
Comments by the Associate Editor: 

 

Editor Decision 

I received comments from three reviewers, two suggested major revision, and one 

(reviewer 2) suggested minor revision. All the three reviewers confirmed the 

contribution of the manuscript, but also pinpointed the problems of the manuscript. 

After received the comments, I carefully read the manuscript again and concur with the 

reviewers. Therefore, I suggested "reconsider after major revision". Please provide 

detailed replies to the comments made by the reviewers and revised your manuscript 

accordingly. 

[Response] 

Thanks for handling our manuscript. We have improved our manuscript according to 

the referees’ suggestions. 

  



Reply to comments from Anonymous Referee #1 

 

 

General Comments 

The manuscript investigates the effect of the uncertainty of the initial conditions in the 

context of soil water movement described by the Richards equation. First the necessary 

warm-up times for different soils and climates are determined and then the effects of 

different methods to describe the initial condition on a subsequent data assimilation are 

compared. The comparison is additionally shown on a real-world case. I think the 

manuscript is interesting and shows the effects of the uncertain initial conditions nicely. 

I have few comments that may require some additional investigation or discussion. 

However, the manuscript is sometimes difficult to read and could be clearer. Therefore, 

many comments ask for some clarification. 

[Response] 

Thanks for your positive comments. We have improved the manuscript according to 

your suggestions. 

 

Major comments: 

1. The required computational power varies between the different initial conditions. 

The most expensive ones (with warm-up period) seem to give the best results in the 

subsequent data assimilation. I would find it very interesting whether this finding holds 

if for each method a similar total computation time (computation time for initial 

condition + computation time for data assimilation) is available. This means that e.g. 

IC-ObsInt or IC-Flux could afford more ensemble members than IC-WUP. The question 

is then, if e.g a higher number of ensemble members (in combination with a larger 

uncertainty in the representation of the initial condition) of IC-ObsInt or IC-Flux could 

lead to similar, or even better results. 

[Response] 

Thank you for your valuable suggestion. First of all, we must apologize that we have 

used mistaken model input folders when analyzing the data from WUE and WUP, and 



two identical curves for WUE and WUP were generated. Thanks for raising this 

question, leading to the discovery of this mistake. Nevertheless, the general conclusions 

from this figure still hold. Several minor modifications are given below (please see our 

response to the last comment of yours) and will be reflected in the revised manuscript. 

Then, in order to investigate whether the conclusion for each method holds with a 

similar computational time and with a large uncertainty of initial state, we have added 

four cases for lnKs estimations based on the initial condition IC-HfSatu and IC-ObsInt. 

In the first two cases, we increase the ensemble size of IC-HfSatu and IC-ObsInt to 500 

(hereafter referred to as IC-HfSatu-500 and IC-ObsInt-500 in the manuscript) to explore 

the influences of ensemble size. The computational costs of them are similar to those 

of IC-WUP, IC-WUE and IC-Flux. Next, to further explore the effects of the uncertainty 

of the initial ensemble on the parameter estimations, we add a Gaussian noise (with a 

standard deviation of 0.017) to both IC-HfSatu-500 and IC-ObsInt-500 (hereafter 

referred to as IC-HfSatu-500-Un and IC-ObsInt-500-Un). The standard deviation of the 

Gaussian noise is calculated based on the spreading of IC-WUP initial ensemble, so 

that we can make sure the initial uncertainties of IC-HfSatu-500-Un and IC-ObsInt-

500-Un are similar with IC-WUP. 

According to the results of the four cases, we added a new figure (Fig. 7 in the revised 

manuscript) and corresponding discussion in the manuscript on the effects of ensemble 

size and the uncertainty of initial state on parameter estimation. 

[Changes in the manuscript] 

 

Fig. 7. (revised manuscript) The impacts of ensemble size and the uncertainty of initial state 



on the results of lnKs estimations using EnKF and IES. 

 

The results of IC-HfSatu-500 and IC-ObsInt-500 with the ensemble size of 500 in Fig. 

7 are similar with those of IC-HfSatu and IC-ObsInt (Fig. 6), indicating that the 

improvement of the parameter estimation result is slight when the ensemble size 

increases from 300 to 500. Hence, the ensemble size of 300 is sufficient for data 

assimilation problem in this study. In contrast, the influences of adding the uncertainty 

to the initial state on parameter estimation are totally different for EnKF and IES. 

Compared with the results of IC-ObsInt-500 and IC-HfSatu-500, the results of lnKs 

estimation with IC-ObsInt-500-Un and IC-HfSatu-500-Un improve for EnKF (Fig. 

7(a)), but deteriorate for IES (Fig. 7(b)). This may attribute to the diversity between 

two algorithms. EnKF is a sequential algorithm, so the state uncertainty introduced by 

UIC could decrease over assimilation steps. A larger ensemble state variance 

implemented at the beginning leads to a larger trust on data and thus a quicker update 

of parameter to truth, and can prevent EnKF from inbreeding, leading to a better result 

than that with initial condition of small variance. On the contrary, IES is a batch 

optimization method. The uncertainty of initial state exists at each iteration and has a 

negative effect on the model calibration during the whole simulation, worsening the 

parameter estimation results. 

Moreover, the parameter estimation results of IC-WUP are still superior to those of IC-

HfSatu-500-Un and IC-ObsInt-500-Un even they all have a similar computational cost, 

showing the promising performance of warm-up methods. The results are reasonable 

since all ensemble Kalman filter methods are affected by the quality of the auto-

covariance matrix and the mean value of predicted state ensemble (Eqs. (12) and (13) 

for EnKF; Eqs. (15) and (16) for IES). For WUP method, the initial condition is 

constructed by warming up the model with the prior parameter, thus IC-WUP contains 

useful information of prior parameter, even it is biased. Besides, the state covariance 

matrix is implicitly inflated due to the introduction of uncertain prior parameter 

ensemble during warming up. These two aspects ensure the robust performance of 

warm-up methods. However, the initial state ensembles of IC-HfSatu-500-Un and IC-



ObsInt-500-Un are independent from the prior parameter, which introduces additional 

uncertainties, making the data assimilation results worse. Therefore, even using a larger 

ensemble size and enlarging the state uncertainty (covariance inflation), warm-up 

methods are still the optimal choice for both EnKF and IES algorithms. 

 

2. Line 222-226: When the initial condition ensembles are generated for IC-HfSatu, IC-

ObsInt and IC-Flux, is uncertainty added? How exactly? The uncertainty in the initial 

water content must be represented in the initial ensemble. If no uncertainty is added, 

this could explain partly the inferior result compared to IC-WUP. Please clarify and 

discuss. 

[Response] 

Thank you for your careful reading. We are sorry that we did not explain the problem 

clearly. 

(1) The initial conditions of IC-HfSatu and IC-ObsInt were assumed to be deterministic 

without uncertainty in the original manuscript. In contrast, IC-Flux was conducted by 

warming up the model for a period (length = “warm-up” time twu) with a constant 

infiltration flux until a steady-state soil profile can be obtained. Thus, the uncertainty 

of parameter is introduced to IC-Flux, IC-WUP and IC-WUE during the construction 

of initial ensembles. 

