We thank the editor and two anonymous referees for the comments and for giving us the opportunity to
improve the presentation of this paper.

Below are our point-by-point replies to the referees’ comments, followed by a marked-up manuscript
version showing the changes made.

Responses to comments by anonymous Referee #1:

1.

The discussion on the lack of temporal coverage as one of the limitations has been added as
Section 5.3.3, line 5 on page 28 in the revised manuscript.

The discussion on the lack of desirable data coverage as one of the limitations has been revised;
please see Section 5.3.2, line 28 on page 27 in the revised manuscript. In addition, Section 5.1
provides a detailed discussion on the transferability of the approach, which serves as a basis on
which we pose our arguments in Section 5.3.2.

We agree with the referee that some of the findings are specific, while some others are general.
We added a new discussion in Section 5.1 (line 31, page 25 in the revised manuscript) to discuss
the transferability of the approach in details, and put emphasis on what are the innovations in
this approach and why those innovations make the approach advantageous at ungauged
watersheds.

Discussion on the transferability of the approaches has been provided in Section 5.1.

Wording in Figure 1 (c) (page 6) has been changed to general notations.

A revised Figure of the study area is provided; please see Figure 3 (page 10) in the revised
manuscript.

The suggested addition has been made; please see Figure 4 (page 12) in the revised manuscript.

Please see Figures 9 and 10 (page 22 and 25, respectively) in the revised manuscript; Figures
have been redesigned for better clarity and node numbers have been enlarged.

Responses to comments by anonymous Referee #2:

1.

The introduction has been revised for better clarity of the research objectives; please see line 15
on page 4 in the revised manuscript. The two objectives are proposing a new approach and
reveal the key controls of hydrologic similarity for recharge estimation.

The sentence “...to understand what behavior we can expect in ungauged watersheds” (line 29,
page 7 in the revised manuscript) is a statement from a previous study, which they referred to
as the ultimate goal of predictions at ungauged basins. We use this statement to support our
argument that we have shown why our approach is advantageous, without discussion the
superiority of either data-driven or physically based approaches.

The sentence “The second main objective of this study is revealing the key controlling factors of
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a dynamic hydrologic similarity system......” has been removed from Section 2 to avoid
confusion. Now the research objectives are all in Section 1, at the end of the introduction.

We appreciate the referee’s comment. However, at this point we intend to keep Sections 3.4
and 3.5 in the case study Section. There are multiple ways to partition the data and multiple
metrics with which we can evaluate predictive distributions. Sections 3.4 and 3.5 only introduce
our ways that were applied in the case study, and thus are very specific to the case study. A
generic study on data partitioning or distribution evaluation is outside the scope of the present
study.

To reduce confusion, Section 2.3 (line 1 page 8 in the revised manuscript) has been revised as a
general description of the nested approach.

The description of data partitioning has been removed from Section 2. Now Section 2 only
convers the general description of our approach.

Bayesian model averaging has been removed from Section 2 as suggested. We still mention it
(line 1 page 9) to show that this is a feasible extra step for those who are interested.

We have reorganized the materials about normalization in a new subsection, Section 3.2.1 (line
28 page 11).

In the beginning of Section 2 (line 24 page 4) we have stated that in this paper we only provide
conceptual introduction to BART, and provided two previous studies for those interested in the
details. We have revised our explanation (line 6 through 17 on page 5) about the basic concept
of BART for better clarity. The number of equations in Section 2 has been reduced to 6 instead

of 10.

Explanation of CART has been added; please see line 10 through 17 on page 5. An example and a
schematic diagram explaining the nesting of BART under CART have been added; please see line
6 through 18 on page 8, as well as Figure 2 in the revised manuscript.

Definitions of ex-situ and in-situ data are added when they first appear, line 8 page 1 and line 1
page 1 in the revised manuscript, respectively.

We thank the referee for making such a suggestion, and we agree that studying the geographic
distribution of may provide insights from a different angle. However, in the present study, as
discussed in the introduction, we would like to avoid understanding hydrologic similarity with
geographic space, and focus more on the predictor space, which can be explored with the
nested tree-based approach.

We agree with the reviewer that a more intuitive name convention is always desirable. In fact,
we tried showing the descriptions of all code-named predictor in the text and in the Figure.
However, that lead to unnecessarily lengthy discussion and distorted Figures (in order to fit in
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12.

13.

14.

15.

16.

17.

18.

the long description of some of the predictors). Thus, we have come to the solution of providing
look-up tables.

To alleviate the trouble brought by flipping to the tables at the back, we moved Table 5 right
next to Figure 9 (please see page 22 in the revised manuscript).

Legends have been added in Figures 9 and 10 (page 22 and 25, respectively).
There is no comment 12.

To reduce confusion and also avoid lengthy text, we introduced the acronym “LNR” for logit
normalized recharge (line 2 page 12 in the revised manuscript), and we used the term LNR when
referring to the target response in the case study.

A detailed discussion about the transferability and the advantageous of the proposed approach
has been added in Section 5.1 (line 31 page 25 in the revised manuscript). We emphasize the
innovation of our approach on the quantification of uncertainties, which is a general advantage
of our approach at ungauged watersheds.

A discussion has been added in Section 5.1. We emphasize the innovation of our approach on
the quantification of uncertainties, which is a general advantage of our approach at ungauged
watersheds. Our argument is not that BART is the most accurate model or the most efficient one
in terms of training, but that it offers a Bayesian representation of parameter uncertainty, which
we think is of great importance at ungauged watersheds.

We mentioned two studies in Section 2 (line 26 and 27 on page 4 in the revised manuscript) that
provide the details of posterior inference statistics with BART, for those interested in the details
about how to train BART for prediction purposes.

We thank the referee for the comment. We have added Section 5.1 to discuss the general
contributions of this study, and Section 5.2 to discuss the contributions that are specific to the
case study (which corresponds to the referee’s suggestion of process control).

By separating the innovations in the approach and the findings of process control, we hope to
separate the two types of contributions of this study, in order to reduce confusion.

We thank the referee for the appreciation.

We have revised the explanation of predictor partitioning (line 6 through 11 page 15 in the
revised manuscript). The very next paragraph (line 12 page 15) explains that by no means do we
expect our partitioning to yield an exhaustive list of all possible sets, nor do we expect to include
the “best” set.

We consider the effect of different proposals of plausible BART models (which represents
different perspectives of the conceptual understanding of the underlying physics) an interesting
follow-up that could be pursued in future studies, but beyond the scope of the present study.
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24.

25.

26.

We thank the reviewer for the suggestion. Dimension reduction of the data is certainly an
interesting way forward.

When doing the case study, we did not have the lithological expertise to aggregate the lithology
data ourselves, so we resorted to BART and let the data teach us about the dominant bedrock
type. In fact, it turned out that the BART models are capable of identifying a few dominant
predictors in a predictor set. We found only a few bedrock types being frequently used as the
splitting variables, and the others share a rather uniformly low appearance rate.

At the early stage of the study, we also tried performing principle component analyses before
building BART models, and use the principle components as the predictors. However, we found
that this obscured the interpretation of hierarchical similarity and the probability mass function
of plausible models, so we turned our attention back to using the predictors as is.

Like the response to comment 18 above, we consider the effect of dimension reduction, data
aggregation, and the variable dominance of different rock types interesting follow-ups that
could be pursued in future studies, but beyond the scope of the present study.

We agree with the reviewer that the modeler has the opportunity to decide how to partition the
data, and agree that a designed partitioning that makes the training and testing samples overlap
could improve the robustness of the estimation.

The reasons we adopt the MRB-based are listed in Section 3.4.1 (line 9 page 15 in the revised
manuscript), and this decision is further discussed in the revised Section 5.3.2 (line27 page 27).
Also, in the discussion in Section 5.1 we have pointed out that the innovation we emphasis is the
Bayesian representation of uncertainty rather than a guaranteed high accuracy of prediction.

We have added a new subsection: Section 3.4.3 (line 17 page 16 in the revised manuscript) to
explain the benchmark model in details. References on kernel density estimation have also been
added in Section 3.4.3.

We have removed the description of the structure of this paper, as suggested by the referee.
Please see line 1 page 5 in the marked-up manuscript attached below.

A schematic diagram and an example have been added. Please see Section 2.3 and Figure 2 on
page 8 in the revised manuscript.

The sentence has been rephrased for better clarity; please see line 20 page 7 in the revised
manuscript. The intention is to explain how data availability could hinder the application of
physically based model.

Each plausible predictor set corresponds to one BART model. This is also explained in the first
paragraph in Section 2.3; please see line 1 through 5 on page 8 in the revised manuscript.

Please see line 5 through 23 on page 9 in the revised manuscript for the revised explanation.
Two examples have been added.



27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Bayesian model averaging has been removed as suggested.
A map has been added; please see Figure 3 on page 10 in the revised manuscript.

As suggested, justification has been moved to Section 3.1 (line 1 through 9 on page 11 in the
revised manuscript).

The long term variables could compensate for the lack of data on antecedent condition. A
detailed discussion will be added to the revised discussion section. Please see line 24 through 26
on page 11, as well as Section 5.3.3 (page 28) in the revised manuscript.

A discussion has been added in Section 5.3.3, page 28 in the revised manuscript.

Answered by the response to comment 13.

Answered by the response to comment 5.

Answered by the response to comment 18.

Answered by the response to comment 2.

Answered by the response to comment 25.

We thank the referee for the appreciation.

Answered by the response to comment 21. Yes, like the referee said, the benchmark model does
not require predictors at all and is quite naive and simple.

Answered by the response to comment 21. References on kernel density estimation has been
added.

The sentence has been rephrased as suggested; please see line 9 on page 20 in the marked-up
manuscript attached below.

Answered by the response to comment 19.
There is not comment 42.

The algebraic explanation is provided in Section 3.5. Below is the descriptive explanation.
From BART, we can obtain a predictive distribution that follows the form of a Gaussian
distribution, where both the Gaussian mean and the Gaussian variance are uncertain and are
modeled as random variables.

What we termed “predictive variance” is the value of that Gaussian variance. Because it’s
uncertain, we estimated it with the sample median value.



What we termed “estimate variance” is the variance of the Gaussian mean, which we estimated
with the sample variance of the Gaussian mean.

44. Answered by the response to comment 10.

45. Please see the red horizontal line and the caption of Figure 5, on page 18 in the revised
manuscript.

46. It was surprising because it was unexpected that the model with only two predictors
outperformed the other models in general. It not only outperformed models with non-climate
predictors, but also outperformed models with other climate predictors.

