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Abstract: 

Soil water movement has direct effects on environment, agriculture and hydrology. Simulation of soil 5 

water movement requires accurate determination of model parameters as well as initial and boundary 

conditions. However, it is difficult to obtain the accurate initial soil moisture/matric potential profile at 

the beginning of simulation time, making it necessary to run the simulation model from arbitrary initial 

condition until the uncertainty of initial condition (UIC) diminishes, which is often known as “warming 

up”. In this paper, we compare two commonly used methods for quantifying the UIC (one is based on 10 

running a single simulation recursively across multiple hydrological years, and the other is based on 

Monte-Carlo simulations with realization of various initial conditions) and identify the “warm-up” time 

twu (minimum time required to eliminate the UIC by warming up the model) required with different soil 

textures, meteorological conditions, and soil profile lengths. Then we analyze the effects of different 

initial conditions on parameter estimation within two data assimilation frameworks (i.e, ensemble Kalman 15 

filter and iterative ensemble smoother) and assess several existing model initializing methods that uses 

available data to retrieve initial soil moisture profile. Our results reveal that Monte-Carlo simulations and 

the recursive simulation over many years can both demonstrate the temporal behavior of UIC and a 

common threshold is recommended to determine twu. Moreover, the relationship between twu for variably 

saturated flow modeling and the model settings (soil textures, meteorological conditions and soil profile 20 

length) are quantitatively identified. In addition, we propose a “warm-up” period before assimilating data 

in order to obtain a better performance for parameter and state estimation. 

Key words: Variably saturated flow; Initialization method; Initial condition uncertainty; Data 

assimilation; Soil moisture  
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1. Introduction 25 

Understanding the movement of soil water is of great importance due to its direct effects across 

different disciplines, such as environment, agriculture and hydrology (Doussan et al., 2002). However, 

modeling of flow in variably saturated soil is complicated by many difficulties, including highly variable 

and nonlinear physical processes, as well as limited information about the soil hydraulic properties, initial 

conditions, and boundary conditions (DeChant, 2014; Rodell et al., 2005; Seck et al., 2014; Bauser et al., 30 

2016; Li et al., 2012). The soil hydraulic parameter uncertainty is identified as a major uncertainty source 

in vadose zone hydrology and many studies have been focused on this topic. A highly relevant research 

area, inverse modeling, has been developed to reduce the uncertainty of parameter by incorporating 

observational data (Erdal et al., 2014; Montzka et al., 2011; Wu and Margulis, 2013; Wu and Margulis, 

2011). Boundary conditions also introduce uncertainty during the simulation of soil water flow (Ataie-35 

Ashtiani et al., 1999; Forsyth et al., 1995; Szomolay, 2008). For instance, the uncertainty introduced by 

flawed/noise-contaminated meteorological data or fluctuating groundwater table, has been investigated 

in the past (Freeze, 1969; French et al., 1999; van Genuchten and Parker, 1984; Ji and Unger, 2001; Xie 

et al., 2011). 

Many publications have addressed the issue of the uncertainty of initial condition (UIC) in modeling 40 

soil water movement. For example, Walker and Houser (2001) compared the simulation with degraded 

soil moisture initial condition to that with true initial condition and found the discrepancy did not fade 

away even after one month. Then, Mumen (2006) concluded that the initial soil water state was one of 

the most important factors for estimating soil moisture in the case of bare soil. Chanzy et al. (2008) tested 

three initial water potential profiles and found that initialization had a strong impact on the soil moisture 45 

prediction. These studies showed that the incorrect initial condition may lead to false results. Based on 

the availability of information, different initialization approaches can be used for constructing initial 

conditions, e.g., an arbitrary uniform profile (Chanzy et al., 2008; Das and Mohanty, 2006; Varado et al, 

2006), a linear interpolation with in situ observation (Bauser et al., 2016), a steady-state soil moisture 

profile induced with a constant infiltration flux (Freeze, 1969). All of the approaches involve great 50 

uncertainties due to nonlinearity of soil moisture profile, observation error, or inaccurate boundary 

condition. As a result, it is crucial to explore the effects of UIC on model outputs and compare the 
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uncertainties inherited from various initialization approaches. 

Besides the simple initialization methods referred above, another common approach is to obtain initial 

condition inherited from the warm-up model with preceding meteorological data. Starting from an 55 

arbitrary initial condition, this approach runs the model using a certain period (i.e., warm-up time twu) of 

meteorological data until the model state (e.g., soil moisture) reaches an equilibrium state, which is 

defined as the state when the uncertainty of state originated from UIC is negligible during simulation. 

The equilibrium state can be obtained by either running Monte-Carlo simulations until the states from 

different initial conditions converge to the same value (hereafter referred to as Monte-Carlo method) 60 

(Chanzy et al., 2008), or running a single simulation for several years by repeating one-year or multiple-

year meteorological condition until the state at an arbitrary date ceases to vary from year to year (Spin-

up method) (Dechant and Moradkhani, 2011; Seck et al., 2014). Spin-up method is widely used in large-

scale hydrological model due to its smaller computational cost, while the less-common Monte-Carlo 

method has the merit of quantifying UIC explicitly at arbitrary time, which can be potentially used to 65 

construct state covariance matrix for data assimilation. To the best of our knowledge, there is no 

comparison made between these two methods to date. Finding an equivalency between these two methods 

is beneficial for linking initialization methods and data assimilation techniques. Moreover, the 

determination of warm-up time twu is crucial to the success of this approach (Ajami et al., 2014; Rahman 

and Lu, 2015). An underestimation of twu may bring uncertainty from arbitrarily-specified initial condition 70 

prior to initialization, while a large twu leads to higher computational demands (Rodell et al., 2005). A 

variety of modeling settings, such as soil hydraulic properties, meteorological conditions, and soil profile 

lengths, have strong influences on twu (Ajami et al., 2014; Cosgrove et al., 2003; Lim et al., 2012a; Walker 

and Houser, 2001). Thus, the determination of twu should be investigated thoroughly with different settings. 