(2) IC-HfSatu and IC-ObsInt are the most common and convenient methods to initialize 

the soil water/hydrological model, while most applications of these two methods do not 

consider including the parameter uncertainty (much larger than the magnitude of 

observation error) during the construction of initial conditions. We want to know how 

exactly they affect the data assimilation results and whether we can utilize these first-

cut methods to initialize the model within data assimilation framework. 

(3) In order to further explore the effects of the uncertainty of the initial ensemble on 

the parameter estimations for these two approaches, we add a Gaussian noise (with a 

standard deviation of 0.017, which is calculated based on the spreading of IC-WUP 

initial ensemble) to both IC-HfSatu and IC-ObsInt (hereafter referred as IC-HfSatu-

500-Un and IC-ObsInt-500-Un). We compared the results of parameter estimations 



between them and the other initial conditions, as presented in the updated Fig. 7 (revised 

manuscript). 

[Changes in the manuscript] 

(1) We have added the content “In addition, IC-HfSatu and IC-ObsInt are assumed to 

be deterministic without uncertainty, while for the IC-Flux, IC-WUP and IC-WUE, the 

uncertainty of states are introduced by warming up the model with uncertain 

parameters.” Please see lines 344-346. 

 

(2) We have added the cases and discussions about the effects of the initial state with 

or without uncertainty. Please see our response to your first comment. 

 

3. Line 247: The spatial resolution of 5cm is rather low for a 1 dimensional case. Is this 

a computational limitation? Otherwise, I would suggest to reduce the grid size to e.g. 

2cm. This is especially relevant for sandy soils where sharp infiltration fronts can 

develop and require such high resolutions. Could this impact the results? 

[Response] 

Thank you for your suggestion. To understand the effects of grid size on the results, we 

compared the temporal change of the soil moisture profiles for the Loam soil (i.e., 

default soil type) with the grid size of 2 cm and 5 cm, as presented in Figure below. 

 

Figure 2. The temporal change of soil moisture profile for the Loam soil with the grid size of 

2 cm (a) and 5 cm (b). 

We admitted that the grid probably is too coarse to accurately capture the soil moisture 

dynamics, especially the sharp wetting front. Nevertheless, the difference between the 



overall results with the grid sizes of 2 cm (Figure 2(a)) and 5 cm (Figure 2(b)) is 

insignificant. Since our purpose is to explore the temporal change of UIC, which is an 

overall statistical index of the soil moisture profile, we think this grid is justifiable. 

 

Figure 3. The spread index value for the Loam soil over time with the grid size of 2 cm and 5 

cm. 

In order to explore the effects of grid size on warm-up time, the spread values over time 

for the Loam soil with different grids are plotted in Figure 3. The relative difference 

between the two twu values is around 4%. Hence, the grid size has insignificant effects 

on the conclusions of our study. 

[Changes in the manuscript] 

(previous manuscript) The flow domain is discretized into 60 grids with a grid size of 

5 cm. 

(revised manuscript) The flow domain is discretized into 60 grids with a grid size of 5 

cm, which has been proved to be sufficient for evaluating UIC in our study (results not 

shown). 

 

4. Lines 379-383 and Figure 7: The biases of Ks, α, and n as well as their uncertainties 

differ. Therefore, their RMSEs should not be compared directly. I think it is not a 

meaningful result that α, which has the largest initial bias and uncertainty, also has the 

larger RMSE and that n, which has the smallest initial bias and uncertainty, has the 

smaller RMSE. Their relative improvement might be a better measure. 



[Response] 

Thank you for your excellent suggestion. To give a fair assessment on the improvement 

of data assimilation results, we have added the relative error index (RE) into the 

manuscript, which is calculated as, 
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where E

jm  represents the estimated parameter of realization j at the last simulation day 

(EnKF) or the last iteration (IES); Tm represents the true parameter listed in Table 1. 

Ne is the total number of the realizations. e

mRMSE  and p

mRMSE represent the RMSEm 

of the estimated and prior parameters. Compared with the RMSEm, this index can better 

present the improvement of parameter estimation during data assimilation. We have 

modified the figures.  

[Changes in the manuscript] 

 

Fig. 8. (revised manuscript) The RE results of parameter estimations (α, n and Ks) under five 

initialization methods with (a) EnKF and (b) IES. 



 

Fig. 9. (revised manuscript) The RE results of parameter estimations under five initialization 

methods with IES when the simulation time is 60 days. 

 

5. Line 286: You find that twu is less than one day for sand. I think that this result might 

be due to the chosen initial condition for the warm-up. It is true, that for the chosen 

high water contents sand will drain very fast and rapidly approach a similar water 

content state. However, in case of an initial condition in a very dry state (which should 

be relevant for the arid climate), the hydraulic conductivity of sand drops to very low 

values and the initial spread can extend for a very long time, or until a sufficiently large 

rain event increases the water content and then leads again to the rapid approach of 

the similar water content. I think it would be interesting to investigate this by choosing 

a different (dry) initial condition. At least this should be discussed in the manuscript. 

[Response] 

Thank you for your valuable comment. To further investigate this problem, we 

conducted another two Monte-Carlo simulations for sandy soil with wet and dry initial 

conditions (i.e., the mean values of soil moisture ensemble are 0.2375 and 0.15 

respectively with the same standard deviation of 3%). The temporal change of the 

spread Sp and the corresponding twu are presented in Figure 4. 



 

Figure 4. The temporal change of spread for sandy soil with a wet and dry initial condition 

separately (i.e., the mean of soil moisture ensemble is 0.235 and 0.15 respectively with a 

standard deviation of 3%). 

The results confirm the reviewer’s comment: a drier initial condition leads to the 

increase of warm-up time. Starting with a high soil moisture, the sand drains rapidly; 

when the soil is very dry, the hydraulic conductivity is extremely small and the initial 

spread survive for a long time. 

[Changes in the manuscript] 

We have added the discussion about the effects of the mean value of the initial soil 

moisture ensemble on the warm-up time in Section 3.2.2: “It should be noted that the 

twu is also relevant to the initial state of soil. Regarding the initial condition in an 

extremely dry state under the arid climate, the hydraulic conductivity is very small, and 

the initial spread extends for a long time. For instance, twu of sand increases from 1 day 

to 8 days when the ensemble mean value of initial soil moisture decreases from 0.2375 

to 0.15 (results not shown). Yet, if a sufficiently large rain event takes place, the soil 

moisture increases and then converges to a similar state rapidly.” Please see lines 312-

316. 

 

6. Line 273-275 and 477-478: Since you recommend the choice 0.5% as a threshold: 

Please explain why. What is the advantage? Why should I not choose the other 

mentioned thresholds (e.g. 1% or 0.1%)? 



[Response] 

The threshold of 0.5% is recommended due to a reasonable trade-off between the model 

accuracy and computational cost.  

[Changes in the manuscript] 

An explanation is added in Section 3.2.2: “As shown in Fig. 3(c), there is a significant 

diversity of the results between Spin-up and Monte-Carlo methods at index value of 

1%, indicating that UIC still plays a significant role. In contrast, the requested twu is 

more than 15 months for a value of 0.1%. To balance the estimation accuracy and 

computational cost, we recommend a threshold of 0.5% for both Spin-up and Monte-

Carlo methods, and the corresponding warm-up time twu is 8 months, which is 

sufficiently long for UIC to diminish and the difference between PC and Sp is 

insignificant.” Please see lines 275-280. 

