubland
Dwarf shrub

Shrub/scrub

Herbaceous

Grassland

Sedge

Lichens

Moss

Cultivated
Pasture/hay

Crops

Wetlands
Woody wetland

Emergent herbaceous wetland
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Table 3. Soil property predictors.

Soil property Unit Statisticsa

Calcium carbonate equivalent % Lower/higher bounds

Cation exchange capacity cmolc kg−1 Lower/higher bounds

Depth to the seasonally high water table m Average and Lower/higher bounds

Soil thickness m Lower/higher bounds

Hydrologic soil group classification % Average

Soil erodibility factor dimensionless Average

Permeability m h−1 Average and Lower/higher bounds

Available water content fraction Average and Lower/higher bounds

Bulk density g cm−3 Average and Lower/higher bounds

Organic matter content % Average and Lower/higher bounds

Clay soil content % Average and Lower/higher bounds

Silt soil content % Average

Sand soil content % Average

Percent finer than nos.4, 10, and 200 sieve % Average and Lower/higher bounds

a: Spatial statistics calculated across the watershed.
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Table 4. Table of the six different predictor sets.

k predictors included Number of

predictors

1 φ̄ and φ 2

2 P̄ , P , and Ep 3

3 All climate predictors: P̄ , P , Ep, φ̄ and φ 5

4 Topography and land cover predictors 20

5 Soil predictors 48

6 Geology predictors 206
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Table 5. Reference list of the splitting variables in Fig. 8 and Fig. 9.

Fig. 8 Fig. 9

Node number Splitting variablea Node Number Splitting variablea

1
Average available water content

(AWCAVE)
1

Average available water content

(AWCAVE)

3
Long term average aridity index

(ARID_IDX)
3

Long term average aridity index

(ARID_IDX)

4
% area of Paragneiss and Schist bedrock

(BGEOL_147)
4

Precipitation in 2002

(PPT02MEAN)

5
Average slope

(SLP_DEG)
6

Precipitation in 2002

(PPT02MEAN)

7
Precipitation in 2002

(PPT02MEAN)

9
Precipitation in 2002

(PPT02MEAN)

10
% area of Deciduous Forest

(NLCD01_41)

15
Aridity index in 2002

(ARID_IDX02)

17
Precipitation in 2002

(PPT02MEAN)

19
Average slope

(SLP_DEG)

a: Underneath each predictor, in parentheses, is the predictor code name.
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