Dear Dr. Li et al.

Based on two reviewers’ comments on your article titled ““Combined Impacts of ENSO and MJO on the 2015 Growing
Season Drought over the Canadian Prairies”, [ am happy to say that final acceptance will take place, if you are able to
address the re- viewer’s comments and suggestions - major revisions are required. Both reviewers have some excellent
points and all of them can be reasonably addressed. I only point out some of the more major comments (and
commonalities) below, however, each of the reviewer’s points should be addressed as well.

We thank the editor and the two reviewers’ valuable comments and advices to improve the original draft. Many
improvements have been made to the draft according to the suggestion by the reviewers.

1) Both reviewers point out many typographical and grammatical errors. Please read over the manuscript carefully and
make appropriate edits. One reviewer provided their marked-up manuscript to assist with this, as well as other
comments requiring edits.

We have revised the draft accordingly to correct these errors.

2) Does the study period span 1979-2015 or 1979-2016?

The study period spans 1979-2016.

3) Manitoba is not included in the analysis. Hence, the title of the manuscript requires changing.

We acknowledge that the research only covers about the 2/3 of the agriculture land over the Prairies. We still hope
to keep the title to “Combined Impacts of ENSO and MJO on the 2015 Growing Season Drought on Canadian
Prairies” so that it is easier for researchers who are interested in the Prairies’ precipitation to find the paper.

4) B.C. was not included in the analysis, but does appear to be affected. One reviewer is suggesting inclusion of B.C. or
explaining why it was not included.

We choose to focus on the Prairie drought due to the fact the majority of the precipitation occur in summer for the Prairie
whereas for BC coast the precipitation mainly occurs in winter. Though the precipitation deficit percent is high for BC
coast. We have added some comments in the data section.

5) More quantitative analysis of the relation between Rossby waves and the drought should be addressed where possible.
We have added more analysis in terms of wave propagation.

6) Reviewer #2 suggests adding some detail about the unexplained drought events under NINO4>0 and MJO-4<0 (in the
shaded region in Fig. 5), while connecting these events to the previously proposed teleconnection mechanisms in the
introduction. At least some discussion should be made here.

We have added more discussions on the drought under NINO4>0 and MJ0O-4>0 and La Nina events.
7) The MJO-4 and ENSO are likely not independent. Some discussion of this should be made.
We have added discussions on the relationship between MJO and ENSO in the discussion section.

Once you have addresses each of the reviewer’s comments, your manuscript will be considered for final publication.
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Abstract

Warm-season precipitation on the Canadian Prairies plays a crucial role in agricultural production, This research

investigates how fhe early summer 2015 drought across the Canadian Prairies is related to tropical Pacific forcing, The

significant deficit of precipitation in May and June of 2015 coincided with a warm phase of El Nino-Southern Oscillation
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_particular importance to
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over the region.

(ENSO) and a negative phase of Madden-Julian Oscillation (MJO)-4 index, which favour a positive geopotential height

anomaly in western Canada. Our further investigation during the instrumental record (1979-2016) shows that warm-season
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Bonsal ef al. 1993). High natural variability in growing season precipitation causes periodic occurrences

of extreme precipitation (Li et al. 2017; Liu ef al. 2016 and droughts that are often associated with
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reduced agriculture yields, low streamflow, and increased occurrence of forest fires (Wheaton et al.

[ Deleted: stream flow

2005, Bonsal and Regier 2007). Drought events with great environmental and economic impacts have
occurred in 1961, 1988, 2001-2002, and as recent as 2015 (Dey 1982, Liu et al. 2004, Bonsal ef al.
1999, Wheaton et al. 2005, Shabbar et al. 2011, Bonsal et al. 2013, Szeto et al. 2016). The sub-seasonal

Jforecast of precipitation for the growing season js crucial for the agriculture, water resource

management, and the economy of the region. Therefore, an investigation into the causes of inter-annual
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variability in the growing season precipitation of the Canadian Prairie is needed,

Low precipitation and extended dry periods on the Canadian Prairies are often associated with an

upper-level ridge and a persistent high pressure centered over the region (Dey 1982, Liu et al. 2004).

These prolonged atmospheric anomalies often concurred with abnormal boundary layer conditions such
as a large-scale sea surface temperature (SST) anomalies in the Pacific Ocean (Shabbar and Skinner
2004). Large scale oscillation in the SST anomalies in the Pacific Ocean, namely El Nino, and the

Pacific Decadal Oscillation (PDO), can affect the hydroclimatic pattern in summer over North America,

although the strongest impacts of these boundary conditions occur during the boreal winter. Inter-annual

wvariability such as El Nino-Southern Oscillation (ENSO) s linked with extended droughts in the Prairies

(Bonsal et al. 1999, Shabbar and Skinner 2004). Interdecadal oscillations such as the PDO, and the
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Atlantic Multi-decadal Oscillation (AMO) also, affect the seasonal temperature and precipitation in the

Canadian Prairies (Shabbar et al. 2011).