As well as model predictions, UIC also has considerable effects on parameter estimation. One of the 75 

commonly-used inverse methods in the field of vadose zone hydrology is data assimilation approach 

(Vereecken et al., 2010; Chirico et al., 2014; Medina et al., 2014a, 2014b). Previous studies showed that 

a poor initial soil moisture profile can be corrected by assimilating near-surface measurements 

(Galantowicz et al., 1999; Walker and Houser, 2001; Das and Mohanty, 2006). Oliver and Chen (2009) 

discussed several possible approaches to improve the performance of data assimilation through improved 80 
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sampling of the initial ensemble, and suggested the use of the pseudo-data. Recently, Tran et al. (2013) 

found that decreasing assimilation interval could improve the soil moisture profile results induced by 

wrong initial condition and Bauser et al. (2016) has addressed the importance of UIC in data assimilation 

framework. However, these preliminary investigations of the influence of UIC on data assimilation results 

are degraded by the narrow choice of initialization and data assimilation methods, and the lack of 85 

comprehensive assessment of the temporal evolution of state/parameter uncertainty when UIC and the 

parameter uncertainty coexist. For instance, during data assimilation, the initial ensemble is often assumed 

to be known without uncertainty (Shi et al., 2015) or created by adding Gaussian noise to the initial 

estimate (Huang et al., 2008), both of which may result in false outputs. The researches mentioned above 

are all based on a sequential data assimilation approach (i.e., ensemble Kalman filter, or EnKF (Walker 90 

and Houser, 2001; Oliver and Chen, 2009)), which incorporates observation in a sequential fashion, so 

the effect of UIC can be eliminated quickly. Compared to EnKF, an iterative ensemble smoother (IES), 

which assimilates all data available simultaneously, can obtain reasonably good history-matching results 

and performs better in strongly nonlinear problems (Chen and Oliver, 2013). However, IES utilize all the 

observation simultaneously at every iteration and UIC may have a more persistent effect on IES. Thus, a 95 

systematical analysis for the effects of UIC and initialization methods within various data assimilation 

frameworks is necessary and obliged. 

The objectives of this paper, therefore, are to: a) compare the temporal evolution of UIC with two 

common methods (Spin-up method and Monte-Carlo method) and identify the warm-up time twu under 

different soil hydraulic parameters, meteorological conditions and soil profile lengths; b) analyze the 100 

effects of different initial conditions on parameter estimation during data assimilation with EnKF or IES, 

and c) propose a selection scheme for choosing a suitable approach of initializing variably saturated flow 

models within different data assimilation frameworks to minimize the influence of UIC. We first 

summarize the governing equations of variably saturated flow and method of UIC quantification in 

Section 2. Then we present results of synthetic simulations designed to investigate the propagation of UIC 105 

under different scenarios in Section 3, which is complemented by the results for field data in Section 4. 

Finally, we present our conclusions in Section 5. 
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2. Method 

2.1 One-dimensional soil water movement 

  Richards’ equation can be used to describe the one-dimensional, vertical soil water movement, 110 

which is given as: 

1
h

K
t z t

     
       

                              (1) 

where h [L] represents the pressure head;   [-] denotes volumetric soil moisture; t [T] indicates the time; 

z [L] is the spatial coordinate taken positive upward; K  [LT-1] denotes the unsaturated hydraulic 

conductivity. The solution of one-dimensional Richards’ equation is numerically solved by a noniterative 115 

numerical scheme, which was originally proposed in Ross (2003) and Ross (2006). By using the primary 

variable switching scheme, this scheme uses the soil moisture as the unknown variable for unsaturated 

nodes and pressure head for saturated nodes (Zha et al., 2013). It can greatly reduce the computational 

cost of variably saturated flow modeling in soils under atmospheric boundary condition, where alternative 

drying-wetting conditions are often encountered.  120 

To obtain the solution of Eq. (1), the knowledge of functions K and θ versus h must be required. In 

this study, we use the van Genuchten-Mualem model (van Genuchten, 1980; Mualem, 1976) to describe 

these relationships, 

                                                     (2) 

                    𝐾(𝜃) = 𝐾𝑠𝑆𝑒
0.5[1 − (1 − 𝑆𝑒

1 𝑚⁄ )𝑚]2                       (3) 125 

where Ks [LT-1] denotes the saturated hydraulic conductivity; θs and θr represent the saturated and residual 

soil moistures, respectively; parameters α [L-1] and n are related to the measure of the pore-size density 

functions and m=1-1/n (n>1); the effective saturation degree Se is defined as Se=(θ-θr)/(θs-θr). 

 Initial and boundary conditions are needed to solve the one-dimensional Richards’ equation. The 

initial condition could be the states of soil moisture 130 

0 0( , ) ( )tz t z                                   (4) 

where θ0 (z) is the initial soil moisture profile. 
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 State-dependent, atmospheric boundary condition can be described as (Šimůnek et al., 2013): 


    


p p

h
q K K E P

z
                            (5) 

m ch h h                                     (6) 135 

where q [LT-1] is the Darcian flux at the soil surface; Ep [LT-1] denotes the potential evaporation; Pp [LT-

1] represents the precipitation intensity; hm [L] and hc [L] are maximum and minimum pressure heads 

allowed at the soil surface, respectively. The value of hm is set to 0, whereas hc is determined as -100 m. 

The bottom boundary condition is the free drainage boundary: 

 0




 Nz z

h

z
                                   (7) 140 

where zN is the depth of bottom boundary. 

2.2 UIC quantification 

 The investigation of uncertainty in this study includes model states (e.g., soil moisture) and model 

parameters, where UIC is a special case of state uncertainty at t=0. The analysis is twofold. First, we 

consider a particular situation when UIC is the only uncertain source and all the model parameters are 145 

known. Thus, the choice of initial conditions is solely responsible for the accuracy of the model outputs. 

In this case, the temporal decay of UIC can be clearly demonstrated by utilizing Spin-up or Monte-Carlo 

methods. Second, a more complex and realistic situation, including both uncertain initial condition and 

model parameters, is considered during the data assimilation of soil moisture observation. UIC and data 

assimilation are smoothly combined in our approach since we choose Monte-Carlo-based methods (EnKF 150 

and IES). At t=0, we generate an ensemble of soil moisture profiles based on one initialization method 

(which introduces UIC), and use this ensemble to initiate the data assimilation (assimilate observations 

and estimate parameter). Finally, we can evaluate our data assimilation performance based on different 

initializing methods. 

2.2.1 The indexes of Spin-up and Monte-Carlo methods 155 

The uncertainty of initial condition can be measured by the percent change PC for Spin-up method 

(Ajami et al., 2014; Seck et al., 2014) or the ensemble spread Sp for Monte-Carlo method (Reichle and 

Koster, 2003). Percent change is an index that reflects the deviation of soil moisture between two adjacent 
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years in a recursive run after a period of warm-up time twu, which could be calculated as: 

( ) ( 12)
( ) 100

( 12)

M t M t
PC t

M t

 



                              (8) 160 

where M(t) and M(t+12) are the monthly averaged soil moistures after model spin-up for t months and 

t+12 months (de Goncalves et al., 2006). 

