
We thank the editor and two anonymous referees for the comments and for giving us the opportunity to 

improve the presentation of this paper. 

Below are our point-by-point replies to the referees’ comments, followed by a marked-up manuscript 

version showing the changes made. 

Responses to comments by anonymous Referee #1: 

1. The discussion on the lack of temporal coverage as one of the limitations has been added as 

Section 5.3.3, line 5 on page 28 in the revised manuscript. 

 

2. The discussion on the lack of desirable data coverage as one of the limitations has been revised; 

please see Section 5.3.2, line 28 on page 27 in the revised manuscript. In addition, Section 5.1 

provides a detailed discussion on the transferability of the approach, which serves as a basis on 

which we pose our arguments in Section 5.3.2. 

 

3. We agree with the referee that some of the findings are specific, while some others are general. 

We added a new discussion in Section 5.1 (line 31, page 25 in the revised manuscript) to discuss 

the transferability of the approach in details, and put emphasis on what are the innovations in 

this approach and why those innovations make the approach advantageous at ungauged 

watersheds. 

 

4. Discussion on the transferability of the approaches has been provided in Section 5.1. 

 

5. Wording in Figure 1 (c) (page 6) has been changed to general notations. 

 

6. A revised Figure of the study area is provided; please see Figure 3 (page 10) in the revised 

manuscript.  

 

7. The suggested addition has been made; please see Figure 4 (page 12) in the revised manuscript. 

 

8. Please see Figures 9 and 10 (page 22 and 25, respectively) in the revised manuscript; Figures 

have been redesigned for better clarity and node numbers have been enlarged. 

 

Responses to comments by anonymous Referee #2: 

1. The introduction has been revised for better clarity of the research objectives; please see line 15 

on page 4 in the revised manuscript. The two objectives are proposing a new approach and 

reveal the key controls of hydrologic similarity for recharge estimation.  

The sentence “…to understand what behavior we can expect in ungauged watersheds” (line 29, 

page 7 in the revised manuscript) is a statement from a previous study, which they referred to 

as the ultimate goal of predictions at ungauged basins. We use this statement to support our 

argument that we have shown why our approach is advantageous, without discussion the 

superiority of either data-driven or physically based approaches. 

The sentence “The second main objective of this study is revealing the key controlling factors of 



a dynamic hydrologic similarity system……” has been removed from Section 2 to avoid 

confusion. Now the research objectives are all in Section 1, at the end of the introduction. 

 

2. We appreciate the referee’s comment. However, at this point we intend to keep Sections 3.4 

and 3.5 in the case study Section. There are multiple ways to partition the data and multiple 

metrics with which we can evaluate predictive distributions. Sections 3.4 and 3.5 only introduce 

our ways that were applied in the case study, and thus are very specific to the case study. A 

generic study on data partitioning or distribution evaluation is outside the scope of the present 

study.  

 

To reduce confusion, Section 2.3 (line 1 page 8 in the revised manuscript) has been revised as a 

general description of the nested approach. 

 

3. The description of data partitioning has been removed from Section 2. Now Section 2 only 

convers the general description of our approach. 

 

4. Bayesian model averaging has been removed from Section 2 as suggested. We still mention it 

(line 1 page 9) to show that this is a feasible extra step for those who are interested. 

 

5. We have reorganized the materials about normalization in a new subsection, Section 3.2.1 (line 

28 page 11). 

 

6. In the beginning of Section 2 (line 24 page 4) we have stated that in this paper we only provide 

conceptual introduction to BART, and provided two previous studies for those interested in the 

details. We have revised our explanation (line 6 through 17 on page 5) about the basic concept 

of BART for better clarity. The number of equations in Section 2 has been reduced to 6 instead 

of 10. 

 

7. Explanation of CART has been added; please see line 10 through 17 on page 5. An example and a 

schematic diagram explaining the nesting of BART under CART have been added; please see line 

6 through 18 on page 8, as well as Figure 2 in the revised manuscript. 

 

8. Definitions of ex-situ and in-situ data are added when they first appear, line 8 page 1 and line 1 

page 1 in the revised manuscript, respectively. 

 

9. We thank the referee for making such a suggestion, and we agree that studying the geographic 

distribution of may provide insights from a different angle. However, in the present study, as 

discussed in the introduction, we would like to avoid understanding hydrologic similarity with 

geographic space, and focus more on the predictor space, which can be explored with the 

nested tree-based approach. 

 

10. We agree with the reviewer that a more intuitive name convention is always desirable. In fact, 

we tried showing the descriptions of all code-named predictor in the text and in the Figure. 

However, that lead to unnecessarily lengthy discussion and distorted Figures (in order to fit in 



the long description of some of the predictors). Thus, we have come to the solution of providing 

look-up tables. 

To alleviate the trouble brought by flipping to the tables at the back, we moved Table 5 right 

next to Figure 9 (please see page 22 in the revised manuscript). 

 

11. Legends have been added in Figures 9 and 10 (page 22 and 25, respectively). 

 

12. There is no comment 12. 

 

13. To reduce confusion and also avoid lengthy text, we introduced the acronym “LNR” for logit 

normalized recharge (line 2 page 12 in the revised manuscript), and we used the term LNR when 

referring to the target response in the case study. 

 

14. A detailed discussion about the transferability and the advantageous of the proposed approach 

has been added in Section 5.1 (line 31 page 25 in the revised manuscript). We emphasize the 

innovation of our approach on the quantification of uncertainties, which is a general advantage 

of our approach at ungauged watersheds. 

 

15. A discussion has been added in Section 5.1. We emphasize the innovation of our approach on 

the quantification of uncertainties, which is a general advantage of our approach at ungauged 

watersheds. Our argument is not that BART is the most accurate model or the most efficient one 

in terms of training, but that it offers a Bayesian representation of parameter uncertainty, which 

we think is of great importance at ungauged watersheds. 

We mentioned two studies in Section 2 (line 26 and 27 on page 4 in the revised manuscript) that 

provide the details of posterior inference statistics with BART, for those interested in the details 

about how to train BART for prediction purposes. 

 

16. We thank the referee for the comment. We have added Section 5.1 to discuss the general 

contributions of this study, and Section 5.2 to discuss the contributions that are specific to the 

case study (which corresponds to the referee’s suggestion of process control).  

By separating the innovations in the approach and the findings of process control, we hope to 

separate the two types of contributions of this study, in order to reduce confusion. 

 

17. We thank the referee for the appreciation. 

 

18. We have revised the explanation of predictor partitioning (line 6 through 11 page 15 in the 

revised manuscript). The very next paragraph (line 12 page 15) explains that by no means do we 

expect our partitioning to yield an exhaustive list of all possible sets, nor do we expect to include 

the “best” set.  

We consider the effect of different proposals of plausible BART models (which represents 

different perspectives of the conceptual understanding of the underlying physics) an interesting 

follow-up that could be pursued in future studies, but beyond the scope of the present study. 

 



19. We thank the reviewer for the suggestion. Dimension reduction of the data is certainly an 

interesting way forward.  

When doing the case study, we did not have the lithological expertise to aggregate the lithology 

data ourselves, so we resorted to BART and let the data teach us about the dominant bedrock 

type. In fact, it turned out that the BART models are capable of identifying a few dominant 

predictors in a predictor set. We found only a few bedrock types being frequently used as the 

splitting variables, and the others share a rather uniformly low appearance rate.   

At the early stage of the study, we also tried performing principle component analyses before 

building BART models, and use the principle components as the predictors. However, we found 

that this obscured the interpretation of hierarchical similarity and the probability mass function 

of plausible models, so we turned our attention back to using the predictors as is. 

Like the response to comment 18 above, we consider the effect of dimension reduction, data 

aggregation, and the variable dominance of different rock types interesting follow-ups that 

could be pursued in future studies, but beyond the scope of the present study. 

 

20. We agree with the reviewer that the modeler has the opportunity to decide how to partition the 

data, and agree that a designed partitioning that makes the training and testing samples overlap 

could improve the robustness of the estimation. 

The reasons we adopt the MRB-based are listed in Section 3.4.1 (line 9 page 15 in the revised 

manuscript), and this decision is further discussed in the revised Section 5.3.2 (line27 page 27).  

Also, in the discussion in Section 5.1 we have pointed out that the innovation we emphasis is the 

Bayesian representation of uncertainty rather than a guaranteed high accuracy of prediction. 

 

21. We have added a new subsection: Section 3.4.3 (line 17 page 16 in the revised manuscript) to 

explain the benchmark model in details. References on kernel density estimation have also been 

added in Section 3.4.3. 

 

22. We have removed the description of the structure of this paper, as suggested by the referee. 

Please see line 1 page 5 in the marked-up manuscript attached below. 

 

23. A schematic diagram and an example have been added. Please see Section 2.3 and Figure 2 on 

page 8 in the revised manuscript. 

 

24. The sentence has been rephrased for better clarity; please see line 20 page 7 in the revised 

manuscript. The intention is to explain how data availability could hinder the application of 

physically based model.  

 

25. Each plausible predictor set corresponds to one BART model. This is also explained in the first 

paragraph in Section 2.3; please see line 1 through 5 on page 8 in the revised manuscript. 

 

26. Please see line 5 through 23 on page 9 in the revised manuscript for the revised explanation. 

Two examples have been added. 

 



27. Bayesian model averaging has been removed as suggested. 

 

28. A map has been added; please see Figure 3 on page 10 in the revised manuscript. 

 

29. As suggested, justification has been moved to Section 3.1 (line 1 through 9 on page 11 in the 

revised manuscript). 

 

30. The long term variables could compensate for the lack of data on antecedent condition. A 

detailed discussion will be added to the revised discussion section. Please see line 24 through 26 

on page 11, as well as Section 5.3.3 (page 28) in the revised manuscript. 

 

31. A discussion has been added in Section 5.3.3, page 28 in the revised manuscript. 

 

32. Answered by the response to comment 13. 

 

33. Answered by the response to comment 5. 

 

34. Answered by the response to comment 18. 

 

35. Answered by the response to comment 2. 

 

36. Answered by the response to comment 25. 

 

37. We thank the referee for the appreciation. 

 

38. Answered by the response to comment 21. Yes, like the referee said, the benchmark model does 

not require predictors at all and is quite naïve and simple. 

 

39. Answered by the response to comment 21. References on kernel density estimation has been 

added. 

 

40. The sentence has been rephrased as suggested; please see line 9 on page 20 in the marked-up 

manuscript attached below. 

 

41. Answered by the response to comment 19. 

 

42. There is not comment 42. 

 

43. The algebraic explanation is provided in Section 3.5. Below is the descriptive explanation.  

From BART, we can obtain a predictive distribution that follows the form of a Gaussian 

distribution, where both the Gaussian mean and the Gaussian variance are uncertain and are 

modeled as random variables.  

What we termed “predictive variance” is the value of that Gaussian variance. Because it’s 

uncertain, we estimated it with the sample median value.  



What we termed “estimate variance” is the variance of the Gaussian mean, which we estimated 

with the sample variance of the Gaussian mean. 

 

44. Answered by the response to comment 10. 

 

45. Please see the red horizontal line and the caption of Figure 5, on page 18 in the revised 

manuscript. 

 

46. It was surprising because it was unexpected that the model with only two predictors 

outperformed the other models in general. It not only outperformed models with non-climate 

predictors, but also outperformed models with other climate predictors. 

 

47. Answered by the response to comment 9. 

 

48. We thank the reviewer for the suggestion. This Figure is supposed to be an example for the 

conceptual understanding rather than an actual case.  

Instead of adding another Figure, we have revised the explanation (line 17 through 33 on page 

20 in the revised manuscript). In particular, please see line 27 through 30 on page 20 in the 

revised manuscript, where we mention why the phenomenon in Figure 8 in the revised 

manuscript is possible. 

 

49. Please see page 21 in the revised manuscript; the title has been rephrased. 

 

50. Answered by the response to comment 10. 

 

51. Please see page 24 in the revised manuscript; the title has been rephrased. 

 

52. Answered by the response to comment 10. 

 

53. We have added explicit acknowledgment that the data partitioning in the case study is not the 

best partitioning; please see Section 5.3.2 on page 27 in the revised manuscript. Section 5.3.2 

provides a discussion on the limitations due to the partitioning, as well as the reason we kept 

this partitioning method. 

 

Responses to the additional comment by anonymous Referee #2: 

We thank the referee for this insightful suggestion. We have revised the discussion section to discuss the 

general contributions and the specific contributions of this study separately. In Section 5.1 we discuss 

the innovations in our approach, and emphasize the advantage of the quantification of the parameter 

uncertainty as well as the model structure uncertainty. In Section 5.2 we discuss the findings specific to 

the case study. This is the discussion on “process controls” as suggested by the referee. 
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Abstract. There are various methods available for annual groundwater recharge estimation with in-situ observations . However,

::::
(i.e.,

::::::::::
observations

::::::::
obtained

::
at

:::
the

::::::::::
site/location

::
of

::::::::
interest),

:::
but a great number of watersheds around the world still remain un-

gauged, i.e., without in-situ observations of hydrologic responses. One approach for making estimates at ungauged watersheds

is through regionalization, namely, transferring information obtained at gauged watersheds to ungauged ones. The reliability

of regionalization depends on (1) the underlying system of hydrologic similarity, i.e., the similarity in how watersheds respond5

to precipitation input, as well as (2) the approach by which information is transferred.

In this paper,
:
we present a set of ready-to-use tools for obtaining informative

:::::
nested

:::::::::
tree-based

:::::::::
modeling

::::::::
approach

:::
for

::::::::::
conditioning

:
estimates of hydrologic responses at ungauged watersheds , using a nested tree-based modeling approach to

condition the estimates on ex-situ data . It invokes a
:::
(i.e.,

::::
data

:::::::
obtained

::
at

::::::::::::
sites/locations

:::::
other

:::
than

:::
the

:::::::::::
site/location

::
of

:::::::
interest)

::::
while

::::::::::
accounting

:::
for

:::
the

::::::::::
uncertainties

::
of

:::
the

::::::
model

:::::::::
parameters

::
as

::::
well

:::
as

::
the

::::::
model

::::::::
structure.

::::
The

:::::::
approach

::
is
::::
then

:::::::::
integrated10

::::
with

:
a
:::::::::
hypothesis

::
of two-leveled hierarchical hydrologic similarity, where the higher level determines the relative importance of

various watershed characteristics under different conditions, and the lower level performs the regionalization and estimation of

hydrologic responses based on the watershed characteristics of the ungauged watershed of
::
the

:::::::::
hydrologic

::::::::
response

::
of interest.

We apply the nested tree-based modeling approach to investigate the complicated relationship between mean annual ground-

water recharge and watershed characteristics , and to test the applicability and usefulness of the
::
in

:
a
::::
case

:::::
study,

::::
and

:::::
apply

:::
the15

:::::::::
hypothesis

::
of hierarchical hydrologic similarity

:
to
:::::::
explain

:::
the

:::::::
behavior

:::
of

:
a
::::::::
dynamic

:::::::::
hydrologic

::::::::
similarity

::::::
system. Our find-

ings reveal the decisive role
::::
roles of soil available water content

::
and

::::::
aridity

:
in hydrologic similarity at

::
the

:
regional and annual

scales, as well as certain conditions under which it is risky to resort to climate variables for determining hydrologic similarity.

These findings contribute to the understanding of the physical principles governing robust information transfer.

1 Introduction20

Groundwater resources supply approximately 50% of the drinking water and roughly 40% of the irrigation water worldwide

(National Ground Water Association, 2016). Yet, the groundwater has increasingly been depleted since the late 20th century

(Wada et al., 2010). Therefore, groundwater recharge, here broadly defined as the replenishing of water to a groundwater

reservoir, plays a critical role in sustainable water resources management (de Vries and Simmers, 2002). Several studies have

1



reviewed and compared multiple methods for recharge estimation at a wide spectrum of temporal and spatial scales, including

lysimeter tests, seepage tests, water table fluctuation, chemical and heat tracers, baseflow analysis, water budget, and numerical

modeling (Scanlon et al., 2002; Healy, 2010; Heppner et al., 2007). However, the aforementioned methods rely on in-situ data,

while a great number of
:::::
many watersheds worldwide still remains

:::::
remain

:
effectively ungauged (i.e., ungauged, poorly gauged,

or previously gauged) (Loukas and Vasiliades, 2014).5

This fact leads us to a critical question: How can one estimate recharge
:::::::::
hydrologic

::::::::
responses

:
without in-situ data? Here,

perhaps one could learn from research in a similar field of study—specifically, the prediction of streamflow at ungauged

watersheds , which
::::::::
Studying

::::::::
ungauged

:::::::::
watersheds has been a popular research topic for more than a decade(Hrachowitz et al., 2013; Blöschl et al., 2013)

:
,
::::::::
especially

::::
since

::::
The

::::::::
Prediction

::
in
:::::::::
Ungauged

::::::
Basins

:::::
(PUB)

::::::::
initiative

::
by

:::
the

:::::::::::
International

:::::::::
Association

::
of

:::::::::::
Hydrological

::::::::
Sciences

::::::
(IAHS)

:::::::::::::::::::
(Sivapalan et al., 2003). Facing the lack of in-situ data, studies have attempted transferring ex-situ information from10

other gauged watersheds to ungauged onesof interest; this data transfer is also termed "
:
“regionalization". Regionalization

could be
:::
has

::::
been

:
applied to constrain the estimates of the parameters of hydrological models

:::::::::
hydrologic

::::::
models

::::::::::
(especially

:::::::::::
rainfall-runoff

:::::::
models), which could then be used to make predictions at ungauged watersheds (Kuczera, 1982; Singh et al., 2014; Razavi and Coulibaly, 2017; Wagener and Montanari, 2011)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Kuczera, 1982; Singh et al., 2014; Razavi and Coulibaly, 2017; Wagener and Montanari, 2011; Blöschl et al., 2013). Such con-

straining is expected to lead to more accurate and precise estimates, and could be in the form of (1) relationships between model15

parameters and watershed characteristics, (2) subsets of the parameter space, or (3) plausible parameter values from models at

::::
built

::
for

:::::
other

:
hydrologically similar watersheds (Singh et al., 2014).