ENSO's relationship with Canadian Prairie precipitation has been studied extensively. The warm

phase of ENSO often favours drought in this region, especially during the growing season after the
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mature phase of El Nino with the North Pacific Mode (NPM, Hartmann ez a/. 2015) positive like North
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Pacific SST anomaly pattern (Bonsal and Lawford 1999, Shabbar and Skinner 2004). Previous
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Multivariate MJO index (RMM, Wheeler and Hendon 2004). was extremely strong in the early spring of
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2015 with a positive PDO-like SST anomaly in the central Pacific and at the same time. El Nino started

to strengthen.
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MIJO activities in the western Pacific under the modulation of jnter-annual SST variability have ( Deleted: interannual
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the potential to act together with ENSO and impact mid-tropospheric circulation over western Canada
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2 Data and Methodology

Multiple observation and reanalysis datasets are used to investigate the circulation anomalies

associated with Canadian Prairie growing season (May-August) precipitation. Observed precipitation is
taken from the Climate Prediction Center (CPC) Merged Analysis of Precipitation (CMAP) dataset (Xie

and Arkin 1997). Geopotential height fields from the National Center for Environmental Predictions
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(NCEP) Reanalysis (Kalnay ef al. 1996) and the European Center for Medium-Range Weather Forecast

(ECMWF)’s ERA _Interim reanalysis (Dee et al. 2011) are used to analyze the mid- and upper-level (200

hPa and 500 hPa) atmospheric circulation patterns.
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(OLR) data from NOAA Interpolated Outgoing Longwave Radiation are used to derived the composite

of anomalies of OLR for a certain phase of MJO,

Our study focuses on, growing season precipitation in the provinces of Alberta and Saskatchewan

in the Canadian Prairies, where the largest deficits were observed in 2015. Specifically, the regional

mean precipitation over 115°-102.5°W, 50°-57.5°N is used (boxed area in Fig. 1. top panel) to represent

the Canadian Prairies east of the Rocky Mountains and south of the boreal forest. The region chosen

also covers most of the arable land in the Canadian Prairies, Considering the unique MJO-4 and NINO4

indices for 2015, the relationship between the Prairies’ warm season (May-August) precipitation with
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MJO-4 and ENSO during the instrumental records are investigated using correlation and regression.

Though the dry months of the 2015 growing season are May and June when MJO-4 was in negative

phase, we want to study the statistical relationship between MJO-4 and the Praries’ precipitation in

growing season (May-August). The possible mechanism behind the correlation between MJO-4 and the

Prairie’s warm season precipitation during El Nino condition is further investigated by analyzing the
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3.1 The 2015 Summer Drought

Almost all of western Canada including British Columbia, the southern Northwest Territories,
Alberta and Saskatchewan had pegative precipitation anomalies during May and June 2015. The top plot \ Deleted: significant )

in Fig. 1 shows the precipitation anomaly in percentage relative to the climatology (1981-2010 long
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monthly mean precipitation from May to August (Bonsal et
al. 1999, Shabbar ez al. 2011). For the 2015 case study,
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_below average.




B0OO

301
302

B03

304

BOS5

BO6

BO7

308

B09

310

B11

B12

B13

314

315

316

term mean) in Canada during May and June 2015. The bottom plot in Fig. 1 presents the monthly

precipitation anomaly averaged over the region encompassed by the dash lines (fop panel in Fig. 1). The
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drought conditions.

Fig. 1 Top: Precipitation anomalies (mm) from CMAP over the region (115W-102.5°W, 50°N-57.5°N) during May

and June 2015. Bottom: time series of monthly precipitation anomaly over boxed region between September 2013 and
August 2015.

The mid- and upper-level geopotential height (GHP) anomaly averaged in May and June are
examined together with SST anomaly and ENSO, MJO-4 indices for 2014 and 2015. The 500 hPa GPH,

anomaly for May and June 2015 shows strong positive anomalies near Alaska and the British Columbia
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Dey 1982; Bonsal and Wheaton, 2005). Accompanying this anomalous ridge, are above normal SSTs in
the northeast Pacific off the coast of North America and the central-eastern Pacific (Fig. 3). Both ENSO
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components of Pacific SST, variation such as NPM by several recent studies (Hartmann ez a/. 2015, Lee

et al. 2015, Li et al. 2017).

Fig. 2 NCEP GPH anomaly at 500hPa during May and June 2015 when the precipitation deficit was the largest.

The average SST anomaly during the growing season (May-June, July-August) of 2015. shows a
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between MJO and Prairie precipitation during growing season. Although El Nino and associated
Northeast Pacific SST warm anomaly (i.e., NPM) in summer 2015 can be a contributing factor for the

persistent upper-level ridge over the west coast of Canada, it cannot fully explain the drought condition
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Fig. 3 The mean SST anomaly (°C) from ERSST v4 in May-August 2015.

Fig. 4 RMM amplitude anomaly, NINO4, MJO 4 indices and precipitation anomaly of Canadian Prairies from January 2014

to Dec 2015.

3.2 Instrumental record

El Nino and its associated North Pacific SST anomaly may contribute to extended dry spells in

Canadian Prairies after the mature phase of El Nino (Bonsal et al. 1993) on an inter-annual time scale.