 The ensemble spread (Sp), calculated as a square root of averaged variance over all interested nodes, 

is an index to quantify the difference among various realizations in Monte Carlo simulation, and it is 

given as: 165 

2

, , ,

1 1

1
( ) ( )

( 1)

eNN
a a

p i j k i k

i je

S k y y
N N  

 

                          (9) 

 

where 
, ,

a

i j ky  is nodal soil moisture value; ,

a

i ky  is the ensemble mean of 
, ,

a

i j ky ; i = 1, 2, …, N are the 

nodes of interest (can be part of the profile); j=1, 2, …, Ne is the ensemble number index; Ne is the 

ensemble size, which is taken as 300 in this study based on sensitivity analysis of the ensemble size on 170 

the calculated results. When N = 1, the concept of Sp(k) is equivalent to the standard deviation of a

ky  at 

one location and time tk.  

2.2.2 Data assimilation approaches 

We employ EnKF and IES for data assimilation in this study. Fig. 1 illustrates the basic ideas and 

differences of the two methods. 175 

EnKF approach was first proposed by Evensen (1994) and has been widely used in variably saturated 

flow problems (Huang et al., 2008; De Lannoy et al., 2007). This approach is a sequential data 

assimilation method (as shown in Fig. 1(a)) which incorporates observations into the model in order. 

 In this part, we assume that hydraulic parameters Ks, α, and n are unknown, while the other parameters 

θr and θs are deterministic. The vector of parameter and state is described as, 180 

 ,
T

k k ky m u                                   (10) 

where mk is the parameter vector (i.e., Ks, α, and n), uk are state variables (i.e., soil moisture) at time tk, 

the dimension of yk is Ny: Ny= Nm+ Nd, where Nm indicates the amount of the parameters to be estimated; 



9 

 

Nd are the number of nodes of the numerical model. The updated soil moisture ensemble can be converted 

to pressure head to drive the model. The observation vector can be defined as, 185 

 , ,j k k j k d d ε                                   (11) 

where dk denotes the observation at time tk; εj,k (j=1, 2, …, Ne) are independent Gaussian noises added to 

the observations; dj,k is the observation vector for ensemble index j at time tk. Based on the differences of 

model forecast and observations, the state-parameter vector can be updated as: 

, , , ,( )a f f

j k j k k j k j k  y y K d Hy                           (12) 190 

where ,

f

j ky  denotes the estimated or initially guessed values of parameter and state, while ,

a

j ky  is the 

updated estimates; H is an observation operator, linking the relationship between the state-parameter 

vector and the observation vector. K represents the Kalman gain matrix, which can be calculated as, 

𝐊𝐾 = 𝐂𝑘
𝑓
𝐇𝑇[𝐇𝐂𝑘

𝑓
𝐇𝑇 + 𝐂𝐷𝐾]

−1                        (13) 

where 
kDC  indicates the covariance matrix of observed data errors, while 

f

kC  is the error covariance 195 

matrix of forecast ensemble, given by 

 , ,

1

1

1

eN
T

f f f f f

k j k k j k k

jeN 

     
   

C y y y y                    (14) 

where f

ky  is the ensemble mean of 
f

ky . 

Compared to EnKF, IES gives a better estimate by taking all the available observation into 

consideration (van Leeuwen and Evensen, 1996), as presented in Fig. 1(b). Thus, it can keep the overall 200 

consistency of parameters and state variables over time effectively and has been increasingly used to solve 

the parameter estimation problem in hydrology (Crestani et al., 2013; Emerick and Reynolds, 2013). By 

calculating iteratively, the nonlinear relationship between observation and parameter is linearized and the 

information content of the observations can be fully utilized (Chen and Oliver, 2013). In this case, we 

write the analyzed vector of model parameters 
r

jm , as 205 

1 ( )r r r r r

j j j j

   m m K d Hm                           (15) 

The notation is similar to the one presented for EnKF, where r is the iteration index; 
r

jm  is the initially 
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guessed or estimated parameters for realization j at iteration r; 
1r

j


m is the updated estimates for 

realization j by conditioning on the observed information at iteration r. It should be noted that the 
r

jd  

and 
r

jHm  denotes the total number of observations and predicted data at iteration r, which is different 210 

from EnKF. The Kalman gain K is defined as, 

𝐊𝑟 = 𝐂𝒓
𝒇
𝐇𝑇[𝐇𝐂𝒓

𝒇
𝐇𝑇 + 𝐂𝐷 + diag(𝐇𝐂𝒓

𝒇
𝐇𝑇)]−1                   (16) 

where 𝐂𝒓
𝒇
𝐇𝑇 is the cross-covariance matrix between the prior vector of model and the vector of predicted 

data at iteration r; 𝐇𝐂𝒓
𝒇
𝐇𝑇 is the auto-covariance matrix of predicted data at iteration r and DC  is the 

covariance matrix of observed data errors.  donates a dynamic stability multiplier, which is set as 10 215 

initially, and can be adjusted adaptively according to the data misfit at every iteration. diag (𝐇𝐂𝒓
𝒇
𝐇𝑇) is a 

diagonal matrix with the same diagonal elements as 𝐇𝐂𝒓
𝒇
𝐇𝑇. Mathematically, the dynamic stabilizer term 

facilitates the solution switching between the Gauss-Newton solution and the steepest-descent method, 

which is known as the Levenberg-Marquardt approach (Pujol, 2007).  

2.3.3 Quantitative index for data assimilation 220 

 To assess model parameter and state estimations, root mean square of estimated parameters (RMSEm) 

and soil moisture (RMSEobs), and the relative error index (RE) are computed as follows: 

2

1

1
( )

eN
E T

m j

je

RMSE m m
N 

                            (17) 

2

1

1
( )

obsN
e obs

obs n n

nobs

RMSE d d
N 

                           (18) 

e

m

p

m

RMSE
RE

RMSE
                                 (19) 225 

 

where E

jm  represents the estimated parameter of realization j at the last simulation day (EnKF) or the 

last iteration (IES); Tm represents the true parameter listed in Table 1. 
e

nd  and 
obs

nd  indicate the 

predicted and measured soil moistures, respectively. Nobs is the amount of observations. 
e

mRMSE  and 
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p

mRMSE  represent the RMSE of the estimated and prior parameters. RE varies from 0 to positive infinity. 230 

As RE approaches to 0, the analysis result is close to the truth, but a large value of RE (more than 1) 

indicates a bad parameter estimation. Compared with the RMSEm, this index can better present the 

improvement of parameter estimation during data assimilation. 

3. Numerical examples 

A series of synthetic numerical experiments are performed in this section. In Section 3.1, we give a 235 

general description of the numerical experiments. In order to gain a better understanding of the 

propagation of the UIC, all the hydraulic parameters (i.e., Ks, α and n) are deterministic and the UIC is 

the only uncertainty source in Section 3.2. Finally, the numerical cases are designed to evaluate 

performances of data assimilation algorithms combined with various initialization methods in Section 3.3, 

in which the parameter uncertainty is taken into consideration in conjunction with UIC. 240 

3.1 General description of model inputs 

As shown in Table 1, four soils (Sand, Loam, Silt and Clay loam) are chosen in this study to explore 

the impacts of soil hydraulic property on UIC. The values of hydraulic parameters are determined 

according to Carsel and Parrish (1988). Besides, the effects of meteorological condition are also 

considered: M-AC, M-SC and M-HC in Fig. 2 represent three sets of precipitation and potential 245 

evaporation data from three different regions (arid region, semi-arid region and humid region) in China. 