However, the application of regionalization is not without challenges. One of the key factors of predictive uncertainty iden-

tified by the PUB initiative is the unsuitability of information transfer techniques, due to a lack of comparative studies across

watersheds and a lack of understanding of the physical principles governing robust regionalization (Hrachowitz et al., 2013).20

Different regionalization techniques have been applied in different cases with different assumptions. For example, Li et al.

(2018) attempted a simple form of regionalization, where kernel density estimation was applied on recharge values obtained

from various hydrologically similar sites, in order to build an ex-situ prior distribution (i.e., a prior distribution conditioned

on ex-situ data). However, one limitation in Li et al. (2018) was that hydrologic similarity was treated as a Boolean variable,

and therefore, there was no way to systematically distinguish a highly similar site from a slightly similar site. To pursue this25

further in this study, we must ask the following question: How can we tell that two watersheds are hydrologically similar? Saw-

icz et al. (2011) applied Bayesian mixture clustering to watersheds across the eastern U.S. They found that spatial proximity

was a valuable first indicator of hydrological similarity because it reflected strong climatic control in their study area. Oudin

et al. (2008) reported similar findings based on 913 French watersheds, despite acknowledging the lack of some key physical

descriptors in their data set. However, Smith et al. (2014) attempted regionalization of hydrologic model parameters in eastern30

Australia, and suggested that spatial proximity was an unreliable metric of hydrological similarity. For their part, Tague et al.

(2013) presented successful regionalization of hydrologic parameters based on geologic similarity at watersheds in the U.S.

Oregon Cascades, a mountain range that features geological heterogeneity. Although not directly shown, their findings also

went against the use of applying spatial proximity, for they discussed the sharp contrasts in hydrology at proximal watersheds

based primarily on geological differences. The indication from these findings is that, although spatial proximity is of practical

2



importance due to its common usage
:::
use, its simplicity, and its demonstrated effectiveness in specific areas (Smith et al., 2014),

it is not the true controlling factor, but rather a confounding factor.

One can resort to other physical characteristics of watersheds for the determination of hydrologic similarity. However, what

those characteristics are may be a complicated question. Razavi and Coulibaly (2017) tested the effect of combinations of5

neural-network-based classification techniques and regionalization techniques in Canada, and found that classifying water-

sheds before regionalization improves regionalization for streamflow, baseflow, and peak flow predictions, but also discovered

that the best combination of techniques varied from one watershed to another. Singh et al. (2014) applied classification and

regression tree (CART) to determine the relationship between catchment similarity and regionalization in the U.S., finding that

the dominant controls of successful regionalization vary significantly with the spatial scale, with the region of interest, and with10

the objective function used. Similarly, Kuentz et al. (2017) found that different physiographic variables controlled various flow

characteristics across Europe, showing how different descriptors could account for different dominant hydrologic processes

and flow characteristics. These studies indicate an important challenge, that the factors determining hydrologic similarity may

vary under different conditions, and a universal system of hydrologic similarity still remains unavailable. Loritz et al. (2018)

suggested an interesting perspective describing a dynamic hydrologic similarity system, where similarity and uniqueness are15

not mutually exclusive; rather, they suggested that hydrologic systems operate by gradually changing to different levels of

organization in which their behaviors are partly unique and partly similar.

In this study, we would like to integrate the perspective in Loritz et al. (2018), that similarity and uniqueness are not mutually

exclusive, into our regionalization framework for groundwater recharge estimation at ungauged watersheds. It is thus critical to

identify a number of plausible controlling factors. Although few studies have directly identified the controlling factors, some20

insights can be learned from previous studies. For example, the effective recharge (i.e., the net source term in the groundwater

flow equation) in a steady, depth-integrated, and unbounded groundwater flow was found to be correlated with the spatial

distributions of transmissivity and hydraulic head (Rubin and Dagan, 1987a, b)
:::::::::::::::::::::::
(Rubin and Dagan, 1987a, b). From a recharge-

mechanism-based perspective, previous studies have also found a list of plausible controlling factors of recharge via recharge

potential mapping (Yeh et al., 2016, 2009; Naghibi et al., 2015; Rahmati et al., 2016). These variables include watershed25

topography, land cover, soil properties, and geology. At
::
the

:
regional scale, climate variables have been found to be among the

primary controlling factors of groundwater table depth (Fan et al., 2013), mean annual groundwater recharge (Nolan et al.,

2007), and mean annual baseflow (Rumsey et al., 2015), the latter of which is often used as a surrogate of recharge under

the steady state assumption. Other examples include Xie et al. (2017), who showed that evapotranspiration data provided

more conditioning power and more uncertainty reduction than soil moisture
:::
data

:
in long-term mean recharge estimation, and30

Hartmann et al. (2017), who reported variations of the sensitivity of annual groundwater recharge to annual precipitation with

aridity. Although these studies did not apply regionalization explicitly and did not target ungauged watersheds directly, their

findings do indicate that some physical
::::::
provide

:::::::
guidance

:::
for

::
us

::
to
:::::::
identify

:::::
some

::::::::
watershed

:
characteristics—especially climate

variables—control the relationship between watershed characteristics and recharge, which in turn affects
:::
that

:::::
might

::::
play

:::
an

::::::::
important

:::
role

::
in
:
the regionalization process for recharge estimation.35

3



Given a set of watershed characteristics, the next important question is how the regionalization is carried out. Gibbs et al.

(2012) provided a generic framework of regression regionalization, which involves a multi-objective optimization for calibra-

tion, a sensitivity analysis to determine the most important model parameters, and a final step relating watershed characteristics

with model parameters.
:::
The

:::::::::
framework

::
is

:::::::
capable

::
of

::::::::::
assimilating

::::::::::
information

:::::
from

:::::::::
exogenous

::::::::
variables

:::
and

::::::::::
accounting

:::
for

::
the

::::::::::
interaction

:::::::
between

::::::::::
parameters. However, the framework does not include a straightforward quantification of uncertain-5

ties in calibration and in regionalization. On the other hand, Smith et al. (2014) applied a hierarchical Bayesian model (which

they termed Bayes empirical Bayes in their study) for the statistical
::
In

::::::::::
comparison,

:::::::::
Bayesian

:::::::::
approaches

:::::
offer

::
a

:::::::
solution

::
to

:::
the

::::::::::::
quantification

::
of

::::::::::
uncertainty

:::
by

:::::::::
outputting

::::::::::
conditional

:::::::::::
distributions.

:::::::
Despite

:::
the

::::
lack

:::
of

::::::
in-situ

:::::
data,

:::
one

::::
can

::::
still

::::
apply

::::::::
Bayesian

::::::::::
approaches

::
to

:::::::
establish

:::::
prior

::::::::::
distributions

::::
that

:::
are

::::::::
informed

::
by

::::
data

:::::
from

:::::::
previous

::::::
studies

::
or

::::::::::::::
well-established

::::::::
databases

::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Woodbury and Rubin, 2000; Hou and Rubin, 2005; Woodbury, 2011)

:
.
:::::
More

::::::::
advanced pooling of information from10

multiple donor watersheds. It was able to transfer parametric distributions rather than plausible parameter sets, thus allowing

for full Bayesian quantification of uncertainty, but it required a set of donor watersheds determined a priori
::::::
sampled

:::::
sites

:::
has

::::
also

::::
been

::::::::::::
demonstrated

::::
with

::::
the

::::::::::
application

::
of

::::::::
Bayesian

:::::::::::
hierarchical

::::::
models

:::::::::::::::::::::::::::::::::
(Smith et al., 2014; Cucchi et al., 2019)

:
,
:::::
which

::::
can

:::::::
account

:::
for

:::::
both

:::::
intra-

::::
and

:::::::
inter-site

::::::::::
uncertainty

:::
of

:::
the

::::::::::
parameters.

:::::::::
However,

:::
the

::::::::::::::
aforementioned

::::::::
Bayesian

:::::::::
approaches

::::
have

::::::
several

:::::::::::::
disadvantages,

::::::::
including:

:::
(1)

::::::::
requiring

::
a
::::::
system

::
of

:::::::::
hydrologic

:::::::::
similarity

:::
that

:::::
helps

::
us

::::::
decide

::::::
which15

:::::::
sampled

::::
sites

::
or

:::::::::
databases

:::
are

:::::::
suitable

::
as

:::::::::::
“information

:::::::
donor",

:::
(2)

::::::::
requiring

::::::
known

::
or

::::::::
assumed

:::::::::::
distributional

:::::
forms

:::
of

:::
the

:::::::::
parameters,

::::
and

:::
(3)

:::::::::
difficulties

:::
in

:::::::::
accounting

::::
for

::::::::::
complicated

::::
and

::::::
highly

:::::::::
non-linear

::::::::::
dependence

:::
on

:::::::::
exogenous

:::::::::
variables.

::::::
Adding

::::
onto

:::
the

:::::::::
challenge

:
is
::::

that
::::::::::
uncertainty

:::::
arises

::::
from

::
a
::::
lack

::
of

::::::::::
knowledge

:::::
about

::::
how

::
to

::::::::
represent

:::
the

:::::::::
watershed

::::::
system

::
in

:::::
terms

::
of

::::
both

::::::
model

::::::::
structure

:::
and

::::::::::
parameters

::::::::::::
(Beven, 2016)

:
.
::::::::::
Uncertainty

:::::
about

:::
the

::::::
model

::::::::
structure

:::
has

::::
been

:::::::::
identified

:::
and

:::::::
studied,

:::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Beven, 2006; Beven and Freer, 2001; Nowak et al., 2010),

:::
but

:::
not

:::::
under

:::
the

::::::
context

::
of
:::::::::
ungauged

:::::::::
watershed,20

::::::::::::
regionalization,

::::
and

:::::::::
hydrologic

:::::::::
similarity.

:::
The

::::
lack

:::
of

:::::
in-situ

::::
data

::::
does

::::
not

:::::
justify

::
a
::::::::
presumed

::::::
model

::::::::
structure;

::::
even

:::::::
without

:::::
in-situ

::::
data,

:::
the

::::::::
modeler

:::
can

:::
still

::::::::
consider

::::::::::::
simultaneously

::::::::
multiple

:::::::
potential

::::::
model

:::::::::
structures,

::::::
instead

::
of

:::::::
wrongly

::::::::
assuming

::
a

::::
fixed

:::::::
structure

:::::::::::::::::
(Rubin et al., 2018).

The
::
To

:::
that

::::
end,

:::
the

:
objectives of this study are twofold. First, to address the aforementioned challenges in regionalization

technique, we propose a data-driven, Bayesian, and non-linear regression
:::::
nested

::::::::
tree-based

::::::::
modeling

:
approach, which features25

simultaneous full Bayesian quantification of uncertainty and
::
(1) non-linear regression

:
in

:::::
order to model the predictor-response

relationship
:
,
:::
(2)

:::
full

:::::::::
Bayesian

:::::::::::
quantification

:::
of

::::::::
parameter

::::::::::
uncertainty,

::::
and

:::
(3)

:::::::::::::::::::::::
proposal-comparison-based

:::::::::::
consideration

:::
of

:::::
model

:::::::
structure

::::::::::
uncertainty. Second, we augment the

:::::::
integrate

:::
the

:::::
nested

:::::::::
tree-based

::::::::
modeling approach with a classification-tree-based

model comparison component, and propose a hypothesis of hierarchical hydrologic similarity. The augmented approach and

the hypothesis are applied to a case study to
:::
We

:::::
apply

::
the

::::::::
approach

::
to

:
estimate mean annual groundwater recharge at ungauged30

watersheds , with the goal of revealing
::
in

:
a
::::
case

:::::
study,

:::
and

:::
we

::::::
invoke

:::
the

:::::::::
hypothesis

::
of

::::::::::
hierarchical

::::::::
similarity

::
to

:::::
reveal

:
the key

controlling factors of a dynamic hydrologic similarity system, which could ultimately contribute to robust information transfer

.
::
in

:::::
future

::::::::::
applications.

:
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The remainder of this paper is organized as follows. The details of the methodology are provided in Sect. 2. The data, the

study area, and the application of the approach in the case study are explained in Sect. 3. Sect. 4 presents and compares the

results, while Sect. 5 provides further discussion. Finally, we conclude in Sect. 6.

2 Methodology

The data-driven, Bayesian, and non-linear regression approach
:::::::
proposed

::
in
::::
this

:::::
study is powered by Bayesian Additive Regres-5

sion Tree (BART)
:
at
:::
its

::::
core. The details of BART, including the establishment of prior distribution (which we term prior), the

calculation of likelihoods, and the posterior inference statistics are well documented in Chipman et al. (2010) and in Kapelner

and Bleich (2016). Here, we provide a brief conceptual introduction to the implementation and advantages of BART, as well

as how BART it augmented in this study.

2.1 BART10

Consider a fundamental problem of making inference about an unknown function that estimates a response variable of interest

using a set of predictor variablesavailable at hand. The general form of this problem can be expressed as follows:

R= R̂+ ε= f (θ,x) + ε, (1)

where R is the response variable, f (·) is a model that outputs the estimate of the response variable, R̂ is the estimate, θ is the

vector of model parameters, x is the vector of predictors, and ε is a Gaussian white noise with finite variance, i.e., ε∼N(0,σ2).15

The data for
::::::::::
observation

::
of R are

::
is denoted by r.

BART solves this problem by applying a Bayesian version of the additive ensemble tree model. The
::
To

:::
put

::
it

::::::
simply,

::::::
BART

:::
can

::
be

:::::::::
understood

:::
as

:::::::
Bayesian

::::::::
inference

::::
done

:::
for

:::::
many

:::::::::
individual

::::::::
regression

::::
tree

::::::
models.

::::
The

::::
main

:::::::::
difference

:::::::
between

::::::
typical

::::::::
regression

::::
tree

::::::
models

::::
and

::::::
BART

::
is

:::
that

:::
the

::::::
former

::
is
:::::::::

calibrated
::::
with

::::
data

:::
by

::::::::
searching

:::
for

:::
the

::::
best

::::::
model

:::::::::
parameters

::::
that

:::
lead

:::
to

:::
the

::::
least

:::::
error,

:::::
while

:::
the

:::::
latter

::
is

::::::::::
conditioned

::
on

::::
data

:::
by

::::::::
obtaining

::::::::::
conditional

::::::::::
distributions

:::
of

:::::
model

::::::::::
parameters

:::
via20

:::::::
Bayesian

:::::::::
inference.

::
To

:::::::::
understand

::::::
BART,

::::
first

::::
one

:::::
needs

::
to

:::::::::
understand

:::
the

:::::::
build-up

:::
of

:::
the additive ensemble tree model is the

::::
from

:::::::::
individual

:::::::::::
Classification

:::
and

::::::::::
Regression

::::
Tree

:::::::
(CART)

:::::::
models

:::::::::::::::
(Breiman, 1984a).

::
A
:::::::::
schematic

:::::::
diagram

:::
of

:
a
::::::
CART

::::::
model

::
is

:::::
shown

:::
in

:::
Fig.

::
1

::
(a),

::::::
which

::::::::
resembles

:::
an

:::::::::::
upside-down

:::
tree

::::
(root

:::
on

:::
top

:::
and

::::::
leaves

::
at

:::
the

:::::::
bottom).

::::
The

:::
root

:::::
node

::
of

:::
the

:::
tree

:::::::::
represents

:::
the

::::
space

::::::::
spanned

::
by

:::
the

::::::::::
predictor(s).

:::
As

::::
one

:::::
moves

:::::::::
downward

:::::
from

:::
root

:::
to

::::::
leaves,

:::
the

:::
said

:::::
space

::
is
::::::::::
recursively

:::::::::
partitioned

::
by

::
a25

:::::::
sequence

:::
of

:::::
binary

::::::::::
partitioning

:::::
rules.

::::
This

::::::::::
partitioning

::::
and

:::
the

::::::::::::
corresponding

::::::::::
partitioning

::::
rules

::::::
define

:::
the

:::
tree

::::::::
structure,

::::
and

:::
can

::
be

::::::::::
represented

::
by

:::
the

::::
tree

:::::::
structure

::::::::
variable,

:::::::
denoted

::
by

::
T .

:::::
After

:::::::::::
partitioning,

:::::
output

::::::::
response

:::::
values

:::
are

::::::::
assigned

::
to

::::
each

:::
and

:::::
every

::::
leaf,

:::::
where

:::::
each

:::
leaf

:::::::::
represents

::
a

:::::::::
partitioned

::::::::
subspace.

::::::
These

:::::
output

::::::
values

:::
can

:::
be

::::::::::
collectively

:::::::
denoted

::
by

::::
M.

::
A

:::
tree

:::::
model

::::
can

::
be

::::
fully

:::::::
defined

::
by

::::::::
knowing

::
its

::
T

::::
and

:::
M.

::
To

::::::
further

:::::::
improve

:::
the

:::::::::
predictive

::::::::::
performance

:::
on

::
an

:::::::::
individual

::::::
CART,

::
an

:::::::
additive

::::::::
ensemble

::::
tree

::::::
model

:::
can

::
be

:::::
built

::
as

:::
the30

sum of J individual tree models
:::
trees

:
(Fig. 1, (a) and (b)), each of which consists of a

::
has

:::
its

:
tree structure (Tj , j = 1, ...,J)
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and a set of terminal node (or leaf node)
:
its

:::
set

::
of

::::
leaf values (Mj , j = 1, ...,J), shown as follows:

R̂= f(θ,x) =

J∑
j=1

g (Tj ,Mj ,x) . (2)

where θ = {T1,M1, ...,TJ ,MJ} . Each tree model ,
:::
and

:
g(·) , functions similarly as a CART model:

:::::::
denotes

::
an

:::::::::
individual

:::
tree.

::::
The

::::::
output

::
of

::
an

:::::::
additive

::::::::
ensemble

::::
tree

:::::
model

::
is

:::
the

::::
sum

::
of

:::
the

::::::
outputs

:::::
from

:::
the

:
J
:::::
trees.

:
5

::::
Like

:::::::::
mentioned

:::::
above,

::::::
instead

:::
of

::::::::
searching

::
for

:::
the

::::
best

:
Tj recursively applies binary partitioning to the predictor space, and

Mj provides a set of different outputs corresponding to the partitioned predictor subspaces (Breiman, 1984b; Chipman et al., 1998)

.

BART defines
::
for

:::::
every

::
j

:::
that

::::
lead

::
to

:::
the

:::::
least

::::
error,

::::::
BART

:::::
takes

::
on

::
a
:::::::
different

::::
way

::
of

::::::
model

::::::
fitting,

:::
the

::::::::
Bayesian

::::
way.

