Dear Dr. Li et al.

Based on two reviewers' comments on your article titled ""Combined Impacts of ENSO and MJO on the 2015 Growing Season Drought over the Canadian Prairies", I am happy to say that final acceptance will take place, if you are able to address the re- viewer's comments and suggestions - major revisions are required. Both reviewers have some excellent points and all of them can be reasonably addressed. I only point out some of the more major comments (and commonalities) below, however, each of the reviewer's points should be addressed as well.

We thank the editor and the two reviewers' valuable comments and advices to improve the original draft. Many improvements have been made to the draft according to the suggestion by the reviewers.

1) Both reviewers point out many typographical and grammatical errors. Please read over the manuscript carefully and make appropriate edits. One reviewer provided their marked-up manuscript to assist with this, as well as other comments requiring edits.

We have revised the draft accordingly to correct these errors.

2) Does the study period span 1979-2015 or 1979-2016?

The study period spans 1979-2016.

3) Manitoba is not included in the analysis. Hence, the title of the manuscript requires changing.

We acknowledge that the research only covers about the 2/3 of the agriculture land over the Prairies. We still hope to keep the title to "Combined Impacts of ENSO and MJO on the 2015 Growing Season Drought on Canadian Prairies" so that it is easier for researchers who are interested in the Prairies' precipitation to find the paper.

4) B.C. was not included in the analysis, but does appear to be affected. One reviewer is suggesting inclusion of B.C. or explaining why it was not included.

We choose to focus on the Prairie drought due to the fact the majority of the precipitation occur in summer for the Prairie whereas for BC coast the precipitation mainly occurs in winter. Though the precipitation deficit percent is high for BC coast. We have added some comments in the data section.

5) More quantitative analysis of the relation between Rossby waves and the drought should be addressed where possible.

We have added more analysis in terms of wave propagation.

6) Reviewer #2 suggests adding some detail about the unexplained drought events under NINO4>0 and MJO-4<0 (in the shaded region in Fig. 5), while connecting these events to the previously proposed teleconnection mechanisms in the introduction. At least some discussion should be made here.

We have added more discussions on the drought under NINO4>0 and MJO-4>0 and La Nina events.

7) The MJO-4 and ENSO are likely not independent. Some discussion of this should be made.

We have added discussions on the relationship between MJO and ENSO in the discussion section.

Once you have addresses each of the reviewer's comments, your manuscript will be considered for final publication.

1	Combined Impacts of ENSO and MJO on the 2015 Growing	
2	Season Drought <u>on</u> the Canadian Prairies	Deleted: over
3	Zhenhua Li ^{1,2} , Yanping Li ¹ , Barrie Bonsal ³ , Alan H. Manson ² , Lucia Scaff ¹	Deleted: ,
4	¹ Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N3H5	
5	² Institute of Space and Atmospheric Studies, University of Saskatchewan, Saskatoon, Saskatchewan, Canada	
6	³ National Hydrology Research Center, Environment and Climate Change Canada, Saskatoon, SK, Canada	
7	Correspondence to: Dr. Yanping Li (yanping.li@usask.ca); Dr. Zhenhua Li (zhenhua.li@usask.ca)	
8	Abstract	
9	Warm-season precipitation on the Canadian Prairies plays a crucial role in agricultural production. This research	Deleted: over
10	investigates how the early summer 2015 drought across the Canadian Prairies is related to tropical Pacific forcing. The	Deleted: activities in environment and society and has particular importance to
11	significant deficit of precipitation in May and June of 2015 coincided with a warm phase of El Nino-Southern Oscillation	Deleted: over the region.
12	(ENSO) and a negative phase of Maddan Julian Oscillation (MIO) 4 index, which favour a positive geopotential height	Deleted: a warm season precipitation deficit over
12	(LNSO) and a negative phase of Madden-sunan Osernation (MSO)-4 index, when navour a positive geopotential negat	Deleted: in the early summer 2015 drought.
13	anomaly in western Canada. Our further investigation during the instrumental record (1979-2016) shows that warm-season	Deleted: were coincident
14	precipitation in the Canadian Prairies and the corresponding atmospheric circulation anomalies over western Canada	Deleted: as they both favor
115	taleconnected with the lower boundary conditions in the tronical western Pacific. Our results indicate that MIO can play a	Deleted: Further
15	teleconnected with the lower boundary conditions in the tropical western racine, our results indicate that who can play a	Deleted: period
16	crucial role in determining the summer precipitation anomaly in the western Canadian, Prairies when the equatorial central	Deleted: 1015
17	Pacific is warmer than normal (NINO4 > 0) and MJO is more active. This teleconnection is due to the propagation of a	Deleted: .
18	stationary Rossby wave that is generated in the MIO-4 index region. When the tropical convection around MIO-4 index	Deleted: may
10	sauonary rossoy wave martis generated in the 1950-4 mack region. When the dopted convector around 1950-4 mack	Deleted: Prairie
19	region (western tropical Pacific, centered over 140°E) is more active than normal NINO4 >0 a Rossby wave train	Deleted: The mechanism of this
20	originates from western Pacific and propagates into midlatitude over North America causing a persistent anomalous ridge in	Deleted: may be
21		Deleted: regions
21	the upper level over western Canada, which lavours dry conditions over the region.	Deleted:
I		Deleted: when
22	1 Introduction	Deleted:,
22		Deleted: me
I		Deleted:
23	The Canadian Prairies depends on summer precipitation especially during the early to mid-	Deleted: are highly dependent
24	growing season (May through August) when the majority of annual precipitation normally occurs (e.g.	Deleted: July

53	Bonsal et al. 1993). High natural variability in growing season precipitation causes periodic occurrences		
54	of extreme precipitation (Li et al. 2017: Liu et al. 2016 and droughts that are often associated with		Deleted:)
55	reduced agriculture yields, low streamflow, and increased occurrence of forest fires (Wheaton et al.		Deleted: stream flow
56	2005, Bonsal and Regier 2007). Drought events with great environmental and economic impacts have		
57	occurred in 1961, 1988, 2001-2002, and as recent as 2015 (Dey 1982, Liu et al. 2004, Bonsal et al.		
58	1999, Wheaton et al. 2005, Shabbar et al. 2011, Bonsal et al. 2013, Szeto et al. 2016). The sub-seasonal		
59	forecast of precipitation for the growing season is crucial for the agriculture, water resource		Deleted: forecasting
			Deleted: during
60	management, and the economy of the region. Therefore, an investigation into the causes of inter-annual		Deleted: are
61	variability in the growing season precipitation of the Canadian Prairie is needed	\mathbb{N}	Deleted: in
01	value inty <u>in the</u> growing season precipitation of the calladian france is needed.		Deleted: potential
α	I am an sinitation and antended decreasingly on the Oracedian Decision and Am and side and	W	Deleted: the
62	Low precipitation and extended dry periods on the Canadian Prairies are often associated with an		Deleted: of
63	upper-level ridge and a persistent high pressure centered over the region (Dev 1982, Liu <i>et al.</i> 2004).		Deleted: much
64	These prolonged atmospheric anomalies often concurred with abnormal boundary <u>layer</u> conditions such		Deleted: to provide important information for the agriculture and economy in the region.
65	as <u>a</u> large-scale sea surface temperature (SST) anomalies in the Pacific Ocean (Shabbar and Skinner		Deleted: Prairies
66	2004). Large scale oscillation in the SST anomalies in the Pacific Ocean, namely El Nino, and the		
67	Pacific <u>Decadal</u> Oscillation (PDO), can affect the hydroclimatic pattern in <u>summer over</u> North America,		Deleted: Deccadal
68	although the strongest impacts of these boundary conditions occur during the boreal winter. Inter-annual		Deleted:
69	variability such as El Nino-Southern Oscillation (ENSO) is linked with extended droughts in the Prairies		Deleted: variabilities
0,			Deleted: events are found to be
70	(Bonsal et al. 1999, Shabbar and Skinner 2004). Interdecadal oscillations such as the PDO, and the		Deleted: oscillation
71			
/1	Atlantic Multi-decadal Oscillation (AMO) also affect the seasonal temperature and precipitation in the		Deleted: have
72	Canadian Prairies (Shabbar et al. 2011).		Deleted: been found to
73	ENSO's relationship with Canadian Prairie precipitation has been studied extensively. The warm		Deleted: the
74	phase of ENSO often favours drought in this ration especially during the growing concer often the		Deleted: Prairies'
/4	phase of ENSO often layours drought in this region, especially during the growing season after the		Deleted: the Canadian Prairies
75	mature phase of El Nino with the North Pacific Mode (NPM, Hartmann et al. 2015) positive like North		Deleted:)
76	Pacific SST anomaly pattern (Bonsal and Lawford 1999, Shabbar and Skinner 2004). Previous		