ENSO, however, is not a strong intra-seasonal to seasonal predictor of Canadian Prairie summer

precipitation. The lack of strong correlation between the Prairies’ precipitation and ENSO index can be

caused by many factors that affect the Prairies’ precipitation on a seasonal and sub-seasonal scale.

Shabbar and Skinner (2004) showed the connection between the warm phase of ENSO and western

Canadian drought through singular value decomposition analysis. However, they also found other

modes of SST variation (e.g.. positive phase of PDO) can produce wet condition in the Prairies. Here we

present a new result showing that under warm central Pacific SST conditions (NINO4 >0), a certain
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The correlation coefficients between the mean regional precipitation anomaly over Canadian
Prairies and MJO-4 indices and MEI from May to August are shown in Table 1. The correlation

between MEI alone and the precipitation anomalies is not significant. The correlation between MJO-4

and precipitation in the Prairies is 0.18 with a p-value of 0.023, which indicates that stronger tropical

convection in the equatorial region centered around 140°E favours less precipitation in the Canadian

Prairies from May to August. When NINO4 is larger than 0. the correlation between MJO-4 and

"Deleted: The negative MJO-4 index represents a stronger

than normal convection in the Maritime Continents and the

 tropical Western Pacific.
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“onversely, the correlation between

growing season precipitation js 0.33 with a p-value of 0.0015.

MJO-4 and Canadian Prairie precipitation is -0.01 when NINO4 < 0,

Fig. 5 The scatter plot of monthly precipitation anomaly (mm/month) as a function of MJO-4 and NINO4. Each

asterisk represents a month from May to August 1979-2016. Circled asterisk denotes a month with precipitation anomaly larger

than 18 mm/month. The blue circles are months with positive precipitation anomaly and the red circles are months with negative

precipitation anomaly. The sizes of circles denote the magnitudes of the anomalies (large > 30 mm/month, medium > 24
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The scatter plot in Fig. 5 shows the distribution of monthly precipitation anomaly versus MJO-4

index and NINO4 index, Circled asterisk denotes a month with precipitation anomaly larger than 18

mm/month and the red (blue) circles denote a negative (positive) precipitation, anomaly. The criterion

for precipitation anomaly to be emphasized by the circles is roughly one third of the mean monthly

precipitation in the growing season. The size of the circle represents the magnitude of the monthly
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the summer drought that happened in the Prairies from 1999 to 2005, the large-scale anomalous patterns
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(Hanesiak et al 2011). Bonsal and Wheaton (2005) showed that the tropospheric atmospheric
circulation patterns in 2001 and 2002 lacked the typical meridional flow in the North Pacific and North
America during drought in western Canada. Their results show that the drought in 1999-2005 was
related to the expansion of the continuous drought happened in the US to the north.
Fig. 6 The box-percentile plot of Canadian Prairies precipitation anomaly during growing seasonunder different (Deleted: for )\
. . . . o ) <Deleted: To investigate the )\
The impact of ENSO on the growing season precipitaiton over Canadian Prairies, is investigated. ' Deleted: , the distribution of precipitation anomaly along \‘
ENSO conditions are plotted
The box-percentile plot in Fig. 6 shows the distribution of monthly Canadian Prairies’ precipitation ( Deleted: condition ‘
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anomalies from May to August along with different ENSO conditions. In general, under El Nino and
| Deleted: condition )
neutral ENSO conditions, the precipitation anomalies are centered around 0, and there is no bias toward  Deleted: on )
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either end. Under La Nina condition, the mean precipitation has a positive bias. There are only 10 [ Deleted: both )
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The correlation between MJO-4 and the Prairies’ precipitation during growing season leads us to
investigate the underlying circulation anomalies. Fig. 8 presents the regressed stream function and wind

field at 200 hPa in the mid-latitudes (north of 30°N) on the negative MJO-4 index from May to August
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Deleted: strong

| Deleted: prairie
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under warm NINO4 SST condition (NINO4 [>] 0.5). In the tropics (10°S-20°N), during Northern
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negative MJO-4 index corresponds to a negative anomaly in OLR, stronger convection and larger than

average divergence in the region centered around 150 E. The strong convection anomaly centers around

(Deleted: have
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150°E, 5°N with divergent wind extending well into the subtropics in the Northern Hemisphere. The

':‘Deleted:

positive GPH/stream function anomaly extended from Japan to central Pacific is associated with the
enhanced convection and divergence in the upper troposphere over the western tropical-subtropical
Pacific. A Rossby wave train linked to the OLR anomaly and strong divergence in the western Pacific

propagate eastward into North America. To better demonstrate the propagation of the wave train, we

conducted a ray tracing of stationary Rossby wave following the nondivergent barotropic Rossby wave

theory of Hoskins and Karoly (1981) and Hoskins and Ambrizzi (1993). Equation 1 describes the group

velocity, which represent the propagation of wave activity. @ and |C TJ are the group velocity

components on zonal and meridional directions; [J| and %arc the mean zonal and meridional winds; q is

the mean absolute vorticity; K. k, 1 are the total wave number, zonal wavenumber and meridional

wavenumber, respectively. The ray path is integrated using a fourth-order Runge-Kutta method.
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Equation (1