47. Answered by the response to comment 9.

48. We thank the reviewer for the suggestion. This Figure is supposed to be an example for the
conceptual understanding rather than an actual case.
Instead of adding another Figure, we have revised the explanation (line 17 through 33 on page
20 in the revised manuscript). In particular, please see line 27 through 30 on page 20 in the
revised manuscript, where we mention why the phenomenon in Figure 8 in the revised
manuscript is possible.

49. Please see page 21 in the revised manuscript; the title has been rephrased.
50. Answered by the response to comment 10.
51. Please see page 24 in the revised manuscript; the title has been rephrased.
52. Answered by the response to comment 10.

53. We have added explicit acknowledgment that the data partitioning in the case study is not the
best partitioning; please see Section 5.3.2 on page 27 in the revised manuscript. Section 5.3.2
provides a discussion on the limitations due to the partitioning, as well as the reason we kept
this partitioning method.

Responses to the additional comment by anonymous Referee #2:

We thank the referee for this insightful suggestion. We have revised the discussion section to discuss the
general contributions and the specific contributions of this study separately. In Section 5.1 we discuss
the innovations in our approach, and emphasize the advantage of the quantification of the parameter
uncertainty as well as the model structure uncertainty. In Section 5.2 we discuss the findings specific to
the case study. This is the discussion on “process controls” as suggested by the referee.
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Regionalization with Hierarchical Hydrologic Similarity and Ex-situ
Data for the Estimation of Mean Annual Groundwater Recharge at
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Abstract. There are various methods available for annual groundwater recharge estimation with in-situ observations —Hewever;
(i.e., observations obtained at the site/location of interest), but a great number of watersheds around the world still remain un-
gauged, i.e., without in-situ observations of hydrologic responses. One approach for making estimates at ungauged watersheds
is threughregionalization, namely, transferring information obtained at gauged watersheds to ungauged ones. The reliability
of regionalization depends on (1) the underlying system of hydrologic similarity, i.e., the similarity in how watersheds respond
to precipitation input, as well as (2) the approach by which information is transferred.

In this paper, we present a SWWWWWMWQMQW
conditioning estimates of hydrologic responses at ungauged watersheds i
condition-the-estimates-on ex-situ data —tinvekes-a-(i.e., data obtained at sites/locations other than the site/location of interest

while accounting for the uncertainties of the model parameters as well as the model structure. The approach is then integrated
with a hypothesis of two-leveled hierarchical hydrologic similarity, where the higher level determines the relative importance of

various watershed characteristics under different conditions, and the lower level performs the regionalization and estimation of

the hydrologic response of interest.
We apply the nested tree-based modeling approach to investigate the complicated relationship between mean annual ground-
in a case study, and apply the
hypothesis of hierarchical hydrologic similarity to explain the behavior of a dynamic hydrologic similarity system. Our find-

ings reveal the decisive roleroles of soil available water content and aridity in hydrologic similarity at the regional and annual

water recharge and watershed characteristics

scales, as well as certain conditions under which it is risky to resort to climate variables for determining hydrologic similarity.

These findings contribute to the understanding of the physical principles governing robust information transfer.

1 Introduction

Groundwater resources supply approximately 50% of the drinking water and roughly 40% of the irrigation water worldwide
(National Ground Water Association, 2016). Yet, the groundwater has increasingly been depleted since the late 20th century
(Wada et al., 2010). Therefore, groundwater recharge, here broadly defined as the replenishing of water to a groundwater

reservoir, plays a critical role in sustainable water resources management (de Vries and Simmers, 2002). Several studies have
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reviewed and compared multiple methods for recharge estimation at a wide spectrum of temporal and spatial scales, including
lysimeter tests, seepage tests, water table fluctuation, chemical and heat tracers, baseflow analysis, water budget, and numerical
modeling (Scanlon et al., 2002; Healy, 2010; Heppner et al., 2007). However, the aforementioned methods rely on in-situ data,
while a-great-number-of- many watersheds worldwide still remains-remain effectively ungauged (i.e., ungauged, poorly gauged,
or previously gauged) (Loukas and Vasiliades, 2014).

This fact leads us to a critical question: How can one estimate recharge-hydrologic responses without in-situ data? Here;

watershedswhich-Studying ungauged watersheds has been a popular research topic for more than a decade(Hrachowitzet-al;2043; Blésel

especially since The Prediction in Ungauged Basins (PUB) initiative by the International Association of Hydrological Sciences
IAHS) (Sivapalan et al., 2003). Facing the lack of in-situ data, studies have attempted transferring ex-situ information from

"ee

other-gauged watersheds to ungauged onesof-interest; this data transfer is also termed
eould-be-has been applied to constrain the estimates of the parameters of hydretoegical-models-hydrologic models (especiall
rainfall-runoff models), which could then be used to make predictions at ungauged watersheds a St als

Kuczera, 1982; Singh et al., 2014; Razavi and Coulibaly, 2017; Wagener and Montanari, 2011; Bloschl et al., 2013). Such con-

regionalization". Regionalization

~

2

straining is expected to lead to more accurate and precise estimates, and could be in the form of (1) relationships between model
parameters and watershed characteristics, (2) subsets of the parameter space, or (3) plausible parameter values from models at
built for other hydrologically similar watersheds (Singh et al., 2014).

However, the application of regionalization is not without challenges. One of the key factors of predictive uncertainty iden-
tified by the PUB initiative is the unsuitability of information transfer techniques, due to a lack of comparative studies across
watersheds and a lack of understanding of the physical principles governing robust regionalization (Hrachowitz et al., 2013).
Different regionalization techniques have been applied in different cases with different assumptions. For example, Li et al.
(2018) attempted a simple form of regionalization, where kernel density estimation was applied on recharge values obtained
from various hydrologically similar sites, in order to build an ex-situ prior distribution (i.e., a prior distribution conditioned
on ex-situ data). However, one limitation in Li et al. (2018) was that hydrologic similarity was treated as a Boolean variable,
and therefore, there was no way to systematically distinguish a highly similar site from a slightly similar site. To pursue this
further in this study, we must ask the following question: How can we tell that two watersheds are hydrologically similar? Saw-
icz et al. (2011) applied Bayesian mixture clustering to watersheds across the eastern U.S. They found that spatial proximity
was a valuable first indicator of hydrological similarity because it reflected strong climatic control in their study area. Oudin
et al. (2008) reported similar findings based on 913 French watersheds, despite acknowledging the lack of some key physical
descriptors in their data set. However, Smith et al. (2014) attempted regionalization of hydrologic model parameters in eastern
Australia, and suggested that spatial proximity was an unreliable metric of hydrological similarity. For their part, Tague et al.
(2013) presented successful regionalization of hydrologic parameters based on geologic similarity at watersheds in the U.S.
Oregon Cascades, a mountain range that features geological heterogeneity. Although not directly shown, their findings also
went against the use of applying spatial proximity, for they discussed the sharp contrasts in hydrology at proximal watersheds

based primarily on geological differences. The indication from these findings is that, although spatial proximity is of practical
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importance due to its common usageuse, its simplicity, and its demonstrated effectiveness in specific areas (Smith et al., 2014),
it is not the true controlling factor, but rather a confounding factor.

One can resort to other physical characteristics of watersheds for the determination of hydrologic similarity. However, what
those characteristics are may be a complicated question. Razavi and Coulibaly (2017) tested the effect of combinations of
neural-network-based classification techniques and regionalization techniques in Canada, and found that classifying water-
sheds before regionalization improves regionalization for streamflow, baseflow, and peak flow predictions, but also discovered
that the best combination of techniques varied from one watershed to another. Singh et al. (2014) applied classification and
regression tree {CART)-to determine the relationship between catchment similarity and regionalization in the U.S., finding that
the dominant controls of successful regionalization vary significantly with the spatial scale, with the region of interest, and with
the objective function used. Similarly, Kuentz et al. (2017) found that different physiographic variables controlled various flow
characteristics across Europe, showing how different descriptors could account for different dominant hydrologic processes
and flow characteristics. These studies indicate an important challenge, that the factors determining hydrologic similarity may
vary under different conditions, and a universal system of hydrologic similarity still remains unavailable. Loritz et al. (2018)
suggested an interesting perspective describing a dynamic hydrologic similarity system, where similarity and uniqueness are
not mutually exclusive; rather, they suggested that hydrologic systems operate by gradually changing to different levels of
organization in which their behaviors are partly unique and partly similar.

In this study, we would like to integrate the perspective in Loritz et al. (2018), that similarity and uniqueness are not mutually
exclusive, into our regionalization framework for groundwater recharge estimation at ungauged watersheds. It is thus critical to
identify a number of plausible controlling factors. Although few studies have directly identified the controlling factors, some
insights can be learned from previous studies. For example, the effective recharge (i.e., the net source term in the groundwater
flow equation) in a steady, depth-integrated, and unbounded groundwater flow was found to be correlated with the spatial
distributions of transmissivity and hydraulic head (Rubin-and-Dagan;1987a;-b)(Rubin and Dagan, 1987a, b). From a recharge-
mechanism-based perspective, previous studies have also found a list of plausible controlling factors of recharge via recharge
potential mapping (Yeh et al., 2016, 2009; Naghibi et al., 2015; Rahmati et al., 2016). These variables include watershed
topography, land cover, soil properties, and geology. At the regional scale, climate variables have been found to be among the
primary controlling factors of groundwater table depth (Fan et al., 2013), mean annual groundwater recharge (Nolan et al.,
2007), and mean annual baseflow (Rumsey et al., 2015), the latter of which is often used as a surrogate of recharge under
the steady state assumption. Other examples include Xie et al. (2017), who showed that evapotranspiration data provided
more conditioning power and more uncertainty reduction than soil moisture data in long-term mean recharge estimation, and
Hartmann et al. (2017), who reported variations of the sensitivity of annual groundwater recharge to annual precipitation with
aridity. Although these studies did not apply regionalization explicitly and did not target ungauged watersheds directly, their
findings de-indicate-thatsome-physieal-provide guidance for us to identify some watershed characteristics—especially climate

variables—esmeo e ebidbon oo el el el e e el o el Do e s hat might play an
important role in the regionalization process for recharge estimation.
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Given a set of watershed characteristics, the next important question is how the regionalization is carried out. Gibbs et al.
(2012) provided a generic framework of regression regionalization, which involves a multi-objective optimization for calibra-
tion, a sensitivity analysis to determine the most important model parameters, and a final step relating watershed characteristics
with model parameters. The framework is capable of assimilating information from exogenous variables and accounting for
the interaction between parameters. However, the framework does not include a straightforward quantification of uncertain-

ties in calibration and in regionalization.