102	investigations (e.g., Shabbar et al. (2011)) have found that El Nino events are associated with a summer		
103	moisture deficit in western Canada while La Nina events cause an abundance of moisture in far western		Deleted: the
104	Canada (British Columbia and Yukon). However, they also noted that although tropical SST variability		Deleted: extreme
105	accounted for some aspects of the large-scale circulation anomalies that influence Canadian Prairies		
106	meteorological drought, a consistent and clear-cut relationship was not found. North Pacific SST warm		
107	anomalies, which often follow a matured El Nino, and accompanying atmospheric ridging leads to		
108	extended dry spells over the Prairies during the growing season (Bonsal and Lawford 1999).		
109	Furthermore, in association with the recent North Pacific SST anomaly from 2013 to 2014, researchers		Deleted: For
110	have attributed the precipitation deficit in California during 2013 to the anomalous upper-level ridge		
111	over the western North America (Wang et al. 2014, Szeto et al. 2016).		
1			
112	The <u>aforementioned</u> SST variations, mostly vary on <u>inter-annual</u> and decadal scales. Another		Deleted: formerly mentioned
112	in a set of factor that effects the most of a method in Narth America is the Madden Julian Oscillation		Deleted: (ENSO, PDO, etc.)
113	important factor that affects the weather patterns in North America is the Madden-Julian Oscillation	Ì	Deleted: interannual
114	(MJO), an intra-seasonal (40-90 days) oscillation in convection and precipitation pattern over the		Deleted: in
115	Tropics (Madden and Julian 1971, Zhang 2005, Riddle et al. 2013, Carbone and Li 2015). MJO is a		Deleted: Zhang 2005,
116	coupled atmosphere-ocean oscillation involving convection and large-scale equatorial waves, which		Deleted: convections
117	produces an eastward propagation of tropical convection anomaly (Madden and Julian 1971). The MJO		Deleted: movement
	-		Deleted: on an intraseasonal scale
118	affects the winter temperature and precipitation in North America and Europe through its impact on		Deleted: has been found to affect
119	moisture transport associated with the "Pineapple Express" and its effects on the North Atlantic		
120	Oscillation and stratospheric polar vortex (Cassou 2008, Garfinkel et al. 2012, Rodney et al. 2013).		
121	MJO is also connected to the summer precipitation anomalies in the Southwest United States (Lorenz		Deleted: has been found to be
			Deleted: precipitation anomalies to
122	and Hartmann 2006). During warm season, MJO's impact on Canadian Prairie precipitation has not been	~	Deleted: spring and summer
123	thoroughly investigated as MIO's amplitude is weak during spring and early summer. The amplitude of		Deleted: the
123	unroughry investigated as 1950's amplitude is weak during spring and early summer. The amplitude of	Ì	Deleted: Prairies'
124	MJO in spring and early summer is related to the inter-annual variation of tropical SST, especially the		Deleted: , however,
			Deleted: interannual
125	SST in central Pacific (Hendon et al. 2007, Marshall et al. 2016). MJO in terms of the Real-time		Deleted: The amplitude of

146	Multivariate MJO index (RMM, Wheeler and Hendon 2004), was extremely strong in the early spring of
147	2015 with a positive PDO-like SST anomaly in the central Pacific and at the same time, El Nino started
148	to strengthen.

149	MJO activities in the western Pacific under the modulation of inter-annual SST variability have
150	the potential to act together with ENSO and impact mid-tropospheric circulation over western Canada
151	and thus, warm season precipitation over the Canadian Prairies. The goal of this study is to demonstrate
152	that MJO have contributed to the 2015 growing season drought in the Canadian Prairies through the
153	propagation of stationary Rossby wave. Subsequently, further investigations are carried out to determine
154	if similar relationships exist in association with other summer extreme precipitation events during
155	instrumental record (1979-2016). Section 2 provides the datasets and methodology used in this paper
156	while section 3 presents the analysis of the upper-level circulation anomaly and SST pattern associated
157	with the 2015 drought. This is followed by the examination of the effects of central Pacific SST
158	anomalies and MJO on the summer precipitation in the Canadian Prairies. The mechanism by which
159	MJO affects summer precipitation when equatorial central Pacific SST is warmer than normal is
160	discussed in section 4 followed by a summary and concluding remarks in section 5.

161 2 Data and Methodology

162	Multiple observation and reanalysis datasets are used to investigate the circulation anomalies	(
163	associated with Canadian Prairie growing season (May-August) precipitation. Observed precipitation is	
164	taken from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) dataset (Xie	
165	and Arkin 1997). Geopotential height fields, from the National Center for Environmental Predictions	
166	(NCEP) Reanalysis (Kalnay et al. 1996) and the European Center for Medium-Range Weather Forecast	
167	(ECMWF)'s ERA, Interim reanalysis (Dee et al. 2011) are used to analyze the mid- and upper-level (200	(
168	hPa and 500 hPa) atmospheric circulation patterns.	(

(Deleted:)	

Deleted: high Deleted: became strong

(Deleted: interannual
-(Deleted: of SST
	Deleted: the

(Deleted: the mechanism involved
(Deleted: may cause
(Deleted: meteorological drought in
(Deleted: in 2015

-(Deleted:
(Deleted: methodologies
(Deleted: analyses
-(Deleted:
(Deleted:
-(Deleted: anomaly
(Deleted: using data during instrumental record period.
1	Deleted: potential
-(Deleted: MJOaffects
)	Deleted:
1	Deleted: of the results

Deleted: 2.1 Data

Deleted: include those

Deleted: -interim

195	To represent the central Pacific SST anomaly, NINO4 SST index (Rayner et al. 2003) from CPC		
196	of National Oceanic and Atmospheric Administration (NOAA) is used since the NINO4 region is near		
197	the central Pacific and spans over the dateline (5°S-5°N, 160°E-150°W). Multivariate ENSO Index		
198	(MEI) data are retrieved from <u>NOAA's</u> Climate Data Center (CDC) website and <u>is</u> used to determine the	Deleted: National Oce (NOAA)'s	
199	ENSO phase (Wolter 1987 Wolter and Timlin 1993) In particular El Nino condition is defined when	Deleted: are	
		Deleted: an	
200	the monthly mean index of MEI is larger than 0.5 _v (Andrews et al. 2004).	Deleted: as it identified	
201	The Real-time Multivariate MJO series (RMM1 and RMM2) developed by Wheeler and Hendon		
202	(2004) are used to identify periods of strong MJO activity as the MJO amplitudes are directly calculated	Deleted: identified the	
		Deleted: activities	
203	by the square root of RMM1 + RMM2. For MJO intensities, we used the monthly averaged pentad MJO	Deleted: readily availa	
204	indices from NOAA CPC's MIO index (Xue <i>et al.</i> 2002), which have 10 indices representing locations	Deleted: calculation o	
201	indices noin NOTATE OF C 3 M30 index (Nuclei ul. 2002 windin nuclei 10 indices representing focutions	Deleted:	
205	around the globe. The CPC's MJO index is based on Extended Empirical Orthogonal Function (EEOF)	Deleted: in a region	
b		Deleted:)	
206	analysis on pentad velocity potential at 200 ₄ hPa. Ten MJO indices on a daily scale are constructed by	Deleted: -	
207	projecting the daily (007) velocity potential anomalies at 200 kPa (CHI200) onto the ten time lagged	Deleted: daily	
207	projecting the daily (002) velocity potential anomalies at 200 mil a (C11200) onto the ten time-ragged	Deleted: -	
208	patterns of the first EEOF of pentad CHI200 anomalies (Xue et al. 2002). Negative values of ten MJO	Deleted:	
		Deleted:	
209	indices correspond to enhanced <u>convection in the</u> 10 regions centered on 20°E, 70°E, 80°E, 100°E,	Deleted: convections	
210	120°E 140°E 160°E 120°W 40°W and 10°W in the tronics MIO indices usually very between -2 to 2	Deleted: A negative v	
210	120 E, 140 E, 100 E, 120 W, 40 W and 10 W in the hopes. which indices usually very between 2 to $2_{\rm e}$	Deleted: (
211	with negative values indicating above average convective activities in the corresponding region.	Deleted: varies	
		Deleted:) indicates an	
212	Because boreal summer <u>usually</u> corresponds to a period of weaker amplitude of MJO than <u>the</u> winter,		
213	we chose the monthly mean value of -0.3 as the criterion of strong convection which is connected to	Deleted: choose	
215	we <u>phose the</u> monthly mean value of -0.5 as the effection of strong <u>convection which is</u> connected to	Deleted: convections	
214	MJO as the index generally vary between -1 and 1. An MJO-4 index (centered on 140°E) of less than -	Deleted: Convections	
215	0.3 was considered a relatively strong convection in the western Pacific, which has been found to be a	Deleted: is the criteric	
016	source region of stationers, Deschy waves (Cimmons 1000), SOT above time in the de Tester 1, 1	Deleted: as	
210	source region of stationary Rossby waves (Simmons 1980), 551 observations include Extended	Deleted: associated w	
217	Reconstructed Sea Surface Temperature (ERSST) v4 (Huang <i>et al.</i> 2015). Outward Longwave Radiation	Deleted: where	
		Deleted:	