(k% - 1%)q, + 2klq,
K4

Coy=V+

Under average conditions in May-August derived from ERA-Interim at 200 hPa with NINO4 > 0.5 or

NINO4 < -0.5, we released rays with a total wavenumber matching with the mean flow at the

extratropical location of the OLR anomaly (140°E-150°E, 25°N-30°N). For quasi-stationary waves, the

wavenumber is determined by the basic zonal flow and background absolute vorticity gradient through

the dispersion relation. For NINO4 >0.5 May-August condition, K = 4.14. With this total wavenumber

and launching angle from 0- 60° relative to the zonal direction, Rossby wave rays (colored by red,

orange to blue according to their angle from 0° to 60°) released at 140°W, 20°N can propagate

successfully to the western Canada for those with smaller launching angles as shown the right in Fig. 9.

With NINO4<-0.5, the zonal wind in the source region is weaker, and the meridional gradient of

absolute vorticity is stronger due to its relative further southern position to the subtropical jet. The total

wavenumber for stationary Rossby waves is 6.2, determined by the mean May-August condition for

NINO4 < -0.5. The waves with shorter wavelength tend to be evanescent near the source region as

shown in the left plot in Fig. 9. However, there is no significant difference in ray-path under NINO4 < -

0.5 condition compared to NINO4 > 0.5, if the source wavenumbers are set to the same value (results

not shown). The changes in the mean conditions from El Nino to La Nina are not sufficient to alter the

propagation condition for Rossby waves.
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Summer of 2015 is the first summer after the developing of El Nino during 2014-2015 winter. (Deleted: growing

Though the upper-level GPH pattern, seen in summer 2015, can be attributed to the SST modes in the

Pacific, namely ENSO and NPM, the precipitation in the Western Canadian Prairie is not strongly

correlated with either. Bonsal and Lawford (1999) found that more extended dry spells tend to occur in

Canadian Prairies during the second summer following the mature stage of the El Nino events. The

winter precipitation in Canada has a strong connection to ENSO (Shabbar et al. 1997), whereas summer

precipitation, in most regions of western Canada (except the coast of British Columbia and Southern

Alberta), does not have a significant correlation with ENSO. This is consistent with our investigation

using instrumental records from 1948 to 2016.

Growing season precipitation in the Canadian Prairies js affected by many factors, precipitation ( Deleted: are

| Deleted: and

deficits can occur under various circulation and lower boundary conditions. Thus. it is not expected that ( Deleted: deficit

a universal condition for all the significant droughts in the region,can be identified. In fact, extreme J 2e:etei: (o find
(. .

drought events have been found in both El Nino and La Nina years, A previous study by Bonsal and ( Deleted: conditions
| Deleted: and La Nina years. Though

Lawford (1999) indicates the meteorological drought often occurs after the mature phase of El Nino, ( Deleted: rescarch

which is not the case for 2015, The associated changes in the North Pacific represented by NPM positive (Deleted: , the

phase is consistent with their results. The direct linkage between ENSO and the summer precipitation in

the Canadian Prairies is not clear. In fact, the correlation between MEI and precipitation in the (Deleted: still

investigated region is -0.096 (p=0.239, sample size = 152). The region’s growing season precipitation ( Deleted: 2389
1\Deleted: Itis

does not possess a significant correlation with ENSO. which is consistent with other researchers’

findings (Dai and Wigley 2000).

The regression pattern is consistent with stationary Rossby wave theory as shown in a hierarchy

of theoretical and modeling studies (Karoly ef a/. 1989, Simmons et al. 1983, Hoskins and Ambrizzi
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1993, Ambrizzi and Hoskins 1997, Held et al. 2002). A similar wave train extends from the western

Pacific toward extra-tropical South America but at lower latitudes compared to its counterpart in the
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in the extratropics

Northern Hemisphere (not shown). The node of the wave train in Western Canada and Northwest

Pacific of the US corresponds to an anomalous ridge, which is in-phase of El Nino forcing. When the

convection in the region associated with MJO-4 is weaker than normal (MJO-4 [>|0), a wave train with

the opposite sign will reach western Canada which then counteracts the El Nino forcing. Thus, the weak

correlation between Canadian Prairie precipitation and ENSO is understandable as MJO plays an

additional role that enhances or cancels out the GPH anomaly caused by El Nino.