they-termed-Bayes-empirical- Bayes—in-their-stady)for-thestatistieal-In_comparison, Bayesian approaches offer a solution
to the quantification of uncertainty by outputting conditional distributions. Despite the lack of in-situ data, one can still
apply Bayesian approaches to establish prior distributions that are informed by data from previous studies or well-established

databases (Woodbury and Rubin, 2000; Hou and Rubin, 2005; Woodbury, 2011). More advanced pooling of information from
multiple i i i

sampled sites
has also been demonstrated with the application of Bayesian hierarchical models (Smith et al., 2014; Cucchi et al., 2019)
s Which can account for both intra- and inter-site uncertainty of the parameters. However, the aforementioned Bayesian
approaches have several disadvantages. including: (1) requiring a system of hydrologic similarity that helps us decide which
sampled sites or databases are suitable as “information donor”, (2) requiring known or assumed distributional forms of the
parameters, and (3) difficulties in accounting for complicated and highly non-linear dependence on exogenous variables.
Adding onto the challenge is that uncertainty arises from a lack of knowledge about how to represent the watershed system
in terms of both model structure and parameters (Beven, 2016). Uncertainty about the model structure has been identified
and studied, (e.g., Beven, 2006; Beven and Freer, 2001; Nowak et al., 2010), but not under the context of ungauged watershed,
regionalization, and hydrologic similarity. The lack of in-situ data does not justify a presumed model structure; even without
in-situ data, the modeler can still consider simultaneously multiple potential model structures, instead of wrongly assuming a
fixed structure (Rubin et al., 2018).

The-To that end, the objectives of this study are twofold. First, to address the aforementioned challenges in regionalization

techmque we propose a da%a—éﬁveﬁ‘Ba}%ﬁaﬁ—aﬁd—ﬁeﬂ-hﬁe&Hegfe&ﬁeﬁnested tree-based modeling approach, which features

(1) non-linear regression in order to model the predictor-response

relationship, (2) full Bayesian quantification of parameter uncertainty, and (3) proposal-comparison-based consideration of

model structure uncertainty. Second, we augmenttheintegrate the nested tree-based modeling approach with a elassifieation-tree-based

moedel-comparison-component-and-propese-a-hypothesis of hierarchical hydrologic similarity. The-augmented-approach-and
the-hypothesis-are-applied-to-a-case-study-to-We apply the approach to estimate mean annual groundwater recharge at ungauged
watersheds ;-with-the-goal-of revealing-in a case study, and we invoke the hypothesis of hierarchical similarity to reveal the key

controlling factors of a dynamic hydrologic similarity system, which could ultimately contribute to robust information transfer

—in future applications.
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2 Methodology

The data-driven, Bayesian, and non-linear regression approach proposed in this study is powered by Bayesian Additive Regres-
sion Tree (BART) at its core. The details of BART, including the establishment of prior distribution (which we term prior), the
calculation of likelihoods, and the posterior inference statistics are well documented in Chipman et al. (2010) and in Kapelner
and Bleich (2016). Here, we provide a brief conceptual introduction to the implementation and advantages of BART, as well

as how BART it augmented in this study.
2.1 BART

Consider a fundamental problem of making inference about an unknown function that estimates a response variable of interest

using a set of predictor variablesavalable-athand. The general form of this problem can be expressed as follows:
R=R+e=f(0,x)+e, (1)
where R is the response variable, f (-) is a model that outputs the estimate of the response variable, R is the estimate, 0 is the
vector of model parameters, x is the vector of predictors, and e is a Gaussian white noise with finite variance, i.e., € ~ N (0, 02).
The data-for-observation of R are-is denoted by r.

BART solves this problem by applying a Bayesian version of the additive ensemble tree model. The-To put it simply, BART

can be understood as Bayesian inference done for many individual regression tree models. The main difference between typical
regression tree models and BART is that the former is calibrated with data by searching for the best model parameters that
lead to the least error, while the latter is conditioned on data by obtaining conditional distributions of model parameters via
Bayesian inference.

To understand BART, first one needs to understand the build-up of the additive ensemble tree model is-the from individual
Classification and Regression Tree (CART) models (Breiman, 1984a). A schematic diagram of a CART model is shown in
Fig. 1(a), which resembles an upside-down tree (root on top and leaves at the bottom). The root node of the tree represents the
space spanned by the predictor(s). As one moves downward from root to leaves, the said space is recursively partitioned by a
sequence of binary partitioning rules. This partitioning and the corresponding partitioning rules define the tree structure, and
can be represented by the tree structure variable, denoted by 7', After partitioning, output response values are assigned to each
and every leaf, where each leaf represents a partitioned subspace. These output values can be collectively denoted by M. A
tree model can be fully defined by knowing its 7" and M.

To further improve the predictive performance on an individual CART, an additive ensemble tree model can be built as the
sum of J individual tree-models-trees (Fig. 1-4a) and-(b)), each of which eensists-of-a-has its tree structure (13,7 =1,...,J)
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and a-set-of-terminal-node-(orfeafnode)its set of leaf values (M, j = 1,...,.J), shown as follows:

J
)=> g(T;,M;,x) )
j=1

where 8 = {T1,My,...,T;, M ;} —Each-tree-medel—and g(-) —functionssimilarly-asaCART-modek-denotes an individual
tree. The output of an additive ensemble tree model is the sum of the outputs from the J trees.
Like mentioned above, instead of searching for the best T feeufswe}y—apphes—bmaf}kpafﬂﬂeﬂiﬂg—%e—%heﬁfediem%spae&and

BART-definesfor every j that lead to the least error, BART takes on a different way of model fitting, the Bayesian way. It
starts by defining the following joint prior of all the tree structures, all the reetnode-value-sets-sets of leaf values, and the white

noise-vartanee—variance of the white noise defined in Eq. 1:
J
P (Tl,Ml, ...,ijl\/_[jb(fQ) =p(o®) [[ p(T)) P(OM|T;). 3)
j=1

BART then applies a tailored version of backfitting Markov Chain Monte Carlo (MCMC) simulation algorithm to condition
the prior on the response data (r), where backfitting means the jth tree model is iteratively updated with its partial residual. The
stationary distribution toward which the MCMC simulations converge is then used to approximate the true posterior distribution

(which we term posterior):
p(Tl’Ml""’Tj’Mj’J2‘T)' “4)

A schematic diagram of the MCMC simulation iteration procedure is shown in Fig. 1(c). For-Within each MCMC simulation,
both T; and M for each-tree-in-the-ensemble-tree-model-the jth tree are iteratively simulated using a Metropolis-within-
Gibbs samplerf, illustrated by the loop in the blue circle in Fig. 1)(c). After simulating all the trees, the error variance (0?) is
simulated with a Gaussian-Gamma-conjugate Gibbs sampler. Fogetherthis-process-completesThe sampling of o2 marks the
end of one MCMC simulation. We can see by the loop in the red square in Fig. 1(c), the MCMC simulation is continuous, until
the simulation-converges-and-reaches-simulated values converge to a stationary distribution. The-simulated-values{rom-this

stationary-distribution-These post-convergence simulated values approximate realizations from Eq. 4, and thus we approximate
the true posterior in Eq. 4 by the stationary distribution obtained by MCMC simulation. At this point, we have reached a BART

model that is conditioned on data-the response data, because all the BART parameters (tree structures, leaf node values, and
the white noise variance) have been conditioned on +the response data.

Given the aforementioned conditioned BART model, we now turn our attention to estimating recharge-at-an—ungauged
watershed-a new response that was not included in the data on which the BART model was conditioned. Here-welet-z-denote

g ton-This is done by inputting the
vector of the new predictors, denoted by X, into the predictor-response relationship we learned with the eonditioned-modelto
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Figure 1. Schematic diagrams of (a) a regression tree model, (b) an ensemble tree model which consists of J additive regression tree models,

and (c) the loops structure that BART uses to draw MCMC simulations (indexed by 1), consisting of an inner loop for J additive regression

tree models and an outer loop that continues until we have a total of L MCMC simulations after convergence toward a stationary distribution.

geBART model. Firstly, Eq. 1 can be

rewritten as:

R~ N (3,02) . (5)

Both the mean and the variance in Eq. 5 are uncertain, and each-has-its-have their respective posteriors. By combining Eqgs. 2
and 5, and after plugging in the post-convergence MCMC simulated values and X, we obtain a plausible realization (indexed
by the superscript [, [ = 1, ..., L) of predictive distribution as follows:

N (Rm’(az)(l)) —

N(f <9<1>7,~<> 7(02)@)) _

J
N Zg(Tj(l),M§.l),i),(02)(l) . 6)

j=1
The collection of many plausible realizations yields an approximated posterior of predictive distributions. Thus, at-the

ungauged-watershed-of-interestfor response of interest, we have now obtained a fully Bayesian Gaussian predictive model,

where the mean and the variance have their respective posteriors;

and SRR he N o A Rreagsed—wate hed nte
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2.2 Advantages of BART

The key advantage of BART is that it combines the non-linear regression for the predictor-response relationship with Bayesian
inference, allowing for the determination of a full Bayesian posterior of predictive distribution, rather than one or a few
estimates/predictions.

The estimation and the-regionalization processes are data-driven. Prior knowledge of the underlying physics is only mini-
mally accounted for in terms of the composition of the predictor sets and the user-defined prior of the splitting rules (which
are embedded in the tree structure variable, T}). The underlying physics is inferred from the ex-situ data via obtaining con-
ditional simulations of the tree structures and the terminal-leaf nodes (similar to the calibration stage), and thus, is implicitly
embedded rather than explicitly defined. Therefore, the extent to which physics could be inferred is restricted by the training
data ——here, the ex-situ data, which is a common limitation of data-driven approaches.