Deleted: National Oceanic and Atmospheric Administration (NOAA)'s Deleted: arc Deleted: an Deleted: as it identifies El Nino events consistently

(Deleted: identified the
(Deleted: activities
Y	Deleted: readily available
1	Deleted: calculation of the
Ŋ	Deleted:
Ì	Deleted: in a region
Y	Deleted:)
(Deleted: -
(Deleted: daily
(Deleted: -
-(Deleted:
(Deleted:
{	Deleted: convections to
(Deleted: A negative value of the CPC's
••••(Deleted: (
Y	Deleted: varies
Y	Deleted:) indicates an

-(1	Deleted: choose
° (I	Deleted: convections that are
-(1	Deleted: . The monthly mean
	Deleted: is the criterion
) I	Deleted: as
Ì	Deleted: associated with MJO
	Deleted: where
(I	Deleted:

b 40	(OID) Job from NOAA Internalist J Outering I an entry Dediction and used to desired the entry site	
248	(OLK) data from NOAA interpolated Outgoing Longwave Radiation are used to derived the composite	http://www.esrl.noaa.gov/psd/map/clim/olr.shtml)
249	of anomalies of OLR for a certain phase of MJO,	 Deleted: anomalous field
		 Deleted: as described below
250	Dur study focuses on growing season precipitation in the provinces of Alberta and Saskatchewan	 Deleted:
251	in the Canadian Prairies, where the largest deficits were observed in 2015. Specifically, the regional	Moved down [1]: 3 Results
hsa	new and initiation over 1150-102 SOW SOO 57 SON is used (here done in Fig. 1 does not be received)	Deleted: This
252	mean precipitation over 115-102.5 w, 50-57.5 N is used (boxed <u>area in Fig. 1, top panel) to represent</u>	Deleted: the
253	the Canadian Prairies east of the Rocky Mountains and south of the boreal forest. The region chosen	Deleted: arear
	,	Deleted: Figure
254	also covers most of the arable land in the Canadian Prairies, Considering the unique MJO-4 and NINO4	 Deleted: for datasets with 2.5-degree resolution. As
255	indices for 2015 the relationship between the Prairies' warm season (May August) precipitation with	 Deleted: indicated by the
255	indices for 2015, the relationship between the relations warm season (May-August) precipitation with	 Deleted: index
256	MJO-4 and ENSO during the instrumental records are investigated using correlation and regression.	
257	Though the dry months of the 2015 growing season are May and June when MJO-4 was in negative	
258	phase, we want to study the statistical relationship between MJO-4 and the Praries' precipitation in	
259	growing season (May-August). The possible mechanism behind the correlation between MJO-4 and the	
260	Prairie's warm season precipitation during El Nino condition is further investigated by analyzing the	 Deleted: investigation
261	upper-level circulation associated with <u>convection</u> in the tropical Pacific and stationary Rossby waves in	 Deleted: convections
		 Deleted: Tropics
262	<u>mid-latitudes</u> .	 Deleted: the midlatitudes
263	Υ	 Deleted: ¶
264	<u>3 Results</u>	 Moved (insertion) [1]
265	3.1 The 2015 Summer Drought	
266	Almost all of western Canada including British Columbia, the southern Northwest Territories,	
267	Alberta and Saskatchewan had negative precipitation anomalies during May and June 2015. The top plot	 Deleted: significant
268	in Fig. 1 shows the precipitation anomaly in percentage relative to the climatology (1981-2010 long	 Deleted: The warm season precipitation is represented by the monthly mean precipitation from May to August (Bonsal <i>et al.</i> 1999, Shabbar <i>et al.</i> 2011). For the 2015 case study, during May-June, the prairies' precipitation was significantly below average

term mean) in Canada during May and June 2015. The bottom plot in Fig. 1 presents the monthly
precipitation anomaly averaged over the region encompassed by the dash lines (<u>top panel in Fig. 1</u>). The
average annual cycle of the regional precipitation has a dry period between February and May, and June
has the largest precipitation in all months. The May and June 2015 precipitation deficit was also
accompanied by a relatively dry period from February to April [Szeto *et al.* 2016], which added to the

299 <u>drought conditions</u>.

Fig. 1 Top: Precipitation anomalies (mm) from CMAP over the region (115^o₂W-102.5^o₂W, 50^o₂N-57.5^o₂N) during May and June 2015. Bottom: time series of monthly precipitation anomaly over boxed region between September 2013 and August 2015.

303 The mid- and upper-level geopotential height (GHP) anomaly averaged in May and June are 304 examined together with SST anomaly and ENSO, MJO-4 indices for 2014 and 2015. The 500 hPa GPH, 305 anomaly for May and June 2015 shows strong positive anomalies near Alaska and the British Columbia 306 coast (Fig. 2), which is consistent with the findings for other episodes of growing season droughts (e.g., 307 Dey 1982; Bonsal and Wheaton, 2005). Accompanying this anomalous ridge, are above normal <u>SSTs</u> in 308 the northeast Pacific off the coast of North America and the central-eastern Pacific (Fig. 3). Both ENSO 309 and the NPM are in positive phases that corresponds to a warmer SST near the Pacific coast of North 310 America, consistent with the positive GPH anomalies in western Canada and Alaska. The ridge in 311 Alaska/Bering Straits and the one near British Columbia coast have been previously associated with El 312 Nino and North Pacific SST anomaly such as NPM (Shabbar et al. 2011). The monthly mean anomalous 313 ridge prevents storms from reaching the British Columbia coast and the Canadian Prairies causing 314 extended dry spells. Therefore, the GPH anomaly in early growing season in 2015 is consistent with the precipitation anomaly in these regions. The anomalous upper-level ridge in the Western United States 315 316 and Canada in 2014 and 2015 have also been associated with the developing El Nino and the other main

Deleted: 50N-57.5N, 115W-102.5W).

Deleted:

Deleted: , in average,			
Deleted: . Regarding the precipitation climatology, June			
Deleted: with significantly more rain than neighboring months. When both			
Deleted: witness much less			
Deleted: than normal in addition to			
Deleted: , the region gets little precipitation			

-(Deleted: geopotential height (
(Deleted:)
(Deleted: the
-1	Deleted: in
-(Deleted: ,
(Deleted: extending from Alaska to Pacific Northwest of the US is an
\mathcal{I}	Deleted: warm SST

Deleted: North Pacific Mode (NPM) (Hartmann et al. 2015)

Deleted: are	
Deleted:	
Deleted: indicates a tend	lency to prevent

Deleted: The

components of Pacific SST, variation such as NPM by several recent studies (Hartmann<u>et al.</u> 2015, Lee *et al.* 2015, Li *et al.* 2017).