Unless otherwise specified, a uniform soil profile with the 50% relative saturation (a value of 0.254 

for Loam) is chosen as the initial condition (IC-HfSatu). The soil profile is set to be 300-cm thick and is 

filled with Loam. The flow domain is discretized into 60 grids with a grid size of 5 cm which has been 

proved to be sufficient for evaluating UIC in our study (results not shown). Besides, the total simulation 250 

time during the synthetic simulation is one year (365 days). In addition, the default upper and bottom 

boundaries are set to be M-SC and free drainage boundary, respectively. Other specifications and 

assumptions for our model simulation runs are given in Table 2. 

3.2 The temporal evolution of UIC 

3.2.1 Comparison of UIC quantification methods 255 

 A synthetic experiment is conducted to compare two methods (i.e., Spin-up method and Monte-Carlo 
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method) in quantifying UIC. Using the Spin-up method, the first case runs a single simulation for 10 years 

by repeating the preceding meteorological condition starting with IC-HfSatu (Fig. 3(a)), and the 

percentage cutoff PC is calculated. In the second case, the Gaussian noise with a standard deviation of 3% 

(determined according to the observation error of soil moisture) is added to the IC-HfSatu to generate an 260 

ensemble with different initial soil moisture profiles. Then we run different model realizations (Fig. 3(b)). 

Finally, the PC and Sp values of the two cases versus time are compared in Fig. 3(c). 

 As shown in Fig. 3(a), there is a visible difference between the monthly-averaged soil moistures at 

the beginning and the 12th months, while the difference is much smaller for θ at the 12th and 24th months, 

indicating the decay of UIC. Similarly, the soil moistures from different realizations gradually get closer 265 

to each other. As shown in Fig. 3(c), PC and Sp values gradually decrease with the simulation time, and 

their values are approximately the same after t>6 months. The significant difference at the beginning (PC 

of 4.7% and Sp of 2.6%) is due to different initial soil moistures given by the Spin-up and Monte-Carlo 

methods. The result indicates that the widely-used Spin-up method and Monte-Carlo method are 

equivalent in terms of quantifying UIC. We will use Monte-Carlo method for the rest of the study since 270 

it is consistent with the data assimilation approaches used in this study. 

 The determination of the threshold value when UIC is regarded to have negligible effects on modeling 

has been discussed in previous studies (Ajami et al., 2014; Lim et al., 2012; Seck et al., 2014). PC or Sp 

values of 1% (Yang et al., 1995), 0.1% (de Goncalves et al., 2006), or 0.01 % (Henderson-Sellers et al., 

1993) have been used. As shown in Fig. 3(c), there is a significant diversity of the results between Spin-275 

up and Monte-Carlo methods at index value of 1%, indicating that UIC still plays a significant role. In 

contrast, the requested twu is more than 15 months for a value of 0.1%. To balance the estimation accuracy 

and computational cost, we recommend a threshold of 0.5% for both Spin-up and Monte-Carlo methods, 

and the corresponding warm-up time twu is 8 months, which is sufficiently long for UIC to diminish and 

the difference between PC and Sp is insignificant. 280 

3.2.2 The influencing factors on UIC 

 The Monte-Carlo method is used in this part to obtain the warm-up time twu and a number of scenarios 

are constructed under a variety of conditions (different soils, meteorological conditions, and soil profile 

lengths). First, the influence of soil texture and meteorological condition on twu are examined. Four 
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different types of homogeneous soils (Sand, Loam, Silt and Clay loam listed in Table 1) and a 285 

heterogeneous soil with multiple layers (consists of Loam (0-75 cm), Clay loam (75-150 cm), Silt (150-

225 cm), and Sand (225-300 cm)) under three typical meteorological conditions (M-AC, M-SC and M-

HC) are employed in these scenarios, while the other model inputs use the default values (see Table 2). 

Besides, the influence of different soil profile lengths (1 m, 3 m, 5 m, 10 m, 15 m, and 20 m) on UIC is 

also investigated. 290 

a. The influences of soil texture and meteorological condition 

Fig. 4 plots twu with five different soils under three typical meteorological conditions. The 

computational times vary greatly according to soil property. We find that twu of Sand are all less than one 

day, whereas twu of Loam are 412 days, 242 days, and 195 days respectively. In addition, the warm-up 

times of Silt and Clay loam with M-AC and M-SC exceed 10 years, while those with M-HC are 264 days 295 

and 253 days. The results imply that the warm-up time twu for the fine-textured soil is larger than that for 

coarse-textured soil. This may attribute to the diversity of the drainage property for different soils. For 

Sand, due to its fast drainage property, the soil moisture ensemble converges extremely quickly and most 

of the values at the profile are maintained as residual soil moisture. Thus, the UIC of Sand disappears 

very fast. In contrast, the soil moisture states for Silt and Clay loam change more slowly than Sand during 300 

the simulation. Therefore, faster drainage property leads to a smaller warm-up time. 

In addition, the meteorological condition has a strong impact on UIC. For example, with soil Loam, 

the order of twu is M-HC<M-SC<M-AC. For Silt and Clay loam, twu of M-AC and M-SC decrease from 

more than 10 years to 264 days and 253 days with a humid climate M-HC, respectively. With intensive 

and excessive rainfall events, θ approaches to the saturated soil moisture, leading to a sudden drop of Sp. 305 

Thus, the meteorological condition, especially the precipitation, plays an important role in the propagation 

of UIC. Moreover, regarding the heterogeneous soil with multiple layers, the twu under the M-AC is larger 

than 10 years (similar to Silt and Clay loam), while that under M-SC or M-HC becomes much smaller 

(higher than that of Loam but they are of the same magnitude). Thus, it is conjectured that twu is determined 

by the fine soil texture in the layered profile under dry meteorological condition, but averaged soil 310 

hydraulic properties under wet meteorological condition. 