However, in compensation, we avoid two-disadvantages-one disadvantage of the application of physically based models in
the case of ungauged watersheds. First-of-atl-the limited-information-The available data at the ungauged watershed eomes—in
as-isare limited, and it is unrealistic to expect that certain watershed characteristics should be known. Data availability could
hinder the implementation of powerful hydrologic models (Razavi and Coulibaly, 2017) because some of the required model
inputs may be unavailable at the ungauged watersheds (Xie et al., 2017; Gemitzi et al., 2017). It is possible to treat missing
inputs as part-ef-the-parameters, and run simulations to impute them or apply stochastic methods to estimate them. Nonetheless,

the corresponding computational demand grows in power law with the number and the plausible range of the missing inputs,

which is of great practical importance when evaluating the pros and cons of an approach. Seeend;-atungaunged-watersheds;the

Note that in this study there is no intention to show the superiority of either the data-driven or the physically based
approaches. As Wagener and Montanari (2011) pointed out, the ultimate goal of predictions at ungauged watersheds is not
to_define parameters of a model, but rather, to understand what behavior we should expect at the ungauged watersheds of
interest, We have simply shown why our approach is suitable for ungauged watersheds.

2.3 Bayesian-model-averagingNested tree-based modeling approach
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watershed-charaeteristies{ Like shown above, BART offers an elegant way to account for model parameter uncertainty of
an additive ensemble tree model. However, uncertainty exists not only for the model parameters but also for the models

themselves, i.e., the

account-for-model-uneertainty—This-model structure uncertainty. A significant factor of model structure uncertainty for BART

could be the composition of the vector of predictors. Accounting for model structure uncertainty can be done viaBayesian
model-averaging—where-we-average-the-posterior-of-the-estimate-over-the-conditional-by proposing a prior probability mass
function of the K-meodels:

p (fi\ir) = ZK:p (leiﬂ’, Bk) p(Bylr)
k=1

abplausible BART models, which can
then be evaluated and compared with each other. In the present study, we accomplish this by using a proposal-comparison
procedure, which we termed the nested tree-based modeling approach. The details are as follows.

We start by proposing K plausible BART models, denoted as By, k = ... /X, each of which is built using a unique set of
predictors and is conditioned on available data. The model structure uncertainty is accounted for by obtaining a probability

mass function of the models. ) (B;.}1-). can-be obtained by-invoking-Bayes rule-and-the Total-Probab

B = PUB)P(By)
p(Bglr) Zlep(ﬂBk)p(Bk)

ior I plausible BART models, denoted by p(By). The determination of p(By) can
be informed by the data (namely, in an empirical Bayes way, where the prior is informed by the data). At each available data
point, we evaluate the performance of the plausible BART models by a performance metric (a typical example is the mean
squared error). Then, a label is given to each data point, indicating which BART model has the highest performance measured
by the metric. Finally, we use a CART model to classify the data points based on their labels. The CART model outputs an
empirical multinomial distribution of the K plausible BART models at each leaf. Thus, one can study the variation of p(Bj).
with various predictors. A very simple example is illustrated in Fig. 2, where we compare the performances of two BART
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K = 2) using one predictor and a simple two-leveled classification tree. The predictor space is partitioned into the

models

ositive subspace and the negative subspace by the partitioning rule indicated in the diamond box. Thus, for any new data point
with positive predictor value, we would use p(B;1) = 0.76 and p(Bs) = 0.24 as the probability mass function of the-medels-

A - oppeced O Mform—di tThution—aol B — ’ one—ecortd

with-the-moedel-uneertainty-aceounted-for—plausible models. In real applications, of course, one can use an arbitrary number of
redictors to compare an arbitrary number of plausible BART models.

One Predictor

Predictor Value >0

76% BART Model 1 performs better 35% BART Model 1 performs better
24% BART Model 2 performs better 65% BART Model 2 performs better
p(B,) = 0.76 p(B;) =035
p(B;) = 0.24 p(B;) = 0.65

Figure 2. Schematic diagrams of an example of nesting two BART models under a simple two-leveled CART model, using only one predictor.
The partitioning rule is expressed in the diamond box, and the leaves are represented in blue boxes.

nested tree-based modeling approach, which is general and data-driven. For estimation purpose, one would be interested in
accounting for model structure uncertainty by averaging the estimates over p( By ), which can be done by invoking Bayesian
model averaging. However, the capability of the nested tree-based modeling approach does not stop here, as the approach also
outputs the variation of p(Bj.) under various conditions. This could be an indication of the behavior of a dynamic hydrologic

similarity systemfer-mean-annual-groundwaterrecharge;-which-could-contribute-to-a-better-determinati

applieations—Here-the-details-ef-hew-it-werks-are-provided—, and will be explained in details in Sect. 2.4.
First

2.4 Hypothesis of hierarchical similarit

To facilitate the interpretation of the variation of p(By ), we propose a hypothesis of hierarchical similarity —We-hypothesize
thathydrologic-similarity-is-controlled-by-a-hierarchy-that-follews-that has two levels:

10



1. The lower level is the-predietorsimilaritytermed the predictor similarity, meaning that if two vectors of predictors are
20 similar in some parts, their corresponding response will be similar. In hydrology context, if two watersheds have some
similar predietor—valuescharacteristics, then their hydrologic responses will be similar. This lower level corresponds to

the BART models in the nested tree-based modeling approach.

2. The higher level is the regionalization-similarityregionalization similarity, meaning that if two watersheds-share regionalization
simitarityvectors of predictors are similar in some parts, their corresponding predictor-response relationships will be
5 similarly controlled. In hydrology context, if two watersheds have some similar characteristics, then their predictor
similaritieshydrologic responses will be governed by similar predietors-functions/mechanisms. This higher level corresponds
to the classification tree in the nested tree-based modeling approach.

Put simply, regionalization similarity determines the predictor-predictor relationship and tells us which predictors to extract in-

formation from, while predictor similarity determines the predictor-response relationship that actually estimates the hydrotegie

10

s

introduction—is—given—here—response using the said extracted information. Note that the two sets of predictors respectivel
determining the two levels of similarity are not mutually exclusive: they may or may not overlap. To elaborate on the difference
15 between the two levels of similarity, we present the following two example statements within the context of recharge estimation.

1. Systematic trends in recharge rates are often associated with climatic trends (Healy, 2010). This is a statement of

redictor similarity, indicating a predictor-response relationship. One would be informed to association recharge rates
with climatic variables.

20 2. In arid regions, focused recharge from ephemeral streams is often the dominant form of recharge (Healy, 2010).

This is a statement of regionalization similarity, indicating a predictor-predictor relationship. One would be informed to
ay more attention to the dominant factors of ephemeral streams, if the study area of interest is in arid regions.

30 With-this—setap;-Having explained the hypothesis of hierarchical similarity, now suppose that we have gone through the
rocess described in Sect. 2.3, and have obtained K plausible BART models and one CART model. Each plausible BART

11
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model was built with a unique set of predictors, and we use the BART models to explore predictor similarity with different
predictor sets;and-use-the-CART-model-. Moving up a level, we use the classification tree to explore regionalization similarity

ha atte nd ato nde ha ondrtron—dee o a a1n-—R AR m

~by investigating the variation of p(By)
under various conditions. Note that as the condition changes, the best performing BART model may change and so does the set
of dominant predictors in the predictor-response relationship. This may explain why under different conditions, the hydrologic
similarity may be controlled by different watershed characteristics. We test our hypothesis of hierarchical similarity in a case
study, which will be explained in Sect. 3.

3 StudyareaCase study

In this case study, we are going to apply the methodology described in Sects. ??-and-22-2.1 through 2.4 to investigate the

predictor similarity and the regionalization similarity in the study area, and to test the hypothesis of hierarchical similarity;

(B )-in applications: Bayestan-mode veragingin-Seet—22-is-not-demon stratedn-. It is important to note that this
case study ;as-itis-notneecessaryforachieving-the-aforementioned-goal—

is not aimed at a thorough investigation of the recharge mechanism, nor is the goal obtaining the most accurate recharge
estimates. Rather, the primary goals are the demonstration of the power of our approach, and showing how the approach helps
us understand the dynamic behavior of hydrologic similarity in the study area. This Sect. provides the details about the case

study setup, including the watersheds, the recharge data, the watershed characteristics data, the partitioning of data, and the

evaluation metrics.
3.1 Watersheds and recharge estimates

The conterminous United States can be divided into eight major river basins (MRBs), each of which consists of thousands
of watersheds (The United States Geological Survey, 2005; Brakebill and Terziotti, 2011). At each and every watershed,
watershed-average annual recharge estimate and watershed characteristics data are retrieved from publicly available databases,

and will be described in the following subsections. In our work, the recharge estimates are used as the target response while

the characteristics are used as predictors in the regionalization process.

In 2002, annual groundwater recharge at each watershed was estimated via baseflow analyses by the U.S. Geological Sur-
vey (USGS)

12
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a—zoomed-in—view-of-the-The study area (right-hand-side);~whieh-includes (a) MRB 1 and (b) MRB 2-2 in the eastern U.S., colored by

anatysis; we made (Wieczorek and LaMotte, 2010h; Wolock, 2003, also shown in Fig. 3). Streamflow-based estimation of recharge,
such as baseflow analysis, is commonly used in humid regions. As put forward by Healy (2010), there are three key questions
that should be carefully checked before applying baseflow analysis: (1) Is all recharging water eventually discharged into the

20  stream where the baseflow is measured? (2) Do low flows consist entirely of groundwater discharge? (3) Does the contributing
area of the aquifer differ significantly from that of the watershed? Without a rigorous proof, we make a working assumption

sabout the reliability of baseflow analysis.
Fortunately, from a post hoc check, the recharge estimates fall within the typical scales at which baseflow analysis is more

25  suitable: a recharge scale from hundreds to thousands rm per year, a spatial scale of hundreds of 1722 to hundreds of kmn?, and
temporal scales from months to decades (Scanlon et al., 2002).

The more arid U.S. Midwest may have more pronounced localized recharge (de Vries and Simmers, 2002), which cannot
be effectively captured by baseflow analysis (Scanlon et al., 2002). This, then, does not fit well with our working assumption.
Therefore, following the suggestion of Nolan et al. (2007), our study area includes only the relatively humid eastern parts of

30 the U.S., namely MRB 1 and 2 (Fig. 3). After excluding watersheds with less desirable data coverage, we consider a total of

13
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3609 watersheds in MRB 1 and 7413 watersheds in MRB 2. The distributions of the recharge data from all the watersheds in

the study area are shown in Fig. 4(a).