344	Fig. 2 NCEP GPH anomaly at 500hPa during May and June 2015 when the precipitation deficit was the largest.
345	The average SST anomaly during the growing season (May-June, July-August) of 2015. shows a
346	persistent strong positive anomaly in the northeast and eastern equatorial Pacific (Fig. 3), which
347	corresponds to the warm phase of NPM and ENSO <u>SSTs</u> in the eastern tropical Pacific <u>warmed</u>
348	increasingly since the end of 2014 and <u>qualified</u> as an El Nino in early 2015. The NPM became positive
349	in the fall 2013, turned exceptionally strong in 2014 and persisted to 2015 (Hartmann 2015). The
350	anomalous ridge is concurrent with strong SST anomalies in the tropical Pacific and extratropical North
351	Pacific. NPM, as the third EOF of Pacific SST (<u>30°S-65°N), has also a strong connection to the</u>
352	anomalous ridge in western North America and trough in the eastern US and Canada in 2013-2014
353	winter (Hartmann 2015, Lee et al. 2015). During the ENSO-neutral condition in 2013 and 2014, the
354	precursor of ENSO, so-called "footprinting" mechanism is considered to cause this anomalous ridge in
355	western North America (Wang et al. 2014).
356	"The variation of Canadian Prairies' precipitation and its relationship with SST modes and MJOs
357	are shown in Fig. 4. The time series of monthly RMM amplitude, NINO4 index, MJO-4 indices and the
358	Canadian Prairies precipitation anomaly from January 2014 to December 2015 shows the atmospheric-
359	oceanic circulation indices for the drought in 2015. In May and June 2015, the western Pacific
360	witnessed a strong MJO-4 negative index, whereas in July the MJO-4 index became positive. This
361	corresponds well with the precipitation anomaly in Fig. 1. As shown in Fig. 3, El Nino continued to
362	strengthen in July and August 2015; while at the same time the MJO-4 index increased. The increase of
363	the MJO-4 index corresponded to the active convection associated with MJO that moved away from the

Deleted:)	
Deleted: Fig. 3 shows the	

Deleted: sea surface temperature (

	Deleted: The
	Deleted: Northeast Pacific
	Deleted: is evident and persistent through the summer,
	Deleted: , respectively. SST
) }	Deleted: warms
	Deleted: qualifies
	Deleted: becomes
	Deleted: since
	Deleted: and turns to
	Deleted: persist
	Deleted: both
	Deleted: 30S-65N),
	Deleted: has
	Deleted: the
	Deleted: by some researchers
	Deleted: the
	Deleted: Summer of 2015 is the first summer after the developing El Nino during 2014-2015 winter. Though the upper-level GPH pattern seen in summer 2015 can be attributed to the SST modes in the Pacific Basin, namely ENSO and NPM, the precipitation in the Western Canadian Prairie is not strongly correlated with either of them. Bonsal and Lawford (1999) found that more extended dry spells tend to occur during the second summer following the mature stage of the El Nino events. The winter precipitation in Canada has been shown to have a strong connection to ENSO (Shabbar et al. 1997), whereas summer precipitations in most regions of western Canada (except the coast of British Columbia and Southern Alberta) do not have significant correlations with ENSO. This is consistent with[1
	Deleted: the
	Deleted: anomaly
	Deleted: condition
	Deleted: 2015 both
	Deleted: saw

-(Deleted: 2015 both
X	Deleted: saw
)	Deleted: indices
••••(Deleted: quite
)	Deleted: the 0El
~(Deleted: in
)(Deleted: meantime,
Ì	Deleted: in July and August 2015.
X	Deleted: convections

Deleted: in West

8

426	tropical western Pacific region and propagated eastward into the central Pacific, Coincident with this		Deleted: ;
427	change in MJO, the precipitation in the Canadian <u>Prairies then</u> returned to slightly above normal in July.		Deleted: Prairie
428	The good correspondence of MJO-4 and the negative precipitation anomaly suggests a link		Deleted: index
429	between MJO and Prairie precipitation during growing season. Although El Nino and associated	(Deleted: related tropical convection anomaly and the prairie
430	Northeast Pacific SST warm anomaly (i.e., NPM) in summer 2015 can be a contributing factor for the		Deleted: Though
431	persistent upper-level ridge over the west coast of Canada, it cannot fully explain the drought condition		Deleted: on
432	in west Canada, as these SSTs do not guarantee a prolonged dry spell as shown by correlation analysis,		Deleted: West
122	(Table 1) The pagetive MIO 4 index concurred with the pagetive anomaly of Brairie precipitation in		Deleted: SST conditions does
+33	(Table 1). The negative who -4 muck concurred with the negative anomaly of Traine precipitation in	Y	Deleted: .
434	2015, which prompts the investigation of their relationship with the instrumental records.		Deleted: in
435	Fig. 3 The mean SST anomaly (°C) from ERSST v4 in May-August 2015.		
136	Fig. 4 DMM amplitude anomaly, NINO4, MIO 4 indices and precipitation anomaly of Canadian Prairies from January 2014		
430	rig. 4 KNiwi ampinude anomaty, NINO4, NJO 4 indices and precipitation anomaty of Canadian Frances from January 2014		
437	to Dec 2015.		
438			
439	3.2 Instrumental record		
440	El Nino and its associated North Pacific SST anomaly may contribute to extended dry spells in		
441	Canadian Prairies after the mature phase of El Nino (Bonsal et al. 1993) on an inter-annual time scale.		Deleted: matured
 442	ENSO, however, is not a strong intra-seasonal to seasonal predictor of Canadian Prairie summer		Deleted: interannual
443	precipitation. The lack of strong correlation between the Prairies' precipitation and ENSO index can be		
	procipitation. The lack of strong contention between the Flattics procipitation and Erroro index can be		
444	caused by many factors that affect the Prairies' precipitation on a seasonal and sub-seasonal scale.		
444 445	caused by many factors that affect the Prairies' precipitation on a seasonal and sub-seasonal scale. Shabbar and Skinner (2004) showed the connection between the warm phase of ENSO and western		
444 445 446	caused by many factors that affect the Prairies' precipitation on a seasonal and sub-seasonal scale. Shabbar and Skinner (2004) showed the connection between the warm phase of ENSO and western Canadian drought through singular value decomposition analysis. However, they also found other		
444 445 446 447	caused by many factors that affect the Prairies' precipitation on a seasonal and sub-seasonal scale. Shabbar and Skinner (2004) showed the connection between the warm phase of ENSO and western Canadian drought through singular value decomposition analysis. However, they also found other modes of SST variation (e.g., positive phase of PDO) can produce wet condition in the Prairies. Here we		
444 445 446 447 448	caused by many factors that affect the Prairies' precipitation on a seasonal and sub-seasonal scale. Shabbar and Skinner (2004) showed the connection between the warm phase of ENSO and western Canadian drought through singular value decomposition analysis. However, they also found other modes of SST variation (e.g., positive phase of PDO) can produce wet condition in the Prairies. Here we present a new result showing that under warm central Pacific SST conditions (NINO4 >0), a certain	(Deleted: condition

462	phase of MJO, which connected to the active <u>convection</u> in the tropical western Pacific (Li and Carbone		Deleted: convections
463	2012), plays an important role in modulating the growing season precipitation in the Canadian Prairies,		Deleted: to determine
		(Deleted: in the early summer months
464	Table 1 Correlation between mean precipitation anomaly in the Prairies from CMAP and MEI, MJO indices 4. MJO		Deleted: in the prairie
465	indices and \underline{CMAP} are from 1979 to 2016,		Deleted: CMAP covers 1979 to 2016. \rightarrow
466			
467	The correlation coefficients between the mean regional precipitation anomaly over Canadian		
468	Prairies and MJO-4 indices and MEI from May to August are shown in Table 1. The correlation		
469	between MEI alone and the precipitation anomalies is not significant. The correlation between MJO-4		Deleted: The negative MJO-4 index represents a stronger than normal convection in the Maritime Continents and the
470	and precipitation in the Prairies is 0.18 with a p-value of 0.023, which indicates that stronger tropical		tropical Western Pacific.
471			Deleted: index
4/1	<u>convection</u> in the <u>equatorial</u> region centered around 140°E <u>tayours</u> less precipitation in the Canadian		Deleted: convections
472	Prairies from May to August. When NINO4 is larger than 0, the correlation between MJO-4 and		Deleted: Equatorial
			Deleted: The
473	growing season precipitation is 0.33 with a p-value of 0.0015. <u>Conversely, the</u> correlation between		Deleted: index
474	MIO-4 and Canadian Prairie precipitation is -0.01 when NINO4 < 0	$\left \left \right\rangle\right\rangle$	Deleted: the
.,		$\langle \rangle \rangle \rangle$	Deleted: Prairie
475 476	Fig. 5 The scatter plot of monthly precipitation anomaly (mm/month) as a function of MJO-4 and NINO4. Each asterisk represents a month from May to August 1979-2016. Circled asterisk denotes a month with precipitation anomaly larger		Deleted: anomaly is 0.18 with a p-value of 0.023. The correlation between MJO-4 index and the precipitation anomaly during growing season when NINO4 >0 is much higher at
477			Deleted: The
4//	than 18 mm/month. The blue circles are months with positive precipitation anomaly and the red circles are months with negative	////	Deleted: the
478	precipitation anomaly. The sizes of circles denote the magnitudes of the anomalies (large > 30 mm/month, medium > 24		Deleted: is -0.01
479	mm/month, small >18 mm/month). The shaded area denotes NINO4 $_{*}$ > 0 and MJO-4 index < 0.	$\langle \rangle \rangle$	Deleted: scatterplot
		\langle / \rangle	Deleted:
480	The scatter plot in Fig. 5 shows the distribution of monthly precipitation anomaly versus MJO-4	$\langle \chi \rangle$	Deleted:
		Y	Deleted: >
481	index and NINO4 index, Circled asterisk denotes a month with precipitation anomaly larger than 18		Deleted: , which together affect the precipitation anomaly from May to August.
482	mm/month and the red (blue) circles denote <u>a</u> negative (positive) precipitation, <u>anomaly</u> . The <u>criterion</u>	(Deleted: .
483	for precipitation anomaly to be emphasized by the circles is roughly one third of the mean monthly	(Deleted: sizes
484	precipitation in the growing season. The size of the circle represents the magnitude of the monthly		Deleted: represent
485	precipitation anomalies. The bottom-right region indicated by shading, under NINO4 > 0 condition,		Deleted: In the