It should be noted that the twu is also relevant to the initial state of soil. Regarding the initial condition 
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in an extremely dry state under the arid climate, the hydraulic conductivity is very small, and the initial 

spread extends for a long time. For instance, twu of sand increases from 1 day to 8 days when the ensemble 

mean value of initial soil moisture decreases from 0.2375 to 0.15 (results not shown). Yet, if a sufficiently 315 

large rain event takes place, the soil moisture increases and then converges to a similar state rapidly. 

b. The influence of soil profile length 

To investigate the effects of soil profile length on warm-up time, we investigate the twu values for 

simulations with various soil profile lengths. As presented in Fig. 5(a), the twu for soil lengths of 1 m, 3 

m, 5 m, 10 m, 15 m and 20 m are 0.11 year, 0.57 year, 0.74 year, 1.57 years, 2.78 years and 4.3 years 320 

respectively, indicating that the warm-up time increases with increasing depth of soil column. Fig. 5(b) 

plots the twu value for each depth with the profile length of 20 m, showing that a longer warm-up time is 

needed if the soil layer is deeper. Both subfigures imply that UIC decays more slowly if the effects of 

boundary condition become less important. We also examine the case for substituting free drainage 

boundary for a prescribed groundwater table. The results indicate that the twu is further shortened due to 325 

the influence of bottom saturation condition (not shown). 

In addition, twu in homogeneous loam reveals a power law relationship with the length of soil profile. 

According to the fitted curve in Fig. 5(a), the warm-up time twu is more than seven years for a depth d of 

30 m (e.g., North China Plain, (Huo et al., 2014)) and 700 years for d=1000 m (e.g., Yucca Mountain Site, 

(Flint et al., 2001)) with loam soil. This result suggests that we should be very careful to deal with 330 

simulation with a long unsaturated profile, where the UIC lasts for an extremely long time and influence 

the simulation/data assimilation results. 

3.3. Initialization of data assimilation 

Besides IC-HfSatu, two other common methods to prescribe initial conditions in variably saturated 

flow model based on the availability of information are also considered in this study, including a linear 335 

interpolation between observations (at depths of 10 cm, 80 cm, 150 cm, 220 cm and 290 cm) at the 

beginning of simulation (IC-ObsInt) and a steady-state soil moisture profile by warming up the model 

with a constant infiltration flux of 1 mm/d (IC-Flux). Moreover, we employ two warm-up methods, which 

give initial conditions by running the model prior to the beginning of simulation period with available 

meteorological data (as shown in Fig. 2). If the previous meteorological data before the simulation period 340 
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is available, it is used in the warm-up method (IC-WUP); otherwise, we use the meteorological data at 

the experimental period as a surrogate (IC-WUE). The length of warm-up time for IC-Flux, IC-WUP and 

IC-WUE is equal to twu (242 days) based on the results in Section 3.2.2(a), so the warming-up period of 

WUP for these three methods is from day 124 to day 365. In addition, IC-HfSatu and IC-ObsInt are 

assumed to be deterministic without uncertainty, while for the IC-Flux, IC-WUP and IC-WUE, the 345 

uncertainty of states are introduced by warming up the model with uncertain parameters.  

Thus, a total of five initialization methods (IC-HfSatu, IC-ObsInt, IC-NetFlux, IC-WUP and IC-WUE) 

are assessed to investigate the effect of UIC on model state and parameter estimations within two data 

assimilation frameworks (EnKF and IES). The initial realizations of soil hydraulic parameters Ks, α and 

n for all data assimilation models as well as the warming-up models IC-Flux, IC-WUP and IC-WUE are 350 

generated following logarithm normal distributions, with mean values of 4.7 md-1, 8.6 m-1 and 1.8, and 

variances (log-transformed) of 0.1, 0.3 and 0.006. The saturated soil moisture θs and residual soil moisture 

θr are assumed to be deterministic with the value of 0.43 and 0.078. Compared with the reference values 

(Ks, α and n for Loam are 0.2496 md-1, 3.6 m-1 and 1.56) listed in Table 1, the prior means of unknown 

parameters are biased. 355 

3.3.1 General description for various data assimilation cases 

Several test cases are conducted to explore the effects of initialization on parameter estimation under 

various data assimilation frameworks. Case 1 investigates the effects of five initialization methods on 

individual parameter estimation with EnKF and IES, respectively. Then, we increase the ensemble size 

of IC-HfSatu and IC-ObsInt to 500 (hereafter referred to as IC-HfSatu-500 and IC-ObsInt-500) in Case 360 

2 to demonstrate the impacts of ensemble size. Case 3 explores the effects of the uncertainty magnitude 

of the initial ensemble on the parameter estimations. A Gaussian noise with a standard deviation of 0.017 

(counted from IC-WUP) is added to both IC-HfSatu-500 and IC-ObsInt-500 (hereafter referred to as IC-

HfSatu-500-Un and IC-ObsInt-500-Un). Furthermore, to find out the role of initial condition in multi-

parameter inverse problems, Case 4 is conducted to estimate Ks, α and n simultaneously. Case 5 is 365 

implemented with a simulation time of 60 days to explore the influence of assimilation time on multiple 

parameter estimation with IES. It should be noted that the warm-up methods (IC-WUP and IC-WUE) 

used in IES warm up model before every iteration (as presented in Fig. 1(b)), since the initialization of 
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IES by warming up the model for only the first iteration leads to poor assimilation results. 

The synthetic observations used for data assimilation are generated by running the model with “true” 370 

parameter (Loam) and “true” initial condition (produced by warming up model with a sufficient long time 

of 10 years). The generated observations are perturbed by a Gaussian noise with a standard deviation of 

0.01. A total number of 37 observations are assimilated into the model. The observation depth is at z = 10 

cm and the observed soil moisture is assimilated every 10 days, starting from day 3. The details of the 

model inputs for Case 1 to Case 5 are listed in Table 3. 375 

3.3.2 Result 

 The results for parameter estimation (lnKs) using the two data assimilation frameworks with different 

initialization methods (Case 1) are compared in Fig. 6. In Fig. 6(a), the estimated lnKs values of EnKF are 

presented. In general, the lnKs estimations under different initial conditions all gradually approach the 

“true” values over assimilation time, but the final assimilation results are different. For IC-HfSatu, 380 

because the initial profile is uniform and arbitrarily specified, the assimilation results are affected by the 

parameter uncertainty and UIC simultaneously. Thus, the decreasing of RMSEm is the slowest and the 

final parameter estimation result is the worst. In contrast, the initial conditions generated by warm-up 

methods (IC-WUP and IC-WUE) can eliminate the UIC in advance, and thus data assimilation can handle 

parameter uncertainty more efficiently, leading to the best results among the five. The data assimilation 385 

results of IC-WUE are a little worse than those of IC-WUP owing to the diversity of meteorological 

condition. Since IC-ObsInt and IC-Flux are created by adding observation information or simple 

infiltration information, they perform better than that with IC-HfSatu but worse than warm-up methods. 

Similarly, the assimilation results for IES with IC-WUP are also the best, while those with IC-HfSatu 

have the worst parameter estimation in the five initialization methods (Fig. 6(b)). In addition, by 390 

comparing Figs. 6(a) and 6(b), the cases using IES shows better results than those using EnKF, indicating 

a superior ability for IES to estimate individual parameter in variably saturated model. However, since 

IES estimates parameter iteratively, it has a much larger computational cost than EnKF when using warm-

up methods. 