3.2 Climate

seale—At each watershed included in the study, the following data are retrieved from publicly available databases: the long-term

average annual precipitation (P) averaged from 1970 to 2000 (Wieczorek and LaMotte, 2010a), the annual precipitation in the
year 2002 (P) (Wieczorek and LaMotte, 2010b), and the long-term average annual potential evapotranspiration (F,,) averaged

from 1960 to 1990 (Title and Bemmels, 2017). Note that limited by data availability, the average periods of P and E, are
different. Thus, we also make a working assumption that at the decadal scale the averaged climate variables remain stead
with which we ignore the potential effect of climate change on the difference between the average from 1960 to 1990 and that

from 1970 to 2000. Given the precipitation and evapotranspiration, we obtained two additional climate variables: the long-term
aridity index, estimated as g{) =FE, / P, and the 2002 aridity index, estimated as and-¢ = F), /P. Given that the recharge data
are based on baseflow analysis for the year 2002, P and ¢ represent the climate controls of that same year, while P, E,, and é

represent climate controls over the long-term.

The distributions of Pis-shewnintig P, and E, are shown in Figs. 4(b)-, (¢), and (d), respectively.

3.2.1 Normalization and transformation of recharge using precipitation

The annual recharge data (in volume of water per unit watershed area) can be normalized by P (also in volume of water
per unit watershed area), as in Fig. 4(ee). This stems from the concept of water budgets and has been commonly used in
hydrological studies worldwide (e.g., Magruder et al., 2009; Rangarajan and Athavale, 2000; Obuobie et al., 2012; Heppner
et al., 2007; Takagi, 2013; Yang et al., 2009). Here, we apply logit transformation, which is common for proportions or
probabilities (Gelman et al., 2014), to that normalized recharge, relaxing the physical bounds (0 and 1) of the values of the
target variable (Fig. 4(df)). This step is advantageous as it opens the opportunity to estimate recharge with parametric statistical
models without special accommodations for the bounds. Therefore, in this case study the logit normalized recharge (LNR) is

used as the target variable-response variable.
3.3 Non-climate watershed characteristics

We also consider various non-climate watershed characteristics in this study, including topography, land cover, soil properties,
and geology. The land cover is based on data published in 2001, which we feel is close enough to 2002 to provide the ap-
propriate information. The other characteristics are based on raw data obtained in different years before 2002; it is assumed
that they remain steady at sub-century time scales. We provide the details of these watershed characteristics in the following

subsections.
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Figure 4. Distributions-Histograms of {(a) >-annual recharge in 2002, {(b) }-annual precipitation in 2002, {(c) >-long term average annual

recipitation, (d) long term average annual potential evapotranspiration, (e) normalized recharge, and (d)H(f) logit normalized recharge
(LNR) at all the watersheds in MRB 1 and 2. The black curves are estimates of the distributions based on kernel density estimation.

3.3.1 Topography and land cover

The topographic predictors are taken from publicly available databases (Wieczorek and LaMotte, 2010g); they are summarized
in Table 1. The land cover variables are the percentages of watershed area corresponding to each land cover class (Wieczorek
and LaMotte, 2010f); these are summarized in Table 2. The land cover classes are based on the 2001 National Land Cover
Database (NLCD2001), the categories of which include water, developed land, barren land, forest, shrubland, herbaceous land,
cultivated land, and wetland, with each having its own sub-classes. The details of NLCD2001 can be found in Homer et al.
(2007).

Table 1. Watershed topography predictors.

Variable Explanation
‘Basin index Watershed area divided by watershed perimeter squared (dimensionless).
Stream density Reach length divided by watershed area (m 1),
Sinuosity Reach length divided by the length of the straight line connecting the beginning and the ending of the reach (dimensionless).
Slope. Mean watershed slope calculated from digital elevation data (degree).
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Table 2. Land cover classification by NLCD2001.

Class Subclass.
Open water
Water

Perennial ice

Open space

High intensit

Developed

Barren  Bamenland

Deciduous

Forest Evergreen

Dwarf shrub.
Shrub/scrub

Shrubland

Grassland

Sedge

Lichens

Herbaceous

Pasture/hay
Crops

Cultivated

Woody wetland
Emergent herbaceous wetland

Wetlands

20 3.3.2 Soil property

The soil property predictors include watershed scale statistics (e.g., average, upper bound, and lower bound) of soil properties
(Wieczorek and LaMotte, 2010e); these are summarized in Table 3. The spatial statistics of the soil properties within each
watershed were obtained over gridded source data values from the State Soil Geographic database (STATSGO) (Schwarz and

Alexander, 1995), which were depth-averaged over all soil layers (Wolock, 1997).
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Table 3. Soil property predictors.

Calcium carbonate equivalent % Lower/higher bounds

Depth to the seasonally high water table m Average and Lower/higher bounds
Hydrologic soil group classification % Average
Soil erodibility factor dimensionless Average

Permeability mh ! Average and Lower/higher bounds

Available water content fraction  Average and Lower/higher bounds

Bulk density gom ?  Average and Lower/higher bounds

Organic matter content % Average and Lower/higher bounds

Clay soil content. % Average and Lower/higher bounds
Silt soil content % Average
Sand soil content % Average

Percent finer than nos.4. 10, and 200 sieve % Average and Lower/higher bounds

#: Spatial statistics calculated across the watershed.

3.3.3 Geology

The geology predictors used in this study were retrieved from publicly available databases (Wieczorek and LaMotte, 2010c, d)
and they can be classified into two subcategories: surficial geology (surface sediment) and bedrock geology. As the predictors,
we used fractions of the watershed area corresponding to each of the 45 surficial geology types (Wieczorek and LaMotte,
2010d; Clawges and Price, 1999) and each of the 162 bedrock geology types (Wieczorek and LaMotte, 2010c; Schruben et al.,
1994). Details regarding each geology type can be found in Wieczorek and LaMotte (2010c) and Wieczorek and LaMotte
(2010d). Note that in geological terminology, rock type or rock composition data are referred to as lithology data. Compared
to lithology, structural geology data might be more informative for groundwater studies (e.g., orientation, fracture properties,
discontinuity, etc.). However, structural geology information usually requires in-situ investigation, which cannot be expected

at ungauged watersheds. Therefore, we consider only lithology data in this study.
3.4 Data partitioning

This Sect. explains the setup of the holdout method €

watershedsspecific to the case study, as well as the partitioning of the predictors into various subsets in order to evaluate the

effects of different predictors.
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3.4.1 Watershed partitioning

Because we cannot evaluate the predictive accuracy at real ungauged watersheds (due to the lack of in-situ recharge-observations;
we-follew-data to compare against), we adopt the holdout method to partition the watersheds described in Sect. 2?-te-partition
the-watersheds:=3.1 into two mutually exclusive subsets: the training watersheds and the testing watersheds. The testing
watersheds will be treated as if they were ungauged, and we only condition the BART models on data from the training

watersheds (which are the ex-situ data, with respect to the testing watersheds).
In this study, we define the watersheds in MRB 1 are-as the testing watersheds and the watersheds in MRB 2 are-as the

training watersheds. The ex-situ data (i.e., data in MRB 2) are used to fit multiple BART models(te-be-explained-shortly),
which are then used to obtain predictive distributions of recharge- LNR at all the testing watersheds.

There are two reasons for this MRB-based data partitioning:

— For reasons touched on in Sect. 1, we do not consider spatial proximity as a predictor in this study. Separating the two
MRBs partly ensures the exclusion of the confounding effect of spatial proximity, and thus the regionalization is solely

based on the watershed characteristics.

— Considering the logitnormalized-recharge-distributions of LNR (Fig. 4(f)), the range of values in MRB 2 fully covers
the range of values in MRB 1. However, the reverse is not true. It is thus advantageous to train the models with MRB 2

to avoid poor model fitting due to lack of data coverage.

After partitioning the watersheds, we now turn our attention to the partitioning of predictors.
3.4.2 Predictor partitioning

As mentioned in Sect. 1, climate variables are among the most important factors in hydrologic similarity at the regional scale,
but there might be other controlling factors to consider as well, and the dominance of climate variables may not be always
present. To investigate the various effects of different predictors, we conceptually divide the predictors into four sets: (1) climate
controls that determine the input amount of water into the system, (2) surface controls that determine the distribution of water

at the surface, (3) soil controls that determine the infiltration of water, and (4) lithology controls that indicates the properties of
the aquifer, We further break of the first set into three subsets to investigate the effect of dimensionless predictors. Therefore,
we define a total of six different predictor sets to build six unique BART models, which are indexed by k, k =1,2,...6 (Table
4).

Note that the determination of the six predictor sets is guided by a conceptual division of predictors and the idea of testing
the relative importance of different categories of predictors under different conditions, instead of aiming for high accuracy and
precision. Therefore, by no means is Table 4 an exhaustive list of all possible sets, nor does it necessarily include the “best"
set-best set that leads to the best predictive performance. The design of the six predictor sets simply facilitates the investigation

of the effects of various categories of predictors on predictive accuracy and uncertainty.
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Table 4. Table of the six different predictor sets.

k predictors included Number of
predictors

1 band ¢ 2

2. P Pand B, 3

4. Topography and land cover predictors 20

3.4.3 The benchmark model: without any predictor

In addition to the six BART models, we also build a simple model by using the estimated distribution of legit-normalized

recharge LNR at the training watersheds (via kernel density estimation J-as-the-predietive-distributionfor-the-testing-watersheds(R Core Tear

, without considering any predictor. In other words, this is simply using the distribution of LNR at all the training watersheds as
the predictive distribution. This is a model that ignores hydrologic similarity altogether, and it can be considered as an extreme

case of the ex-situ prior in Li et al. (2018), with a lot more watersheds and much less stringent criteria of similarity. From this
point forward, we refer to this model as the benchmark model, for it is used as a benchmark against which the BART models

are compared.
3.5 Evaluation of predictive distributions

As mentioned in Sect. 222.3, we label each testing watershed by the best-performing model, where the performance is measured
based on a metric. Thus, the metric with which we evaluate predictive distributions matters.

In this study, two different accuracy metrics are adopted. The first is the root mean squared error (RMSE), defined as

o IS (g0 Y 7
ik = L;( iyk—h‘) @)

where 7; is the LNR data at the ¢th testing watershed, and E; j is the RMSE of the kth model at the ith testing watershed. Note

that R% is obtained by following Eq. 6, but now subscripts are added to indicate that we plug in the predictors from the ith
testing watershed to the kth model. This metric evaluates the predictive performance in an estimation problem, where we wish
to obtain a “best estimate" of recharge-LNR with minimal expected error.

The second metric is the median log predictive probability density (LPD) at the value of recharge-LNR observation, defined

as

L; = median)—; 1, {1n {p (R = leéfl;L (02),(61))} } ®)
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where L; i, is the LPD of the kth model at the ith testing watershed. The subscript of (o2) ,(Cl) indicates the kth model. This metric
evaluates the predictive performance in a simulation problem, where we wish the realizations from the predictive distributions
are likely to be the same as the observation.