 

7. Lines 306-313 and Figure 5: If I understand correctly, you investigate when the 

uncertainty for the full profile drops below the 0.5% threshold. In addition (or possibly 

as replacement) I would find it interesting to see the spatially resolved times for each 

depth for the deepest profile (20 m). 

[Response] 

Thank you for your valuable comment. We have added a new subfigure (Fig. 5(b)) in 

the manuscript, which presents the twu value for each depth with a 20-m soil profile, as 

presented below. The result still supports our previous conclusion, and more details 

about UIC along the soil profile have been displayed and analyzed in the revised 

manuscript.   

[Changes in the manuscript] 



 

Fig. 5. The value of the warm-up time twu. (a) The overall profile twu values versus different soil 

profile lengths and (b) twu value as a function of depth z with a 20-m soil profile. 

  

8. Line 152 (Equation 8): If the monthly average of the previous year is required, 

wouldn’t that imply that PC is not defined for the first year? However Fig. 3 shows PC 

starting from time 0. Please clarify. 

[Response] 

We are sorry that we did not explain it clearly. PC is an index that reflects the deviation 

of soil moisture between two adjacent years in a recursive run after a period of warm-

up time twu. Following de Goncalves et al. (2006) and Ajami et al. (2014), PC at month 

t=twu is calculated by comparing the relative difference of soil moistures at month t=twu 

and month t =twu + 12. As presented in Fig. 3(a) in the manuscript, PC at month t=12 is 

close to 0. 

[Changes in the manuscript] 

We have updated Equation 8 as  
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where M(t) and M(t+12) are the monthly averaged soil moistures after model spin-up 

for t months and t+12 months. Please see lines 160-162. 

 

9. Figure 3: Why does the water content state after 24 months differ between panel (a) 

and (b)? Since both are initialized with the same parameter values and the UIC has 



already decayed, they should show the same soil moisture. Please clarify. 

[Response] 

Good eyes! Thank you for pointing out this problem. We made a mistake when 

calculating the monthly-average soil moisture at t = 24 month in Fig. 3(b). This error is 

amended in the updated figure. 

[Changes in the manuscript] 

 

Fig. 3. Comparison of Spin-up and Monte-Carlo methods in determining warm-up time. (a) 

Spin-up method with monthly-averaged soil moisture versus time by running a simulation 

recursively for 10 years, (b) Monte-Carlo method with monthly-averaged soil moisture of 

different realizations versus time based on various initial conditions, and (c) Comparison of PC 

and Sp versus time. For the purpose of demonstration, the parameter uncertainty is not 

considered and we only show the results of the first two years in the figure. 

 

10. Lines 370-377: Based on Figure 6, I disagree with the statement that filter 

inbreeding is not a significant issue for the EnKF case. In Figure 6, it seems that the 

final parameter value does not change any more over time and is over 5 standard 

deviations away from the truth. This means that the uncertainty is too small. Part of the 

reason could be that the initial uncertainty is chosen way too small. It is over 9 standard 

deviations away from the true value. This makes it very difficult for the EnKF to find 

the true value. I would suggest to repeat the simulations with a larger parameter 

uncertainty. 

[Response] 

Thank you for your suggestion. In order to explore the effects of parameter uncertainty 

on the data assimilation results, we compared the parameter estimations of lnKs with 



various initial standard deviations of initial parameters (0.1 and 1 respectively), as 

presented in Figure 5 below. The results agree with our previous conclusion. 

(1) We admit that the data assimilation results could be enhanced with a larger 

parameter uncertainty for the EnKF case, since the parameter updates more rapidly than 

the small-variance case (Figure below), and could prevent possible inbreeding 

problems. As shown in the figure, the data assimilation results with a larger parameter 

uncertainty (lnKs-1 (HfSatu) and lnKs-1 (WUP)) are better than those with a smaller 

one (lnKs-0.1 (HfSatu) and lnKs-0.1 (WUP)). 

(2) WUP is still the best initialization method among the five approaches, regardless of 

lnKs variance of 0.1 or 1.0. As shown in the figure, the RMSEs of lnKs-1 (WUP) and 

lnKs-1 (HfSatu) are 0.13 and 0.36 respectively. Since our topic of this study is to 

demonstrate the effects of uncertainty of initial condition and initialization methods, we 

have not revised the model inputs of prior parameters but added the discussions about 

enlarging the initial parameter uncertainties and filter inbreeding issue in the revised 

manuscript. 

 

Figure 5. The temporal change of estimated mean and standard deviation of lnKs with 

various parameter uncertainties. 

[Changes in the manuscript] 

We have added our discussion about filter inbreeding and initial parameter uncertainties 

in Section 3.3.2. 

 

11. Line 177-178: “: : :, uk are state variables (i.e., pressure head and soil 



moisture) : : :”. Do you update water content and matric potential of the same node 

simultaneously in the augmented state? Due to their nonlinear relation, the analysis 

would lead to inconsistencies between water content and matric potential for the 

analysis. How is this handled in the forecast? Please clarify. 

[Response] 

Thank you for your careful reading. In this study, we only update the soil moisture in 

the simulation and convert the updated soil moisture ensemble into the pressure head 

to drive the model. The above statement is confusing and we have revised it. 

[Changes in the manuscript] 

(Previous manuscript) uk are state variables (i.e., pressure head and soil moisture) at 

time tk. 

(Revised manuscript) uk are the state variables (i.e., soil moisture) at time tk. The 

updated soil moisture ensemble can be converted to pressure head to drive the model. 

 

Technical comments: 

Lines 228-238: This part describes IC-WUP and IC-WUE. However, this is not a 

general description. In Section 3.2, when the spin up periods are investigated, a 

different procedure is used. This confused me when reading the paper the first time. 

Please, only mention the general settings in 3.1 (i.e. climates, soils and model 

representation), and not specifics that only apply to 3.2 or 3.3. Therefore I would 

suggest to move this part to Section 3.3. Additionally, here it is not clear how the 

parameter and initial condition ensembles are exactly generated. Please clarify. 

[Response] 

Thanks for your valuable suggestions and comments. We are sorry that we did not make 

the description clear. 

IC-HfSatu is a uniform soil moisture profile with the 50% relative saturation (e.g., 

θ=0.254 loam) of soil; IC-ObsInt is a linear interpolation between observations at the 

beginning of simulation. The depths of the initial observations are 10 cm, 80 cm, 150 

cm, 220 cm and 290 cm; IC-Flux is a steady-state soil moisture profile by warming up 

the model with a constant infiltration flux (1 mm/d). Besides, the initial conditions of 



two warm-up methods are given by running the model prior to the beginning of 

simulation period with available meteorological data (as shown in Fig. 2). If the 

meteorological data before the simulation period is available, it is used in the warm-up 

method to obtain the initial condition (IC-WUP); otherwise, we use the meteorological 

data at the simulation period (IC-WUE) as a surrogate. The length of warm-up time for 

IC-Flux, IC-WUP and IC-WUE is equal to twu (242 days) according to the results in 

Section 3.2.2(a) , so the warming-up period of WUP for these three methods is from 

day 124 to day 365. In addition, IC-HfSatu and IC-ObsInt are assumed to be 

deterministic without uncertainty, while for the IC-Flux, IC-WUP and IC-WUE, the 

uncertainty of states are introduced by warming up the model with uncertain parameters.  