519	negative MJO-4 corresponds to a quadrant that have many more dry than wet months. We noticed that	Deleted: months			
520	some significant dry months are not in the shaded area, which corresponds to the dry months occurring	Deleted: region			
[· · · · · · · · · · · · · · · · · · ·	Deleted: occur in			
521	during La Nina or in the period after the mature phase of El Nino (Bonsal et al. 1999). Summer drought	Deleted: condition			
522	in the Prairies can occur in both phases of ENSO or any other teleconnection indices. For example, for				
523	the summer drought that happened in the Prairies from 1999 to 2005, the large-scale anomalous patterns				
524	of SST first showed La Nina conditions and then became a weak El Nino in the latter half of the period				
525	(Hanesiak et al 2011). Bonsal and Wheaton (2005) showed that the tropospheric atmospheric				
526	circulation patterns in 2001 and 2002 lacked the typical meridional flow in the North Pacific and North				
527	America during drought in western Canada. Their results show that the drought in 1999-2005 was				
528	related to the expansion of the continuous drought happened in the US to the north.				
529	Fig. 6 The box-percentile plot of Canadian Prairies precipitation anomaly during growing season under different	Deleted: for			
530	ENSO conditions.				
		Deleted: To inve			
531	The impact of ENSO on the growing season precipitaiton over Canadian Prairies, is investigated.	Deleted: , the dis			
532	The hox-percentile plot in Fig. 6 shows the distribution of monthly Canadian Prairies' precipitation	ENSO conditions			
552	The box-percentile plot in Fig. 6 shows the distribution of montility canadian frames precipitation	Deleted: conditio			
533	anomalies from May to August along with different ENSO conditions. In general, under El Nino and	Deleted: ENSO			
524	neutral ENSO conditions, the precipitation enemalize are contered around 0, and there is no high toward	Deleted: condition			
554	ineutral <u>ENSO conditions</u> , the precipitation anomalies <u>are</u> centered <u>around</u> 0, and there is no bias toward	Deleted:			
535	either end. Under La Nina condition, the mean precipitation has a positive bias. There are only 10	Deleted: both			
		Deleted: have 7			
536	summer months under La Nina condition, whereas there are 71 months under El Nino and neutral	Deleted: Under v			
537	condition.	Deleted:),			
	· · · · · · · · · · · · · · · · · · ·	Deleted: for			
538	The distributions of precipitation anomalies versus MIO-4 index under different ENSO	Deleted: Under			
550	The distributions of precipitation anomalies versus iviso-4 index under different ENSO	Deleted: >			
539	conditions are shown in Fig. 7. For NINO4 > 0 , the precipitation anomaly has a negative tendency when	Deleted: conditi			
		Deleted: such			
540	40 MJO-4 < -0.3. With NINO4 ≤ 0 , there is no negative tendency for MJO-4 < -0.3. Therefore, Fig. 6 and 7, Dele				
541	1 agrees with the significant correlation between precipitation and MIO-4 under NINO4 > 0 relative to				
542	ENSO in Table 1 _e	Deleted: is demo			
1		Deleteu. 13 dellid			

ur in ndition

Deleted: To investigate the
Deleted: , the distribution of precipitation anomaly along ENSO conditions are plotted
Deleted: condition
Deleted: ENSO
Deleted: condition
Deleted: on
Deleted:
Deleted: both
Deleted: have 71 months
Deleted: Under warm central Pacific SST condition (
Deleted:),
Deleted: for
Deleted: Under
Deleted: >
Deleted: condition
Deleted: such
Deleted: the precipitation anomaly under the condition of
Deleted: Based on
Deleted: ,
Deleted: condition
Deleted: is demonstrated in detail

570	Fig. 7 Box-percentile plots of Canadian Prairies' precipitation anomaly during growing season versus MJO-4 under			
571	warm NINO4 (NINO4> 0, left) and cold NINO4 (NINO4<0, right) SST condition,			
572	The correlation between MJO-4 and the Prairies' precipitation during growing season leads us to			
573	investigate the underlying circulation anomalies. Fig. 8 presents the regressed stream function and wind			
574	field at 200 hPa in the <u>mid-latitudes</u> (north of <u>30°N</u>) on the negative MJO-4 index from May to August			
575	under warm NINO4 SST condition (NINO4 \ge 0.5). In the tropics (<u>10°S-20°N</u>), during Northern			
576	Hemisphere summer, the OLR, velocity potential and divergent wind vector are presented. Only			
577	regression patterns having p-values lower than 0.05 are plotted for OLR and velocity potential. The			
578	negative MJO-4 index corresponds to a negative anomaly in OLR, stronger convection and larger than			
579	average divergence in the region centered around 150°E. The strong convection anomaly centers around			
580	150°E, 5°N with divergent wind extending well into the subtropics in the Northern Hemisphere. The			
581	positive GPH/stream function anomaly extended from Japan to central Pacific is associated with the			
582	enhanced convection and divergence in the upper troposphere over the western tropical-subtropical			
583	Pacific. A Rossby wave train linked to the OLR anomaly and strong divergence in the western Pacific			
584	propagate eastward into North America. To better demonstrate the propagation of the wave train, we			
585	conducted a ray tracing of stationary Rossby wave following the nondivergent barotropic Rossby wave			
586	theory of Hoskins and Karoly (1981) and Hoskins and Ambrizzi (1993). Equation 1 describes the group			
587	velocity, which represent the propagation of wave activity. C_{ax} and C_{ay} are the group velocity			
588	components on zonal and meridional directions; \overline{U} and \overline{V} are the mean zonal and meridional winds; q is			
589	the mean absolute vorticity; K, k, l are the total wave number, zonal wavenumber and meridional			
590	wavenumber, respectively. The ray path is integrated using a fourth-order Runge-Kutta method.			

Deleted:	
Deleted:	
Deleted: strong	
Deleted: prairie	
Deleted: midlatitudes	
Deleted: 30N	
Deleted: >	
Deleted: 10S-20N, considering it is	
Deleted:),	
Deleted: ,	
Deleted: plotted	
Deleted: have	

-(Deleted: on
~(Deleted:
)	Deleted: on
~(Deleted:
)(Deleted:

Mo ed dow 1[2]: 4 Disc cussion

608	۸	Moved down [2]: 4 Discu
	$C_{gx} = \overline{U} + \frac{(k^2 - l^2)q_y - 2klg_x}{K^4}$	
610	Equation (1)	
611	$C_{gy} = \overline{V} + \frac{(k^2 - l^2)q_x + 2klq_y}{K^4}$	
612	Under average conditions in May-August derived from ERA-Interim at 200 hPa with NINO4 > 0.5 or	
613	NINO4 < -0.5, we released rays with a total wavenumber matching with the mean flow at the	
614	extratropical location of the OLR anomaly (140°E-150°E, 25°N-30°N). For quasi-stationary waves, the	
615	wavenumber is determined by the basic zonal flow and background absolute vorticity gradient through	
616	the dispersion relation. For NINO4 \geq 0.5 May-August condition, K = 4.14. With this total wavenumber	
617	and launching angle from 0- 60° relative to the zonal direction, Rossby wave rays (colored by red,	
618	orange to blue according to their angle from 0° to 60°) released at 140°W, 20°N can propagate	
619	successfully to the western Canada for those with smaller launching angles as shown the right in Fig. 9.	
620	With NINO4<-0.5, the zonal wind in the source region is weaker, and the meridional gradient of	
621	absolute vorticity is stronger due to its relative further southern position to the subtropical jet. The total	
622	wavenumber for stationary Rossby waves is 6.2, determined by the mean May-August condition for	
623	$NINO4 \le -0.5$. The waves with shorter wavelength tend to be evanescent near the source region as	
624	shown in the left plot in Fig. 9. However, there is no significant difference in ray-path under NINO4 < -	
625	<u>0.5 condition compared to NINO4 > 0.5</u> , if the source wavenumbers are set to the same value (results	
626	not shown). The changes in the mean conditions from El Nino to La Nina are not sufficient to alter the	
627	propagation condition for Rossby waves.	
628		