In addition to accuracy, we also quantify the predictive uncertainty. This is done by first recognizing the two components of

uncertainty for the kth model at the ith testing watershed:

1. o7, which we refer to as the predietive-variancepredictive variance, and is approximated as the sample median of (02),(;)

over!=1,...,L, and

2. the posterior variance of Ri, %> which we refer to as the estimate-varianeeestimate variance, and is approximated as the

sample variance of f%gl,l over!=1,...,L.

The predictive variance indicates how informative the inferred predictor-response relationship is, while the estimate variance
indicates how eertain-a-BART-model-can-infer-thatrelationship-uncertain the said relationship is. In this case study we weigh
the two components equally, as we wish to obtain an informative relationship with certainty. To that end, we define the tetal
predictive-variance-total predictive variance as the summation of the two components, and use it as the metric of predictive

uncertainty in this study.

4 Results

As discussed above, we built six BART models (Table 4) with ex-situ data. In-situ predictors were then fed into the models to
yield posterior realizations of predictive distributions (Eq. 6). With the metrics of accuracy and uncertainty defined, we are then
able to quantify the predictive performance of the BART models, and classify them based on either the RMSE-based labels or
the LPD-based labels with the nested tree-based modeling approach. This allows for the investigation of the effects of various

predictors under different conditions, which will be presented in this Sect.

4.1 Evaluation of predictive distributions

The following subsections present the effects of different predictor sets on predictive accuracy and uncertainty.
4.1.1 Predictive uncertainty

The effect of regionalization with the different predictor sets on predictive uncertainty is shown in Fig. 5. The estimate vari-
ance (Fig. 5(a)) represents how well the BART models capture the predictor-response relationships. We see that the geology
predictors lead to the lowest estimate variance, probably because of the significantly larger number of predictors used (see
Table 4). Yet, there is a surprise in Fig. 5(a). First, at k = 1 and k£ = 2 the estimate variances are generally quite low, despite
the low number of predictors. However, at k£ = 3, the estimate variances increase significantly. Intuitively, since aridity is the
ratio of evapotranspiration to precipitation, one would expect that the variances at k = 3 would be similar to, if not lower than,

those at k£ = 1 and k = 2. One plausible explanation here is that although aridity indices and precipitation/evapotranspiration
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Figure 5. The box plots of the estimate variances at the testing watersheds {(a)), the bar plot of the predictive variances with 95% intervals
shown by the error bars (b)), and the box plots of the total predictive variances at the testing watersheds {(c)). The red line indicates the

variance of the benchmark model --used-for comparison.

carry ample information to be extracted and conditioned upon, the respective predictor-response relationships we get might be
significantly different. When used together, the BART models were not able to formulate a universal relationship. This will be
revisited in Sect. 225.3.

The predictive variance (Fig. 5(b)) represents how informative the predictor-response relationships are, which is a different
aspect of uncertainty compared to the estimate variance. One could obtain a predictor-response relationship fairly confidently
(low estimate variance), but the relationship is less informative (high predictive variance), like that found at £ = 6. The opposite
case is that one could not confidently obtain a predictor-response relationship, but once that relationship is obtained it is quite
informative, like that found at £ = 5.

The total predictive variance (Fig. 5(c)) provides an overall metric that considers the above two sources of uncertainties.
While the medians are rather similar, the spread of the box plots does vary significantly with k. The condensed box plots (e.g.,
k =1 and k = 6) indicate that the total predictive variances are essentially constant throughout all testing watersheds, while the
spread-out box plots (e.g., k = 5) indicate that the effect of the predictors may vary significantly from one testing watershed
to another. This indicates that there might not be one single predictor set that always leads to the lowest uncertainty, and thus

the effects of predictors on predictive uncertainty may vary from one condition to another. That said, regardless of the testing

21



30 watersheds and predictor sets, the total predictive variance is always lower than the variance of the benchmark model, which

clearly shows that regionalization using watershed characteristics definitely improves predictive precision.
4.1.2 Predictive accuracy

The effect of regionalization with the different predictor sets on RMSE is shown in Fig. 6. The RMSE of the benchmark model
(Fig. 6(a)) at each testing watershed is simply the difference between the sample mean of the ex-situ recharge-LNR data and
the in-situ recharge-LNR observation. For the BART models (Fig. 6B(b)), it is calculated by the root of the average squared
errors over post-convergence MCMC simulations.

Regardless of k, we see that, compared with the benchmark model, RMSE is reduced at least at half of the testing water-
sheds. Surprisingly, the largest overall RMSE reduction is observed when only the aridity indices are used for regionalization,
indicating that at most of the watersheds tested in this study, aridity similarity implies recharge-LNR similarity at regional and
annual scales to a high degree. On the other hand, we observe some outliers that have high RMSE reduction at k£ = 4 through
k = 6, indicating that topography, land cover, soil properties, and geology may not have an overall effect that is as strong, but

under certain circumstances, they could still be important factors.
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Figure 6. The box plot of the RMSE of the benchmark model at the testing watersheds {(a)), and the box plots of the RMSE reduction
introduced by applying the BART models at the testing watersheds {(b)). The red line indicates zero RMSE reduction s-ased-for comparison.

5 The effect of regionalization with different predictor sets on LPD is shown in Fig. 7. It is immediately clear that the accuracy
improvement is not as prominent as that seen-in Fig. 6. EPD-is-Only when k£ = 1 is LPD increased at most of the watersheds
only-ath=-1. We also find that all of the distributions of LPD are heavily negatively skewed ;-and-with a lot of outliers.

Looking at Figs. 5 through 7 together, one can observe the different effects of the predictor sets on predictive accuracy,

stemming from the different natures of an estimation and a simulation problem. From the point of view of the overall effect, for
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Figure 7. The box plot of the LPD of the benchmark model at the testing watersheds (a), and the box plots of the LPD increase introduced
by applying the BART models at the testing watersheds (b). The red line indicates zero LPD increase, used for comparison.

k = 2 through k = 5 (i.e., the predictors other than aridity indices) RMSE is reduced at more than half of the testing watersheds,
but LPD does not increase to the same extent. This suggests that the predictive distributions are centered closer to the in-situ
observations due to regionalization, but that the conditioning also significantly reduces the predictive variances, causing the
predictive distribution to be too narrow. Therefore, compared to a relatively flat, spread-out, and uninformative or weakly
informative distribution, the predictive density decays too quickly when deviating from the predictive mean, resulting in low
LPD. This might be a sign of over-conditioning, or the disproportional reduction of predictive uncertainty, as exemplified in
Fig. 8. The cyan curve is an example of an over-conditioned distribution. Although its mean is somewhat close to the true value,
the small variance causes rapid decay of probability density; therefore, at the true value (red vertical line) the predictive density
is fewerno better than that of the weakly informative distribution; i i - i i

uniferm—distributionor uninformative distributions. How could this ever happen? Take k =5 in Fig. 5 as an example: the
redictive variance is small, meaning that the predictive distribution should be rather peaked (just like the cyan curve in Fig.
8). The only way one can get a high predictive density is then to make the predictive mean close to the true value. Nonetheless,

this would be very difficult at some of the watersheds where the estimate variance is large. The only predictor set that improves
both RMSE and LPD at most of the testing watersheds is k& = 1, the aridity indices, and one could expect the corresponding

predictive distributions to be mere-somewhat similar to the case of the ideal dark blue curve in Fig. 8.
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Over-conditioning can occur when model fitting or model calibration leads to wel-eonstrained-constrained parameters that
are, in fact, subject to different forms of model uncertainty (Hutton et al., 2014; Beven et al., 2008), which is an indication of
why the of p(B

determination is important. In this <

: s-di ase study, we focused more on the variation of p(B;) under various conditions
to be shown shortly), and less on improving the estimates. However, in another application where the estimates are to be
refined;-mode-improved, model structure uncertainty should be and can be considered {asshown-in-Seet-22in order to refine

the estimates (e.g., via Bayesian model averaging).
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Figure 8. An example of over-conditioning: the probability density at the true value (indicated by the red vertical line) of the over-conditioned
distribution is not higher than that of the non-informative distribution or that of the weakly informative distribution, not because the condi-

tioning does not work, but because of the disproportional reduction of the variance of the distribution.

4.2 Regionalization similarity

The box plots in Fig. 5 through 7 showed different distributions of the predictive performance metrics for the different predictor
sets. An interesting follow-up question here would be how model performance varies with watershed characteristics. It was
shown that, in-eensisteney-consistent with previous studies, aridity is indeed the most important controlling factor at regional
and annual scales on average, but there are few cases where this aridity dominance is replaced. In other words, how might we
identify the conditions under which a specific predictor set could be more informative than others?

To investigate this further, we give each testing watershed two labels: the model with the lowest RMSE, and the model with
the highest LPD; we refer to these labels as the RMSE labels and the LPD labels, respectively. The possible values of each

label include k£ = 1 through k£ = 6 and benchmark, representing the six BART models and the benchmark model, respectively.
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Then, using all the available predictors, we built two CART models to classify watersheds based on the RMSE labels (Fig. 9),
and the LPD labels (Fig. 10).

4.2.1 Nesting by RMSElabels

@D =
yes (AWCAVE >= 0.16 )no

€]
ARID_IDX <0.9

(unused)

XX XXX
oo

DU R WN R

[15]

ARID_IDX02 < 0.99

PPTO2MEAN < 1020

[18]

SLP_DEG <2

k4046k6053k206 k3043k4035k6037
k10 k=1:02 k601 k2034k302 k102

1049 743 402 194 237 102 104

Figure 9. CART model classifying the RMSE labels of the testing watersheds. Splitting rules are shown in white nodes, while terminal-leaf’

nodes are colored based on the classification results. For each leaf node, the brightness of the coded color indicates the node impurity (the

brighter the more impure), where impurity is defined as the probability that two randomly chosen watersheds within the node have different

labels. On top of every node, in brackets, is the node number, provided for convenient referencing. The predictors in the splitting rules are

expressed in code names for convenience; a reference list is found in Table 5. The-width-of-the-tree-branch-(grey-line)-ispropertional-te-the

node-have-differenttabels—For each terminal-leaf node, the elass-model of the highest multinomial probability of having the best performance
is shown first, which is-also determines the classification result, followed by the etass-model of the second highest probability, also to indicate
how-impure-the rode-isimpurity. Underneath each terminal-leaf node box is the number of watersheds belonging to the leaf. Note that the
legend does not include benchmark because the benchmark model is never the best-performing model at any testing watershed. k =5 is
marked as “unused"” in the legend because there is no leaf node where p(Bs) is the highest.