JIn mid-latitude North America, the atmospheric response, to the tropical forcing in the western

Pacific depends on the mean circulation condition associated with tropical SST. Intraseasonal tropical

convection oscillation in the western Pacific associated with MJO-4 index cannot determine the sign of
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would
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precipitation anomaly in the prairies alone. Both warm SST in central Pacific and strong tropical ( Deleted: prairie.
convection in western Pacific and Maritime Continent are essential to cause a significant precipitation ( Deleted: necessary
deficit in the western Canadian Prairies. Warm SST in central Pacific causes an eastward expansion of
Pacific warm pool that favours enhanced MJO activity in the western-central Pacific (Hendon et al. ( Deleted: favors
1999, Marshall et al. 2016). In the year 2015, the SST anomaly in the Pacific (e.g. ENSO, NPM) forced ( Deleted: For
\: Deleted: of
the anomalous ridge on the west coast of Canada, This positive GPH anomaly was associated with the ’ Deleted: while the anomalous positive GPH associated with

strong negative MJO4 indices, it then caused a blocking pattern and suppressed precipitation in the

Canadian Prairies in the early summer. Although the El Nino continued to strengthen in July and August

_strong negative MJO4 indices in addition to

: Deleted:
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2015, the active convection associated with MJO in the western Pacific propagated eastward into the ( Deleted: convections
\: Deleted: West
central Pacific, As the convection in the western Pacific/Maritime Continent waned, the precipitation in ( Deleted: . as

the Canadian Prairie returned to slightly above normal in July.
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Fig. 8 The regression of stream function, wind field in the extratropics on MJO-4 for May-August with MEIB 0.5.
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5 Conclusions

The cause of the 2015 summer precipitation deficit in the western Canadian Prairies is

investigated in relation to atmospheric circulation anomalies, SST, and intraseasonal tropical convection

oscillation, MJO. The drought in western Canada is immediately related to an anomalous upper-level,
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ridge that persisted over the west coast of Canada and Alaska since fall 2014, This ridge was likely

associated with a developing El Nino that was enhanced by the MJO,
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In general, MJO-4 indices demonstrated significant correlation with the meteorological drought

happened over west Canadian Prairies from May to August when warm SST presented in central Pacific

(NINO4 > 0) with strong MJO amplitude, Our study discovered that MJO phase/strength is connected to

the anomalous ridge over western Canada, through the propagation of stationary Rossby wave from the

western Pacific, when NINO4 is positive. Though seasonally MJO is weaker in summer, the spring and
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investigation . After all the significant deficit of precipitation

| Deleted: was still growing in intensity. The correlation of
ENSO with the prairie precipitation is also not significant
during summer. Instead, the intraseasonal oscillation in

L tropical convection,

"Deleted , plays an important role in determining

early summer MJO amplitude is larger than normal when the central Pacific SST is warmer than normal

precipitation anomaly during months with warm central
| Pacific SST (NINO4 > 0).

(NINO4 >0). The teleconnection between the Canadian Prairie precipitation deficit and MJO is stronger

when NINO4 is positive, The underlying cause of this significant correlation between MJO-4 indices
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[ Deleted: is also often stronger. The new finding in our

and the prairie precipitation in May-August is a stationary Rossby wave train originating from the

L investigation is
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Maritime Continent and western Pacific which propagates into Canada. The raytracing experiments

( Deleted: when NINO4 is positive

show the main difference between a warm phase of NINO4 and a cold phase is the changes in stationary

Rossby wave wavenumber over the source region. Under NINO4 > (0.5 May-August condition, the total
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Compared to NINO4 > 0.5, NINO4 < -0.5 corresponds to a weaker zonal wind and stronger meridional

gradient of absolute vorticity in the subtropics of the source region (140-150E), hence the wavenumbers

of stationary Rossby waves from the source region are larger (about 6), and fail to reach the Western

Hemisphere. The intra-seasonal predictability of the growing season precipitation in the Canadian

Prairies can be potentially improved by including the MJO amplitude and phase factors for medium-

range/intra-seasonal projection in addition to ENSO effect especially when the central-Pacific SST is

warm.

Acknowledgement

We gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada
(NSERC) for funding the Changing Cold Regions Network (CCRN) through their Climate Change and
Atmospheric Research (CCAR) Initiative. Dr. Zhenhua Li is supported by the Probing the Atmosphere

of the High Artic project sponsored by the NSERC. Dr. Yanping, Li gratefully acknowledges the

support from the Global Institute of Water Security at the University of Saskatchewan. This research is

Deleted: in MJO amplitude and phase can be potentially
_instrumental for medium-range/intra-seasonal projection

- "[Moved down [4]: This research is also supported by

Environment and Climate Change Canada (ECCC). Dr.

§ (Moved up [3]: Dr.

also supported by Environment and Climate Change Canada (ECCC).

References

Ambrizzi T and Hoskins B J 1997: Stationary Rossby-Wave Propagation in a Baroclinic Atmosphere,
Quart. J. Roy. Meteor. Soc., 123 919-28.
Andrews, E.D., R.C. Antweiler, P.J. Neiman, and F.M. Ralph 2004 Influence of ENSO on Flood

Frequency along the California Coast. J. Climate, 17, 337-348, doi: 10.1175/1520-0442(2004)017.

17

‘ ‘CMoved (insertion) [3]

NN A

. \: Deleted: Y.

: CMoved (insertion) [4]

N\




793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

Bonsal, B.R., Chakravarti, A.K. and Lawford, R.G. 1993: Teleconnections between North Pacific SST
Anomalies and Growing Season Extended Dry Spells on the Canadian Prairies, Int. J. Climatol., 13,
865-878.