1		
630	<u>4 Discussion</u>	Moved (insertion) [2]
631	Summer of 2015 is the first summer after the developing of El Nino during 2014-2015 winter.	Deleted: growing
632	Though the upper-level GPH pattern, seen in summer 2015, can be attributed to the SST modes in the	
633	Pacific, namely ENSO and NPM, the precipitation in the Western Canadian Prairie is not strongly	
634	correlated with either. Bonsal and Lawford (1999) found that more extended dry spells tend to occur in	
635	Canadian Prairies during the second summer following the mature stage of the El Nino events. The	
636	winter precipitation in Canada has a strong connection to ENSO (Shabbar et al. 1997), whereas summer	
637	precipitation, in most regions of western Canada (except the coast of British Columbia and Southern	
638	Alberta), does not have a significant correlation with ENSO. This is consistent with our investigation	
639	using instrumental records from 1948 to 2016.	
640	Growing season precipitation in the Canadian Prairies is affected by many factors, precipitation	Deleted: are
		Deleted: and
641	deficits can occur under various circulation and lower boundary conditions. Thus, it is not expected that	Deleted: deficit
642	a universal condition for all the significant droughts in the region, can be identified. In fact, extreme	Deleted: to find
643	drought events have been found in both El Nino and La Nina years. A previous study by Bonsal and	Deleted: . Deleted: conditions
		Deleted: and La Nina years. Though
644	Lawford (1999) indicates the meteorological drought often occurs after the mature phase of El Nino,	Deleted: research
645	which is not the case for 2015, The associated changes in the North Pacific represented by NPM positive	Deleted: , the
646	phase is consistent with their results. The direct linkage between ENSO and the summer precipitation in	
647	the Canadian Prairies is not clear. In fact, the correlation between MEI and precipitation in the	Deleted: still
648	investigated region is -0.096 ($p=0,239$, sample size = 152). The region's growing season precipitation	Deleted: 2389
649	does not possess a significant correlation with ENSO, which is consistent with other researchers'	Deleted: It is
650	findings (Dai and Wigley 2000).	
651	The regression pattern is consistent with stationary Rossby wave theory as shown in a hierarchy	
652	of theoretical and modeling studies (Karoly et al. 1989, Simmons et al. 1983, Hoskins and Ambrizzi	

666	1993, Ambrizzi and Hoskins 1997, Held et al. 2002). A similar wave train extends from the western		
667	Pacific toward extra-tropical South America but at lower latitudes compared to its counterpart in the		Deleted: in the extratropics
668	Northern Hemisphere (not shown). The node of the wave train in Western Canada and Northwest		
669	Pacific of the US corresponds to an anomalous ridge, which is in-phase of El Nino forcing. When the		
670	convection in the region associated with MJO-4 is weaker than normal (MJO-4 \ge 0), a wave train with	1	Deleted: >
671	the opposite sign will reach western Canada which then counteracts the El Nino forcing. Thus, the weak	(Deleted: would
672	correlation between Canadian Prairie precipitation and ENSO is understandable as MJO plays an	(Deleted: would counteract on
673	additional role that enhances or cancels out the GPH anomaly caused by El Nino.		
674	In mid-latitude North America, the atmospheric response, to the tropical forcing in the western	(Deleted: The
675	Pacific depends on the mean circulation condition associated with tropical SST. Intraseasonal tropical	٦	Deleted: in midlatitude North America
676	convection oscillation in the western Pacific associated with MJO-4 index cannot determine the sign of		
677	precipitation anomaly in the prairies alone. Both warm SST in central Pacific and strong tropical		Deleted: prairie.
678	convection in western Pacific and Maritime Continent are essential to cause a significant precipitation		Deleted: necessary
679	deficit in the western Canadian Prairies. Warm SST in central Pacific causes an eastward expansion of		
680	Pacific warm pool that <u>favours</u> enhanced MJO activity in the western-central Pacific (Hendon et al.		Deleted: favors
681	1999, Marshall et al. 2016). In the year 2015, the SST anomaly in the Pacific (e.g. ENSO, NPM) forced	<	Deleted: For
682	the anomalous ridge on the west coast of Canada, This positive GPH anomaly was associated with the		Deleted: of Deleted: while the anomalous positive GPH associated with
683	strong negative MJO4 indices, it then caused a blocking pattern and suppressed precipitation in the		strong negative MJO4 indices in addition to Deleted: which reduces
684	Canadian Prairies in the early summer. Although the El Nino continued to strengthen in July and August		
685	2015, the active <u>convection</u> associated with MJO in <u>the western</u> Pacific propagated eastward into the	(Deleted: convections
686	central Pacific, As the convection in the western Pacific/Maritime Continent waned, the precipitation in		Deleted: West
687	the Canadian Prairie returned to slightly above normal in July.		

705	Fig. 8 The regression of stream function, wind field in the extratropics on MJO-4 for May-August with MEI 20.5. Deleted: >
706	Bottom: OLR, velocity potential, and divergent wind in the tropics on MJO-4 indices for May-August with Deleted: NIN04 > 0.
707	NINO4>0.5 The shaded region for the tropical OLR has p-value 0.05. Blue shading indicates active convection region.
708	Red dashed contour and solid blue contour corresponds to negative and positive velocity potential, respectively.

710 5 Conclusions

711 The cause of the 2015 summer precipitation deficit in the western Canadian Prairies is 712 investigated in relation to atmospheric circulation anomalies, <u>SST</u>, and intraseasonal tropical convection 713 oscillation, MJO. The drought in western Canada is immediately related to an anomalous upper-level 714 ridge that persisted over the west coast of Canada and Alaska since fall 2014. This ridge was likely associated with a developing El Nino that was enhanced by the MJO, 715 716 In general, MJO-4 indices demonstrated significant correlation with the meteorological drought 717 happened over west Canadian Prairies from May to August when warm SST presented in central Pacific 718 (NINO4 > 0) with strong MJO amplitude, Our study discovered that MJO phase/strength is connected to 719 the anomalous ridge over western Canada through the propagation of stationary Rossby wave from the 720 western Pacific when NINO4 is positive. Though seasonally MJO is weaker in summer, the spring and 721 early summer MJO amplitude is larger than normal when the central Pacific SST is warmer than normal 722 (NINO4 >0). The teleconnection between the Canadian Prairie precipitation deficit and MJO is stronger 723 when NINO4 is positive. The underlying cause of this significant correlation between MJO-4 indices 724 and the prairie precipitation in May-August is a stationary Rossby wave train originating from the 725 Maritime Continent and western Pacific which propagates into Canada. The raytracing experiments show the main difference between a warm phase of NINO4 and a cold phase is the changes in stationary 726 727 Rossby wave wavenumber over the source region. Under NINO4 > 0.5 May-August condition, the total

Deleted	andin a
Deleted: reg	arding
Deleted: sea	surface temperature
Deleted: the	
Deleted: rid	ge in the
Deleted: . The hovering aro	he persistent anomalous upper-level ridge und
Deleted: is	
Deleted: SS' extratropical associate with Canada. How drought in th anomalous r investigation concentrated	T anomaly in the tropical (ENSO) and Pacific (NPM) as both SST patterns tend to th an anomalous high in Alaska and western vever, the anomalous ridge itself explains the see western Canada, the underlying cause of the idge and whether it is related to ENSO need After all the significant deficit of precipitation in May and June 2015 when
Deleted: was ENSO with during sumn tropical conv	s still growing in intensity. The correlation of the prairie precipitation is also not significant ner. Instead, the intraseasonal oscillation in vection,
Deleted: , pl precipitation Pacific SST	ays an important role in determining anomaly during months with warm central (NINO4 > 0).
Deleted: der	nonstrate
Deleted: wit	h
Deleted: wh	en
Deleted: is investigation	also often stronger. The new finding in our is
Deleted: in V	Western
Deleted: wł	nen NINO4 is positive
Deleted: . T	he connection
Deleted: be	cause MJO amplitude is stronger when the