Fhe-Fig. 9 shows the variation of the top two best performing BART models and the correspondin Bj;.) values under

various conditions, where the performance of each BART model is defined by the RMSE. This variation indicates the regionalization

similarity in the study area. At first glance, the available water content (AWC) is-stand out to be the first indicator of region-
alization similarity (Fig. 9 node 1): at watersheds with high AWC, aridity stands out as the dominant factor, eensistent-with
vartotts-which is consistent with the previous studies cited in Sect. 1. However, there is a potential risk if one uses aridity as
the primary indicator of hydrologic similarity regardless of AWC. In previous studies, AWC was found to be an important

predictor correlated with surface runoff, baseflow, and groundwater recharge (Arnold et al., 2000), and it was among the most
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Table 5. Reference list of the splitting variables in Fig. 9 and Fig. 10.

Code name Splitting variable
AWCAVE Average available water content_
ARID _IDX Long term average aridity index
ARID_IDX02 Aridity index in 2002
PPTOZMEAN -Annaul precipitation in 2002
BGEOL_147 % area of Paragneiss and Schist bedrock
SLP_DEG Average slope in degree
NLCDOL 41 % area of Deciduous Forest

important parameters to which water balance models are sensitive (Finch, 1998). In the current study, we are not claiming
that AWC cannot be a predictor, but rather, we are suggesting a hierarchical structure in which AWC is placed —together
with other predictors —to help estimate recharge-LNR at ungauged watersheds. Since AWC is governed by field capacity and
wilting point, it is an indicator of the storage capacity of the soil for usable/consumable water: the larger the storage capacity,
the higher the degree to which the system is supply-limited, thus pointing to aridity. If the storage capacity is low, on the
other hand, the more complicated interplay among various predictors needs to be considered, and one cannot simply assume
that aridity is the primary indicator of hydrologic similarity. We also found the soil organic matter content a quite competitive
surrogate for AWC, meaning that if organic matter content was used here instead of AWC, we would end up with a slightly less
accurate but overall similar classification. We conjecture that this is because of the high positive correlations between organic
matter content and AWC (Hudson, 1994).

Further down the classification tree, watersheds with lower AWC are classified roughly as arid or humid watersheds by the
long-term aridity index. For the more humid watersheds (Fig. 9, nodes 4 through 14), regionalization similarity is controlled by
different predictors, but the dominant predictors for recharge-LNR estimation are almost always the climate variables (nodes
6, 8, 11 and 12, which contain 1576 watersheds in total). Only at a handful of watersheds (nodes 13 and 14, which contain
only 185 watersheds in total) are aridity indices not dominant. However, some interesting conjectures can be made by taking a
closer look at these two nodes.

Node 14 is a small but unique cluster, featuring watersheds that have low AWC, are humid, and have relatively homogeneous
paragneiss and/or schist bedrock. Both of these bedrock types belong to the category of crystalline rock, and often feature
layering in a particular orientation. The groundwater movement in such rock formation often depends on foliation, i.e., rock
breaks along approximately parallel surfaces, which affect the direction of the regional groundwater flow (Singhal and Gupta,
2010). Hence we observe a condition where the ample water supply cannot be substantially held by the soil due to low AWC,
and the regional groundwater movement might be controlled by bedrock layering and foliation. Low AWC is an indication
of less clayey soils, and implies that infiltration/percolation through the soil layer might be facilitated by relatively higher

permeability. Water could thus easily enter the bedrock layer, which is rather horizontally homogeneous. To that end, those
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predictor sets other than k£ = 6 become less informative, while the predictor set k¥ = 6 becomes relatively more informative. In
fact, these watersheds are mostly the positive outliers at £ = 6 in Fig. 6(b), where the predictor-predictive power of the geology
predictors is at its best.

Node 13 features watersheds that have low AWC, are humid, are not dominated by homogeneous paragneiss and/or schist,
have a relatively steep average slope, and have a large amount of annual precipitation. The low aridity is primarily driven by
precipitation rather than evapotranspiration. In fact, these watersheds are mostly outliers featuring extremely low aridity index
(below 0.65) due to ample precipitation. Under such condition, evapotranspiration is expected to operate to its full potential, i.e.,
it is shifting from water-limited state to energy-limited and canopy-controlled state. Beeause-the-evapetranspiration-demand-of
the-eanopy-ean-be-met-the-In addition, as evapotranspiration is near its full potential, the drainage of the excess precipitation
would be controlled by the topography of the watershed (e.g., the slope and the sinuosity of the stream). Fast drainage leaves less
water available for infiltration and recharge. and vice versa. To that end, the land cover type rew-starts-and topography now start

to play a dominant role in hydrologic similarity. It is noteworthy to point out node 20 here. Node 20 features watersheds that are
relatively humid among the arid watersheds (p44-¢ in the range from 0.9 to 0.99) and have ample precipitation. The similarity
of node 20 with node 13 supports our conjecture that the dominance of land cover predietors-is-5-and topography predictors is
due to the precipitation-driven humid environment that is relatively more capable of catering to the evapotranspiration water
demand and features excess precipitation.

On the other side of the tree (Fig. 9, node 15 through 21), the resulting classification is quite diverse, and the purity-impurity
of each node is relatively lowerhigh. Aridity no longer plays the dominant role, and the hierarchical similarity structure becomes
complicated that it is difficult to make straightforward physical interpretations. The most important message we get is the
significant risk one would face if one considers aridity, or any climate variable in general, as the primary indicator of hydrologic
similarity when AWC is low and aridity index is high. In summary, although climate predictors are still the most important
ones on average, within the context of the hierarchical similarity we have identified certain conditions under which either non-
climate predictors become dominant or no dominant predictor set can be straightforwardly identified, all of which contribute

to the understanding of the dynamic hydrologic similarity.

4.2.2 LEPDlabels

4.2.2 Nesting by LPD

The classification of the LPD labels is shown in Fig. 10. In general, the struetare-root part of the classification tree (node
1 through 3) is quite similar to that found in Fig. 9, where AWC and long-term aridity define two sequential overarching
separations of watersheds. However, further down the tree the leaf part is significantly different. The classification essentially
leads to only three big clusters (Fig. 10, nodes 2, 7, and 9), and the other terminal-leaf nodes only contain a few watersheds.
Node 9 features arid watersheds with low AWC, where we end up with a highly impure terminal-leaf node, and even the highest
multinomial probability is only 0.27. No further splitting rule could significantly reduce classification error. This is supportive

towards our previous argument that when aridity index is high and AWC is low, it is risky to resort to climate variables for
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Figure 10. Same as Fig. 9, except that here the classification is done using the LPD labels. The predictors in the splitting rules are expressed

in code names for convenience; a reference list is found in Table 5.

hydrologic similarity, as shown here that it is difficult to even identify a dominant predictor set. As mentioned in Sect. 4.1.2,
underestimation of the predictive variance (07) leads to low LPD, and thus it is difficult to make physical interpretation our of
the results in Fig. 10, except for node 1 through 3, which are quite similar to their counterparts in Fig. -9. Therefore, with the
LPD labels we are only able to identify the overarching regionalization similarity controlled by AWC and long-term aridity.

RMSE and LPD represent views of predictive accuracy in an estimation problem and a simulation problem, respectively.
Intuitively, if one only considers unimodal predictive distribution with limited skewness, a high predictive density at a value
directly implies a closeness of the distribution central tendency to that value. However, the reverse is not necessarily true: either
over- or underestimation of variance might possibly lead to low predictive density, even if the mean is close to the target value
(e.g., Fig. 8). Based on whether RMSE or LPD is used as the accuracy metric —which implies the scope of recharge-estimation
—LNR estimation —we can observe some common features as well as some distinctions of the structure of the hypothesized
hierarchical similarity.

Fortunately, regardless of the metric of predictive accuracy, in both Figs. 9 and 10 the first three nodes are remarkably
consistent, and the effect of the metric of predictive accuracy is only manifested at watersheds with low AWC. This supports

the suggestion that AWC plays a pivotal role in hydrologic similarity for mean annual greundwaterrecharge-LNR estimation.
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30 5 Discussion

In this section, we diseuss-the-keyfindingsrevisit the two research objectives pointed out in Sect. 1 by discussing the ke
features of the approach, the key findings from the case study, as well as the limitations of the case study.

5.1 The nested tree-based modeling approach

The nested tree-based modeling approach proposed in this study is essentially a coupling of BART and CART. As demonstrated
in Sect. 2, both BART and CART are independent of the physical background, and are pure data-driven machine learning

5 techniques, Therefore, in principle as long as there are data, the nested tree-based modeling approach is applicable like any
other data-driven approach. However, one may argue that (1) the in-principle applicability does not set the nested tree-based
modeling approach apart from other data-driven machine-learning approaches, and that (2) it would be counter-intuitive to
advocate a data-driven approach with a seemingly data-rich case study (here “data-rich” refers to the fact that each MRB
consists of thousands of watersheds, see Sect. 3.1) when the study actually emphasizes ungauged watersheds.

10 Our explanation starts with explaining two significant advantages of the nested tree-based modeling approach. First of all,
the greatest advantage of BART (as mentioned in Sect. 2.2) is that it outputs the posteriors of the model parameters, which
could lead to posteriors of the target response. The advantage of having the posteriors is that the users/modelers can then derive
the desired information at will, such as percentiles, moments, information gain, or the posterior mean and variances like what
was demonstrated in the case study. Conditional simulation is also made easy when the posteriors are available, opening the

15 door for Monte-Carlo analyses. Second, following the statement that one can obtain the statistics or representative metric of
interest, the nesting of BART models under CART can be done with the said metric, resulting in the corresponding probability.
mass function of the plausible BART models. For example, the classification shown in Fig. 9 is based on RMSE, which is
then based on the posterior mean values. This is essentially a proposal-comparison-based consideration of model structure
uncertainty.

20 How do the aforementioned two advantages of the nested tree-based modeling approach justify the use at ungauged watersheds?
First, of course the performance of the model depends on the quality and the quantity of training data. In this sense all modeling
approaches are the same, and applying BART does not disproportionally enhance the predictive accuracy when the data are
limited. However, what sets BART apart is the Bayesian feature that accounts for model parameter uncertainty properly in the
form of conditional distribution, which cannot be done as easily with only a few point estimates or a few posterior statistics.