The initial realizations of soil hydraulic parameters Ks, α and n are generated following 

logarithm normal distributions, with mean values of 4.7 m d-1, 8.6 m-1 and 1.8, and 

variances (log-transformed) of 0.1, 0.3 and 0.006. The saturated soil moisture θs and 

residual soil moisture θr are assumed to be deterministic with the value of 0.43 and 

0.078. 

[Changes in the manuscript] 

We have added the explanation in the manuscript to Section 3.3 as suggested. 

 

Line 222-226: I think this part should be moved to Section 3.3 as well. 

Thanks. This part has been moved. 

 

Line 243: “Fig. 1” should be “Fig. 2”. 

Thank you. The error has been corrected. 

 

Line 254 and Fig. 3: The text mentions a simulation length of 10 years, the figure shows 

only 2 years. I would suggest to mention that you only show the first 2 years. 

Thanks. This has been revised. 

 

Lines 338-342: How many observations are there? In what depths are the observations? 

What is the assimilation frequency? Or is only a single observation in the depth of 10 



cm assimilated every 10 days? If that is the case this has to be clarified. 

[Response] 

Thank you for your suggestion. The observations are only collected at the depth of 10 

cm and assimilated every 10 days, starting from day 3. Unless otherwise specified, the 

total numbers of the observations are 37 (3rd, 13th, 23th,…, 363th days). 

[Changes in the manuscript] 

(Previous manuscript) In addition, the observation at 10 cm is assimilated into model 

every 10 days. 

(Revised manuscript) A total number of 37 observations are assimilated into the model. 

The observation depth is at z = 10 cm and the observed soil moisture is assimilated 

every 10 days, starting from day 3. 

 

Lines 343-350. I think this part should be moved to methods in Section 2. 

Thanks. Revised. 

 

Line 352-353 and Figure 6: I would mention that this is case 1 and case 2. 

Thanks. This has been modified. 

 

Line 399: “Field” instead of “Filed”. 

Thank you. Revised. 

 

Figure 4: Since essentially the times for sand for all climates as well as silt and clay 

loam for the M-AC and the M-SC climate can not be properly displayed: Maybe the 

logarithm of the time could be more meaningful (like in Fig. 5). 

[Response] 

Thank you. Fig. 4 has been revised in the manuscript according to the suggestions from 

you and reviewer 2. We added a case to investigate the twu value in a multiple-layers 

soil. 

[Changes in the manuscript] 



 

Fig. 4. The length of warm-up time twu with various soils and meteorological conditions. Note 

that some of the twu values are larger than 10 years and are not able to be obtained due to the 

10-year simulation time. The heterogeneous soil profile consists of Loam (0-75 cm), Clay loam 

(75-150 cm), Silt (150-225 cm), and Sand (225-300 cm). 

 

Figure 6: The line for IC-WUE is essentially not visible. Is it below IC-WUP? At least 

mention this in the caption. 

[Response] 

Thank you for pointing out this problem. We are sorry that we have used mistaken 

model input folder when analyzing the data from WUE and WUP, and two identical 

curves for WUE and WUP were generated. The error has been fixed, and the figure has 

been updated. Although there is a little difference between Figs. 6 (a) and (b), the 

general conclusions are consistent with the previous ones. 

[Changes in the manuscript] 



 

Fig. 6. The results of lnKs estimations (first row) and their associated standard deviations 

(second row) within two data assimilation frameworks (left: EnKF; right: IES) under five 

initialization methods. 
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Reply to comments from Anonymous Referee #2. 

 

 

General Comments 

This study investigates the temporal change of the uncertainty of initial condition in 

variably saturated flow model and assesses the impacts of several commonly-used 

initializing methods on results within various data assimilation frameworks. The topic 

is interesting and relevant to the topics of the Hydrology and Earth System Sciences. 

The manuscript is well-organized and easy to understand, although some of language, 

may be further refined and improved. The results and discussion are adequate to reach 

very instructive conclusions for variably saturated flow modeling. Several highlights 

for this manuscript: compared to previous researches on UIC issue, this study focuses 

on soil water modeling and makes a comparison between Monte Carlo (preferred by 

groundwater hydrologist) and Spinning up methods (preferred by surface water 

hydrologist). The investigation of warm-up time with different soil textures and depths 

is quite interesting. The study of UIC propagation with data-model interaction is 

another merit. Therefore, I recommend this paper for publication in the Hydrology and 

Earth System Sciences, with a few comments.  

[Response] 

Thank you for your positive comment! 

 

Major comments: 

1) Authors have compared the difference of model outputs with various data 

assimilation framework (i.e., EnKF and IES). As the authors correctly point out, the 

ensemble size is an important factor for these two algorithms, which need to be 

discussed further. I encourage the authors to explore the effects of ensemble size on 

EnKF and IES with multiple test so that a suitable ensemble size for these two 

assimilation framework can be determined.  

[Response] 

Thank you for your comment, according to the suggestions from you and reviewer 1, 



we have added a new figure to explore the effects of ensemble size on the parameter 

estimations within EnKF and IES. 

[Changes in the manuscript] 

 

Fig. 7. (revised manuscript) The impacts of increased ensemble size and the uncertainty of 

initial state on the results of lnKs estimations within EnKF and IES. 

 

The results of IC-HfSatu-500 and IC-ObsInt-500 with the ensemble size of 500 in Fig. 

7 are similar with those of IC-HfSatu and IC-ObsInt (Fig. 6), indicating that the 

improvement of the parameter estimation result is slight when the ensemble size 

increases from 300 to 500. Hence, the ensemble size of 300 is sufficient for data 

assimilation problem in this study. 

 

2) The synthetic case study present the proper warm-up time twu versus different soil 

texture, soil depth, and meteorological conditions. While the relationship between twu 

and meteorological conditions may be commonsense, the reveal of quantitative 

relationship between twu and soil texture and soil depth is surprising and interesting, 

due to the fact that twu changes abruptly from sand to finer texture, and it increases 

nonlinearly with the increase of soil depths. However, the soil is seldom homogeneous 

in natural conditions, especially for very long soil profile. The authors should at least 

present one simulating result of twu for layered soil, which is more applicable for real-

world case. I believe this should take too much work since it is one-dimensional model. 

[Response] 



Thank you for your valuable comment. We have added a case to obtain the twu for a 

layered soil profile, which consists of Loam (0 to 75 cm), Clay loam (75 to 150 cm), 

Silt (150 to 225 cm) and Sand (225 to 300 cm). 

[Changes in the manuscript] 

 

Fig. 4. The length of warm-up time twu with various soils and meteorological conditions. Note 

that some of the twu values are larger than 10 years and are not able to be obtained due to the 

10-year simulation time. The heterogeneous soil profile consists of Loam (0-75 cm), Clay loam 

(75-150 cm), Silt (150-225 cm), and Sand (225-300 cm). 