Bonsal, B.R., Zhang, X. and Hogg, W.D., 1999: Canadian Prairie growing season precipitation
variability and associated atmospheric circulation, Climate Research, 11(3), 191-208.

Bonsal B and Lawford R 1999: Teleconnections between El Nifio and La Nifia Events and Summer
Extended Dry Spells on the Canadian Prairies, International Journal of Climatology, 19, 1445-58.
Bonsal B R, Shabbar A and Higuchi K, 2001: Impacts of Low Frequency Variability Modes on

Canadian Winter Temperature, Int. J. Climatol. 21, 95-108.

BONSAL, B.R. and E. WHEATON. 2005: Atmospheric circulation comparisons between the 2001

and 2002 and the 1961 and 1988 Canadian Prairie droughts. Atmosphere-Ocean, 43 (2): 163-

172.

Bonsal B R and Regier M, 2007: Historical Comparison of the 2001/2002 Drought in the Canadian

Prairies, Climate Research, 33, 229-242.

Bonsal, B R, Aider, R, Gachon, P and Lapp S, 2013: An Assessment of Canadian Prairie Drought: Past,
Present, and Future, Climate Dynamics, 41, 501-516.

Carbone R. E., Yanping Li, 2015: Tropical Oceanic Rainfall and Sea Surface Temperature Structure:
Parsing Causation from Correlation in the MJO, Journal of Atmospheric Science, Vol. 72, No. 7, 2703~
2718.

Cassou C, 2008: Intraseasonal Interaction Between the Madden-Julian Oscillation and the North
Atlantic Oscillation, Nature, 455 523-7.

Dai A and Wigley T M L, 2000: Global Patterns of ENSO-Induced Precipitation, Geophys. Res. Lett.,

27 1283-6.

18



816

817

818

819

820

821

822

823

824

825

826

27

28

29

830

831

832

833

834

835

836

837

838

839

Dee D P, Uppala S M, Simmons A J, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda M A,
Balsamo G, Bauer P, Bechtold P, Beljaars A C M, Berg L van de, Bidlot J, Bormann N, Delsol C,
Dragani R, Fuentes M, Geer A J, Haimberger L, Healy S B, Hersbach H, Holm E V, Isaksen L, Kéllberg
P, Kohler M, Matricardi M, McNally A P, Monge-Sanz B M, Morcrette J-J, Park B-K, Peubey C,
Rosnay P de, Tavolato C, Thépaut J-N, and Vitart F, 2011: The ERA-Interim Reanalysis: Configuration
and Performance of the Data Assimilation System, Quarterly Journal of the Royal Meteorological
Society, 137, 553-97.

Dey B, 1982: Nature and Possible Causes of Droughts on the Canadian Prairies-Case Studies, Journal of
Climatology, 2,233-49.

Garfinkel C I, Feldstein S B, Waugh D W, Yoo C and Lee S, 2012: Observed Connection Between
Stratospheric Sudden Warmings and the Madden-Julian Oscillation, Geophys. Res. Lett., 39.

Hanesiak, J. M., Stewart, R. E., Bonsal, B. R., Harder, P., Lawford, R., Aider, R.. et al. (2011).

Characterization and Summary of the 1999-2005 Canadian Prairie Drought. Atmosphere-Ocean, 49(4),

421-452. http://doi.org/10.1080/07055900.2011.626757

Hartmann D L, 2015: Pacific Sea Surface Temperature and the Winter of 2014, Geophys. Res. Lett., 42,
1894-902.

Held I. M., Ting M. and Wang H., 2002: Northern Winter Stationary Waves: Theory and Modeling J.
Climate, 15, 2125-44.

Hendon, H. H., C. Zhang, and J. D. Glick, 1999: Interannual variation of the Madden-Julian Oscillation
during Austral summer, J. Clim., 12, 2538-2550

Hong, C. C,, Hsu, H. H., Tseng, W.-L., Lee, M. Y., Chow, C.-H., & Jiang, L.-C. 2017: Extratropical
Forcing Triggered the 2015 Madden—Julian Oscillation—El Nifio Event. Sci. Rep.7,46692; doi:
10.1038/srep46692 Hoskins B J and Ambrizzi T, 1993: Rossby Wave Propagation on a Realistic

Longitudinally Varying Flow. J. Atmos. Sci. 50 1661-71

19



840

841

842

843

844

45

846
847

848

849
850
851
852
853
854
855
856
857

Fss

859

F60

861

Hoskins, B.J. and D.J. Karoly, 1981: The Steady Linear Response of a Spherical Atmosphere to

Thermal and Orographic Forcing. J. Atmos. Sci., 38, 1179—1196.https://doi.org/10.1175/1520-

0469(1981)038<1179:TSLROA>2.0.CO;2

Hoskins, B.J. and T. Ambrizzi, 1993: Rossby Wave Propagation on a Realistic Longitudinally Varying

Flow. J. Atmos. Sci., 50, 1661-1671. https://doi.org/10.1175/1520-

0469(1993)050<1661:RWPOAR>2.0.CO;2

Huang B, Banzon V F, Freeman E, Lawrimore J, Liu W, Peterson T C, Smith T M, Thorne P W,
Woodruff S D and Zhang H-M, 2015: Extended Reconstructed Sea Surface Temperature Version 4

(ERSST. v4). Part I: Upgrades and Intercomparisons Journal of Climate, 28 ,911-30.

Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G,
Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K, Ropelewski C, Wang J,
Leetmaa A, Reynolds R, Jenne R and Joseph D, 1996: The NCEP/NCAR 40-Year Reanalysis Project
Bull. Amer. Meteor. Soc. 77 437-71

Karoly D J, Plumb R A, and Ting M, 1989: Examples of the Horizontal Propagation of Quasi-Stationary
Waves. J. Atmos. Sci. 46 280211

Lee MY, Hong C C and Hsu H H 2015: Compounding Effects of Warm Sea Surface Temperature and
Reduced Sea Ice on the Extreme Circulation Over the Extratropical North Pacific and North America

During the 20132014 Boreal winter Geophys. Res. Lett., 42, 1612-8.

Li Y., Richard E. Carbone, 2012: Excitation of rainfall over the tropical western Pacific. Journal of ( Deleted: Yanping

\: Deleted: ,

Atmospheric Science, Vol. 69, No. 10, 2983-2994.

Li Y., Kit Szeto, Ron Stewart, Julie Theriault, Liang Chen, Bob Kochtubajda, Anthony Liu, Sudesh [ Deleted: Yanping

\: Deleted: ,

Boodoo, Ron Goodson, Curtis Mooney, Sopan Kurkute, 2017: The June 2013 Alberta Catastrophic

20



866
867
F68
869
870
871
872

73

74

75
876

877

878

879

880
881
882
883
884
885
886
887

888

Flooding: Water vapor transport analysis by WRF simulation. Journal of Hydrometeorology, Vol. 18,
2057-2078.

Li Z., Alan Manson, Yanping Li, Chris Meek, 2017: Circulation Characteristics of Persistent Cold

Spells in Central-Eastern North America. Journal of Met. Res., Vol. 31, 250-260.
Liu J, Stewart R E and Szeto K K, 2004: Moisture Transport and Other Hydrometeorological Features
Associated With the Severe 2000/01 Drought Over the Western and Central Canadian Prairies Journal

Of Climate, 17, 305-19.

Liu A., C. Mooney, K. Szeto, J. M. Thériault, B. Kochtubajda, R.E. Stewart, S. Boodoo, R. Goodson, Y.

Li, J. Pomeroy, 2016: The June 2013 Alberta Catastrophic Flooding Event: Part 1 — Large scale features.

Hydrological Process, 2016, 30, 48994916

Lorenz, D.J. and D.L. Hartmann, 2006: The Effect of the MJO on the North American Monsoon. J.

Climate, 19, 333-343, doi: 10.1175/JCLI3684.1.

Madden R A and Julian P R, 1971: Detection of a 40-50 Day Oscillation in the Zonal Wind in the

Tropical Pacific, J. Atmos. Sci., 28, 702—8

Marshall, A. G., H. H. Hendon, and G. Wang, 2016: On the role of anomalous ocean surface
temperatures for promoting the record Madden-Julian Oscillation in March 2015, Geophys. Res. Lett.,
43,472-481.

Riddle E E, Stoner M B, Johnson N C, L’Heureux M L, Collins D C and Feldstein S B, 2013: The
Impact of the MJO on Clusters of Wintertime Circulation Anomalies Over the North American region
Climate Dynamics, 40, 1749-66.

Rodney, M., Lin, H., & Derome, J. 2013: Subseasonal Prediction of Wintertime North American
Surface Air Temperature during Strong MJO Events. Monthly Weather Review, 141(8), 2897-2909.

http://doi.org/10.1175/MWR-D-12-00221.1.

21

\ Deleted: Zhenhua

( Deleted:




891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

Ropelewski C F and Halpert M S 1986: North American Precipitation and Temperature Patterns
Associated with the El Nifio/Southern Oscillation (ENSO), Monthly Weather Review, 114, 2352—62.
Shabbar, A., Bonsal, B. and Khandekar, M., 1997: Canadian precipitation patterns associated with the
Southern Oscillation. Journal of Climate 10:3016-3027.

Shabbar A and Skinner W, 2004: Summer Drought Patterns in Canada and the Relationship to Global
Sea Surface Temperatures, Journal of Climate, 17, 2866—80.

Shabbar A, Bonsal B R and Szeto K, 2011: Atmospheric and Oceanic Variability Associated with
Growing Season Droughts and Pluvials on the Canadian Prairies, Atmosphere-Ocean, 49, 339-55.
Simmons A J, Wallace J M and Branstator G W, 1983: Barotropic Wave Propagation and Instability,
and Atmospheric Teleconnection Patterns, J. Atmos. Sci., 40, 1363-92.