Deleted: originates

Deleted: and

765	wavenumber is about 4 and can propagate into western Canada if they oriented relatively zonally.	Deleted: Canada.
766	Compared to NINO4 > 0.5, NINO4 < -0.5 corresponds to a weaker zonal wind and stronger meridional	
767	gradient of absolute vorticity in the subtropics of the source region (140-150E), hence the wavenumbers	
768	of stationary Rossby waves from the source region are larger (about 6), and fail to reach the Western	
769	Hemisphere. The intra-seasonal predictability of the growing season precipitation in the Canadian	Deleted: in MJO amplitude and phase can be potentially instrumental for medium-range/intra-seasonal projection
770	Prairies can be potentially improved by including the MJO amplitude and phase factors for medium-	
771	range/intra-seasonal projection in addition to ENSO effect especially when the central-Pacific SST is	
772	warm.	
773		

774 Acknowledgement

- 775 We gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada
- 776 (NSERC) for funding the Changing Cold Regions Network (CCRN) through their Climate Change and
- 777 Atmospheric Research (CCAR) Initiative. Dr. Zhenhua Li is supported by the Probing the Atmosphere
- of the High Artic project sponsored by the NSERC. <u>Dr. Yanping</u> Li gratefully acknowledges the
- support from the Global Institute of Water Security at the University of Saskatchewan. <u>This research is</u>
- 780 also supported by Environment and Climate Change Canada (ECCC).

781 References

- 782 Ambrizzi T and Hoskins B J 1997: Stationary Rossby-Wave Propagation in a Baroclinic Atmosphere,
- 783 Quart. J. Roy. Meteor. Soc., 123 919–28.
- 784 Andrews, E.D., R.C. Antweiler, P.J. Neiman, and F.M. Ralph 2004 Influence of ENSO on Flood
- 785 Frequency along the California Coast. J. Climate, 17, 337–348, doi: 10.1175/1520-0442(2004)017.

Moved down [4]: This research is also supported by Environment and Climate Change Canada (ECCC). Dr.
Moved up [3]: Dr.
Moved (insertion) [3]
Deleted: Y.

Moved (insertion) [4]

- 793 Bonsal, B.R., Chakravarti, A.K. and Lawford, R.G. 1993: Teleconnections between North Pacific SST
- Anomalies and Growing Season Extended Dry Spells on the Canadian Prairies, Int. J. Climatol., 13,
- 795 865-878.
- 796 Bonsal, B.R., Zhang, X. and Hogg, W.D., 1999: Canadian Prairie growing season precipitation
- variability and associated atmospheric circulation, *Climate Research*, 11(3), 191-208.
- 798 Bonsal B and Lawford R 1999: Teleconnections between El Niño and La Niña Events and Summer
- 799 Extended Dry Spells on the Canadian Prairies, International Journal of Climatology, 19, 1445–58.
- 800 Bonsal B R, Shabbar A and Higuchi K, 2001: Impacts of Low Frequency Variability Modes on
- 801 Canadian Winter Temperature, Int. J. Climatol. 21, 95–108.
- BONSAL, B.R. and E. WHEATON. 2005: Atmospheric circulation comparisons between the 2001
 and 2002 and the 1961 and 1988 Canadian Prairie droughts. Atmosphere-Ocean. 43 (2): 163–
 172.
- 805 Bonsal B R and Regier M, 2007: Historical Comparison of the 2001/2002 Drought in the Canadian
- 806 Prairies, Climate Research, 33, 229-242.
- 807 Bonsal, B R, Aider, R, Gachon, P and Lapp S, 2013: An Assessment of Canadian Prairie Drought: Past,
- 808 Present, and Future, Climate Dynamics, 41, 501–516.
- 809 Carbone R. E., Yanping Li, 2015: Tropical Oceanic Rainfall and Sea Surface Temperature Structure:
- 810 Parsing Causation from Correlation in the MJO, Journal of Atmospheric Science, Vol. 72, No. 7, 2703–
- 811 2718.
- 812 Cassou C, 2008: Intraseasonal Interaction Between the Madden-Julian Oscillation and the North
- 813 Atlantic Oscillation, Nature, 455 523–7.
- 814 Dai A and Wigley T M L, 2000: Global Patterns of ENSO-Induced Precipitation, Geophys. Res. Lett.,
- 815 **27** 1283–6.

- 816 Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A,
- 817 Balsamo G, Bauer P, Bechtold P, Beljaars A C M, Berg L van de, Bidlot J, Bormann N, Delsol C,
- 818 Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Hólm E V, Isaksen L, Kållberg
- 819 P, Köhler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J-J, Park B-K, Peubey C,
- 820 Rosnay P de, Tavolato C, Thépaut J-N, and Vitart F, 2011: The ERA-Interim Reanalysis: Configuration
- 821 and Performance of the Data Assimilation System, Quarterly Journal of the Royal Meteorological
- 822 Society, 137, 553–97.
- 823 Dey B, 1982: Nature and Possible Causes of Droughts on the Canadian Prairies-Case Studies, Journal of
- 824 *Climatology*, **2**, 233–49.
- 825 Garfinkel C I, Feldstein S B, Waugh D W, Yoo C and Lee S, 2012: Observed Connection Between
- 826 Stratospheric Sudden Warmings and the Madden-Julian Oscillation, Geophys. Res. Lett., 39.
- Hanesiak, J. M., Stewart, R. E., Bonsal, B. R., Harder, P., Lawford, R., Aider, R., et al. (2011).
- 28 Characterization and Summary of the 1999–2005 Canadian Prairie Drought. Atmosphere-Ocean, 49(4),
- 829 <u>421–452. http://doi.org/10.1080/07055900.2011.626757</u>
- Hartmann D L, 2015: Pacific Sea Surface Temperature and the Winter of 2014, *Geophys. Res. Lett.*, 42,
 1894–902.
- 832 Held I. M., Ting M. and Wang H., 2002: Northern Winter Stationary Waves: Theory and Modeling J.
- 833 *Climate*, **15**, 2125–44.
- 834 Hendon, H. H., C. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden-Julian Oscillation
- 835 during Austral summer, J. Clim., 12, 2538-2550
- 836 Hong, C. C., Hsu, H. H., Tseng, W.-L., Lee, M. Y., Chow, C.-H., & Jiang, L.-C. 2017: Extratropical
- 837 Forcing Triggered the 2015 Madden–Julian Oscillation–El Niño Event. Sci. Rep. 7, 46692; doi:
- 838 10.1038/srep46692.Hoskins B J and Ambrizzi T, 1993: Rossby Wave Propagation on a Realistic
- 839 Longitudinally Varying Flow. J. Atmos. Sci. 50 1661-71

- Hoskins, B.J. and D.J. Karoly, 1981: The Steady Linear Response of a Spherical Atmosphere to
- 841 Thermal and Orographic Forcing. J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-
- 842 <u>0469(1981)038<1179:TSLROA>2.0.CO;2</u>
- 843 Hoskins, B.J. and T. Ambrizzi, 1993: Rossby Wave Propagation on a Realistic Longitudinally Varying
- 844 Flow. J. Atmos. Sci., 50, 1661–1671, https://doi.org/10.1175/1520-
- 845 <u>0469(1993)050<1661:RWPOAR>2.0.CO;2</u>
- 846 Huang B, Banzon V F, Freeman E, Lawrimore J, Liu W, Peterson T C, Smith T M, Thorne P W,
- 847 Woodruff S D and Zhang H-M, 2015: Extended Reconstructed Sea Surface Temperature Version 4
- 848 (ERSST. v4). Part I: Upgrades and Intercomparisons Journal of Climate, 28,911-30.
- 849 Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G,
- 850 Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J,
- 851 Leetmaa A, Reynolds R, Jenne R and Joseph D, 1996: The NCEP/NCAR 40-Year Reanalysis Project
- 852 Bull. Amer. Meteor. Soc. 77 437–71
- 853 Karoly D J, Plumb R A, and Ting M, 1989: Examples of the Horizontal Propagation of Quasi-Stationary
- 854 Waves. J. Atmos. Sci. 46 2802-11
- 855 Lee M Y, Hong C C and Hsu H H 2015: Compounding Effects of Warm Sea Surface Temperature and
- 856 Reduced Sea Ice on the Extreme Circulation Over the Extratropical North Pacific and North America
- 857 During the 20132014 Boreal winter Geophys. Res. Lett., 42, 1612–8.
- JLi, Y., Richard E. Carbone, 2012: Excitation of rainfall over the tropical western Pacific. Journal of
- 859 Atmospheric Science, Vol. 69, No. 10, 2983–2994.
- Li, Y., Kit Szeto, Ron Stewart, Julie Theriault, Liang Chen, Bob Kochtubajda, Anthony Liu, Sudesh
- 861 Boodoo, Ron Goodson, Curtis Mooney, Sopan Kurkute, 2017: The June 2013 Alberta Catastrophic