::
It

::::
starts

:::
by

:::::::
defining the following joint prior of all the tree structures, all the root node value sets

:::
sets

::
of

::::
leaf

:::::
values, and the white10

noise variance:
::::::
variance

::
of

:::
the

:::::
white

:::::
noise

::::::
defined

::
in
::::
Eq.

::
1:

p

(
T1,M1, ...,T jJ

:
,MjJ

:
,σ2

)
= p(σ2)

J∏
j=1

p(Tj)P (Mj |Tj). (3)

BART then applies a tailored version of backfitting Markov Chain Monte Carlo (MCMC) simulation
:::::::
algorithm

:
to condition

the prior on
::
the

::::::::
response

:::
data

:
(r

:
), where backfitting means the jth tree model is iteratively updated with its partial residual. The

stationary distribution toward which the MCMC simulations converge is then used to approximate the true posterior distribution15

(which we term posterior):

p
(
T1,M1, ...,Tj ,Mj ,σ

2|r
)
. (4)

A schematic diagram of the MCMC simulation iteration procedure is shown in Fig. 1(c). For
::::::
Within each MCMC simulation,

both Tj and Mj for each tree in the ensemble tree model
:::
the

:::
jth

::::
tree

:
are iteratively simulated using a Metropolis-within-

Gibbs sampler(
:
,
::::::::
illustrated

:::
by

:
the loop in the blue circle in Fig. 1)

::
(c). After simulating all the trees, the error variance (σ2) is20

simulated with a Gaussian-Gamma-conjugate Gibbs sampler. Together, this process completes
::::
The

:::::::
sampling

:::
of

::
σ2

::::::
marks

:::
the

:::
end

::
of one MCMC simulation. We can see by the loop in the red square in Fig. 1(c), the MCMC simulation is continuous, until

the simulation converges and reaches
::::::::
simulated

:::::
values

::::::::
converge

::
to
:

a stationary distribution. The simulated values from this

stationary distribution
:::::
These

::::::::::::::
post-convergence

::::::::
simulated

::::::
values approximate realizations from Eq. 4, and thus we approximate

the true posterior in Eq. 4 by the stationary distribution obtained by MCMC simulation. At this point, we have reached a BART25

model that is conditioned on data r
:::
the

:::::::
response

::::
data, because all the BART parameters (tree structures, leaf node values, and

the white noise variance) have been conditioned on r
:::
the

:::::::
response

::::
data.

Given the aforementioned conditioned BART model, we now turn our attention to estimating recharge at an ungauged

watershed a
::::
new

::::::::
response that was not included in the data on which the BART model was conditioned. Here, we let x̃ denote

the predictor vector at an ungauged watershed. We wish to transfer and apply the information
::::
This

::
is

::::
done

:::
by

::::::::
inputting

:::
the30

:::::
vector

::
of

:::
the

::::
new

:::::::::
predictors,

:::::::
denoted

:::
by

::̃
x,

::::
into

:::
the

:::::::::::::::
predictor-response

::::::::::
relationship

:
we learned with the conditioned modelto

6
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Figure 1.
::::::::
Schematic

:::::::
diagrams

::
of

::
(a)

:
a
::::::::
regression

:::
tree

:::::
model,

:::
(b)

::
an

:::::::
ensemble

:::
tree

:::::
model

:::::
which

::::::
consists

::
of

::
J

::::::
additive

::::::::
regression

:::
tree

::::::
models,

:::
and

::
(c)

::
the

::::
loops

:::::::
structure

:::
that

:::::
BART

::::
uses

::
to

::::
draw

::::::
MCMC

:::::::::
simulations

::::::
(indexed

:::
by

::
l),

:::::::
consisting

::
of
:::
an

::::
inner

:::
loop

:::
for

::
J

::::::
additive

::::::::
regression

:::
tree

:::::
models

:::
and

::
an

::::
outer

::::
loop

:::
that

::::::::
continues

:::
until

:::
we

:::
have

::
a
:::
total

::
of

::
L

::::::
MCMC

:::::::::
simulations

:::
after

::::::::::
convergence

:::::
toward

:
a
::::::::
stationary

:::::::::
distribution.

this ungauged watershed, and obtain an informative predictive distribution of recharge
:::::
BART

:::::
model. Firstly, Eq. 1 can be

rewritten as:

R∼N
(
R̂,σ2

)
. (5)

Both the mean and the variance in Eq. 5 are uncertain, and each has its
:::
have

:::::
their respective posteriors. By combining Eqs. 25

and 5, and after plugging in the
::::::::::::::
post-convergence

:
MCMC simulated values and x̃, we obtain a plausible realization (indexed

by
::

the
:::::::::
superscript

:
l
:
,
:::::::::
l = 1, ...,L) of predictive distribution as follows:

N
(
R̂(l),(σ2)(l)

)
=

N
(
f
(
θ(l), x̃

)
,(σ2)(l)

)
=

N

 J∑
j=1

g
(
T

(l)
j ,M

(l)
j , x̃

)
,(σ2)(l)

 . (6)10

The collection of many plausible realizations yields an approximated posterior of predictive distributions. Thus, at the

ungauged watershed of interest
:::
for

:::::::
response

:::
of

:::::::
interest,

:
we have now obtained a fully Bayesian Gaussian predictive model,

where the mean and the variance have their respective posteriors, achieved by transferring the information gained from

conditioning the BART model on r and x to the ungauged watershed of interest. BART model . .
:

7



Schematic diagrams of ((a)) a regression tree model, ((b)) an ensemble tree model which consists of J additive regression15

tree models, and ((c)) the loops structure that BART uses to draw MCMC simulations, consisting of an inner loop for J additive

regression tree models and an outer loop for a total of L MCMC simulations.

2.2 Advantages of BART

The key advantage of BART is that it combines the non-linear regression for the predictor-response relationship with Bayesian

inference, allowing for the determination of a full Bayesian posterior of predictive distribution, rather than one or a few

estimates/predictions.

The estimation and the regionalization processes are data-driven. Prior knowledge of the
:::::::::
underlying

:
physics is only mini-5

mally accounted for in terms of the composition of the predictor sets and the user-defined prior of the splitting rules (which

are embedded in the tree structure variable, Tj). The underlying physics is inferred from the ex-situ data via obtaining con-

ditional simulations of the tree structures and the terminal
:::
leaf

:
nodes (similar to the calibration stage), and thus, is implicitly

embedded rather than explicitly defined. Therefore, the extent to which physics could be inferred is restricted by the training

data —
::
—here, the ex-situ data, which is a common limitation of data-driven approaches.10

However, in compensation, we avoid two disadvantages
::
one

:::::::::::
disadvantage

:
of the application of physically based models in

the case of ungauged watersheds. First of all, the limited information
:::
The

::::::::
available

::::
data

:
at the ungauged watershed comes in

as is
::
are

::::::
limited, and it is unrealistic to expect that certain watershed characteristics should be known. Data availability could

hinder the implementation of powerful hydrologic models (Razavi and Coulibaly, 2017) because some of the required model

inputs may be unavailable at the ungauged watersheds (Xie et al., 2017; Gemitzi et al., 2017). It is possible to treat missing15

inputs as part of the parameters, and run simulations to impute them or apply stochastic methods to estimate them. Nonetheless,

the corresponding computational demand grows in power law with the number and the plausible range of the missing inputs,

which is of great practical importance when evaluating the pros and cons of an approach. Second, at ungauged watersheds, the

conceptual model uncertainty due to misconceptions of physically based models is often compensated for, and thus disguised

by, parameter uncertainty. The application of BART allows for estimates conditioned on and only on the available data at hand,20

without requiring specific predictors/inputs. Conceptual modeluncertainty can be either directly accounted for, which will be

explained in Sect. ??, or indirectly represented, which will be explained in Sect. ??. These advantages make our approach

practically feasible at almost every ungauged watershed

::::
Note

::::
that

::
in

::::
this

:::::
study

:::::
there

::
is
:::

no
::::::::
intention

::
to
:::::

show
::::

the
:::::::::
superiority

:::
of

:::::
either

::::
the

:::::::::
data-driven

:::
or

:::
the

:::::::::
physically

::::::
based

:::::::::
approaches.

:::
As

:::::::::::::::::::::::::::
Wagener and Montanari (2011)

::::::
pointed

::::
out,

:::
the

:::::::
ultimate

::::
goal

:::
of

:::::::::
predictions

::
at
:::::::::

ungauged
:::::::::
watersheds

::
is
::::

not25

::
to

:::::
define

::::::::::
parameters

::
of

::
a

::::::
model,

:::
but

::::::
rather,

::
to

::::::::::
understand

::::
what

::::::::
behavior

:::
we

::::::
should

::::::
expect

::
at

:::
the

:::::::::
ungauged

:::::::::
watersheds

:::
of

::::::
interest.

::::
We

::::
have

::::::
simply

:::::
shown

::::
why

:::
our

::::::::
approach

::
is

:::::::
suitable

:::
for

::::::::
ungauged

:::::::::
watersheds.

2.3 Bayesian model averaging
::::::
Nested

:::::::::
tree-based

::::::::
modeling

:::::::::
approach

This subsection shows how one can account for conceptual model uncertainty with Bayesian modelaveraging. Suppose that

one establishes K different BART models , denoted as Bk,k = 1, ...,K, to estimate recharge at an ungauged watershed with30
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watershed characteristics (
::::
Like

::::::
shown

::::::
above,

::::::
BART

:::::
offers

:::
an

::::::
elegant

::::
way

::
to

:::::::
account

:::
for

::::::
model

:::::::::
parameter

:::::::::
uncertainty

:::
of

::
an

:::::::
additive

::::::::
ensemble

::::
tree

::::::
model.

:::::::::
However,

::::::::::
uncertainty

:::::
exists

:::
not

:::::
only

:::
for

:::
the

::::::
model

:::::::::
parameters

::::
but

::::
also

:::
for

:::
the

:::::::
models

:::::::::
themselves,

:
i.e., the predictors) x̃. TO do so, one would revisit Eq. 5, in which the posteriors of the mean and the variance

depend on the model. That dependence would now need to be explicitly shown and addressed since one would now like to

account for model uncertainty. This
:::::
model

::::::::
structure

:::::::::
uncertainty.

::
A
:::::::::
significant

:::::
factor

:::
of

:::::
model

::::::::
structure

:::::::::
uncertainty

:::
for

::::::
BART

::::
could

:::
be

:::
the

:::::::::::
composition

::
of

:::
the

::::::
vector

::
of

:::::::::
predictors.

::::::::::
Accounting

:::
for

::::::
model

:::::::
structure

::::::::::
uncertainty

:
can be done via Bayesian5

model averaging, where we average the posterior of the estimate over the conditional
::
by

:::::::::
proposing

:
a
:::::
prior probability mass

function of the K models:

p
(
R̂|x̃, r

)
=

K∑
k=1

p
(
R̂|x̃, r,Bk

)
p(Bk|r)

where p
(
R̂|x̃, r,Bk

)
can be approximated with MCMC simulations in the same way as that shown in Eq. 6, except that the

previously omitted dependence on the kth model is now explicitly shown. The conditional
::::::::
plausible

:::::
BART

:::::::
models,

:::::
which

::::
can10

:::
then

:::
be

::::::::
evaluated

::::
and

::::::::
compared

:::::
with

::::
each

:::::
other.

:::
In

:::
the

::::::
present

:::::
study,

::::
we

:::::::::
accomplish

::::
this

:::
by

:::::
using

:
a
::::::::::::::::::
proposal-comparison

::::::::
procedure,

::::::
which

:::
we

::::::
termed

:::
the

:::::
nested

:::::::::
tree-based

::::::::
modeling

::::::::
approach.

::::
The

::::::
details

:::
are

::
as

:::::::
follows.

:::
We

::::
start

::
by

:::::::::
proposing

::
K

::::::::
plausible

::::::
BART

::::::
models,

:::::::
denoted

:::
as

:::::::::::::
Bk,k = 1, ...,K,

:::::
each

::
of

:::::
which

::
is
::::
built

:::::
using

::
a
::::::
unique

:::
set

::
of

::::::::
predictors

::::
and

::
is

::::::::::
conditioned

::
on

::::::::
available

:::::
data.

:::
The

::::::
model

::::::::
structure

:::::::::
uncertainty

::
is
:::::::::
accounted

:::
for

:::
by

::::::::
obtaining

:
a
:
probability

mass function of the models, p(Bk|r), can be obtained by invoking Bayes rule and the Total Probability rule:15

p(Bk|r) =
p(r|Bk)p(Bk)∑K
k=1 p(r|Bk)p(Bk)

.

The integrated likelihood, p(r|Bk), can be obtained by integration over the parameter space of Bk:

p(r|Bk) =

∫ ∫
p
(
r|Bk,θk,σ

2
k

)
p
(
θk,σ

2
k|Bk,

)
dθkdσ

2
k,

which can be approximated with a total of L MCMC simulations (indexed by l)

p(r|Bk)≈ 1

L

L∑
l=1

p
(
r|Bk,θ

(l)
k ,(σ2

k)(l)
)
.20

The last piece is p(Bk), signifying the prior
::
K

::::::::
plausible

:::::
BART

:::::::
models,

:::::::
denoted

:::
by

::::::
p(Bk).

:::
The

::::::::::::
determination

::
of

:::::
p(Bk)

::::
can

::
be

::::::::
informed

::
by

:::
the

::::
data

::::::::
(namely,

::
in

::
an

::::::::
empirical

::::::
Bayes

::::
way,

::::::
where

:::
the

::::
prior

::
is

::::::::
informed

::
by

:::
the

:::::
data).

:::
At

::::
each

::::::::
available

::::
data

:::::
point,

:::
we

:::::::
evaluate

:::
the

:::::::::::
performance

::
of

:::
the

::::::::
plausible

::::::
BART

::::::
models

:::
by

:
a
:::::::::::

performance
::::::
metric

::
(a

::::::
typical

::::::::
example

::
is

:::
the

:::::
mean

::::::
squared

::::::
error).

:::::
Then,

:
a
:::::
label

:
is
:::::
given

::
to
:::::
each

:::
data

::::::
point,

::::::::
indicating

:::::
which

::::::
BART

::::::
model

:::
has

:::
the

::::::
highest

:::::::::::
performance

::::::::
measured

::
by

:::
the

::::::
metric.

:::::::
Finally,

:::
we

:::
use

::
a
::::::
CART

:::::
model

::
to
:::::::
classify

:::
the

::::
data

::::::
points

:::::
based

::
on

:::::
their

::::::
labels.

:::
The

::::::
CART

::::::
model

::::::
outputs

:::
an25

::::::::
empirical

::::::::::
multinomial

::::::::::
distribution

::
of

:::
the

::
K

::::::::
plausible

::::::
BART

::::::
models

::
at

::::
each

::::
leaf.

:::::
Thus,

::::
one

:::
can

:::::
study

:::
the

:::::::
variation

:::
of

::::::
p(BK)

::::
with

::::::
various

:::::::::
predictors.

::
A
:::::

very
::::::
simple

:::::::
example

::
is

:::::::::
illustrated

::
in

::::
Fig.

::
2,

::::::
where

:::
we

:::::::
compare

:::
the

::::::::::::
performances

::
of

::::
two

::::::
BART

9



::::::
models

:::::::
(K = 2)

:::::
using

::::
one

:::::::
predictor

::::
and

::
a

::::::
simple

::::::::::
two-leveled

:::::::::::
classification

::::
tree.

::::
The

:::::::
predictor

::::::
space

::
is

:::::::::
partitioned

::::
into

:::
the

::::::
positive

::::::::
subspace

:::
and

:::
the

:::::::
negative

::::::::
subspace

::
by

:::
the

::::::::::
partitioning

::::
rule

:::::::
indicated

::
in
:::
the

::::::::
diamond

::::
box.

:::::
Thus,

::
for

::::
any

:::
new

::::
data

:::::
point

::::
with

::::::
positive

::::::::
predictor

::::::
value,

:::
we

:::::
would

:::
use

::::::::::::
p(B1) = 0.76

:::
and

::::::::::::
p(B2) = 0.24

::
as

:::
the

:
probability mass function of the models.

As opposed to a uniform distribution p(Bk) = 1/K, one could adjust the prior based on the characteristics of the ungauged

watershed. This is where physical knowledge as well as the knowledge about hydrologic similarity come into play, which will

be elaborated on in Sect. ??. With p(Bk) defined, one can now follow Eqs. ?? through ?? to obtain the recharge estimates

with the model uncertainty accounted for.
:::::::
plausible

:::::::
models.

::
In

:::
real

:::::::::::
applications,

::
of

::::::
course,

::::
one

:::
can

:::
use

:::
an

:::::::
arbitrary

:::::::
number

::
of5

::::::::
predictors

::
to

:::::::
compare

:::
an

:::::::
arbitrary

:::::::
number

::
of

::::::::
plausible

:::::
BART

:::::::
models.

:

One Predictor

Predictor Value > 0

76% BART Model 1 performs better
24% BART Model 2 performs better

35% BART Model 1 performs better
65% BART Model 2 performs better

Yes No

𝑝 𝐵1 = 0.76
𝑝 𝐵2 = 0.24

𝑝 𝐵1 = 0.35
𝑝 𝐵2 = 0.65

Figure 2.
::::::::
Schematic

:::::::
diagrams

:
of
::
an

:::::::
example

::
of

:::::
nesting

:::
two

:::::
BART

::::::
models

::::
under

:
a
::::::
simple

::::::::
two-leveled

:::::
CART

::::::
model,

::::
using

::::
only

:::
one

:::::::
predictor.

:::
The

:::::::::
partitioning

:::
rule

::
is

:::::::
expressed

::
in

:::
the

::::::
diamond

::::
box,

:::
and

:::
the

:::::
leaves

::
are

:::::::::
represented

::
in

:::
blue

:::::
boxes.

:

2.4 Nested tree-based modeling and the hierarchical similarity hypothesis

The second main objective of this study is revealing the key controlling factors
::
Up

:::
to

:::
this

::::::
point,

:::
we

::::
have

::::::::::
introduced

:::
the

:::::
nested

:::::::::
tree-based

::::::::
modeling

:::::::::
approach,

:::::
which

::
is
:::::::
general

:::
and

::::::::::
data-driven.