 

In the revised manuscript, we have expanded the results and presented the twu value in 

layered soil: “Moreover, regarding the heterogeneous soil with multiple layers, the twu 

under the M-AC is larger than 10 years (similar to Silt and Clay loam), while that under 

M-SC or M-HC becomes much smaller (higher than that of Loam but they are of the 

same magnitude). Thus, it is conjectured that twu is determined by the fine soil texture 

in the layered profile under dry meteorological condition, but averaged soil hydraulic 

properties under wet meteorological condition”. Please see lines 307-311. 

 

Minor comments: 

Line 12: various initial condition »> various initial conditions 

Thank you. Revised 



 

Line16: model initializing »> model initializing methods 

Thank you. This has been revised. 

 

Line 28: delete in 

Thank you. Revised. 

 

Line 48: a space between approaches and comma  

Thanks. The error has been corrected. 

 

Line 61: hereafter referred »> hereafter referred to 

Thank you. It is revised 

 

Line 77: delete the last the  

Thank you. It is modified. 

 

Line 81: initial ensemble are »> initial ensemble is  

Thank you. It is rewritten. 

 

Line83: Currenlty »> Currently  

Thank you. Revised 

 

Line 110: Richards’s »> Richards’  

Thanks. Revised 

 

Lines 129-130: as state dependent, atmospheric boundary condition (try to be more 

concise here and some other statements)  

Thanks. It is rewritten. 

 

Line 135: detemined »> determined  



Thanks. Revised 

 

Line 141: use UIC instead Eqs. (9-10): try to use one equation instead and shorten the 

description of the equation. 

Thank you. It is revised. 

 

Line 172: assimilation + approach  

Thanks. Revised 

 

Line 210: which λ values you use in the simulations?  

Thanks. λ is a dynamic stability multiplier during the iterations. The prior value of λ is 

10, but the value can be adjusted adaptably according to the data assimilation results at 

every iteration. 

 

Line 222: perscribe »> prescribe  

Thank you. It is revised. 

 

Line 223: availablitity »> availability  

Thanks. Revised. 

 

Line 256: be consistent using italic or not for PC.  

Thank you. This has been revised. 

 

Line 256: why 3%?  

Thank you. The Gaussian noise is determined as 3% according to the observation error 

of soil moisture since the uncertainty of parameter is not taken into consideration in this 

part. We have added a sentence to explain it. 

 

Line 335: warms »>warm  

Thanks. Revised. 



 

Line 356: delete both  

Thanks. This has been revised. 

 

Line 358-359: thus »> and thus  

Thanks. Revised. 

 

Line 372: multiple spaces between runs and are. 

Thanks. Revised. 

 

Change “than” to that  

Thanks. This has been revised. 

 

Line 405: Which evapotranspiration model are you using?  

Thank you for your comment. The potential evaporation is calculated by Penman-

Monteith’s equation. We will add an explanation in the manuscript. 

 

Line 427: needs a space after “part.”  

Thanks. Revised. 

 

Lines 443-444:“soil moisture profile has large variation, e.g., discontinuous soil 

moisture in layered soils.” — it would be interesting to see an additional case for 

heterogeneous soils, and this also leads to another interesting question — what will 

happen if pressure head profile, which is continuous in heterogeneous soil, is used as 

initial condition. Please add some discussion on this topic.  

[Response] 

Thank you for your valuable comments. We have added the case about twu of layered 

soil in the manuscript, please see Fig. 4 above. Regarding the topic about using initial 

pressure head as initial condition, we are going to discuss it from three aspects: 

(1) It is easier to collect the soil moisture data than soil pressure head, so that we only 



use soil moisture as observation in this study. In heterogeneous soil, the pressure head 

profile is continuous compared to soil moisture profile, which is the reason why head 

is preferred as the state variable in numerical models. 

(2) With respect to twu, the conversion relationship between the spread of soil moisture 

and pressure head is deterministic (i.e., the spread as well as the twu value with pressure 

head profile can be derived from those with soil moisture profile). Thus, in this study 

we choose soil moisture in the study of UIC and twu. 

(3) The impact of observation type (i.e., pressure head and soil moisture) on data 

assimilation results has been widely explored in previous studies (Shi et al. 2015), since 

these two state variables have different probability distributions, nonlinearity, 

accessibility, and observation errors. Although choice of head or moisture can affect the 

data assimilation results, it is not primarily induced by the difference in UIC, which is 

focus of current study. 

[Changes in the manuscript] 

We have added some discussions about the effects of initial pressure head profile in 

heterogeneous soil in Section 5. Please see lines 545-552. 

 

Line 452: atmospheric condition »> atmospheric boundary condition  

Thanks. Revised. 

 

Conclusion 2: Please include more details and add quantitative conclusions for this. 

[Response] 

Thank you. We have modified the conclusion 2 according to your suggestion. 

[Changes in the manuscript] 

Warm-up time varies nonlinearly with soil textures, meteorological conditions, and soil 

profile. Under most situations (e.g., Loam with the soil profile length less than 5 m 

under non-arid climate), one-year warm-up time is sufficient for soil water movement 

modeling, but an extremely long time (exceeds 10 year) is needed to warm up the model 

for a long, fine-textured soil profile under an arid meteorological condition. 

 



Errors in references: Line 566, Line 673, Line 610, Line 639. 

Thanks. Revised. 

 

Reference 

Shi, L., Song, X., Tong, J., Zhu, Y. and Zhang, Q.: Impacts of different types of 

measurements on estimating unsaturated flow parameters, J. Hydrol., 524, 549–561, 

doi:10.1016/j.jhydrol.2015.01.078, 2015. 

 

  



Reply to comments from Anonymous Referee #3 

 

 

General Comments 

This paper studies an important problem of soil water modeling: the uncertainty of 

initial condition (UIC) through analyzing the effects of different initial conditions on 

parameter estimation within two data assimilation frameworks. I believe this work 

provides useful insights to improve our understanding of uncertainty of initial 

conditions. I would be in favor of publication after the authors addressed the comments 

given below.  

[Response] 

Thank you for your positive comment! We have revised our manuscript according to 

your suggestions. 

 

Comments: 

1. The grammar of this paper needs some improvements, some small grammar errors 

can be found. 

Thank you for your suggestion. We have invited a native English speaker to proofread 

our manuscript. 

 

2. The quantification of initial condition uncertainty (UIC) is unclear, especially for the 

usage of data assimilation method. I don’t follow how two methods combined.  

[Response] 

Thank you for your valuable comment. We hope our response will make it clearer. At 

t=0, UIC is introduced when we specify the initial condition for modeling due to our 

imperfect knowledge of it. In our study, the quantification of UIC is based on a Monte-

Carlo simulation method. To be specific, UIC at depth z and time t is measured by the 

spread (standard deviation) of the soil moisture at depth z. We find UIC decays with 

simulation time t and a sufficient long warming-up time will let the UIC vanishes. Here 

warming-up means that we simulate the model prior to the desired simulation period 



and the result is given as initial condition (see our illustration Fig. 1 in the revised 

manuscript). Evaluation of UIC and our data assimilation are smoothly combined since 

we choose EnKF and IES, both of which are also Monte-Carlo method. At t=0, we 

generate an ensemble of soil moisture profiles based on one initialization method 

(which introduces UIC), and use this ensemble to initiate the data assimilation 

(assimilate observations and estimate parameter). Finally, we can evaluate our data 

assimilation performance based on different initializing methods. 