25 Second, uncertainty exists not only for the model parameters but also for the models themselves. The nested tree-based

modeling a .), of the plausible BART models

(which was also exemplified in the case study). The fact that at ungauged watersheds in-situ data are absent and ex-situ data

can be limited in quantity and/or quality accentuates the importance of uncertainty quantification, and the nested tree-based

modeling approach offers a Bayesian solution to that, making itself not only applicable but also advantageous at ungauged
30 watersheds,

roach can help us obtain an informed empirical probability mass function,
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One may then argue that how would a modeler make an informed proposal of plausible BART models in the first place? This
is where physical knowledge come into play, and the proposal is indeed case specific. This is why we proposed the hypothesis
of hierarchical similarity, which can be integrated with the nested tree-based modeling approach to study the behavior of a
dynamic hydrologic similarity system, like what was demonstrated with the case study. Unlike the generality and the merits of

the nested tree-based modeling approach, our findings regarding the variation of p(B},) and the shifts in dominant controllin

factors of recharge are indeed specific to the context of the case study, which will be discussed next.

5.2 The hierarchical similarity hypothesis and the shift in dominant physical processes

With BART"’s ability to simultaneously model non-linear and/or interaction effects and present uncertainty in a fully Bayesian
fashion, we are able to show how the controlling factors of hydrologic similarity vary among different watersheds, among
different conditions, and among different accuracy metrics. These are all manifested in the case study under the context of the
hierarchical similarity hypothesis.

Climate variables have been identified as the dominant factors in previous studies (see Sect. 1), and they are indeed on
average the most dominant factors in our case study. However, the hierarchical similarity shows potential risks if one resorts
to climate variables to define hydrologic similarity without considering other physical watershed characteristics, especially the
soil available water content.

The details of the hierarchical similarity are inferred from the data in the fashion of supervised machine learning, using &

~six BART models and one benchmark model nested under

one CART-modelclassification tree. It is of great importance to have two levels in such a system, as it allows for identification
of the shifts of dominant factors under different conditions. These shifts indicate shifts in dominant physical processes, as
exemplified by node 13 and 20 in Fig. 9 where we observed the shift from water-limited evapotranspiration to energy-limited
evapotranspiration. Therefore, we conjecture that it is the shift in dominant physical processes that is driving, and thus is

reflecting, the shift in the controlling factors of hydrologic similarity under different conditions.
5.3 Limitations of the case study

Here, we provide discussions about the limitations of the case study from the aspects of the targetrespense-data set, the target
response, and the partitioning of watershedsdata.

5.3.1 Seale-The scale of the target response

A major limitation of the case study is that the target hydrologic response is the logit normalized watershed-averaged annual
groundwater recharge. This is a large-scale spatiotemporally homogenized response, and in this study, the data were based on

baseflow analyses.
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that end, a working assumption about the reliability of the baseflow analysis was made without a-rigerous—preef—rigorous
roof (see Sect. 3.1). The findings of the case study are all under the context of this working assumption, and thus, they should

not be applied to recharge/LNR at other spatiotemporal scales or to other hydrologic responses without careful considerations.

5.3.1 The MRB-based partitioning of watersheds

Intuitively; sinee-Although we tried to justify the MRB-based partitioning by the reasons listed in Sect. 3.4.1, we acknowledge
that this may not be the best partitioning method for demonstrating the full potential of the estimating power of BART. An
associated limitation is identified, which stems from the data not covering a desirable range of values. An example was already
presented in Sect. 3.4.1 and Fig. 4. As discussed in Sect. 5.1, the limitations in the data accentuate the advantage of our
approach regarding the consideration of uncertainty, but it is also recognized that it could be challenging to discover the same
findings if MRB 1 provided the training data for MRB 2, which is part of the reason why we kept the MRB-based partitioning.

Another case of lack of data coverage can be found in our climate predictors data. Since aridity index is the ratio of potential
evapotranspiration to precipitation (¢ = E,,/ P), one might be surprised by the differences among the cases of k=1-+=2and
k=3k =1, k=2, and k = 3 in the results. The main reason is revealed in Fig. 11. The E,, values at the training and testing
watersheds are so distinct that, essentially, all the testing watersheds are outliers from the point of view of a BART model
trained at the training watersheds. On the other hand, the ¢ values at the training and testing watersheds share the range from
about 8-6-t6-1-20.6 to 1.2, and only differ at the two extreme ends. In other words, the predictor-response relationships inferred
by using ¢ can be transferred due to the overlapping range (Fig. 11(c)), but the relationships inferred using F5—=>1+000mm%
E, > 1000mm cannot be effectively transferred to watersheds with £5<3660mm-L, < 1000mm (Fig. 11(b)). Although it
is not shown, a similar case can be found by comparing ¢ with E,.

Although this might have been avoidable by using a more sophisticated design of cross-validation, we kept the MRB-based
holdout method on purpose. In addition to the reasons that were explained in Sect. 223.4.1, another motivation is that, in reality,
the data at hand come in as is. This means there is no guarantee that the measurements will cover a particular range or that the
watershed characteristics of the ungauged watersheds of interest are within a desirable range. The prevailing superiority of ¢

and ¢ over P, P, and E, found in our results shows an important advantage of dimensionless predictors, that they tend to be

more transferable from one site to another, and hence, they may be more suitable for studies targeting ungauged watersheds.
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Figure 11. Distributions of {(a) P, {(b) »-E}, and {(c) »-¢, at watersheds in MRB 1 (the testing watersheds) and MRB 2 (the training

watersheds).

6 Conclusion

5.0.1 Limited temporal data coverage

Another limitation is the lack of temporal coverage. Given limited data coverage along the time axis, in the case study we only.
studied the LNR in the year of 2002, and we considered two types of climate predictors: those from the same year and those
from the long term average. However, being the recharge process highly non-linear, it is not impossible that some predictors
representing the antecedent conditions, such as precipitation from years prior to the year of 2002, could affect the LNR in the
year of 2002, Not having multiple years of climate data prevents us from testing the effects of antecedent conditions or the
effects that take place at various multi-year scales, and thus it is clearly a limitation of the case study. Because of this limitation,
we made a steady state working assumption (mentioned in Sect. 3.1), with which we assume that the effect of climate predictors
from the previous years are captured by the long term average predictors, and also assume negligible effect of climate change.
While acknowledging the inclusion of multiple years of climate data could have made an impact, note that the highly consistent
roots of the trees in Figs. 9 and 10 are based on soil AWC and the long term average aridity index, both of which are expected
to be relatively insensitive to the inter-annual variation of climate predictors. Therefore, we expect the findings corresponding.
to the roots of the trees in Figs. 9 and 10 to be relatively less affected by the limitation of not having multiple years of climate

data,
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5.0.2 Non-comprehensive list of plausible models

The proposal of plausible BART models was guided by a conceptual understanding and grouping of the available predictors.
Like mentioned in Sect. 3.4.2, our proposal does not cover a comprehensive list of plausible models, nor does it necessarily.
include the “best” or the “true” model. The effect of different proposals of plausible BART models, which represents different
perspectives of the conceptual understanding of the underlying physics, was not investigated in the case study, and remains as
an interesting follow-up that could be pursued in future studies.

6 Conclusions

In this work, we proposed a nested tree-based modeling approach with three key features: (1) data-drivenand-full Bayesian

uantification of parameter uncertainty, (2) non-linear reg

3 vvia -Bayesian-mode veragingregression in order to model the predictor-response relationshi
and (3) proposal-comparison-based consideration of model structure uncertainty. We applied the nested tree-based modeling

approach to obtain logit normalized recharge estimates conditioned on ex-situ data at ungauged watersheds in a case study in

the eastern U.S. We hypothesized a hierarchical similarity stracture-to-aceountfortheto explain the variation of the probabilit

mass function of plausible models, and thus to investigate the behavior of a dynamic hydrologic similarity underlying-the
regionalizationsystem.

The findings of this study contribute to the understanding of ene-aspeet-of-the keyfactors-of predictive-uneertainty-identified
in-the-PUB-initiativethe-the physical principles governing robust regionalization among watersheds. Firstly, in-consistency

consistent with previous studies, we found that the climate variables are on average the most important controlling factors of
hydrologic similarity at regional and annual scales, which means a climate-based regionalization technique is on average more
likely to result in better estimates. However, with our hierarchical similarity hypothesis we revealed certain conditions under
which non-climate variables become more dominant than climate variables. In particular, we demonstrated how soil available
water content stood out to be the pivotal indicator of the variable importance of aridity in hydrologic similarity. Moreover,
we showed that with hierarchical similarity one could identify shifts in dominant physical processes that are reflecting shifts
in the controlling factors of hydrologic similarity under different conditions, such as water-limited evapotranspiration versus
energy-limited evapotranspiration, or homogeneous and foliated bedrock versus heterogeneous bedrock. As the controlling
factors change from one condition to another, the suitable regionalization technique also changes. We demonstrated how the
hierarchical similarity hypothesis could indicate mechanisms by which available water content, aridity, and other watershed
characteristics dynamically affect hydrologic similarity. The nested tree-based modeling approach can be applied to identify
plausible sets of watershed characteristics to be considered in the regionalization process.

The contributions of this study may be viewed differently depending on individual cases. In a situation where groundwater
recharge is the ultimate target variable at ungauged watersheds, the nested tree-based modeling approach offers a systematic

way to obtain informative predictive distributions that are conditioned on ex-situ data. In a difference case, where recharge
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estimation at ungauged watersheds is but one component of a greater project, the aforementioned informative predictive dis-
tributions can be treated as informative ex-situ priors, which could be further updated and/or integrated into simulation-based
stochastic analyses where recharge is an input/component of other models/functions. At ungauged watersheds that will be-
10 come gauged in the foreseeable future, the informative predictive distributions again serve as informative ex-situ priors that
could guide the design of the sampling campaign, as different recharge flux magnitudes require different quantifying tech-
niques (Scanlon et al., 2002; Healy, 2010). The hierarchical similarity hypothesis offers one plausible explanation of the
dynamic nature of hydrologic similarity, which affects the application of regionalization. Lastly, it should be pointed out that
the nested tree-based modeling approach is independent of the target response and the predictors of interest, so it could be

15 integrated into future studies within or beyond the field of hydrology in-search-ef-a-to study hierarchical predictor-response
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