::::
For

:::::::::
estimation

:::::::
purpose,

::::
one

::::::
would

::
be

:::::::::
interested

::
in

:::::::::
accounting

:::
for

:::::
model

::::::::
structure

:::::::::
uncertainty

:::
by

::::::::
averaging

::::
the

::::::::
estimates

::::
over

::::::
p(Bk),

:::::
which

::::
can

::
be

:::::
done

::
by

::::::::
invoking

::::::::
Bayesian10

:::::
model

:::::::::
averaging.

::::::::
However,

:::
the

::::::::
capability

::
of

:::
the

::::::
nested

:::::::::
tree-based

::::::::
modeling

::::::::
approach

::::
does

:::
not

::::
stop

::::
here,

::
as

:::
the

::::::::
approach

::::
also

::::::
outputs

:::
the

:::::::
variation

:::
of

:::::
p(Bk)

:::::
under

:::::::
various

:::::::::
conditions.

::::
This

:::::
could

:::
be

::
an

:::::::::
indication

::
of

:::
the

:::::::
behavior

:
of a dynamic hydrologic

similarity systemfor mean annual groundwater recharge, which could contribute to a better determination of p(Bk) in future

applications. Here the details of how it works are provided. ,
::::
and

:::
will

:::
be

::::::::
explained

::
in

::::::
details

::
in

::::
Sect.

::::
2.4.

First15

2.4
:::::::::

Hypothesis
::
of

:::::::::::
hierarchical

:::::::::
similarity

::
To

::::::::
facilitate

:::
the

:::::::::::
interpretation

::
of

:::
the

::::::::
variation

::
of

::::::
p(Bk), we propose a hypothesis of hierarchical similarity . We hypothesize

that hydrologic similarity is controlled by a hierarchy that follows
:::
that

:::
has

:
two levels:

10



1. The lower level is the predictor similarity
::::::
termed

:::
the

::::::::
predictor

:::::::::
similarity, meaning that if two

::::::
vectors

::
of

:::::::::
predictors

:::
are

::::::
similar

::
in

::::
some

:::::
parts,

:::::
their

::::::::::::
corresponding

:::::::
response

::::
will

::
be

:::::::
similar.

::
In

:::::::::
hydrology

:::::::
context,

::
if

:::
two

:
watersheds have some20

similar predictor values
:::::::::::
characteristics, then their hydrologic responses will be similar.

::::
This

:::::
lower

::::
level

:::::::::::
corresponds

::
to

::
the

::::::
BART

::::::
models

::
in
:::
the

::::::
nested

:::::::::
tree-based

::::::::
modeling

::::::::
approach.

:

2. The higher level is the regionalization similarity
::::::::::::
regionalization

:::::::::
similarity, meaning that if two watersheds share regionalization

similarity
:::::
vectors

:::
of

:::::::::
predictors

:::
are

::::::
similar

::
in

:::::
some

:::::
parts,

:::::
their

::::::::::::
corresponding

:::::::::::::::
predictor-response

:::::::::::
relationships

::::
will

:::
be

:::::::
similarly

::::::::::
controlled.

::
In

:::::::::
hydrology

:::::::
context,

::
if
::::
two

:::::::::
watersheds

:::::
have

:::::
some

::::::
similar

:::::::::::::
characteristics, then their predictor5

similarities
:::::::::
hydrologic

::::::::
responses will be governed by similar predictors.

:::::::::::::::::::
functions/mechanisms.

::::
This

:::::
higher

::::
level

::::::::::
corresponds

::
to

:::
the

:::::::::::
classification

::::
tree

::
in

:::
the

::::::
nested

::::::::
tree-based

::::::::
modeling

:::::::::
approach.

Put simply, regionalization similarity determines the predictor-predictor relationship and tells us which predictors to extract in-

formation from, while predictor similarity determines the predictor-response relationship that actually estimates the hydrologic

response . This could explain why the controlling factors of hydrologic similarity change under different conditions.10

To test this hypothesis, we define a nested tree-based modeling approach by nesting multiple BART models under a CART

model for classification, and apply it to a case study. The details of the case study are provided in Sect. 3, while a brief general

introduction is given here.
:::::::
response

:::::
using

::::
the

::::
said

::::::::
extracted

::::::::::
information.

:::::
Note

::::
that

:::
the

::::
two

:::
sets

:::
of

::::::::
predictors

:::::::::::
respectively

::::::::::
determining

:::
the

:::
two

:::::
levels

::
of

::::::::
similarity

:::
are

:::
not

::::::::
mutually

::::::::
exclusive:

::::
they

::::
may

::
or

::::
may

:::
not

:::::::
overlap.

::
To

::::::::
elaborate

::
on

:::
the

:::::::::
difference

:::::::
between

:::
the

:::
two

:::::
levels

::
of

::::::::
similarity,

:::
we

::::::
present

:::
the

::::::::
following

::::
two

:::::::
example

:::::::::
statements

:::::
within

:::
the

::::::
context

::
of

:::::::
recharge

::::::::::
estimation.15

1.
:::::::::
Systematic

::::::
trends

::
in

::::::::
recharge

:::::
rates

::::
are

::::
often

::::::::::
associated

::::
with

:::::::
climatic

::::::
trends

::::::::::::
(Healy, 2010)

:
.
::::
This

::
is

:
a
::::::::
statement

:::
of

:::::::
predictor

:::::::::
similarity,

:::::::::
indicating

:
a
::::::::::::::::
predictor-response

::::::::::
relationship.

::::
One

::::::
would

::
be

::::::::
informed

::
to

::::::::::
association

:::::::
recharge

:::::
rates

::::
with

::::::
climatic

:::::::::
variables.

2.
::
In

::::
arid

:::::::
regions,

:::::::
focused

::::::::
recharge

:::::
from

:::::::::
ephemeral

::::::::
streams

::
is

::::
often

::::
the

::::::::
dominant

:::::
form

::
of

::::::::
recharge

::::::::::::
(Healy, 2010)

:
.20

::::
This

:
is
::
a
::::::::
statement

::
of

:::::::::::::
regionalization

::::::::
similarity,

:::::::::
indicating

:
a
::::::::::::::::
predictor-predictor

::::::::::
relationship.

::::
One

:::::
would

:::
be

::::::::
informed

::
to

:::
pay

::::
more

::::::::
attention

::
to

:::
the

::::::::
dominant

::::::
factors

::
of

:::::::::
ephemeral

:::::::
streams,

::
if

:::
the

:::::
study

:::
area

:::
of

::::::
interest

::
is

::
in

:::
arid

:::::::
regions.

:

First, we apply the holdout method to divide a set of gauged watersheds into two subsets: the training watersheds and the

testing watersheds. We represent conceptual model uncertainty indirectly by building multiple BART models using various

plausible predictor sets, and fit the models to the data at the training watersheds. These data are the ex-situ data with respect25

to the testing watersheds. After model fitting, at each testing watershed, we evaluate the performance of the BART models, by

comparing the data at the testing watershed with the predictive distributions from the BART models. Then, a label is given to

each testing watershed, indicating which BART model has the highest predictive accuracy. Finally, we use a CART modelto

classify the testing watersheds based on their labels.

With this setup,
::::::
Having

::::::::
explained

:::
the

:::::::::
hypothesis

:::
of

::::::::::
hierarchical

:::::::::
similarity,

::::
now

:::::::
suppose

::::
that

:::
we

::::
have

:::::
gone

:::::::
through

:::
the30

::::::
process

::::::::
described

:::
in

::::
Sect.

::::
2.3,

:::
and

:::::
have

:::::::
obtained

:::
K

::::::::
plausible

::::::
BART

::::::
models

::::
and

:::
one

::::::
CART

::::::
model.

:::::
Each

::::::::
plausible

::::::
BART

11



:::::
model

::::
was

::::
built

::::
with

::
a
::::::
unique

:::
set

::
of

:::::::::
predictors,

::::
and we use the BART models to explore predictor similarity with different

predictor sets, and use the CART model
:
.
:::::::
Moving

::
up

:
a
:::::
level,

:::
we

:::
use

:::
the

:::::::::::
classification

::::
tree to explore regionalization similarity

. The latter indicates under what condition does a certain BART model stand out in terms of predictive power, thus showing

how the dominant factors of hydrologic similarity change under different conditions.
::
by

:::::::::::
investigating

:::
the

::::::::
variation

::
of

::::::
p(Bk)

:::::
under

::::::
various

:::::::::
conditions.

::::
Note

::::
that

::
as

:::
the

::::::::
condition

:::::::
changes,

:::
the

::::
best

:::::::::
performing

::::::
BART

:::::
model

::::
may

::::::
change

::::
and

::
so

::::
does

:::
the

:::
set

::
of

::::::::
dominant

::::::::
predictors

::
in

:::
the

:::::::::::::::
predictor-response

:::::::::::
relationship.

::::
This

::::
may

::::::
explain

::::
why

:::::
under

:::::::
different

::::::::::
conditions,

:::
the

:::::::::
hydrologic5

::::::::
similarity

::::
may

::
be

:::::::::
controlled

::
by

::::::::
different

::::::::
watershed

:::::::::::::
characteristics.

:::
We

:::
test

::::
our

:::::::::
hypothesis

::
of

::::::::::
hierarchical

::::::::
similarity

::
in

::
a
::::
case

:::::
study,

:::::
which

::::
will

::
be

::::::::
explained

::
in
:::::
Sect.

::
3.

3 Study area
::::
Case

::::::
study

In this case study, we are going to apply the methodology described in Sects. ?? and ??
::
2.1

:::::::
through

:::
2.4

:
to investigate the

predictor similarity and the regionalization similarity in the study
::::
area,

:
and to test the hypothesis of hierarchical similarity,10

with the goal of better understanding of the physical principles governing robust regionalization and better determination of

p(Bk) in future applications. The Bayesian model averaging in Sect. ?? is not demonstrated in .
::
It

::
is

::::::::
important

::
to

::::
note

:::
that

:
this

case study , as it is not necessary for achieving the aforementioned goal .

:
is
::::
not

:::::
aimed

::
at

::
a
::::::::
thorough

::::::::::
investigation

:::
of

:::
the

:::::::
recharge

:::::::::::
mechanism,

:::
nor

::
is

:::
the

::::
goal

::::::::
obtaining

:::
the

:::::
most

:::::::
accurate

::::::::
recharge

::::::::
estimates.

::::::
Rather,

:::
the

:::::::
primary

:::::
goals

:::
are

:::
the

::::::::::::
demonstration

::
of

:::
the

:::::
power

::
of

:::
our

:::::::::
approach,

:::
and

:::::::
showing

::::
how

:::
the

::::::::
approach

:::::
helps15

::
us

:::::::::
understand

:::
the

::::::::
dynamic

:::::::
behavior

:::
of

:::::::::
hydrologic

::::::::
similarity

::
in

:::
the

:::::
study

:::::
area. This Sect. provides the details about the case

study setup, including the watersheds, the recharge data, the watershed characteristics data, the partitioning of data, and the

evaluation metrics.

3.1 Watersheds and recharge estimates

The conterminous United States can be divided into eight major river basins (MRBs), each of which consists of thousands5

of watersheds (The United States Geological Survey, 2005; Brakebill and Terziotti, 2011). At each and every watershed,

watershed-average annual recharge estimate and watershed characteristics data are retrieved from publicly available databases,

and will be described in the following subsections. In our work, the recharge estimates are used as the target response while

the characteristics are used as predictors in the regionalization process.

It is important to note that the predictors considered in this case study are not supposed to constitute a comprehensive list10

of controlling factors of recharge, nor are their respective spatiotemporal heterogeneities and uncertainties well accounted

for. Rather, we provide them as an example of what could be available at ungauged watersheds, where one tries to condition

recharge estimates with only a limited amount of information.

In 2002, annual groundwater recharge at each watershed was estimated via baseflow analyses by the U.S. Geological Sur-

vey (USGS) (Wieczorek and LaMotte, 2010h; Wolock, 2003). The reliability of baseflow analyses for rechargeestimations15

depends on the spatiotemporal homogenization of recharge. Given the long-term steady-state assumption embedded in baseflow
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(a) (b)

Figure 3. Annotated map of the coverage of the MRBs (left hand side), modified from The United States Geological Survey (2005), and

a zoomed-in view of the
:::
The study area (right hand side), which includes

::
(a) MRB 1 and

::
(b) MRB 2.

:
2

::
in

::
the

::::::
eastern

::::
U.S.,

::::::
colored

:::
by

::
the

::::::::
estimated

:::::
annual

::::::::::
groundwater

::::::
recharge

::
in
:::
the

::::
year

::
of

::::
2002

::::::::::::
(Wolock, 2003).

:::
For

:::
the

:::::
details

::
of

:::
the

::::::::
delineation

:::
of

:::::
MRBs

:::::
please

::::
refer

::
to

::::::::::::::::::::::::::::::::
The United States Geological Survey (2005).

:

analysis, we made
::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Wieczorek and LaMotte, 2010h; Wolock, 2003, also shown in Fig. 3).

:::::::::::::::
Streamflow-based

:::::::::
estimation

::
of

::::::::
recharge,

::::
such

::
as

:::::::
baseflow

::::::::
analysis,

::
is

:::::::::
commonly

::::
used

::
in

::::::
humid

:::::::
regions.

::
As

:::
put

:::::::
forward

:::
by

:::::::::::
Healy (2010),

:::::
there

:::
are

::::
three

::::
key

::::::::
questions

:::
that

::::::
should

::
be

::::::::
carefully

:::::::
checked

::::::
before

:::::::
applying

::::::::
baseflow

::::::::
analysis:

::
(1)

::
Is
:::
all

:::::::::
recharging

:::::
water

:::::::::
eventually

:::::::::
discharged

::::
into

:::
the

:::::
stream

::::::
where

:::
the

:::::::
baseflow

::
is

:::::::::
measured?

:::
(2)

:::
Do

:::
low

:::::
flows

::::::
consist

:::::::
entirely

::
of

::::::::::
groundwater

:::::::::
discharge?

:::
(3)

:::::
Does

:::
the

::::::::::
contributing20

:::
area

:::
of

:::
the

::::::
aquifer

:::::
differ

::::::::::
significantly

:::::
from

:::
that

:::
of

:::
the

:::::::::
watershed?

:::::::
Without

::
a
:::::::
rigorous

:::::
proof,

:::
we

:::::
make

:
a working assumption

in this study that the recharge mechanism remains steady at annual (or larger) temporal scale, so the inter-annual variability

in recharge is solely due to the inter-annual variability of watershed characteristics
:::::
about

:::
the

::::::::
reliability

::
of
::::::::

baseflow
::::::::
analysis.

::::::::::
Fortunately,

::::
from

::
a

::::
post

:::
hoc

::::::
check,

:::
the

::::::::
recharge

::::::::
estimates

:::
fall

::::::
within

:::
the

::::::
typical

:::::
scales

:::
at

:::::
which

::::::::
baseflow

:::::::
analysis

::
is

:::::
more

:::::::
suitable:

:
a
:::::::
recharge

:::::
scale

::::
from

::::::::
hundreds

::
to

:::::::::
thousands

::::
mm

:::
per

::::
year,

:
a
::::::
spatial

::::
scale

:::
of

:::::::
hundreds

:::
of

:::
m2

::
to

:::::::
hundreds

:::
of

::::
km2,

::::
and25

:::::::
temporal

:::::
scales

:::::
from

::::::
months

::
to

:::::::
decades

::::::::::::::::::
(Scanlon et al., 2002).

The more arid U.S. Midwest may have more pronounced localized recharge (de Vries and Simmers, 2002), which cannot

be effectively captured by baseflow analysis (Scanlon et al., 2002). This, then, does not fit well with our working assumption.

Therefore, following the suggestion of Nolan et al. (2007), our study area includes only the relatively humid eastern parts of

the U.S., namely MRB 1 and 2 (Fig. 3). After excluding watersheds with less desirable data coverage, we consider a total of30
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3609 watersheds in MRB 1 and 7413 watersheds in MRB 2. The distributions of the recharge data from all the watersheds in

the study area are shown in Fig. 4(a).

3.2 Climate

As discussed in Sect. 1, climate predictors are found to be among the most important factors to control recharge at regional

scale. At each watershed included in the study
:
, the following data are retrieved from publicly available databases: the long-term

average annual precipitation (P̄ ) averaged from 1970 to 2000 (Wieczorek and LaMotte, 2010a), the annual precipitation in the5

year 2002 (P ) (Wieczorek and LaMotte, 2010b), and the long-term average annual potential evapotranspiration (Ep) averaged

from 1960 to 1990 (Title and Bemmels, 2017).
::::
Note

::::
that

::::::
limited

:::
by

::::
data

::::::::::
availability,

:::
the

:::::::
average

::::::
periods

:::
of

::
P̄

::::
and

:::
Ep :::

are

:::::::
different.

:::::
Thus,

:::
we

::::
also

:::::
make

::
a
:::::::
working

::::::::::
assumption

::::
that

::
at

:::
the

::::::
decadal

:::::
scale

:::
the

::::::::
averaged

:::::::
climate

:::::::
variables

:::::::
remain

::::::
steady,

::::
with

:::::
which

:::
we

:::::
ignore

:::
the

::::::::
potential

:::::
effect

::
of

::::::
climate

:::::::
change

::
on

:::
the

:::::::::
difference

:::::::
between

:::
the

::::::
average

:::::
from

::::
1960

::
to

:::::
1990

:::
and

::::
that

::::
from

::::
1970

::
to

:::::
2000.

:
Given the precipitation and evapotranspiration, we obtained two additional climate variables: the long-term10

aridity index, estimated as φ̄= Ep/P̄ , and the 2002 aridity index, estimated as and φ= Ep/P . Given that the recharge data

are based on baseflow analysis for the year 2002, P and φ represent the climate controls of that same year, while P̄ , Ep, and φ̄

represent climate controls over the long-term.

The distributions of P is shown in Fig
:
,
::
P̄ ,

:::
and

:::
Ep:::

are
::::::
shown

::
in

::::
Figs. 4(b).

:
,
:::
(c),

::::
and

::
(d)

:
,
::::::::::
respectively.