[Changes in the manuscript] 

We have added some explanations and modified our manuscript to make the description 

clearer. Please see lines 143-154 in the revised manuscript. 

 

3. The purposes of using data assimilation method and its relationships to results and 

conclusions are unclear.  

[Response] 

On the one hand, data assimilation are widely used in vadoze zone hydrology for 

accurate estimation of hydraulic parameters/future states, and reduction of uncertainties, 

using observation. On the other hand, UIC is an important uncertain factor that affect 

the accuracy of simulation, and some of initialization methods have been proposed in 

forward simulations. However, to our best knowledge, there is no systematic research 

on the effects of UIC and different initialization methods on data assimilation. The topic 

of our research, i.e., combination of UIC and data assimilation, is reasonable since they 

both deal with the state uncertainty (UIC itself is the state uncertainty at t=0, and is one 

source of state uncertainty). Some of our results and discussions are on UIC alone, in 

which neither observation nor parameter uncertainty is involved. Some other discussion 

and results focus on the effects of UIC and different initialization methods on data 

assimilation, in which UIC and parameter uncertainty coexist.  

[Changes in the manuscript] 

We have improved our manuscript according to your suggestions. Some explanations 

have been added about our purposes of using data assimilation method and we have 

made its relationships to results and conclusions clearer. Please see lines 75-97 and lines 



143-154. 

 

4. Please be more specific about why using both experimental and field model, and how 

different their results are.  

[Response] 

In this study, we conducted both synthetic and field experiments. In synthetic 

experiments the “observed” data are generated by running the forward model with the 

exactly known parameters, while the field data are collected in the experimental station. 

The field observations may contain a lot of uncertainties, such as unknown/inaccurate 

upper and lower boundary conditions, unknown observation error/bias, and unknown 

parameters. All these unknown uncertainties have impact on the modeling, while the 

effect from UIC could be overshadowed by those from other unknown uncertainties, 

and the direct results from field experiments could by inconclusive. By utilizing the 

synthetic observations, we can separate the effects on modeling from all these 

uncertainties, since they are all perfectly known. Based on the synthetic case, we can 

elaborate our conclusions on the temporal evolution of UIC, as well as its effect on data 

assimilation, which is assessed by the estimated parameter and perfectly-known true 

parameter. We think this is the logic way: first, a comprehensive investigation on UIC 

is conducted using synthetic case, then, the field data can be used to validate the 

applicability of our approaches/results.  

The conclusions by using field and synthetic data are similar (the difference of results 

between various initialization methods are less significant in field case, due to 

contamination of other unknown uncertainties), indicating a good applicability of our 

approaches/results. 

[Changes in the manuscript] 

We have added an explanation “Synthetic observation in previous section is generated 

by running the model with exactly known uncertainty sources. By conducting synthetic 

experiments, we can thoroughly analyze the impact of UIC during data assimilation, 

with scenarios having different numbers of observations/unknown parameters, and 

more decisive conclusions can be drawn. In contrast, the field observations contain 



additional uncertainties which are largely unknown (e.g., the calculated 

evapotranspiration is inaccurate for real-world case). In order to examine the real-world 

applicability of the conclusions drawn from synthetic case, Field data are necessary to 

validate our results.” in the manuscript. Please see lines 462-468. 

 

5. Please describe more details about the novelty of this paper, it seems there is no new 

method involved, and I am not sure how useful and novel the conclusions are. 

[Response] 

Although the initialization and data assimilation methods used in this study are not new, 

we claim the innovation of our studies mainly based on that, to the best of our 

knowledge, this is the first study analyzing the effects of initial conditions and 

initialization methods within various data assimilation frameworks to date. The 

novelties include three aspects. 

(1) Two common approaches (Spin-up method and Monte Carlo method) for 

quantifying the temporal evolution of initial condition uncertainty are compared. Spin-

up methods are widely used in large-scale hydrological model due to their smaller 

computational cost. However, Monte Carlo methods have the merit that they can 

explicitly quantify UIC, which is suitable for data assimilation. Finding an equivalency 

between these two methods can fill the gap between widely-used initialization methods 

and data assimilation, both of which are important tools increasing the accuracy of 

hydrological modeling. Also, new algorithm is not necessary for the combination of 

UIC/initialization and data assimilation, in both of which we use Monte Carlo method 

for expressing state uncertainty. This (i.e., no new algorithm) should be regarded as an 

advantage according to principle of parsimony, since our approach can be easily applied 

and validated by the readers. 

(2) The influences of soil texture, meteorological condition and soil profile length on 

initial condition uncertainty evolution are exploited. Especially, we propose a warming-

up time twu, which is defined as the time when percentage cutoff PC or ensemble spread 

Sp is lower that 0.5%, can guide us to select the warming up period and pick up 

observation at different time in data assimilation. 



(3) Different approaches to initialize unsaturated-saturated flow models within two data 

assimilation frameworks (IES and EnKF) are assessed. Our studies focus on the case 

when both parameters and initial state are uncertain, and the combination of selected 

initialization method and data assimilation can be a standard approach for future 

variably saturated flow modeling. 

[Changes in the manuscript] 

We have modified our manuscript according to the discussion above to make the 

novelties of the paper more apparent. 
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Abstract: 

Soil water movement has direct effects on environment, agriculture and hydrology. Simulation of soil 5 

water movement requires accurate determination of model parameters as well as initial and boundary 

conditions. However, it is difficult to obtain the accurate initial soil moisture/matric potential profile at 

the beginning of simulation time, making it necessary to run the simulation model from arbitrary initial 

condition until the uncertainty of initial condition (UIC) diminishes. The behavior of this process, which 

is usually definedoften known as “warming up”. In this paper, we compare two commonly used methods 10 

for quantifying the UIC (one is based on running a single simulation recursively across multiple 

hydrological years, and the other is based on Monte-Carlo simulations with realization of various initial 

conditionconditions) and identify the “warm-up” time twotwu (minimum time required for the model to 

warm up to eliminate the UIC by warming up the model) required with different soil textures, 

meteorological conditions, and soil profile lengths. Then we analyze the effects of different initial 15 

conditions on parameter estimation within two data assimilation frameworks (i.e, ensemble Kalman filter 

and iterative ensemble smoother) and assess several existing model initializing methods that uses 

available data to retrieve initial soil moisture profile. Our results reveal that Monte-Carlo simulations and 

the recursive simulation over many years can both demonstrate the temporal behavior of UIC and a 

common threshold is recommended to determine the warm-up time for both methods.twu. Moreover, the 20 

relationship between warm-up timetwu for variably saturated flow modeling and the model settings (soil 

textures, meteorological conditions and soil profile length) are quantitatively identified. In addition, we 

propose a “warm-up” period before assimilating data in order to obtain a better performance for parameter 

and state estimation. 