 For data assimilation problem, the ensemble variance is increasingly underestimated over 395 

time/iteration, which may cause the filter inbreeding problem (Hendricks Franssen and Kinzelbach, 2008). 
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To determine if our data assimilation runs are affected by filter inbreeding, the temporal change of the 

standard deviation of estimated lnKs are plotted in Figs. 6(c) and 6(d). In general, the standard deviation 

of estimated lnKs decline gradually with assimilation steps (EnKF) or iteration steps (IES). As given in 

Figs. 6(a) and 6(c), the filter inbreeding might take place after 280th days for EnKF, since the standard 400 

deviation of ensemble all approach to 0.1 and the estimated parameters stay constant over time. However, 

with the help of a damping parameter, the filter inbreeding problem for IES could be reduced significantly. 

This partly explains the inferior result of EnKF compared to IES.  

 Increasing the ensemble size and model uncertainty is an efficient approach to reduce the filter 

inbreeding (Hendricks Franssen and Kinzelbach, 2008). To demonstrate the impacts of ensemble size and 405 

initial uncertainty on data assimilation results, the results of lnKs estimations utilizing the initial condition 

IC-HfSatu and IC-ObsInt with the ensemble size of 500 (Case 2) and a Gaussian noise (Case 3) are plotted 

in the Fig. 7. 

The results of IC-HfSatu-500 and IC-ObsInt-500 with the ensemble size of 500 in Fig. 7 are similar 

with those of IC-HfSatu and IC-ObsInt (Fig. 6), indicating that the improvement of the parameter 410 

estimation result is slight when the ensemble size increases from 300 to 500. Hence, the ensemble size of 

300 is sufficient for data assimilation problem in this study. In contrast, the influences of adding the 

uncertainty to the initial state on parameter estimation are totally different for EnKF and IES. Compared 

with the results of IC-ObsInt-500 and IC-HfSatu-500, the results of lnKs estimation with IC-ObsInt-500-

Un and IC-HfSatu-500-Un improve for EnKF (Fig. 7(a)), but deteriorate for IES (Fig. 7(b)). This may 415 

attribute to the diversity between two algorithms. EnKF is a sequential algorithm, so the state uncertainty 

introduced by UIC could decrease over assimilation steps. A larger ensemble state variance implemented 

at the beginning leads to a larger trust on data and thus a quicker update of parameter to truth, and can 

prevent EnKF from inbreeding, leading to a better result than that with initial condition of small variance. 

On the contrary, IES is a batch optimization method. The uncertainty of initial state exists at each iteration 420 

and has a negative effect on the model calibration during the whole simulation, worsening the parameter 

estimation results. 

Moreover, the parameter estimation results of IC-WUP are still superior to those of IC-HfSatu-500-

Un and IC-ObsInt-500-Un even they all have a similar computational cost, showing the promising 
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performance of warm-up methods. The results are reasonable since all ensemble Kalman filter methods 425 

are affected by the quality of the auto-covariance matrix and the mean value of predicted state ensemble 

(Eqs. (12) and (13) for EnKF; Eqs. (15) and (16) for IES). For WUP method, the initial condition is 

constructed by warming up the model with the prior parameter, thus IC-WUP contains useful information 

of prior parameter, even it is biased. Besides, the state covariance matrix is implicitly inflated due to the 

introduction of uncertain prior parameter ensemble during warming up. These two aspects ensure the 430 

robust performance of warm-up methods. However, the initial state ensembles of IC-HfSatu-500-Un and 

IC-ObsInt-500-Un are independent from the prior parameter, which introduces additional uncertainties, 

making the data assimilation results worse. Therefore, even using a larger ensemble size and enlarging 

the state uncertainty (covariance inflation), warm-up methods are still the optimal choice for both EnKF 

and IES algorithms. We also construct another case with a larger parameter uncertainty to alleviate filter 435 

inbreeding problem and the data assimilation for all cases are improved (not shown). The results also 

agree with our conclusion that WUP performs the best among the five initialization methods. 

 To evaluate the effects of UIC in multi-parameter inverse problem, the RE results of Ks, α, and n 

estimates of Case 4 are presented in Fig. 8. In general, the RE results of n and Ks are small no matter using 

EnKF or IES, while the RE of α is the largest. A cross-correlation analysis indicates that soil moisture 440 

observations are insensitive to parameter α with a free drainage boundary condition, which agrees with 

the results of Hu et al., (2017). In Fig. 8(a), similar to the conclusion of one-parameter inverse problem, 

the parameter estimation results of Ks and α with IC-HfSatu and IC-ObsInt are worse than those of IC-

WUP and IC-WUE. There is not much difference between the n estimates under various initial conditions, 

implying that n is less affected by UIC when estimating Ks, α and n simultaneously. Compared with EnKF, 445 

IES shows a smaller RE (Fig. 8(b)) for all parameters, indicating IES can also perform better in multi-

parameter inverse problem. However, the assimilation results with various initialization methods do not 

show much difference, implying that the final RE values are not significantly affected by UIC, possibly 

due to abundant observations available over one year. Nevertheless, long-term observation data may not 

be available in many cases.  450 

 To examine the impact of assimilation time on parameter estimation with IES, Case 5 with shorter 

assimilation period (60 days) and a fewer number of observations (i.e., 6) is conducted. Fig. 9 shows the 
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RE results and it is inferior to those in Case 4, where the simulation time is one year (Fig. 8(b)). 

Nevertheless, the effects of assimilation time on parameter estimation are different for different 

parameters. For instance, parameter n can still be estimated well in the most of the situations. In addition, 455 

though the assimilation results of Ks degraded with a 60-day simulation, the variation of Ks estimation 

values among different initialization methods is small. The number of observation can greatly affect the 

estimation of parameter α, since RE of α in Case 5 (3.5, 4.8, 1.17, 0.79, and 0.23) is much larger than 

those in Case 4 (0.16, 0.29, 0.68, 0.24, and 0.31). Furthermore, the warm-up methods show the best data 

assimilation results among the five when the observations are insufficient. 460 

4. Field validation 

Synthetic observation in previous section is generated by running the model with exactly known 

uncertainty sources. By conducting synthetic experiments, we can thoroughly analyze the impact of UIC 

during data assimilation, with scenarios having different numbers of observations/unknown parameters, 

and more decisive conclusions can be drawn. In contrast, the field observations contain additional 465 

uncertainties which are largely unknown (e.g., the calculated evapotranspiration is inaccurate for real-

world case). In order to examine the real-world applicability of the conclusions drawn from synthetic case, 

Field data are necessary to validate our results. A field experiment is conducted in the irrigation-drainage 

experimental site of Wuhan University (Li et al., 2018) (Fig. 10(a)). Meteorological data, including air 

temperature, relative humidity, atmospheric pressure, incident solar radiation, and precipitation, is 470 

continuously monitored by an automatic weather station (LoggerNet 4.0), which can be used as upper 

boundary condition after the calculation of the potential evaporation (Penman-Monteith’s equation) on 

the bare soil (see Fig. 11(a)). A vertically-inserted frequency domain reflectometry (FDR) tube was used 

to monitor soil moisture (Fig. 10(b)). The in-situ soil moisture observation was measured every 3 days. 