:

3.2.1
::::::::::::
Normalization

::::
and

::::::::::::::
transformation

::
of

::::::::
recharge

:::::
using

:::::::::::
precipitation15

The annual recharge data (in volume of water per unit watershed area) can be normalized by P (also in volume of water

per unit watershed area), as in Fig. 4(c
:
e). This stems from the concept of water budgets and has been commonly used in

hydrological studies worldwide (e.g., Magruder et al., 2009; Rangarajan and Athavale, 2000; Obuobie et al., 2012; Heppner

et al., 2007; Takagi, 2013; Yang et al., 2009). Here, we apply logit transformation, which is common for proportions or

probabilities (Gelman et al., 2014), to that normalized recharge, relaxing the physical bounds (0 and 1) of the values of the

target variable (Fig. 4(df)). This step is advantageous as it opens the opportunity to estimate recharge with parametric statistical

models without special accommodations for the bounds. Therefore, in this case study the logit normalized recharge
:::::
(LNR) is5

used as the target variable.
:::::::
response

:::::::
variable.

:

3.3 Non-climate watershed characteristics

We also consider various non-climate watershed characteristics in this study, including topography, land cover, soil properties,

and geology. The land cover is based on data published in 2001, which we feel is close enough to 2002 to provide the ap-

propriate information. The other characteristics are based on raw data obtained in different years before 2002; it is assumed10

that they remain steady at sub-century time scales. We provide the details of these watershed characteristics in the following

subsections.

14



0.000

0.002

0.004

0.006

250 500 750

Annual recharge (mm)

de
ns

ity

(a)

0.000

0.001

0.002

0.003

1000 1500 2000

P (mm)

de
ns

ity

(b)

0.000

0.001

0.002

0.003

0.004

0.005

800 1200 1600 2000

P (mm)

de
ns

ity

(c)

0.000

0.001

0.002

0.003

0.004

800 1000 1200 1400 1600

Ep (mm)

de
ns

ity

(d)

0

2

4

6

0.1 0.2 0.3 0.4 0.5

Normalized recharge (mm/mm)

de
ns

ity

(e)

0.0

0.3

0.6

0.9

1.2

−3 −2 −1 0

Logit normalized recharge

de
ns

ity

(f)
MRB 1
MRB 2

Figure 4. Distributions
::::::::

Histograms of ((a) ) annual recharge in 2002, ((b) ) annual precipitation in 2002, ((c) )
:::
long

::::
term

::::::
average

::::::
annual

::::::::::
precipitation,

::
(d)

:::
long

::::
term

::::::
average

::::::
annual

:::::::
potential

::::::::::::::
evapotranspiration,

:::
(e) normalized recharge, and ((d))

::
(f) logit normalized recharge

:::::
(LNR) at all the watersheds in MRB 1 and 2.

:::
The

::::
black

:::::
curves

:::
are

:::::::
estimates

::
of

::
the

::::::::::
distributions

::::
based

:::
on

:::::
kernel

:::::
density

:::::::::
estimation.

3.3.1 Topography and land cover

The topographic predictors are taken from publicly available databases (Wieczorek and LaMotte, 2010g); they are summarized

in Table 1. The land cover variables are the percentages of watershed area corresponding to each land cover class (Wieczorek15

and LaMotte, 2010f); these are summarized in Table 2. The land cover classes are based on the 2001 National Land Cover

Database (NLCD2001), the categories of which include water, developed land, barren land, forest, shrubland, herbaceous land
:
,

cultivated land, and wetland, with each having its own sub-classes. The details of NLCD2001 can be found in Homer et al.

(2007).

Table 1.
::::::::
Watershed

:::::::::
topography

::::::::
predictors.

::::::
Variable

:::::::::
Explanation

::::
Basin

:::::
index

:::::::
Watershed

::::
area

::::::
divided

::
by

::::::::
watershed

:::::::
perimeter

::::::
squared

::::::::::::
(dimensionless).

:

:::::
Stream

::::::
density

::::
Reach

:::::
length

::::::
divided

::
by

::::::::
watershed

:::
area

::
(
:::
m−1

:
).
:

:::::::
Sinuosity

:::::
Reach

:::::
length

:::::
divided

:::
by

::
the

:::::
length

::
of

:::
the

::::::
straight

:::
line

::::::::
connecting

:::
the

::::::::
beginning

:::
and

::
the

::::::
ending

::
of

::
the

:::::
reach

::::::::::::
(dimensionless).

::::
Slope

::::
Mean

::::::::
watershed

::::
slope

::::::::
calculated

::::
from

:::::
digital

:::::::
elevation

:::
data

:::::::
(degree).

:
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Table 2.
::::
Land

:::::
cover

:::::::::
classification

:::
by

:::::::::
NLCD2001.

::::
Class

:::::::
Subclass

Water ::::
Open

::::
water

:

:::::::
Perennial

:::
ice

Developed

::::
Open

::::
space

:

:::
Low

:::::::
intensity

::::::
Medium

::::::
intensity

:

::::
High

::::::
intensity

:

:::::
Barren

:::::
Barren

:::
land

:

Forest
::::::::
Deciduous

::::::::
Evergreen

::::
Mixed

:

Shrubland ::::
Dwarf

:::::
shrub

::::::::
Shrub/scrub

:

Herbaceous

::::::::
Grassland

::::
Sedge

:

::::::
Lichens

::::
Moss

Cultivated ::::::::
Pasture/hay

:

::::
Crops

:

Wetlands ::::::
Woody

::::::
wetland

:::::::
Emergent

:::::::::
herbaceous

::::::
wetland

3.3.2 Soil property20

The soil property predictors include watershed scale statistics (e.g., average, upper bound, and lower bound) of soil properties

(Wieczorek and LaMotte, 2010e); these are summarized in Table 3. The spatial statistics of the soil properties within each

watershed were obtained over gridded source data values from the State Soil Geographic database (STATSGO) (Schwarz and

Alexander, 1995), which were depth-averaged over all soil layers (Wolock, 1997).
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Table 3.
:::
Soil

:::::::
property

::::::::
predictors.

::
Soil

::::::::
property

:::
Unit

::::::::
Statisticsa

::::::
Calcium

:::::::
carbonate

::::::::
equivalent

: :
%

::::::::::
Lower/higher

:::::
bounds

:

:::::
Cation

:::::::
exchange

:::::::
capacity

::::
cmolc

:::::
kg−1

::::::::::
Lower/higher

:::::
bounds

:

::::
Depth

::
to
:::
the

::::::::
seasonally

:::
high

:::::
water

::::
table

:
m

::::::
Average

:::
and

::::::::::
Lower/higher

::::::
bounds

:::
Soil

:::::::
thickness

: :
m

::::::::::
Lower/higher

:::::
bounds

:

::::::::
Hydrologic

:::
soil

::::
group

::::::::::
classification

: :
%

::::::
Average

:::
Soil

::::::::
erodibility

::::
factor

: ::::::::::
dimensionless

: ::::::
Average

:::::::::
Permeability

:
m
::::
h−1

::::::
Average

:::
and

::::::::::
Lower/higher

::::::
bounds

:::::::
Available

::::
water

::::::
content

:::::
fraction

: ::::::
Average

:::
and

::::::::::
Lower/higher

::::::
bounds

:::
Bulk

::::::
density

:
g
:::::
cm−3

: ::::::
Average

:::
and

::::::::::
Lower/higher

::::::
bounds

::::::
Organic

:::::
matter

::::::
content

:
%

::::::
Average

:::
and

::::::::::
Lower/higher

::::::
bounds

::::
Clay

:::
soil

::::::
content

:
%

::::::
Average

:::
and

::::::::::
Lower/higher

::::::
bounds

::
Silt

:::
soil

::::::
content

: :
%

::::::
Average

::::
Sand

:::
soil

::::::
content

:
%

::::::
Average

::::::
Percent

:::
finer

::::
than

:::::
nos.4,

::
10,

:::
and

::::
200

::::
sieve

:
%

::::::
Average

:::
and

::::::::::
Lower/higher

::::::
bounds

a: Spatial statistics calculated across the watershed.

3.3.3 Geology

The geology predictors used in this study were retrieved from publicly available databases (Wieczorek and LaMotte, 2010c, d)5

and they can be classified into two subcategories: surficial geology (surface sediment) and bedrock geology. As the predictors,

we used fractions of the watershed area corresponding to each of the 45 surficial geology types (Wieczorek and LaMotte,

2010d; Clawges and Price, 1999) and each of the 162 bedrock geology types (Wieczorek and LaMotte, 2010c; Schruben et al.,

1994). Details regarding each geology type can be found in Wieczorek and LaMotte (2010c) and Wieczorek and LaMotte

(2010d). Note that in geological terminology, rock type or rock composition data are referred to as lithology data. Compared

to lithology, structural geology data might be more informative for groundwater studies (e.g., orientation, fracture properties,5

discontinuity, etc.). However, structural geology information usually requires in-situ investigation, which cannot be expected

at ungauged watersheds. Therefore, we consider only lithology data in this study.

3.4 Data partitioning

This Sect. explains the setup of the holdout method (i.e., the partitioning of data into two mutually exclusive subsets) for the

watersheds
::::::
specific

::
to

:::
the

::::
case

:::::
study, as well as the partitioning of the predictors into various subsets in order to evaluate the10

effects of different predictors.
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3.4.1 Watershed partitioning

Because we cannot evaluate
:::
the predictive accuracy at real ungauged watersheds (due to the lack of in-situ recharge observations,

we follow
:::
data

::
to

:::::::
compare

::::::::
against),

::
we

:::::
adopt

:
the holdout method

::
to

:::::::
partition

:::
the

:::::::::
watersheds

:
described in Sect. ?? to partition

the watersheds:
::
3.1

::::
into

::::
two

::::::::
mutually

::::::::
exclusive

:::::::
subsets:

:::
the

::::::::
training

:::::::::
watersheds

::::
and

:::
the

::::::
testing

:::::::::::
watersheds.

::::
The

::::::
testing15

:::::::::
watersheds

::::
will

::
be

:::::::
treated

::
as

::
if
::::
they

:::::
were

:::::::::
ungauged,

::::
and

:::
we

::::
only

::::::::
condition

::::
the

:::::
BART

:::::::
models

:::
on

::::
data

:::::
from

:::
the

:::::::
training

:::::::::
watersheds

::::::
(which

:::
are

:::
the

::::::
ex-situ

::::
data,

::::
with

::::::
respect

::
to

:
the

:::::
testing

:::::::::::
watersheds).

::
In

:::
this

::::::
study,

:::
we

:::::
define

:::
the

:
watersheds in MRB 1 are

:
as

:
the testing watersheds and the watersheds in MRB 2 are

::
as the

training watersheds. The ex-situ data (i.e., data in MRB 2) are used to fit multiple BART models(to be explained shortly),

which are then used to obtain predictive distributions of recharge
::::
LNR

:
at all the testing watersheds.5

There are two reasons for this MRB-based data partitioning:

– For reasons touched on in Sect. 1, we do not consider spatial proximity as a predictor in this study. Separating the two

MRBs partly ensures the exclusion of the confounding effect of spatial proximity, and thus the regionalization is solely

based on the watershed characteristics.

– Considering the logit normalized recharge
::::::::::
distributions

::
of

:::::
LNR (Fig. 4

::
(f)), the range of values in MRB 2 fully covers10

the range of values in MRB 1. However, the reverse is not true. It is thus advantageous to train the models with MRB 2

to avoid poor model fitting due to lack of data coverage.

After partitioning the watersheds, we now turn our attention to the partitioning of predictors.

3.4.2 Predictor partitioning

As mentioned in Sect. 1, climate variables are among the most important factors in hydrologic similarity at
:::
the regional scale,15

but there might be other controlling factors to consider as well, and the dominance of climate variables may not be always

present. To investigate the various effects of different predictors, we
::::::::::
conceptually

:::::
divide

:::
the

:::::::::
predictors

:::
into

::::
four

::::
sets:

::
(1)

:::::::
climate

::::::
controls

::::
that

::::::::
determine

:::
the

:::::
input

:::::::
amount

::
of

:::::
water

:::
into

:::
the

:::::::
system,

:::
(2)

::::::
surface

:::::::
controls

:::
that

:::::::::
determine

:::
the

::::::::::
distribution

::
of

:::::
water

:
at
:::
the

:::::::
surface,

:::
(3)

:::
soil

:::::::
controls

::::
that

::::::::
determine

:::
the

:::::::::
infiltration

::
of

:::::
water,

::::
and

:::
(4)

:::::::
lithology

:::::::
controls

::::
that

:::::::
indicates

:::
the

:::::::::
properties

::
of

::
the

:::::::
aquifer.

:::
We

::::::
further

:::::
break

::
of

:::
the

::::
first

:::
set

::::
into

::::
three

::::::
subsets

::
to
::::::::::

investigate
:::
the

:::::
effect

::
of

::::::::::::
dimensionless

:::::::::
predictors.

:::::::::
Therefore,20

::
we

:
define a total of six different predictor sets to build six unique BART models, which are indexed by

::
k, k = 1,2, ...6 (Table

4).

Note that the determination of the six predictor sets is guided by
:
a
::::::::::
conceptual

:::::::
division

::
of

::::::::
predictors

::::
and the idea of testing

the relative importance of different categories of predictors under different conditions, instead of aiming for high accuracy and

precision. Therefore, by no means is Table 4 an exhaustive list of all possible sets, nor does it necessarily include the “best "5

set
:::
best

:::
set

:::
that

:::::
leads

::
to

:::
the

:::
best

:::::::::
predictive

::::::::::
performance. The design of the six predictor sets simply facilitates the investigation

of the effects of various categories of predictors on predictive accuracy and uncertainty.
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Table 4.
::::
Table

::
of
:::
the

:::
six

::::::
different

:::::::
predictor

::::
sets.

:
k

::::::::
predictors

:::::::
included Number of

predictors

:
1
: :

φ̄
:::
and

:
φ
: :

2

:
2
: ::

P̄
:
,
::
P ,

:::
and

:::
Ep :

3

:
3
: :::

All
:::::
climate

::::::::
predictors:

::
P̄
:
,
:::
P ,

:::
Ep,

:
φ̄
:::
and

::
φ

:
5

:
4
: :::::::::

Topography
:::
and

:::
land

::::
cover

::::::::
predictors

: ::
20

:

:
5
: :::

Soil
::::::::
predictors

::
48

:

:
6
: ::::::

Geology
:::::::
predictors

: :::
206

3.4.3
:::
The

:::::::::::
benchmark

::::::
model:

:::::::
without

::::
any

::::::::
predictor

In addition to the six BART models, we also build a simple model by using the estimated distribution of logit normalized

recharge
::::
LNR

:
at the training watersheds (via kernel density estimation ) as the predictive distribution for the testing watersheds

::::::::::::::::::::::::::::::::::::::
(R Core Team, 2018; Sheather and Jones, 1991)10

, without considering any predictor.
:
In

:::::
other

::::::
words,

:::
this

::
is

::::::
simply

::::
using

:::
the

::::::::::
distribution

::
of

::::
LNR

::
at
:::
all

:::
the

::::::
training

::::::::::
watersheds

::
as

::
the

:::::::::
predictive

::::::::::
distribution. This is a model that ignores hydrologic similarity altogether, and it can be considered as an extreme

case of the ex-situ prior in Li et al. (2018), with a lot more watersheds and much less stringent criteria of similarity. From this

point forward, we refer to this model as the benchmark model, for it is used as a benchmark against which the BART models

are compared.15

3.5 Evaluation of predictive distributions

As mentioned in Sect. ??
::
2.3, we label each testing watershed by the best-performing model,

::::::
where

::
the

:::::::::::
performance

::
is

::::::::
measured

:::::
based

::
on

:
a
::::::
metric. Thus, the metric with which we evaluate predictive distributions matters.

In this study, two different accuracy metrics are adopted. The first is the root mean squared error (RMSE), defined as

Ei,k =

√√√√ 1

L

L∑
l=1

(
R̂

(l)
i,k − r̃i

)2
(7)20

where r̃i is the LNR data at the ith testing watershed, and Ei,k is the RMSE of the kth model at the ith testing watershed. Note

that R̂(l)
i,k is obtained by following Eq. 6, but now subscripts are added to indicate that we plug in the predictors from the ith

testing watershed to the kth model. This metric evaluates the predictive performance in an estimation problem, where we wish

to obtain a “best estimate" of recharge
::::
LNR

:
with minimal expected error.

The second metric is the median log predictive probability density (LPD) at the value of recharge
::::
LNR

:
observation, defined25

as

Li,k = medianl=1,...,L

{
ln
[
p
(
R= r̃i|R̂(l)

i,k,(σ
2)

(l)
k

)]}
(8)
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whereLi,k is the LPD of the kth model at the ith testing watershed. The subscript of (σ2)
(l)
k indicates the kth model. This metric

evaluates the predictive performance in a simulation problem, where we wish the realizations from the predictive distributions

are likely to be the same as the observation.

In addition to accuracy, we also quantify the predictive uncertainty. This is done by first recognizing the two components of

uncertainty for the kth model at the ith testing watershed:

1. σ2
k, which we refer to as the predictive variance

:::::::::
predictive

:::::::
variance, and is approximated as the sample median of (σ2)

(l)
k

over l = 1, ...,L, and5

2. the posterior variance of R̂i,k, which we refer to as the estimate variance
:::::::
estimate

::::::::
variance, and is approximated as the

sample variance of R̂(l)
i,k over l = 1, ...,L.

The predictive variance indicates how informative the inferred predictor-response relationship is, while the estimate variance

indicates how certain a BART model can infer that relationship
::::::::
uncertain

:::
the

::::
said

::::::::::
relationship

:
is. In this case study we weigh

the two components equally, as we wish to obtain an informative relationship with certainty. To that end, we define the total10

predictive variance
::::
total

:::::::::
predictive

::::::::
variance as the summation of the two components, and use it as the metric of predictive

uncertainty in this study.

4 Results

As discussed above, we built six BART models (Table 4) with ex-situ data. In-situ predictors were then fed into the models to

yield posterior realizations of predictive distributions (Eq. 6). With the metrics of accuracy and uncertainty defined, we are then

able to quantify the predictive performance of the BART models, and classify them based on either the RMSE-based labels or

the LPD-based labels with the nested tree-based modeling approach. This allows for the investigation of the effects of various

predictors under different conditions, which will be presented in this Sect.5

4.1 Evaluation of predictive distributions

The following subsections present the effects of different predictor sets on predictive accuracy and uncertainty.