Key words: Variably saturated flow; Initialization methodsmethod; Initial condition uncertainty; 25 

Data assimilation; Soil moisture  
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1. Introduction 

Understanding the movement of soil water is of great importance due to its direct effects across 

different disciplines, such as in environment, agriculture and hydrology (Doussan et al., 2002). However, 

the modeling of flow in variably saturated soil is complicated by many difficulties, including highly 30 

variable and nonlinear physical processes, as well as limited information about the soil hydraulic 

properties, initial conditions, and boundary conditions (DeChant, 2014; Rodell et al., 2005; Seck et al., 

2014; Bauser et al., 2016; Li et al., 2012). The soil hydraulic parameter uncertainty is identified as one of 

thea major uncertainty sourcessource in vadose zone hydrology and many studies have been focused on 

this topic. A highly relevant research area, inverse problemmodeling, has been developed to reduce the 35 

uncertainty of parameter by incorporating observational data (Erdal et al., 2014; Montzka et al., 2011; Wu 

and Margulis, 2013; Wu and Margulis, 2011). Initial and boundaryBoundary conditions also introduce 

uncertainty during the simulation of soil water flow (Ataie-Ashtiani et al., 1999; Forsyth et al., 1995; 

Szomolay, 2008). For instance, the uncertainty of boundary conditions, due tointroduced by flawed/noise-

contaminated meteorological data or fluctuating groundwater table, has been investigated in the past 40 

(Freeze, 1969; French et al., 1999; van Genuchten and Parker, 1984; Ji and Unger, 2001; Xie et al., 2011). 

Many publications have addressed the issue of the uncertainty of initial condition (UIC) in modeling 

soil water movement. For example, Walker and Houser (2001) compared the simulation with degraded 

soil moisture initial condition to that with true initial condition and found the discrepancy did not fade 

away even after one month. Then, Mumen (2006) concluded that the initial soil water state was one of 45 

the most important factors for estimating soil moisture in the case of bare soil. Chanzy et al. (2008) tested 

three initial water potential profiles and found that initialization had a strong impact on the soil moisture 

prediction. All theseThese studies showed that the incorrect initial condition may lead to false results. 

Based on the availability of information, initial condition can be obtained from different initialization 

approaches can be used for constructing initial conditions, e.g., an arbitrary uniform profile (Chanzy et 50 

al., 2008; Das and Mohanty, 2006; Varado et al, 2006), a linear interpolation with in situ observation 

(Bauser et al., 2016), a steady-state soil moisture profile induced with a constant infiltration flux (Freeze, 

1969). All of the approaches involve great uncertainties due to nonlinearity of soil moisture profile, 

observation error, or inaccurate boundary condition. As a result, it is crucial to explore the effects of UIC 
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on model outputs and compare the uncertainties inherited from various initialization approaches. 55 

To minimizeBesides the bias introduced by initial states and attain more accurate model results in 

earlier run, asimple initialization methods referred above, another common approach of model 

initialization is to obtain initial condition inherited from the warm-up model with preceding 

meteorological data. Starting from an arbitrary initial condition, this approach runs the model using a 

certain period (i.e., warm-up time twu) of meteorological data (twu) until the model state (e.g., soil moisture) 60 

reaches an equilibrium state, which is defined as the state when the uncertainty of state originated from 

UIC is negligible during simulation. The equilibrium state can be obtained by either running Monte-Carlo 

simulations until the states from different initial conditions converge to the same value (hereafter referred 

to as Monte-Carlo method) (Chanzy et al., 2008), or running a single simulation for several years by 

repeating one-year or multiple-year meteorological condition until the state at an arbitrary date 65 

ceaseceases to vary from year to year (Spin-up method) (Dechant and Moradkhani, 2011; Seck et al., 

2014). Spin-up method is widely used in large-scale hydrological model due to its smaller computational 

cost, while the less-common Monte-Carlo method has the merit of quantifying UIC explicitly at arbitrary 

time, which can be potentially used to construct state covariance matrix for data assimilation. To the best 

of our knowledge, there is no comparison made between these two methods to date. Finding an 70 

equivalency between these two methods is beneficial for linking initialization methods and data 

assimilation techniques. Moreover, the determination of warm-up time twu is keycrucial to the success of 

this approach (Ajami et al., 2014; Rahman and Lu, 2015). An underestimation of twu may bring uncertainty 

from arbitrarily-specified initial condition prior to initialization, while a large twu for initialization leads 

to higher computational demands (Rodell et al., 2005). A variety of modeling settings, such as soil 75 

hydraulic properties, meteorological conditions, and soil profile lengths, have strong influences on twu 

(Ajami et al., 2014; Cosgrove et al., 2003; Lim et al., 2012a; Walker and Houser, 2001). Thus, the 

determination of twu should be investigated thoroughly with different settings. 

Data assimilation As well as model predictions, UIC also has become a popular toolconsiderable 

effects on parameter estimation. One of the commonly-used inverse methods in the field of vadose zone 80 

hydrology is data assimilation approach (Vereecken et al., 2010; Chirico et al., 2014; Medina et al., 2014a, 

2014b). SomePrevious studies showed that thea poor initial soil moisture profile can be corrected by 
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assimilating near-surface measurements (Galantowicz et al., 1999; Walker and Houser, 2001; Das and 

Mohanty, 2006). Oliver and Chen (2009) discussed several possible approaches to improve the 

performance of data assimilation through improved sampling of the initial ensemble, and suggested the 85 

use of the pseudo-data. Recently, Tran et al. (2013) found that the decreasing assimilation interval could 

improve the soil moisture profile results induced by wrong initial condition and Bauser et al. (2016) has 

addressed the importance of UIC in data assimilation framework. Nevertheless, investigationHowever, 

these preliminary investigations of the influence of UIC on data assimilation results (i.e., are degraded by 

the narrow choice of initialization and data assimilation methods, and the lack of comprehensive 90 

assessment of the temporal evolution of state/parameter and state estimation) is limited.uncertainty when 

UIC and the parameter uncertainty coexist. For instance, during data assimilation, the initial ensemble 

areis often assumed to be known without uncertainty (Shi et al., 2015) or created by adding Gaussian 

noise to the initial estimate (Huang et al., 2008), both of which may result in false outputs. Currenlty, 

relatedThe researches mentioned above are all based on a sequential data assimilation approach (i.e., 95 

ensemble Kalman filter, or EnKF (Walker and Houser, 2001; Oliver and Chen, 2009)), which incorporates 

observation in a sequential fashion, so the effect of UIC can be eliminated quickly. Compared to EnKF, 

an iterative ensemble smoother (IES), which assimilates all data available simultaneously, can obtain 

reasonably good history-matching results and performs better in strongly nonlinear problems (Chen and 

Oliver, 2013). However, IES utilize all the observation simultaneously at every iteration and UIC may 100 

have a more persistent effect on IES. Thus, it is important to understanda systematical analysis for the 

propagation processeffects of UIC during variably saturated flow modeling, to identify the warm-up time 

twu under a variety of scenarios, and to compare different existingand initialization methods within various 

data assimilation frameworks is necessary and obliged. 

The objectives of this paper, therefore, are to: a) compare the temporal evolution of UIC with two 105 

common methods (Spin-up method and Monte-Carlo method) and identify the warm-up time twu under 

different soil hydraulic parameters, meteorological conditions and soil profile lengths; b) analyze the 

effects of different initial conditions on parameter estimation during data assimilation with EnKF or IES, 

and c) propose a selection scheme for choosing a suitable approach of initializing variably saturated flow 

models within different data assimilation frameworks to minimize the influence of UIC. We first 110 
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summarize the governing equations of variably saturated flow and method of UIC quantification in 

Section 2. Then we present results of synthetic simulations designed to investigate the propagation of UIC 

under different scenarios in Section 3, which is complemented by the results for field data in Section 4. 