The tube gave soil moisture measurements at the depths of 10, 20 and 30 cm. During 18th April 2017 to 475 

30th May 2017, the measurements were repeated 14 times and 42 soil moisture data were collected (see 

Fig. 11(b)). Besides, the soil moisture at the depth of 10 cm, 20 cm, 30 cm, 40 cm, 60 cm and 80 cm at 

the beginning of the simulation time is also available to construct an initial profile via IC-ObsInt. 

4.1 General description of the experimental case 

 To analyze the experimental data, the 1-D numerical domain is set as 2 m and discretized in 50 grids. 480 
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The top 40 grids have a size of 2.5 cm and the rest has a size of 10 cm. The upper boundary is set as an 

atmospheric boundary using the data shown in Fig 11(a) and the bottom boundary is set to be free drainage 

since the groundwater table is much deeper than the bottom of the domain. 

The prior parameter distributions follows the study of Li et al. (2018). The saturated soil moisture θs 

and residual soil moisture θr are given as 0.43 and 0.078, while the other hydraulic parameters are to be 485 

estimated. The initial means of Ks, α and n are set as 1 md-1, 5 m-1 and 2, and the initial natural logarithmic 

variances of them are set as 0.22, 0.16 and 0.003. The data from 18th April through 27th April are used 

for calibration, while the remaining data are reserved for validation. The climate of Wuhan is semi-arid 

conditions and the soil of experimental site is sandy loam. We use a warm-up time of 242 days based on 

our investigation in Section 3.2.2.  490 

4.2 Results 

 The assimilation results with four different initialization results (IC-HfSatu, IC-ObsInt, IC-Flux and 

IC-WUP) are presented in this part. Since the true hydraulic parameters at the experimental site are 

unknown, we assess the estimation by comparing the predicted (using estimated parameters) and observed 

soil moistures during the validation period. The RMSEobs for soil moisture predictions under different 495 

assimilation scenarios are listed in Table 4. Generally speaking, RMSEobs with IC-WUP are again the 

smallest, while IC-HfSatu has the largest RMSEobs values. 

In order to evaluate the overall performances of the four initialization methods, the soil moisture 

observations and predictions at all depths are plotted in Fig. 12. The coefficients of determination under 

the four scenarios are 0.033, 0.599, 0.083 and 0.553, and the RMSEobs are 0.045, 0.037, 0.036, and 0.028 500 

respectively. As shown in Fig. 12(a) and Fig. 12(c), IC-HfSatu and IC-Flux show very large scattering, 

indicating a bad prediction performance. A significant improvement is found in IC-WUP with a large R2 

and the smallest RMSEobs value, as shown in Fig. 12(d). Surprisingly, IC-ObsInt has the largest R2 among 

the four methods, though its RMSEobs value is bigger than that of IC-WUP. The simulation of real-world 

problems may have uncertainties that are not considered in data assimilation. For instance, the 505 

meteorological data prior to the simulation for warming up is not precise from the weather-station 

instrument error and calculation of evapotranspiration, which has a detrimental effect on IC-WUP. IC-

ObsInt, on the other hand, takes the advantage that it utilizes the soil moisture observations for both 
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initialization and predictions. However, IC-ObsInt may not be applicable when soil moisture observations 

at t=0 are not available or the soil moisture profile is discontinuous in layered soils, leading to a large 510 

interpolation error. In summary, for both the synthetic and field cases, models initialized using the warm-

up method result in low uncertainty and superior soil moisture predictions even if the calibration data are 

insufficient. 

5. Discussion and Conclusions 

The study investigates the effects of UIC on variably saturated flow simulations subject to different 515 

soil hydraulic parameters, meteorological conditions and soil profile lengths. Two common approaches 

(Spin-up and Monte-Carlo methods) are applied to explore the required warm-up time twu and temporal 

behavior of UIC. In addition, the data assimilation performances with five common initialization 

approaches are compared using synthetic experiments and a field soil moisture dataset. 

 Under atmospheric boundary condition, the soil moisture value near the upper boundary could 520 

approach its upper and lower bounds (saturated water content and residual water content) due to rainfall 

and evaporation. This significantly reduces the UIC of soil moisture profile near the soil surface. Our 

investigation shows that the coarse-textured soil results in faster reduction of soil moisture UIC because 

of fast redistribution of water in sandy soil. Regarding the influence of boundary conditions, we find that 

heavy rainfall can reduce UIC significantly, while an initial condition in a drier status leads to a growth 525 

of twu, since a drier soil drains and evaporates less water, making UIC of soil moisture dissipates slowly. 

The conclusion agrees with the conclusions reported by Castillo et al., (2003) and Seck et al., (2014). 

Although twu for sandy soil is very small, it could be very large for other soils (less than one day versus 

more than 10 years in Fig. 4). The length of soil profile plays an important role in UIC since UIC decays 

from the boundaries. As a result, UIC could exist persistently in a very thick vadose zone. Our findings 530 

imply that UIC dissipation depends nonlinearly on soil type, meteorological condition, and soil profile 

lengths, and special attention should be paid to during vadose zone modeling. 

 Ideally, the initial ensemble should represent the error statistics of the initial guess for the model state 

during data assimilation (Evensen, 2003). Thus, effort should be invested to reduce the impact of UIC on 

data assimilation. Methods which do not consider the UIC (i.e., assuming an initial ensemble arbitrarily 535 

without uncertainty, which was used in some studies, e.g., Shi et al., 2015) can induce significant bias 
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according to our data assimilation results. By constructing initial condition using the information of 

observations or boundary condition (averaged flux), the data assimilation results can be improved. 

However, these two initialization methods are also suboptimal, due to the oversimplification to the 

complex initial condition. By warming up model with available meteorological data, the initialization 540 

methods can improve data assimilation results. Moreover, EnKF is more sensitive to filter inbreeding 

problem than IES. The initial condition with a larger state uncertainty gains better performance than that 

without covariance inflation for EnKF. While for IES, this inflated uncertainty cannot decrease over 

iterations, making the results inferior. 