4.1.1 Predictive uncertainty

The effect of regionalization with the different predictor sets on predictive uncertainty is shown in Fig. 5. The estimate vari-

ance (
:::
Fig.

:
5(a)) represents how well the BART models capture the predictor-response relationships. We see that the geology10

predictors lead to the lowest estimate variance, probably because of the significantly larger number of predictors used (see

Table 4). Yet, there is a surprise in Fig. 5(a). First, at k = 1 and k = 2 the estimate variances are generally quite low, despite

the low number of predictors. However, at k = 3, the estimate variances increase significantly. Intuitively, since aridity is the

ratio of evapotranspiration to precipitation, one would expect that the variances at k = 3 would be similar to, if not lower than,

those at k = 1 and k = 2. One plausible explanation here is that although aridity indices and precipitation/evapotranspiration15
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Figure 5. The box plots of the estimate variances at the testing watersheds ((a)), the bar plot of the predictive variances with 95% intervals

shown by the error bars ((b)), and the box plots of the total predictive variances at the testing watersheds ((c)). The red line indicates the

variance of the benchmark model , used for comparison.

carry ample information to be extracted and conditioned upon, the respective predictor-response relationships we get might be

significantly different. When used together, the BART models were not able to formulate a universal relationship. This will be

revisited in Sect. ??
::
5.3.

The predictive variance (
:::
Fig.

:
5(b)) represents how informative the predictor-response relationships are, which is a different

aspect of uncertainty compared to the estimate variance. One could obtain a predictor-response relationship fairly confidently20

(low estimate variance), but the relationship is less informative (high predictive variance), like that found at k = 6. The opposite

case is that one could not confidently obtain a predictor-response relationship, but once that relationship is obtained it is quite

informative, like that found at k = 5.

The total predictive variance (
:::
Fig. 5(c)) provides an overall metric that considers the above two sources of uncertainties.

While the medians are rather similar, the spread of the box plots does vary significantly with k. The condensed box plots (e.g.,25

k = 1 and k = 6) indicate that the total predictive variances are essentially constant throughout all testing watersheds, while the

spread-out box plots (e.g., k = 5) indicate that the effect of the predictors may vary significantly from one testing watershed

to another. This indicates that there might not be one single predictor set that always leads to the lowest uncertainty, and thus

the effects of predictors on predictive uncertainty may vary from one condition to another. That said, regardless of the testing
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watersheds and predictor sets, the total predictive variance is always lower than the variance of the benchmark model, which30

clearly shows that regionalization using watershed characteristics definitely improves predictive precision.

4.1.2 Predictive accuracy

The effect of regionalization with the different predictor sets on RMSE is shown in Fig. 6. The RMSE of the benchmark model

(Fig. 6(a)) at each testing watershed is simply the difference between the sample mean of the ex-situ recharge
::::
LNR

:
data and

the in-situ recharge
::::
LNR

:
observation. For the BART models (Fig. 6B

:::
(b)), it is calculated by the root of the average squared

errors over post-convergence MCMC simulations.

Regardless of k, we see that, compared with the benchmark model, RMSE is reduced at least at half of the testing water-

sheds. Surprisingly, the largest overall RMSE reduction is observed when only the aridity indices are used for regionalization,

indicating that at most of the watersheds tested in this study, aridity similarity implies recharge
::::
LNR

:
similarity at regional and

annual scales to a high degree. On the other hand, we observe some outliers that have high RMSE reduction at k = 4 through

k = 6, indicating that topography, land cover, soil properties, and geology may not have an overall effect that is as strong, but

under certain circumstances, they could still be important factors.
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Figure 6. The box plot of the RMSE of the benchmark model at the testing watersheds ((a)), and the box plots of the RMSE reduction

introduced by applying the BART models at the testing watersheds ((b)). The red line indicates zero RMSE reduction , used for comparison.

The effect of regionalization with different predictor sets on LPD is shown in Fig. 7. It is immediately clear that the accuracy5

improvement is not as prominent as that seen in Fig. 6. LPD is
::::
Only

:::::
when

:::::
k = 1

::
is
::::
LPD

:
increased at most of the watersheds

only at k = 1. We also find that all of the distributions of LPD are heavily negatively skewed , and with a lot of outliers.

Looking at Figs. 5 through 7 together, one can observe the different effects of the predictor sets on predictive accuracy,

stemming from the different natures of an estimation and a simulation problem. From the point of view of the overall effect, for
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Figure 7.
:::
The

:::
box

::::
plot

::
of

::
the

::::
LPD

::
of

:::
the

::::::::
benchmark

:::::
model

::
at
:::
the

:::::
testing

:::::::::
watersheds

::
(a)

:
,
:::
and

::
the

::::
box

::::
plots

::
of

::
the

::::
LPD

:::::::
increase

::::::::
introduced

::
by

:::::::
applying

::
the

:::::
BART

::::::
models

::
at

::
the

::::::
testing

::::::::
watersheds

:::
(b).

:::
The

:::
red

:::
line

:::::::
indicates

::::
zero

::::
LPD

::::::
increase,

::::
used

:::
for

:::::::::
comparison.

k = 2 through k = 5 (i.e., the predictors other than aridity indices) RMSE is reduced at more than half of the testing watersheds,10

but LPD does not increase to the same extent. This suggests that the predictive distributions are centered closer to the in-situ

observations due to regionalization, but that the conditioning also significantly reduces the predictive variances, causing the

predictive distribution to be too narrow. Therefore, compared to a relatively flat, spread-out, and uninformative or weakly

informative distribution, the predictive density decays too quickly when deviating from the predictive mean, resulting in low

LPD. This might be a sign of over-conditioning, or the disproportional reduction of predictive uncertainty, as exemplified in15

Fig. 8. The cyan curve is an example of an over-conditioned distribution. Although its mean is
::::::::
somewhat close to the true value,

the small variance causes rapid decay of probability density; therefore, at the true value
:::
(red

::::::
vertical

::::
line)

:
the predictive density

is lower
::
no

:::::
better

:
than that of the weakly informative distribution, and is essentially the same as that of the uninformative

uniform distribution
::
or

::::::::::::
uninformative

:::::::::::
distributions.

:::::
How

:::::
could

::::
this

::::
ever

:::::::
happen?

:::::
Take

:::::
k = 5

:::
in

::::
Fig.

:
5
:::

as
::
an

:::::::::
example:

:::
the

::::::::
predictive

:::::::
variance

::
is
::::::
small,

:::::::
meaning

::::
that

:::
the

::::::::
predictive

::::::::::
distribution

::::::
should

::
be

::::::
rather

::::::
peaked

::::
(just

:::
like

::::
the

::::
cyan

:::::
curve

::
in

::::
Fig.

::
8).

::::
The

::::
only

::::
way

:::
one

:::
can

:::
get

:
a
::::
high

:::::::::
predictive

::::::
density

::
is

::::
then

::
to

:::::
make

::
the

:::::::::
predictive

:::::
mean

::::
close

::
to

:::
the

::::
true

:::::
value.

:::::::::::
Nonetheless,

:::
this

:::::
would

:::
be

::::
very

::::::
difficult

::
at
:::::
some

::
of

:::
the

:::::::::
watersheds

::::::
where

:::
the

:::::::
estimate

:::::::
variance

::
is

::::
large. The only predictor set that improves

both RMSE and LPD at most of the testing watersheds is k = 1, the aridity indices, and one could expect the corresponding5

predictive distributions to be more
::::::::
somewhat similar to the case of the

:::
ideal

:
dark blue curve in Fig. 8.

The box plot of the LPD of the benchmark model at the testing watersheds ((a)), and the box plots of the LPD increase

introduced by applying the BART models at the testing watersheds ((b)). The red line indicates zero LPD increase, used for

comparison.
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Over-conditioning can occur when model fitting or model calibration leads to well-constrained
:::::::::
constrained parameters that10

are, in fact, subject to different forms of model uncertainty (Hutton et al., 2014; Beven et al., 2008),
::::::
which

::
is

::
an

:::::::::
indication

::
of

:::
why

::::
the

:::::::::::
determination

:::
of

:::::
p(Bk)

::
is
:::::::::
important. In this study, it could be that the uncertainty regarding the predictor-recharge

relationship at the testing watersheds is characterized differently compared to the uncertainty at the training watersheds. For

the sake of comparing the relative importance of the different predictor sets, instead of accounting for model uncertainty, 5 we

evaluated and compared the models directly
:::
case

:::::
study,

:::
we

:::::::
focused

:::::
more

:::
on

:::
the

:::::::
variation

:::
of

:::::
p(Bk)

:::::
under

:::::::
various

:::::::::
conditions15

::
(to

:::
be

::::::
shown

:::::::
shortly),

::::
and

:::
less

:::
on

:::::::::
improving

:::
the

::::::::
estimates. However, in another application where the estimates are to be

refined, model
::::::::
improved,

::::::
model

:::::::
structure

:
uncertainty should be and can be considered (as shown in Sect.??

::
in

::::
order

:::
to

:::::
refine

::
the

::::::::
estimates

:::::
(e.g.,

:::
via

::::::::
Bayesian

:::::
model

:::::::::
averaging).
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Figure 8. An example of over-conditioning: the probability density at the true value (indicated by the red vertical line) of the over-conditioned

distribution is not higher than that of the non-informative distribution or that of the weakly informative distribution, not because the condi-

tioning does not work, but because of the disproportional reduction of the variance of the distribution.

4.2 Regionalization similarity

The box plots in Fig. 5 through 7 showed different distributions of the predictive performance metrics for the different predictor20

sets. An interesting follow-up question here would be how model performance varies with watershed characteristics. It was

shown that, in consistency
::::::::
consistent with previous studies, aridity is indeed the most important controlling factor at regional

and annual scales on average, but there are few cases where this aridity dominance is replaced. In other words, how might we

identify the conditions under which a specific predictor set could be more informative than others?

To investigate this further, we give each testing watershed two labels: the model with the lowest RMSE, and the model with

the highest LPD; we refer to these labels as the RMSE labels and the LPD labels, respectively. The possible values of each

label include k = 1 through k = 6 and benchmark, representing the six BART models and the benchmark model, respectively.5
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Then, using all the available predictors, we built two CART models to classify watersheds based on the RMSE labels (Fig. 9),

and the LPD labels (Fig. 10).

4.2.1
::::::
Nesting

:::
by

:
RMSElabels

AWCAVE >= 0.16

ARID_IDX < 0.9

BGEOL_147 < 53

SLP_DEG < 4.5

PPT02MEAN < 1169

PPT02MEAN < 1332

NLCD01_41 >= 48

ARID_IDX02 < 0.99

PPT02MEAN < 1020

SLP_DEG < 2

 1049  743  402  194  237  83  102  62  104  278  355

k = 1 :  0.73 
 k = 2 :  0.18 

k = 1 :  0.53 
 k = 2 :  0.26 

k = 1 :  0.51 
 k = 2 :  0.21 

k = 1 :  0.39 
 k = 2 :  0.28 

k = 2 :  0.54 
 k = 1 :  0.19 

k = 4 :  0.46 
 k = 1 :  0.22 

k = 6 :  0.53 
 k = 1 :  0.24 

k = 2 :  0.69 
 k = 6 :  0.19 

k = 3 :  0.43 
 k = 2 :  0.34 

k = 4 :  0.35 
 k = 3 :  0.22 

k = 6 :  0.37 
 k = 1 :  0.29 

yes no

[1]
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[3]
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k = 1
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Figure 9. CART model classifying the RMSE labels of the testing watersheds. Splitting rules are shown in white nodes, while terminal
:::
leaf

nodes are colored based on the classification results.
::
For

::::
each

:::
leaf

:::::
node,

::
the

::::::::
brightness

::
of

:::
the

:::::
coded

::::
color

:::::::
indicates

:::
the

::::
node

::::::
impurity

::::
(the

::::::
brighter

::
the

:::::
more

::::::
impure),

:::::
where

:::::::
impurity

:
is
::::::
defined

::
as

:::
the

::::::::
probability

:::
that

:::
two

::::::::
randomly

:::::
chosen

:::::::::
watersheds

:::::
within

::
the

::::
node

::::
have

:::::::
different

:::::
labels. On top of every node, in brackets, is the node number, provided for convenient referencing. The predictors in the splitting rules are

expressed in code names for convenience; a reference list is found in Table 5. The width of the tree branch (grey line) is proportional to the

impurity of the node that the branch leads to, where impurity is defined as the probability that two randomly chosen watersheds within the

node have different labels. For each terminal
:::
leaf node, the class

:::::
model of the highest multinomial probability

:
of

:::::
having

:::
the

:::
best

::::::::::
performance

is shown first, which is
:::
also

::::::::
determines the classification result, followed by the class

::::
model

:
of the second highest probability

:
,
:::
also to indicate

how impure the node is
::::::
impurity. Underneath each terminal

::
leaf

:
node box is the number of watersheds belonging to the

:::
leaf.

::::
Note

:::
that

:::
the

:::::
legend

::::
does

:::
not

:::::
include

:::::::::
benchmark

::::::
because

:::
the

:::::::::
benchmark

:::::
model

::
is

::::
never

:::
the

::::::::::::
best-performing

:::::
model

::
at
:::
any

::::::
testing

::::::::
watershed.

:::::
k = 5

::
is

:::::
marked

::
as
:::::::
“unused"

::
in
:::
the

:::::
legend

::::::
because

::::
there

::
is

::
no

:::
leaf

:
node

::::
where

:::::
p(B5)

::
is

:::
the

:::::
highest.

The
:::
Fig.

::
9

:::::
shows

:::
the

::::::::
variation

::
of

::::
the

:::
top

:::
two

::::
best

::::::::::
performing

::::::
BART

::::::
models

::::
and

:::
the

::::::::::::
corresponding

::::::
p(Bk)

:::::
values

::::::
under

::::::
various

:::::::::
conditions,

:::::
where

:::
the

:::::::::::
performance

::
of

::::
each

:::::
BART

::::::
model

:
is
:::::::
defined

::
by

:::
the

::::::
RMSE.

::::
This

::::::::
variation

:::::::
indicates

:::
the

::::::::::::
regionalization10

::::::::
similarity

::
in

:::
the

:::::
study

::::
area.

:::
At

:::
first

:::::::
glance,

:::
the available water content (AWC) is

::::
stand

:::
out

::
to

:::
be the first indicator of region-

alization similarity (Fig. 9 node 1): at watersheds with high AWC, aridity stands out as the dominant factor, consistent with

various
:::::
which

::
is
:::::::::
consistent

::::
with

:::
the

:
previous studies cited in Sect. 1. However, there is a potential risk if one uses aridity as

the primary indicator of hydrologic similarity regardless of AWC. In previous studies, AWC was found to be an important

predictor correlated with surface runoff, baseflow, and groundwater recharge (Arnold et al., 2000), and it was among the most
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Table 5.
::::::::
Reference

::
list

::
of
:::
the

::::::
splitting

:::::::
variables

::
in

:::
Fig.

::
9
:::
and

:::
Fig.

:::
10.

::::
Code

:::::
name

:::::::
Splitting

:::::::
variable

::::::::
AWCAVE

::::::
Average

:::::::
available

:::::
water

:::::
content

:

::::::::
ARID_IDX

: ::::
Long

::::
term

::::::
average

:::::
aridity

::::
index

:

::::::::::
ARID_IDX02

: :::::
Aridity

:::::
index

:
in
:::::

2002

::::::::::
PPT02MEAN

: ::::::
Annaul

:::::::::
precipitation

::
in

::::
2002

:

::::::::::
BGEOL_147

::
%

:::
area

::
of

::::::::
Paragneiss

:::
and

:::::
Schist

::::::
bedrock

:

::::::::
SLP_DEG

::::::
Average

::::
slope

::
in

:::::
degree

:

::::::::::
NLCD01_41

:
%

::::
area

::
of

::::::::
Deciduous

:::::
Forest

important parameters to which water balance models are sensitive (Finch, 1998). In the current study, we are not claiming5

that AWC cannot be a predictor, but rather, we are suggesting a hierarchical structure in which AWC is placed —together

with other predictors —to help estimate recharge
::::
LNR at ungauged watersheds. Since AWC is governed by field capacity and

wilting point, it is an indicator of the storage capacity of the soil for usable/consumable water: the larger the storage capacity,

the higher the degree to which the system is supply-limited, thus pointing to aridity. If the storage capacity is low, on the

other hand, the more complicated interplay among various predictors needs to be considered, and one cannot simply assume10

that aridity is the primary indicator of hydrologic similarity.
:::
We

::::
also

:::::
found

:::
the

:::
soil

:::::::
organic

::::::
matter

::::::
content

:
a
:::::
quite

::::::::::
competitive

:::::::
surrogate

:::
for

::::::
AWC,

:::::::
meaning

:::
that

::
if
::::::
organic

::::::
matter

::::::
content

::::
was

::::
used

::::
here

::::::
instead

::
of

::::::
AWC,

::
we

::::::
would

:::
end

:::
up

::::
with

:
a
::::::
slightly

::::
less

:::::::
accurate

:::
but

::::::
overall

::::::
similar

:::::::::::
classification.

:::
We

:::::::::
conjecture

::::
that

:::
this

::
is
:::::::
because

::
of

:::
the

::::
high

:::::::
positive

::::::::::
correlations

:::::::
between

:::::::
organic

:::::
matter

::::::
content

::::
and

:::::
AWC

:::::::::::::
(Hudson, 1994).

:

Further down the classification tree, watersheds with lower AWC are classified roughly as arid or humid watersheds by the15

long-term aridity index. For the more humid watersheds (Fig. 9, nodes 4 through 14), regionalization similarity is controlled by

different predictors, but the dominant predictors for recharge
::::
LNR estimation are almost always the climate variables (nodes

6, 8, 11 and 12, which contain 1576 watersheds in total). Only at a handful of watersheds (nodes 13 and 14, which contain

only 185 watersheds in total) are aridity indices not dominant. However, some interesting conjectures can be made by taking a

closer look at these two nodes.20

Node 14 is a small but unique cluster, featuring watersheds that have low AWC, are humid, and have relatively homogeneous

paragneiss and/or schist bedrock. Both of these bedrock types belong to the category of crystalline rock, and often feature

layering in a particular orientation. The groundwater movement in such rock formation often depends on foliation, i.e., rock

breaks along approximately parallel surfaces, which affect the direction of the regional groundwater flow (Singhal and Gupta,

2010). Hence we observe a condition where the ample water supply cannot be substantially held by the soil due to low AWC,25

and the regional groundwater movement might be controlled by bedrock layering and foliation. Low AWC is an indication

of less clayey soils, and implies that infiltration/percolation through the soil layer might be facilitated by relatively higher

permeability. Water could thus easily enter the bedrock layer, which is rather horizontally homogeneous. To that end, those
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predictor sets other than k = 6 become less informative, while the predictor set k = 6 becomes relatively more informative. In

fact, these watersheds are mostly the positive outliers at k = 6 in Fig. 6(b), where the predictor
::::::::
predictive

:
power of the geology30

predictors is at its best.