Deleted: Yanping Deleted: ,

Deleted: Yanping Deleted: ,

- 866 Flooding: Water vapor transport analysis by WRF simulation. *Journal of Hydrometeorology*, Vol. 18,
- 867 2057-2078.
- ki Li, Z., Alan Manson, Yanping Li, Chris Meek, 2017: Circulation Characteristics of Persistent Cold
- 869 Spells in Central-Eastern North America. Journal of Met. Res., Vol. 31, 250-260.
- 870 Liu J, Stewart R E and Szeto K K, 2004: Moisture Transport and Other Hydrometeorological Features
- 871 Associated With the Severe 2000/01 Drought Over the Western and Central Canadian Prairies Journal
- 872 Of Climate, 17, 305–19.
- 1373 Liu A., C. Mooney, K. Szeto, J. M. Thériault, B. Kochtubajda, R.E. Stewart, S. Boodoo, R. Goodson, Y.
- 14 Li, J. Pomeroy, 2016: The June 2013 Alberta Catastrophic Flooding Event: Part 1 Large scale features.
- 875 <u>Hydrological Process</u>, 2016, 30, 4899–4916
- 876 Lorenz, D.J. and D.L. Hartmann, 2006: The Effect of the MJO on the North American Monsoon. J.
- 877 Climate, 19, 333–343, doi: 10.1175/JCLI3684.1.
- 878 Madden R A and Julian P R, 1971: Detection of a 40-50 Day Oscillation in the Zonal Wind in the
- 879 Tropical Pacific, J. Atmos. Sci., 28, 702-8
- 880 Marshall, A. G., H. H. Hendon, and G. Wang, 2016: On the role of anomalous ocean surface
- temperatures for promoting the record Madden-Julian Oscillation in March 2015, Geophys. Res. Lett.,
- 882 43,472–481.
- Riddle E E, Stoner M B, Johnson N C, L'Heureux M L, Collins D C and Feldstein S B, 2013: The
- Impact of the MJO on Clusters of Wintertime Circulation Anomalies Over the North American region
 Climate Dynamics, 40, 1749–66.
- 886 Rodney, M., Lin, H., & Derome, J. 2013: Subseasonal Prediction of Wintertime North American
- 887 Surface Air Temperature during Strong MJO Events. Monthly Weather Review, 141(8), 2897–2909.
- 888 http://doi.org/10.1175/MWR-D-12-00221.1.

Deleted: Zhenhua

- 891 Ropelewski C F and Halpert M S 1986: North American Precipitation and Temperature Patterns
- 892 Associated with the El Niño/Southern Oscillation (ENSO), Monthly Weather Review, 114, 2352–62.
- 893 Shabbar, A., Bonsal, B. and Khandekar, M., 1997: Canadian precipitation patterns associated with the
- 894 Southern Oscillation. Journal of Climate 10:3016-3027.
- 895 Shabbar A and Skinner W, 2004: Summer Drought Patterns in Canada and the Relationship to Global
- 896 Sea Surface Temperatures, Journal of Climate, 17, 2866–80.
- 897 Shabbar A, Bonsal B R and Szeto K, 2011: Atmospheric and Oceanic Variability Associated with
- 898 Growing Season Droughts and Pluvials on the Canadian Prairies, *Atmosphere-Ocean*, 49, 339–55.
- 899 Simmons A J, Wallace J M and Branstator G W, 1983: Barotropic Wave Propagation and Instability,
- and Atmospheric Teleconnection Patterns, J. Atmos. Sci., 40, 1363–92.
- 901 Szeto, K., X. Zhang, R.E. White, and J. Brimelow, 2016: The 2015 Extreme Drought in Western
- 902 Canada. Bull. Amer. Meteor. Soc., 97, S42–S46, https://doi.org/10.1175/BAMS-D-16-0147.1.
- 903 Wang S Y, Hipps L, Gillies R R and Yoon J-H, 2014: Probable Causes of the Abnormal Ridge
- 904 Accompanying the 2013-2014, California Drought: ENSO Precursor and Anthropogenic Warming
- 905 footprint Geophys. Res. Lett., 41 3220-6.
- 906 Xie P and Arkin P A, 1997: Global Precipitation: A 17-year Monthly Analysis Based on Gauge
- 907 Observations, Satellite Estimates, and Numerical Model Outputs. Bulletin of the American
- 908 Meteorological Society, 78, 2539–58.
- 909 Xue Y, Higgins W and Kousky V 2002: Influences of the Madden-Julian Oscillations on Temperature
- 910 and Precipitation in North America during ENSO-neutral and Weak ENSO Winters, Proc. workshop on
- 911 prospects for improved forecasts of weather and short-term climate variability on subseasonal (2 week
- 912 to 2 month) time scales.

913	Wheaton, E, Wittrock V, Kulshreshtha S, Koshida G, Grant C, Chipanshi A, Bonsal BR, 2005: Lessons			
914	Learned from the Drought Years of 2001 and 2002: Synthesis Report. Agriculture and Agri-Food			
915	Canada, Saskatchewan Research Council Publ No. 11602-46E03, Saskatoon.			
916	Wheeler, M. C., & Hendon, H. H., 2004: An all-season real-time multivariate MJO index: Development			
917	of an index for monitoring and prediction. Monthly Weather Review, 132(8), 1917–1932.			
918	Wolter, K., 1987: The Southern Oscillation in surface circulation and climate over the tropical			
919	Atlantic, Eastern Pacific, and Indian Oceans as captured by cluster analysis. J. Climate Appl.			
920	Meteor., 26, 540-558.			
921	Wolter, K. and M.S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal			
922	component index. Proc. of the 17th Climate Diagnostics Workshop, Norman, OK,			
923	NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteor., Univ. of			
924	Oklahoma, 52-57.			
925	Zhang C, 2005: Madden-Julian Oscillation Reviews of Geophysics, 43.			
926	v	 Deleted: 4		
927		1		

937							
938	Table 1 Corre	elation between mean pre		Deleted: from CMAP			
939	indices 4. MJO indices and <u>CMAP</u> are from 1979 to 2016,						Deleted: CMAP covers 1979 to 2016.
I			Correlation	p-value	No. of sample		
		MEI	-0.096	0.24	156		
		MJO-4	0.18	0.023	156		
		MJO-4(NINO4>0)	0.33	0.0015	90		
		MJO-4(NINO4<0)	-0.01	0.94	66		

946 between September 2013 and August 2015.

- Fig. 2 NCEP GPH anomaly at 500hPa during May and June 2015 when the precipitation deficit was the
- 955 largest.

1005

-20 -40 -60

Deleted:

MJ04>0.3

Neutral

MJ04<-0.3

- 1030 Fig. 9: Ray-tracing result with total wavenumber specified by the mean flow 140-150W and 20-30N for
- 1031 mean May-August condition with NINO4<-0.5 (left) and NINO4>0.5 (right). Rays originate from 140E,
- 1032 <u>20N with angles ranging from 0 (red) to 60 degree (dark blue) from zonal direction.</u>

Summer of 2015 is the first summer after the developing El Nino during 2014-2015 winter. Though the upper-level GPH pattern seen in summer 2015 can be attributed to the SST modes in the Pacific Basin, namely ENSO and NPM, the precipitation in the Western Canadian Prairie is not strongly correlated with either of them. Bonsal and Lawford (1999) found that more extended dry spells tend to occur during the second summer following the mature stage of the El Nino events. The winter precipitation in Canada has been shown to have a strong connection to ENSO (Shabbar et al. 1997), whereas summer precipitations in most regions of western Canada (except the coast of British Columbia and Southern Alberta) do not have significant correlations with ENSO. This is consistent with our investigation using instrumental records from 1948 to 2016.