 In this study, we only use the soil moisture observations rather than pressure head to construct the 545 

initial profile. For homogeneous soil column, there is a one-to-one relationship between the spread of soil 

moisture and pressure head (i.e., UIC in terms of pressure head can be converted from that of soil 

moisture). The situation will be much more complex if the soil is heterogeneous, since a large number of 

unknown hydraulic parameters may introduce significant nonlinearity during the transformation between 

head and soil moisture. For instance, the soil moisture profile is discontinuous in layered soils. The use 550 

of pressure head instead of soil moisture as initial condition for heterogeneous soils deserves investigation 

in our future work. 

 Our work leads to the following major conclusions: 

 1. Spin-up method and Monte-Carlo method can both quantify UIC and they agree well with each 

other after a sufficiently long simulation. A threshold of 0.5% for percentage cutoff PC or ensemble spread 555 

Sp is recommended to determine the warm-up time. 

2. Warm-up time varies nonlinearly with soil textures, meteorological conditions, and soil profile 

length. Under most situations (e.g., Loam with the soil profile length less than 5 m under non-arid climate), 

one-year warm-up time is sufficient for soil water movement modeling, but an extremely long time 

(exceeds 10 year) is needed to warm up the model for a long, fine-textured soil profile under an arid 560 

meteorological condition. 

3. IES shows better performance than EnKF in the strongly nonlinear problem and is affected less by 

the UIC with a long-period of observations. In addition, covariance inflation of initial condition could 

improve the data assimilation results for EnKF, but deteriorate them for IES.  
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4. The following procedure is recommended to initialize soil water modeling: 1) Evaluate the 565 

approximate warm-up time based on the model settings; 2) Initialize the model using the method of WUP 

(if meteorological data are available) and make sure the warming up time is larger than the required twu; 

3) Run the simulation with the initial condition obtained in step 2. WUE is an alternative to WUP if the 

preceding meteorological data are not available. ObsInt is also a practical choice if dense soil moisture 

observations at the beginning of simulation are available.  570 

Further research may examine the performance of these initialization methods in two- or three-

dimensional variably saturated flow conditions. Our approach can also be extended to other modeling and 

data assimilation problems in other disciplines (e.g., groundwater flow and solute transport modeling, and 

soil-water-crop modeling). 
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Table 1. Soil hydraulic parameters used in simulation. 

Soil θs θr Ks/md-1 α/m-1 n 

Sand 0.43 0.045 7.128 14.5 2.68 

Loam 0.43 0.078 0.2496 3.6 1.56 

Silt 0.46 0.034 0.06 1.6 1.37 

Clay loam 0.41 0.095 0.062 1.9 1.31 

  765 
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Table 2. The default model settings used in the simulations. 

Parameter definition Value or type 

Initial condition a uniform 50% relative saturation over the soil profile (IC-HfSatu) 

Number of soil layers 1 

Thickness of soil zone 3 m 

Soil hydraulic properties Loam 

Upper boundary M-SC 

Bottom boundary Free drainage 

Number of grids 60 (with the size of 5 cm) 

Simulation time 365 days 
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Table 3. Case summary for parameter estimation within EnKF and IES. 770 

Case Description Ensemble Size Initial Uncertainty Simulation Time Framework 

Case 1 Individual 

parameter 

estimation 

- - - EnKF/IES 

Case 2 500 - - EnKF/IES 

Case 3 500 0.017 - EnKF/IES 

Case 4 Multiple 

parameter 

estimation 

- - - EnKF/IES 

Case 5 - - 60 IES 

Note: Ungiven values use the default values. The default value of initial uncertainty for IC-ObsInt and IC-HfSatu 

is 0. 
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Table 4. RMSEobs results for the soil moisture predictions at observation points with different initial conditions in 

the experimental case. 775 

Initial condition 10cm 20cm 30cm 

IC-HfSatu 0.0232 0.0271 0.0280 

IC-ObsInt 0.0286 0.0187 0.0134 

IC-Flux 0.0198 0.0222 0.0206 

IC-WUP 0.0180 0.0153 0.0155 
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Fig. 1. Flowcharts of simulation period (or data assimilation period with (a) ensemble Kalman filter (EnKF) and 

(b) iterative ensemble smoother (IES)) and warming up period. t0 is the initial time and tend is the end of simulation 

time. mk and uk are the vectors of model parameters (e.g., hydraulic conductivity) and state variables (e.g., soil 780 

moisture), respectively, at time tk, while mr and ur are the vectors at iteration r; the superscripts a and f refer to 

model analysis and forecast (or initial guess). Besides, the period between tpre and t0 donates the process of warming 

up, and twu is the required warm-up time. 
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E 785 

Fig. 2. Synthetic rainfall (blue bars) and potential evaporation (red bars) of three typical climates: (a) arid climate, 

(b) semi-arid climate, and (c) humid climate. It should be noted that the meteorological data of simulation period 

is from day 366 to day 730. 
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 790 

Fig. 3. Comparison of Spin-up and Monte-Carlo methods in determining warm-up time. (a) Spin-up method with 

monthly-averaged soil moisture versus time by running a simulation recursively for 10 years, (b) Monte-Carlo 

method with monthly-averaged soil moisture of different realizations versus time based on various initial conditions, 

and (c) Comparison of PC and Sp versus time. For the purpose of demonstration, the parameter uncertainty is not 

considered and we only show the results of the first two years in the figure. 795 
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Fig. 4. The length of warm-up time twu with various soils and meteorological conditions. Note that some of the twu 

values are larger than 10 years and are not able to be obtained due to the 10-year simulation time. The heterogeneous 

soil profile consists of Loam (0-75 cm), Clay loam (75-150 cm), Silt (150-225 cm), and Sand (225-300 cm). 800 
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Fig. 5. The value of the warm-up time twu. (a) The overall profile twu values versus different soil profile lengths and 

(b) twu value as a function of depth z with a 20-m soil profile. 

  805 
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Fig. 6. The results of lnKs estimations (first row) and their associated standard deviations (second row) within two 

data assimilation frameworks (left: EnKF; right: IES) under five initialization methods (Case 1). 
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 810 

Fig. 7. The impacts of increased ensemble size (Case 2) and uncertainty of initial state (Case 3) on the results of 

lnKs estimations within EnKF and IES. 
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Fig. 8. The RE results of parameter estimations (α, n and Ks) under five initialization methods with (a) EnKF and 815 

(b) IES (Case 4). 
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Fig. 9. The RE results of parameter estimations under five initialization methods with IES when the simulation 

time is 60 days (Case 5). 820 
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Fig. 10. The experimental site: (a) plan view, and (b) the cross-sectional view of the FDR sensor.  
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 825 

Fig. 11. The meteorological information and observed soil moistures over the experimental time. (a) Observed 

rainfall and calculated potential evaporation. (b) Temporal change of soil moisture data at three different observed 

depths (10 cm, 20 cm and 30 cm). 
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 830 

Fig. 12. The comparisons between soil moisture observations and predictions (with estimated parameters from IES 

combined with different initialization methods) at all observation depths. 

 