Node 13 features watersheds that have low AWC, are humid, are not dominated by homogeneous paragneiss and/or schist,

have a relatively steep average slope, and have
:
a
:
large amount of annual precipitation. The low aridity is primarily driven by

precipitation rather than evapotranspiration. In fact, these watersheds are mostly outliers featuring extremely low aridity index

(below 0.65) due to ample precipitation. Under such condition, evapotranspiration is expected to operate to its full potential, i.e.,

it is shifting from water-limited state to energy-limited and canopy-controlled state. Because the evapotranspiration demand of

the canopy can be met, the
::
In

:::::::
addition,

:::
as

:::::::::::::::
evapotranspiration

::
is

::::
near

::
its

::::
full

::::::::
potential,

:::
the

:::::::
drainage

::
of

:::
the

::::::
excess

:::::::::::
precipitation

:::::
would

::
be

:::::::::
controlled

::
by

:::
the

:::::::::
topography

::
of
:::
the

:::::::::
watershed

::::
(e.g.,

:::
the

:::::
slope

:::
and

:::
the

:::::::
sinuosity

::
of

:::
the

:::::::
stream).

::::
Fast

:::::::
drainage

:::::
leaves

::::
less5

::::
water

::::::::
available

:::
for

:::::::::
infiltration

:::
and

::::::::
recharge,

:::
and

::::
vice

:::::
versa.

::
To

::::
that

:::
end,

:::
the

:
land cover type now starts

:::
and

:::::::::
topography

::::
now

::::
start

to play a dominant role in hydrologic similarity. It is noteworthy to point out node 20 here. Node 20 features watersheds that are

relatively humid among the arid watersheds ( ¯phi
:
φ̄ in the range from 0.9 to 0.99) and have ample precipitation. The similarity

of node 20 with node 13 supports our conjecture that the dominance of land cover predictors is 5
:::
and

:::::::::
topography

:::::::::
predictors

::
is

due to the precipitation-driven humid environment that is relatively more capable of catering to the evapotranspiration water10

demand
:::
and

:::::::
features

:::::
excess

:::::::::::
precipitation.

On the other side of the tree (Fig. 9,
::::
node

::
15

:::::::
through

::::
21), the resulting classification is quite diverse, and the purity

:::::::
impurity

of each node is relatively lower
::::
high. Aridity no longer plays the dominant role, and the hierarchical similarity structure becomes

complicated that it is difficult to make straightforward physical interpretations. The most important message we get is the

significant risk one would face if one considers aridity, or any climate variable in general, as the primary indicator of hydrologic

similarity when AWC is low and aridity index is high. In summary, although climate predictors are still the most important

ones on average, within the context of the hierarchical similarity we have identified certain conditions under which either non-

climate predictors become dominant or no dominant predictor set can be straightforwardly identified, all of which contribute5

to the understanding of the dynamic hydrologic similarity.

4.2.2 LPD labels

4.2.2
::::::
Nesting

:::
by

:::::
LPD

The classification of the LPD labels is shown in Fig. 10. In general, the structure
:::
root

::::
part

::
of

::::
the

:::::::::::
classification

:::
tree

::::::
(node

:
1
:::::::
through

::
3)

:
is quite similar to that found in Fig. 9, where AWC and long-term aridity define two sequential overarching10

separations of watersheds. However, further down the tree the leaf part is significantly different. The classification essentially

leads to only three big clusters (Fig. 10, nodes 2, 7, and 9), and the other terminal
:::
leaf

:
nodes only contain a few watersheds.

Node 9 features arid watersheds with low AWC, where we end up with a highly impure terminal
:::
leaf

:
node, and even the highest

multinomial probability is only 0.27. No further splitting rule could significantly reduce classification error. This is supportive

towards our previous argument that when aridity index is high and AWC is low, it is risky to resort to climate variables for15
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AWCAVE >= 0.18

ARID_IDX < 0.85

PPT02MEAN < 1022

PPT02MEAN < 1343

 775  145  1397  171  1121

k = 1 :  0.71 
 k = 2 :  0.18 

k = 1 :  0.74 
 k = 5 :  0.19 

k = 2 :  0.43 
 k = 5 :  0.21 

k = 1 :  0.29 
 k = 4 :  0.23 

k = 5 :  0.27 
 k = 2 :  0.18 

yes no

[1]

[2]

[3]

[4]

[5]

[6]

[7] [8] [9]

benchmark (unused)
k = 1
k = 2
k = 3 (unused)
k = 4 (unused)
k = 5
k = 6 (unused)

Figure 10. Same as Fig. 9, except that here the classification is done using the LPD labels. The predictors in the splitting rules are expressed

in code names for convenience; a reference list is found in Table 5.

hydrologic similarity, as shown here that it is difficult to even identify a dominant predictor set. As mentioned in Sect. 4.1.2,

underestimation of the predictive variance (σ2
k) leads to low LPD, and thus it is difficult to make physical interpretation our of

the results in Fig. 10, except for node 1 through 3, which are quite similar to their counterparts in Fig. 8.
::
9. Therefore, with the

LPD labels we are only able to identify the overarching regionalization similarity controlled by AWC and long-term aridity.

RMSE and LPD represent views of predictive accuracy in an estimation problem and a simulation problem, respectively.20

Intuitively, if one only considers unimodal predictive distribution with limited skewness, a high predictive density at a value

directly implies a closeness of the distribution central tendency to that value. However, the reverse is not necessarily true: either

over- or underestimation of variance might possibly lead to low predictive density, even if the mean is close to the target value

(e.g., Fig. 8). Based on whether RMSE or LPD is used as the accuracy metric —which implies the scope of recharge estimation

—
::::
LNR

:::::::::
estimation

::
—we can observe some common features as well as some distinctions of the structure of the hypothesized25

hierarchical similarity.

Fortunately, regardless of the metric of predictive accuracy, in both Figs. 9 and 10 the first three nodes are remarkably

consistent, and the effect of the metric of predictive accuracy is only manifested at watersheds with low AWC. This supports

the suggestion that AWC plays a pivotal role in hydrologic similarity for mean annual groundwater recharge
::::
LNR estimation.
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5 Discussion30

In this section, we discuss the key findings
:::::
revisit

:::
the

::::
two

:::::::
research

:::::::::
objectives

:::::::
pointed

:::
out

::
in

:::::
Sect.

:
1
:::

by
:::::::::
discussing

:::
the

::::
key

::::::
features

::
of
:::
the

:::::::::
approach,

:::
the

:::
key

:::::::
findings

::::
from

:::
the

::::
case

:::::
study,

:
as well as the limitations of the case study.

5.1
:::

The
::::::
nested

:::::::::
tree-based

:::::::::
modeling

::::::::
approach

:::
The

::::::
nested

::::::::
tree-based

::::::::
modeling

::::::::
approach

::::::::
proposed

::
in

:::
this

:::::
study

:
is
:::::::::
essentially

::
a

:::::::
coupling

::
of

::::::
BART

:::
and

::::::
CART.

:::
As

:::::::::::
demonstrated

::
in

::::
Sect.

::
2,
:::::

both
::::::
BART

:::
and

::::::
CART

:::
are

:::::::::::
independent

::
of

:::
the

::::::::
physical

::::::::::
background,

::::
and

:::
are

::::
pure

::::::::::
data-driven

:::::::
machine

::::::::
learning

:::::::::
techniques.

:::::::::
Therefore,

::
in

::::::::
principle

::
as

::::
long

:::
as

::::
there

::::
are

::::
data,

:::
the

::::::
nested

:::::::::
tree-based

::::::::
modeling

::::::::
approach

::
is

:::::::::
applicable

:::
like

::::
any5

::::
other

::::::::::
data-driven

::::::::
approach.

::::::::
However,

::::
one

::::
may

:::::
argue

:::
that

:::
(1)

:::
the

::::::::::
in-principle

:::::::::::
applicability

::::
does

:::
not

:::
set

:::
the

::::::
nested

:::::::::
tree-based

::::::::
modeling

::::::::
approach

::::
apart

:::::
from

:::::
other

:::::::::
data-driven

:::::::::::::::
machine-learning

::::::::::
approaches,

::::
and

::::
that

:::
(2)

:
it
::::::

would
:::
be

:::::::::::::
counter-intuitive

:::
to

:::::::
advocate

::
a
:::::::::
data-driven

:::::::::
approach

::::
with

:
a
:::::::::

seemingly
::::::::

data-rich
::::
case

::::::
study

::::
(here

::::::::::
“data-rich"

:::::
refers

::
to
::::

the
:::
fact

::::
that

:::::
each

:::::
MRB

::::::
consists

::
of
:::::::::

thousands
::
of

::::::::::
watersheds,

:::
see

:::::
Sect.

:::
3.1)

:::::
when

:::
the

:::::
study

:::::::
actually

:::::::::
emphasizes

:::::::::
ungauged

:::::::::
watersheds.

:

:::
Our

::::::::::
explanation

:::::
starts

::::
with

:::::::::
explaining

:::
two

:::::::::
significant

::::::::::
advantages

::
of

:::
the

::::::
nested

:::::::::
tree-based

::::::::
modeling

::::::::
approach.

::::
First

:::
of

:::
all,10

::
the

:::::::
greatest

:::::::::
advantage

::
of

::::::
BART

:::
(as

:::::::::
mentioned

::
in

:::::
Sect.

::::
2.2)

::
is

:::
that

::
it
:::::::
outputs

:::
the

::::::::
posteriors

:::
of

:::
the

:::::
model

::::::::::
parameters,

::::::
which

::::
could

::::
lead

::
to

:::::::::
posteriors

::
of

:::
the

:::::
target

:::::::
response.

::::
The

:::::::::
advantage

::
of

:::::
having

:::
the

:::::::::
posteriors

:
is
::::
that

:::
the

::::::::::::
users/modelers

:::
can

::::
then

::::::
derive

::
the

:::::::
desired

::::::::::
information

::
at

::::
will,

::::
such

::
as

::::::::::
percentiles,

::::::::
moments,

::::::::::
information

:::::
gain,

::
or

:::
the

:::::::
posterior

:::::
mean

::::
and

::::::::
variances

:::
like

:::::
what

:::
was

:::::::::::
demonstrated

:::
in

:::
the

::::
case

:::::
study.

::::::::::
Conditional

:::::::::
simulation

::
is

::::
also

:::::
made

::::
easy

:::::
when

:::
the

::::::::
posteriors

:::
are

:::::::::
available,

:::::::
opening

:::
the

::::
door

:::
for

:::::::::::
Monte-Carlo

:::::::
analyses.

:::::::
Second,

:::::::::
following

:::
the

::::::::
statement

::::
that

:::
one

::::
can

:::::
obtain

:::
the

::::::::
statistics

::
or

::::::::::::
representative

:::::
metric

:::
of15

::::::
interest,

:::
the

:::::::
nesting

::
of

:::::
BART

:::::::
models

:::::
under

:::::
CART

::::
can

::
be

::::
done

::::
with

:::
the

::::
said

::::::
metric,

::::::::
resulting

::
in

:::
the

:::::::::::
corresponding

::::::::::
probability

::::
mass

:::::::
function

:::
of

:::
the

::::::::
plausible

::::::
BART

::::::
models.

::::
For

::::::::
example,

:::
the

:::::::::::
classification

::::::
shown

::
in

::::
Fig.

::
9

::
is

:::::
based

:::
on

::::::
RMSE,

::::::
which

::
is

:::
then

::::::
based

::
on

::::
the

:::::::
posterior

:::::
mean

:::::::
values.

::::
This

::
is

:::::::::
essentially

::
a

::::::::::::::::::::::
proposal-comparison-based

::::::::::::
consideration

::
of

::::::
model

::::::::
structure

:::::::::
uncertainty.

:

::::
How

::
do

:::
the

:::::::::::::
aforementioned

:::
two

::::::::::
advantages

::
of

::
the

::::::
nested

:::::::::
tree-based

:::::::
modeling

::::::::
approach

::::::
justify

::
the

::::
use

:
at
::::::::
ungauged

:::::::::::
watersheds?20

::::
First,

::
of

::::::
course

:::
the

::::::::::
performance

::
of

:::
the

::::::
model

:::::::
depends

::
on

:::
the

::::::
quality

:::
and

:::
the

:::::::
quantity

::
of

:::::::
training

::::
data.

::
In

::::
this

::::
sense

:::
all

::::::::
modeling

:::::::::
approaches

:::
are

:::
the

:::::
same,

::::
and

::::::::
applying

:::::
BART

:::::
does

:::
not

::::::::::::::
disproportionally

:::::::
enhance

:::
the

:::::::::
predictive

::::::::
accuracy

:::::
when

:::
the

::::
data

:::
are

::::::
limited.

::::::::
However,

:::::
what

:::
sets

::::::
BART

::::
apart

::
is
:::
the

::::::::
Bayesian

::::::
feature

::::
that

:::::::
accounts

:::
for

:::::
model

:::::::::
parameter

:::::::::
uncertainty

::::::::
properly

::
in

:::
the

::::
form

::
of

::::::::::
conditional

::::::::::
distribution,

:::::
which

::::::
cannot

:::
be

::::
done

:::
as

:::::
easily

::::
with

::::
only

::
a

:::
few

:::::
point

::::::::
estimates

::
or

::
a

:::
few

::::::::
posterior

::::::::
statistics.

::::::
Second,

::::::::::
uncertainty

::::::
exists

:::
not

::::
only

:::
for

::::
the

::::::
model

:::::::::
parameters

::::
but

::::
also

:::
for

:::
the

:::::::
models

::::::::::
themselves.

::::
The

::::::
nested

:::::::::
tree-based25

::::::::
modeling

:::::::
approach

::::
can

::::
help

::
us

:::::
obtain

:::
an

::::::::
informed

::::::::
empirical

:::::::::
probability

::::
mass

::::::::
function,

::::::
p(Bk),

::
of

:::
the

::::::::
plausible

:::::
BART

:::::::
models

::::::
(which

:::
was

::::
also

::::::::::
exemplified

::
in

:::
the

::::
case

::::::
study).

::::
The

::::
fact

:::
that

::
at

:::::::::
ungauged

:::::::::
watersheds

::::::
in-situ

::::
data

:::
are

:::::
absent

::::
and

::::::
ex-situ

::::
data

:::
can

::
be

:::::::
limited

::
in

:::::::
quantity

::::::
and/or

::::::
quality

::::::::::
accentuates

:::
the

:::::::::
importance

:::
of

:::::::::
uncertainty

:::::::::::::
quantification,

:::
and

:::
the

::::::
nested

:::::::::
tree-based

::::::::
modeling

::::::::
approach

:::::
offers

:
a
::::::::

Bayesian
::::::::

solution
::
to

::::
that,

:::::::
making

::::
itself

:::
not

:::::
only

:::::::::
applicable

:::
but

::::
also

:::::::::::
advantageous

::
at
:::::::::
ungauged

:::::::::
watersheds.

:
30

29



:::
One

::::
may

::::
then

:::::
argue

:::
that

::::
how

::::::
would

:
a
:::::::
modeler

:::::
make

::
an

::::::::
informed

:::::::
proposal

::
of

::::::::
plausible

::::::
BART

::::::
models

::
in

:::
the

:::
first

::::::
place?

::::
This

:
is
::::::
where

:::::::
physical

:::::::::
knowledge

:::::
come

::::
into

::::
play,

:::
and

:::
the

::::::::
proposal

:
is
::::::
indeed

::::
case

:::::::
specific.

::::
This

::
is
::::
why

:::
we

::::::::
proposed

:::
the

:::::::::
hypothesis

::
of

::::::::::
hierarchical

::::::::
similarity,

::::::
which

:::
can

:::
be

:::::::::
integrated

::::
with

:::
the

::::::
nested

:::::::::
tree-based

::::::::
modeling

::::::::
approach

::
to

:::::
study

:::
the

::::::::
behavior

::
of

::
a

:::::::
dynamic

:::::::::
hydrologic

::::::::
similarity

:::::::
system,

:::
like

:::::
what

:::
was

:::::::::::
demonstrated

::::
with

:::
the

::::
case

:::::
study.

::::::
Unlike

:::
the

:::::::::
generality

:::
and

:::
the

::::::
merits

::
of

::
the

::::::
nested

:::::::::
tree-based

::::::::
modeling

::::::::
approach,

:::
our

:::::::
findings

:::::::::
regarding

:::
the

:::::::
variation

::
of

::::::
p(Bk)

:::
and

:::
the

:::::
shifts

::
in

::::::::
dominant

::::::::::
controlling

:::::
factors

:::
of

:::::::
recharge

:::
are

::::::
indeed

::::::
specific

::
to
:::
the

:::::::
context

::
of

:::
the

::::
case

:::::
study,

:::::
which

::::
will

::
be

::::::::
discussed

:::::
next.

5.2 The hierarchical similarity hypothesis and the shift in dominant physical processes

With BART’
:
’s ability to simultaneously model non-linear and/or interaction effects and present uncertainty in a fully Bayesian5

fashion, we are able to show how the controlling factors of hydrologic similarity vary among different watersheds, among

different conditions, and among different accuracy metrics. These are all manifested in the case study under the context of the

hierarchical similarity hypothesis.

Climate variables have been identified as the dominant factors in previous studies (see Sect. 1), and they are indeed on

average the most dominant factors in our case study. However, the hierarchical similarity shows potential risks if one resorts10

to climate variables to define hydrologic similarity without considering other physical watershed characteristics, especially the

soil available water content.