Szeto, K., X. Zhang, R.E. White, and J. Brimelow, 2016: The 2015 Extreme Drought in Western
Canada. Bull. Amer. Meteor. Soc., 97, S42—-S46,https://doi.org/10.1175/BAMS-D-16-0147.1.

Wang S Y, Hipps L, Gillies R R and Yoon J-H, 2014: Probable Causes of the Abnormal Ridge
Accompanying the 2013-2014, California Drought: ENSO Precursor and Anthropogenic Warming
footprint Geophys. Res. Lett., 41 3220-6.

Xie P and Arkin P A, 1997: Global Precipitation: A 17-year Monthly Analysis Based on Gauge
Observations, Satellite Estimates, and Numerical Model Outputs. Bulletin of the American
Meteorological Society, 78, 2539-58.

Xue Y, Higgins W and Kousky V 2002: Influences of the Madden-Julian Oscillations on Temperature
and Precipitation in North America during ENSO-neutral and Weak ENSO Winters, Proc. workshop on
prospects for improved forecasts of weather and short-term climate variability on subseasonal (2 week

to 2 month) time scales.

22



913
914
915
916
917
918
919
920
921
922
923
924
925

F26

927

Wheaton, E, Wittrock V, Kulshreshtha S, Koshida G, Grant C, Chipanshi A, Bonsal BR, 2005: Lessons

Learned from the Drought Years of 2001 and 2002: Synthesis Report. Agriculture and Agri-Food

Canada, Saskatchewan Research Council Publ No. 11602—46E03, Saskatoon.

Wheeler, M. C., & Hendon, H. H., 2004: An all-season real-time multivariate MJO index: Development
of an index for monitoring and prediction. Monthly Weather Review, 132(8), 1917-1932.

Wolter, K., 1987: The Southern Oscillation in surface circulation and climate over the tropical

Atlantic, Eastern Pacific, and Indian Oceans as captured by cluster analysis. J. Climate Appl.

Meteor., 26, 540-558.

Wolter, K. and M.S. Timlin, 1993: Monitoring ENSO in COADS with a seasonally adjusted principal

component index. Proc. of the 17th Climate Diagnostics Workshop, Norman, OK,

NOAA/NMC/CAC, NSSL, Oklahoma Clim. Survey, CIMMS and the School of Meteor., Univ. of

Oklahoma, 52-57.

Zhang C, 2005: Madden-Julian Oscillation Reviews of Geophysics, 43.

23

Deleted:



937

38  Table 1 Correlation between mean precipitation anomaly jin the prairie from CMAP and MEIL, MJO

39 indices 4. MJO indices and CMAP are from 1979 to 2016.,

MEI
MJO-4
MJO-4(NINO4>0)

MJO-4(NINO4<0)
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Correlation

-0.096

0.18

0.33

-0.01
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p-value
0.24
0.023
0.0015

0.94

No. of sample
156

156

90

66



b43

944

945

946

947

948

949

Precipitation Anomalies in May, June 2015 mm

1 35°w 1 2o°w 1 os°w 9o°w 75°W 60°W

70°N ——— 70°N
65°N - 65°N

o — ‘y o
60°N — - 60°N
55°N - 55°N
50°N ) ) - 50°N
45°N / , VERR =2 |- a5°N
40°N 4 40°N

120°W 105°W 90°W 75°W 60°W

Precipitation Anomaly(mm)

1 1 1 1 Il 1 1 1 1 1 l 1 I 1 1 1 1 I Il 1 1

(o2}
o

N H
o o
UBLELEN L B

o

n
S

IlIIIlIIIlIIIIIIIII

A
S

I T T T I T T T T I T T T
9/13 2/14 714 12/14 5/15

100
85
70
55
40
30
20

-20

-30

-40

-55

70

-85

-100

70°N

65°N

60°N

55°N

50°N

45°N

40°N

o2}
o

N
o

N
o

o

N
o

A
o

Precipitation Anomalies in May, June 2015
135°W 120°W 105°W
|

R
=z

120°W 105°W

Precipitation Anomaly(mm

IIlIIIlIIllIIlIIIlI

I
9/13

T T T T I T T T T I

2/14 714

Fig. 1 Top: Precipitation anomalies (mm) from CMAP over the region (115 W-102.5 W, 50 N-57.5 N)

during May and June 2015. Bottom: time series of monthly precipitation anomaly over boxed region

between September 2013 and August 2015.
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Summer of 2015 is the first summer after the developing El Nino during 2014-2015
winter. Though the upper-level GPH pattern seen in summer 2015 can be attributed to the SST
modes in the Pacific Basin, namely ENSO and NPM, the precipitation in the Western Canadian
Prairie is not strongly correlated with either of them. Bonsal and Lawford (1999) found that more
extended dry spells tend to occur during the second summer following the mature stage of the El
Nino events. The winter precipitation in Canada has been shown to have a strong connection to
ENSO (Shabbar et al. 1997), whereas summer precipitations in most regions of western Canada
(except the coast of British Columbia and Southern Alberta) do not have significant correlations
with ENSO. This is consistent with our investigation using instrumental records from 1948 to

2016.
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