The details of the hierarchical similarity are inferred from the data in the fashion of supervised machine learning, using a

nested application of tree-based modeling approach, consisting of six BART models and one benchmark model nested under

one CART model
:::::::::::
classification

:::
tree. It is of great importance to have two levels in such a system, as it allows for identification15

of the shifts of dominant factors under different conditions. These shifts indicate shifts in dominant physical processes, as

exemplified by node 13 and 20 in Fig. 9 where we observed the shift from water-limited evapotranspiration to energy-limited

evapotranspiration. Therefore, we conjecture that it is the shift in dominant physical processes that is driving, and thus is

reflecting, the shift in the controlling factors of hydrologic similarity under different conditions.

5.3 Limitations of the case study20

Here, we provide discussions about the limitations of the case study from the aspects of the target response
::::
data

:::
set,

:::
the

:::::
target

:::::::
response,

:
and the partitioning of watersheds

::::
data.

5.3.1 Scale
:::
The

:::::
scale of the target response

A major limitation of the case study is that the target hydrologic response is the logit normalized watershed-averaged annual

groundwater recharge. This is a large-scale spatiotemporally homogenized response, and in this study, the data were based on25

baseflow analyses. Streamflow-based estimation of recharge, such as baseflow analysis, is commonly used in humid regions. As

put forward by Healy (2010), there are three key questions that should be carefully checked before applying baseflow analysis:

(1) Is all recharging water eventually discharged into the stream where the baseflow is measured? (2) Do low flows consist
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entirely of groundwater discharge? (3) Does the contributing area of the aquifer differ significantly from that of the watershed?

At an ungauged watershed, it is unlikely that one would have enough data to verify the answers to these three questions. To30

that end, a working assumption about the reliability of the baseflow analysis was made without a rigorous proof .
:::::::
rigorous

::::
proof

::::
(see

::::
Sect.

:::::
3.1). The findings of the case study are all under the context of this working assumption, and thus, they should

not be applied to recharge
::::
/LNR

:
at other spatiotemporal scales or

::
to other hydrologic responses without careful considerations.

Fortunately, from a post hoc check, the recharge estimates fall within the typical scales at which baseflow analysis is more

suitable: a recharge scale from hundreds to thousands mm per year, a spatial scale of hundreds of m2 to hundreds of km2, and

temporal scales from months to decades (Scanlon et al., 2002).5

5.4 Artifact due to the partitioning of watersheds: φ versus P and Ep

5.3.1
:::
The

:::::::::::
MRB-based

:::::::::::
partitioning

::
of

::::::::::
watersheds

Intuitively, since
:::::::
Although

:::
we

::::
tried

::
to

::::::
justify

:::
the

::::::::::
MRB-based

::::::::::
partitioning

::
by

:::
the

:::::::
reasons

::::
listed

:::
in

::::
Sect.

:::::
3.4.1,

:::
we

:::::::::::
acknowledge

:::
that

::::
this

::::
may

:::
not

::
be

:::
the

::::
best

::::::::::
partitioning

:::::::
method

:::
for

::::::::::::
demonstrating

:::
the

::::
full

:::::::
potential

:::
of

:::
the

:::::::::
estimating

:::::
power

::
of
:::::::

BART.
:::
An

::::::::
associated

::::::::
limitation

::
is
:::::::::
identified,

:::::
which

:::::
stems

::::
from

:::
the

::::
data

:::
not

::::::::
covering

:
a
::::::::
desirable

:::::
range

::
of

::::::
values.

:::
An

:::::::
example

:::
was

:::::::
already10

::::::::
presented

::
in

:::::
Sect.

::::
3.4.1

::::
and

::::
Fig.

::
4.

:::
As

:::::::::
discussed

::
in

:::::
Sect.

:::
5.1,

::::
the

:::::::::
limitations

::
in

::::
the

::::
data

:::::::::
accentuate

:::
the

:::::::::
advantage

::
of

::::
our

:::::::
approach

::::::::
regarding

:::
the

::::::::::::
consideration

::
of

::::::::::
uncertainty,

:::
but

::
it

:
is
::::
also

:::::::::
recognized

::::
that

::
it

:::::
could

::
be

::::::::::
challenging

::
to

:::::::
discover

:::
the

:::::
same

::::::
findings

::
if
:::::
MRB

::
1

:::::::
provided

:::
the

:::::::
training

::::
data

::
for

:::::
MRB

::
2,

::::::
which

:
is
::::
part

::
of

:::
the

::::::
reason

::::
why

::
we

::::
kept

:::
the

::::::::::
MRB-based

:::::::::::
partitioning.

:::::::
Another

:::
case

:::
of

:::
lack

::
of
::::
data

::::::::
coverage

:::
can

::
be

::::::
found

::
in

:::
our

::::::
climate

:::::::::
predictors

::::
data.

:::::
Since aridity index is the ratio of potential15

evapotranspiration to precipitation (φ= Ep/P ), one might be surprised by the differences among the cases of k = 1, k = 2, and

k = 3
:::::
k = 1,

::::::
k = 2,

:::
and

:::::
k = 3

:
in the results. The main reason is revealed in Fig. 11. The Ep values at the training and testing

watersheds are so distinct that, essentially, all the testing watersheds are outliers from the point of view of a BART model

trained at the training watersheds. On the other hand, the
:
φ
:

values at the training and testing watersheds share the range from

about 0.6 to 1.2
::
0.6

::
to

:::
1.2, and only differ at the two extreme ends. In other words, the predictor-response relationships inferred5

by using φ can be transferred due to the overlapping range (Fig. 11(c)), but the relationships inferred using Ep > 1000mm

::::::::::::
Ep > 1000mm

:
cannot be effectively transferred to watersheds with Ep < 1000mm

::::::::::::
Ep < 1000mm

:
(Fig. 11(b)). Although it

is not shown, a similar case can be found by comparing φ̄ with Ep.

Although this might have been avoidable by using a more sophisticated design of cross-validation, we kept the MRB-based

holdout method on purpose. In addition to the reasons that were explained in Sect. ??
::::
3.4.1, another motivation is that, in reality,10

the data at hand come in as is. This means there is no guarantee that the measurements will cover a particular range or that the

watershed characteristics of the ungauged watersheds of interest are within a desirable range. The prevailing superiority of φ

and φ̄ over P , P̄ , and Ep found in our results shows an important advantage of dimensionless predictors, that they tend to be

more transferable from one site to another, and hence, they may be more suitable for studies targeting ungauged watersheds.
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Figure 11. Distributions of ((a) ) P , ((b) ) Ep, and ((c) ) φ, at watersheds in MRB 1 (the testing watersheds) and MRB 2 (the training

watersheds).

6 Conclusion15

5.0.1
:::::::
Limited

::::::::
temporal

::::
data

::::::::
coverage

:::::::
Another

::::::::
limitation

::
is

:::
the

:::
lack

:::
of

:::::::
temporal

::::::::
coverage.

::::::
Given

::::::
limited

:::
data

::::::::
coverage

:::::
along

:::
the

::::
time

::::
axis,

::
in

:::
the

::::
case

:::::
study

:::
we

::::
only

::::::
studied

:::
the

::::
LNR

::
in
:::

the
:::::

year
::
of

:::::
2002,

:::
and

:::
we

:::::::::
considered

::::
two

:::::
types

::
of

::::::
climate

::::::::::
predictors:

::::
those

:::::
from

:::
the

::::
same

::::
year

::::
and

:::::
those

::::
from

:::
the

::::
long

::::
term

::::::::
average.

::::::::
However,

:::::
being

:::
the

:::::::
recharge

:::::::
process

::::::
highly

:::::::::
non-linear,

:
it
::

is
:::
not

::::::::::
impossible

:::
that

:::::
some

:::::::::
predictors

::::::::::
representing

:::
the

:::::::::
antecedent

:::::::::
conditions,

::::
such

:::
as

::::::::::
precipitation

:::::
from

::::
years

:::::
prior

::
to

:::
the

::::
year

::
of

:::::
2002,

:::::
could

:::::
affect

:::
the

:::::
LNR

::
in

:::
the20

:::
year

:::
of

:::::
2002.

::::
Not

::::::
having

:::::::
multiple

:::::
years

::
of

:::::::
climate

::::
data

:::::::
prevents

::
us

:::::
from

::::::
testing

:::
the

::::::
effects

::
of

:::::::::
antecedent

:::::::::
conditions

:::
or

:::
the

:::::
effects

::::
that

:::
take

:::::
place

::
at

::::::
various

:::::::::
multi-year

::::::
scales,

:::
and

::::
thus

:
it
::
is

::::::
clearly

:
a
:::::::::
limitation

::
of

::
the

::::
case

:::::
study.

::::::::
Because

::
of

:::
this

:::::::::
limitation,

::
we

:::::
made

:
a
::::::
steady

::::
state

:::::::
working

::::::::::
assumption

:::::::::
(mentioned

::
in

::::
Sect.

::::
3.1),

::::
with

::::::
which

::
we

:::::::
assume

:::
that

:::
the

:::::
effect

::
of

::::::
climate

:::::::::
predictors

::::
from

:::
the

:::::::
previous

:::::
years

:::
are

:::::::
captured

:::
by

:::
the

::::
long

::::
term

:::::::
average

:::::::::
predictors,

:::
and

::::
also

::::::
assume

:::::::::
negligible

:::::
effect

::
of

::::::
climate

:::::::
change.

:::::
While

::::::::::::
acknowledging

:::
the

::::::::
inclusion

::
of

:::::::
multiple

:::::
years

::
of

::::::
climate

::::
data

:::::
could

::::
have

:::::
made

::
an

:::::::
impact,

:::
note

::::
that

:::
the

:::::
highly

:::::::::
consistent25

::::
roots

::
of

:::
the

::::
trees

::
in
:::::
Figs.

:
9
::::
and

::
10

:::
are

:::::
based

:::
on

:::
soil

:::::
AWC

::::
and

:::
the

::::
long

::::
term

::::::
average

::::::
aridity

::::::
index,

::::
both

::
of

:::::
which

:::
are

::::::::
expected

::
to

::
be

::::::::
relatively

:::::::::
insensitive

::
to

:::
the

::::::::::
inter-annual

::::::::
variation

::
of

::::::
climate

:::::::::
predictors.

:::::::::
Therefore,

:::
we

::::::
expect

:::
the

:::::::
findings

::::::::::::
corresponding

::
to

:::
the

::::
roots

::
of

:::
the

::::
trees

:::
in

::::
Figs.

:
9
::::

and
::
10

::
to
:::
be

::::::::
relatively

:::
less

:::::::
affected

:::
by

:::
the

::::::::
limitation

::
of

:::
not

::::::
having

:::::::
multiple

:::::
years

::
of

:::::::
climate

::::
data.
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5.0.2
:::::::::::::::::
Non-comprehensive

:::
list

::
of

::::::::
plausible

:::::::
models30

:::
The

::::::::
proposal

::
of

::::::::
plausible

:::::
BART

:::::::
models

:::
was

::::::
guided

:::
by

:
a
::::::::::
conceptual

:::::::::::
understanding

::::
and

::::::::
grouping

::
of

:::
the

::::::::
available

:::::::::
predictors.

::::
Like

:::::::::
mentioned

::
in

::::
Sect.

::::::
3.4.2,

:::
our

:::::::
proposal

:::::
does

:::
not

:::::
cover

:
a
:::::::::::::
comprehensive

:::
list

::
of

::::::::
plausible

:::::::
models,

:::
nor

:::::
does

:
it
::::::::::
necessarily

::::::
include

:::
the

:::::
“best"

::
or

:::
the

::::::
“true"

::::::
model.

:::
The

:::::
effect

:::
of

:::::::
different

::::::::
proposals

::
of

::::::::
plausible

::::::
BART

::::::
models,

::::::
which

::::::::
represents

::::::::
different

::::::::::
perspectives

::
of

:::
the

:::::::::
conceptual

::::::::::::
understanding

::
of

:::
the

:::::::::
underlying

:::::::
physics,

::::
was

:::
not

::::::::::
investigated

::
in

:::
the

::::
case

:::::
study,

::::
and

:::::::
remains

::
as

::
an

:::::::::
interesting

::::::::
follow-up

::::
that

:::::
could

::
be

:::::::
pursued

::
in

:::::
future

:::::::
studies.

6 Conclusions

In this work, we proposed a nested tree-based modeling approach with three key features: (1) data-driven and
:::
full

::::::::
Bayesian5

:::::::::::
quantification

::
of

::::::::
parameter

::::::::::
uncertainty,

:::
(2) non-linear regression for regionalization and estimation, (2) full Bayesian representation

of the predictive uncertainty, and (3) CART-based model comparison, and an additional potential feature of accounting for

conceptual model uncertainty via Bayesian model averaging
::::::::
regression

::
in

:::::
order

::
to

::::::
model

:::
the

:::::::::::::::
predictor-response

:::::::::::
relationship,

:::
and

:::
(3)

::::::::::::::::::::::
proposal-comparison-based

::::::::::::
consideration

::
of

::::::
model

:::::::
structure

::::::::::
uncertainty. We applied the nested tree-based modeling

approach to obtain
:::
logit

::::::::::
normalized recharge estimates conditioned on ex-situ data at ungauged watersheds in a case study in10

the eastern U.S. We hypothesized a hierarchical similarity structure to account for the
::
to

::::::
explain

:::
the

:::::::
variation

:::
of

::
the

::::::::::
probability

::::
mass

:::::::
function

:::
of

::::::::
plausible

:::::::
models,

:::
and

::::
thus

:::
to

:::::::::
investigate

:::
the

::::::::
behavior

::
of

::
a
:
dynamic hydrologic similarity underlying the

regionalization
::::::
system.

The findings of this study contribute to the understanding of one aspect of the key factors of predictive uncertainty identified

in the PUB initiative: the
:::
the physical principles governing robust regionalization among watersheds. Firstly, in consistency15

::::::::
consistent

:
with previous studies, we found that the climate variables are on average the most important controlling factors of

hydrologic similarity at regional and annual scales, which means a climate-based regionalization technique is on average more

likely to result in better estimates. However, with our hierarchical similarity hypothesis we revealed certain conditions under

which non-climate variables become more dominant than climate variables. In particular, we demonstrated how soil available

water content stood out to be the pivotal indicator of the variable importance of aridity in hydrologic similarity. Moreover,20

we showed that with hierarchical similarity one could identify shifts in dominant physical processes that are reflecting shifts

in the controlling factors of hydrologic similarity under different conditions, such as water-limited evapotranspiration versus

energy-limited evapotranspiration, or homogeneous and foliated bedrock versus heterogeneous bedrock. As the controlling

factors change from one condition to another, the suitable regionalization technique also changes. We demonstrated how the

hierarchical similarity hypothesis could indicate mechanisms by which available water content, aridity, and other watershed

characteristics dynamically affect hydrologic similarity. The nested tree-based modeling approach can be applied to identify

plausible sets of watershed characteristics to be considered in the regionalization process.

The contributions of this study may be viewed differently depending on individual cases. In a situation where groundwater

recharge is the ultimate target variable at ungauged watersheds, the nested tree-based modeling approach offers a systematic5

way to obtain informative predictive distributions that are conditioned on ex-situ data. In a difference case, where recharge
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estimation at ungauged watersheds is but one component of a greater project, the aforementioned informative predictive dis-

tributions can be treated as informative ex-situ priors, which could be further updated and/or integrated into simulation-based

stochastic analyses where recharge is an input/component of other models/functions. At ungauged watersheds that will be-

come gauged in the foreseeable future, the informative predictive distributions again serve as informative ex-situ priors that10

could guide the design of the sampling campaign, as different recharge flux magnitudes require different quantifying tech-

niques (Scanlon et al., 2002; Healy, 2010). The hierarchical similarity hypothesis offers one plausible explanation of the

dynamic nature of hydrologic similarity, which affects the application of regionalization. Lastly, it should be pointed out that

the nested tree-based modeling approach is independent of the target response and the predictors of interest, so it could be

integrated into future studies within or beyond the field of hydrology in search of a
:
to

:::::
study

:
hierarchical predictor-response15

relationship
:::::::::::
relationships.
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Watershed topography predictors. Variable Explanation Basin index Watershed area divided by watershed perimeter squared

(dimensionless). Stream density Reach length divided by watershed area (m−1). Sinuosity Reach length divided by the length

of the straight line connecting the beginning and the ending of the reach (dimensionless). Slope Mean watershed slope

calculated from digital elevation data (degree).
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Land cover classification by NLCD2001. Class Subclass Open water Perennial ice Open space Low intensity Medium

intensity High intensity Barren Barren land Deciduous Evergreen Mixed Dwarf shrub Shrub/scrub Grassland Sedge Lichens

Moss Pasture/hay Crops Woody wetland Emergent herbaceous wetland955

Soil property predictors. Soil property Unit Statistics* Calcium carbonate equivalent % Lower/higher bounds Cation

exchange capacity cmolc / kg Lower/higher bounds Depth to the seasonally high water table m Average and Lower/higher

bounds Soil thickness m Lower/higher bounds Hydrologic soil group classification % Average Soil erodibility factor dimensionless

Average Permeability m / h−1 Average and Lower/higher bounds Available water content fraction Average and Lower/higher

bounds Bulk density g / cm3 Average and Lower/higher bounds Organic matter content % Average and Lower/higher bounds960

Clay soil content % Average and Lower/higher bounds Silt soil content % Average Sand soil content % Average Percent finer

Than nos.4, 10, and 200 sieve % Average and Lower/higher bounds

Table of the six different predictor sets. kpredictors included 1φ̄ and φ 2 2P̄ , P , and Ep 3 3All climate predictors: P̄ , P ,

Ep, φ̄ and φ 5 4Topography and land cover predictors 20 5Soil predictors 48 6Geology predictors 206

Reference list of the splitting variables in Fig. 9 and Fig. 10 Node number Splitting variable Node Number Splitting965

variable 1 Average available water content(AWCAVE)1 Average available water content(AWCAVE)3 Long term average

aridity index(ARID_IDX)3 Long term average aridity index(ARID_IDX)4 % area of Paragneiss and Schist bedrock(BGEOL_147)4

Precipitation in 2002(PPT02MEAN)5 Average slope(SLP_DEG)6 Precipitation in 2002(PPT02MEAN)7 Precipitation in 2002(PPT02MEAN)9

Precipitation in 2002(PPT02MEAN)10 % area of Deciduous Forest(NLCD01_41)15 Aridity index in 2002 (ARID_IDX02)17

Precipitation in 2002(PPT02MEAN)19 Average slope(SLP_DEG)970
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