Finally, we present our conclusions in Section 5. 

2. Method 115 

2.1 One-dimensional soil water movement 

  Richards’ equation can be used to describe the one-dimensional, vertical soil water movement, 

which is given as: 

1
h

K
t z t

     
       

1
h

K
t z t

     
       

                              (1) 

where h [L] represents the pressure head;    [-] denotes volumetric soil moisture; t [T] indicates the 120 

time; z [L] is the spatial coordinate taken positive upward; K K  [LT-1] denotes the unsaturated hydraulic 

conductivity. The solution of one-dimensional Richards’s equation is numerically solved by a noniterative 

numerical scheme, which was originally proposed in (Ross, 2003; Ross, 2006).Ross (2003) and Ross 

(2006). By using the primary variable switching scheme, this scheme uses the soil moisture as the 

unknown variable for unsaturated nodes and pressure head for saturated nodes (Zha et al., 2013). It can 125 

greatly reduce the computationcomputational cost of variably saturated flow modeling in soils under 

atmospheric boundary condition, where alternative drying-wetting conditions are often encountered.  

To obtain the solution of Eq. (1), the knowledge of functions K and θ versus h must be required. In 

this study, we use the van Genuchten-Mualem model (van Genuchten, 1980; Mualem, 1976) to describe 

thethese relationships, 130 

                                                     

(2) 

                    𝐾(𝜃) = 𝐾𝑠𝑆𝑒
0.5[1 − (1 − 𝑆𝑒

1 𝑚⁄ )𝑚]2                       (3) 

where Ks [LT-1] denotes the saturated hydraulic conductivity; s θs and r θr represent the saturated and 
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residual soil moistures, respectively; parameters  α [L-1] and n are related to the measure of the pore-135 

size density functions and m=1-1/n (n>1); the effective saturation degree eS  Se is defined as

. Se=(θ-θr)/(θs-θr). 

 Initial and boundary conditions are needed to solve the one-dimensional Richards’ equation. The 

initial condition could be the states of soil moisture 

0 0( , ) ( )tz t z   0 0( , ) ( )tz t z                                   (4) 140 

where 0 ( )z θ0 (z) is the initial soil moisture profile. 

 The upper boundary condition is specified as State-dependent, atmospheric boundary (state-

dependent boundary condition can be described as (Šimůnek et al., 2013)) in this study, 


    


p p

h
q K K E P

z
: 


    


p p

h
q K K E P

z
                            (5) 145 

m ch h h  m ch h h                                     (6) 

where q [LT-1] is the Darcian flux at the soil surface; Ep [LT-1] denotes the potential evaporation; Pp [LT-

1] represents the precipitation intensity; hm [L] and hc [L] are maximum and minimum pressure heads 

allowed at the soil surface, respectively. The value of hm is set to 0, whereas hshc is detemineddetermined 

as -100 m. 150 

The bottom boundary condition is the free drainage boundary: 

 0




 Nz z

h

z
0




 Nz z

h

z
                                   (7) 

where Nz zN is the depth of bottom boundary. 

2.2 UIC quantification 

 The investigation of uncertainty in this study includes model states (e.g., soil moisture) and model 155 

parameters, where the uncertainty of initial condition (state at t=0)UIC is a special case of state uncertainty. 

We consider two cases in our at t=0. The analysis is twofold. First, we consider a particular situation when 

 ( ) /e r s rS      
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UIC is the only uncertain source and all the model parameters are known. Thus, the choice of initial 

conditions is solely responsible for the accuracy of the model outputs. In this case, the temporal decay of 

UIC (either with or without observation) can be clearly demonstrated. by utilizing Spin-up or Monte-160 

Carlo methods. Second, a more complex and realistic situation, including both uncertain initial condition 

and model parameters, is considered during the data assimilation of soil moisture observation. Data 

assimilation methods, i.e., EnKF and IES, are used to update the model parameters and state 

simultaneously when observation data are availableUIC and data assimilation are smoothly combined in 

our approach since we choose Monte-Carlo-based methods (EnKF and IES). At t=0, we generate an 165 

ensemble of soil moisture profiles based on one initialization method (which introduces UIC), and use 

this ensemble to initiate the data assimilation (assimilate observations and estimate parameter). Finally, 

we can evaluate our data assimilation performance based on different initializing methods. 

2.2.1 The indexes of Spin-up and Monte-Carlo methods 

The uncertainty of initial condition can be measured by the percent change PC for Spin-up method 170 

(Ajami et al., 2014; Seck et al., 2014) or the ensemble spread Sp for Monte-Carlo method (Reichle and 

Koster, 2003). Percent change isPercent change is an index that reflects the deviation of soil moisture 

between two adjacent years in a recursive run after a period of warm-up time twu, which could be 

calculated as: 

1 2

2

100
M M

PC
M


   

( ) ( 1 2 )
( ) 1 0 0

( 1 2 )

M t M t
P C t

M t

 



                              (8) 175 

where M1 isM(t) and M(t+12) are the monthly mean ofaveraged soil moisture from the previous year and 

M2 is the monthly averagemoistures after model spin-up for the current yeart months and t+12 months 

(de Goncalves et al., 2006). 

 The ensemble spread (Sp)), calculated as a square root of averaged variance over all interested nodes, 

is an useful index to quantify the difference ofamong various realizations in Monte Carlo simulation, and 180 

it is given as: 

,

1

1
( ) ( )
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p i k

i

S k Var y
N 

       2

, , ,

1 1

1
( ) ( )

( 1)

eNN
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i je
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
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with 

2

, , , ,

1

1
( ) ( )

1

eN
a a

i k i j k i k

je

Var y
N 

 

 y y                         (10) 185 

 

where ,( )i kVar y  denotes the nodal ensemble variance at time tk; , ,

a

i j ky
, ,

a

i j ky  is nodal soil moisture value; 

,

a

i ky ,

a

i ky  is the ensemble mean of , ,

a

i j ky
, ,

a

i j ky ; i = 1, 2, …, N are the nodes of interest (can be part of 

the profile); j=1, 2, …, Ne is the ensemble number index; Ne is the ensemble size, which is taken as 300 

in this study based on sensitivity analysis of the ensemble size on the calculated results. Sp is the ensemble 190 

spread, which can be thought as a square root of averaged variance over all interested nodes. When N = 

1, the concept of Sp(k) is equivalent to the standard deviation of 
a

ky a

ky  at one location and time tk.  

2.2.2 Data assimilation approaches 

We employ EnKF and IES as thefor data assimilation approaches in this study. Fig. 1 illustrates the 

basic ideas and differences of the two methods. 195 

EnKF approach was first proposed by Evensen (1994) and has been widely used in variably saturated 

flow problems (Huang et al., 2008; De Lannoy et al., 2007). This approach is a sequential data 

assimilation method (as shown in Fig. 1(a)) which incorporateincorporates observations into the model 

in order. 

 In this workpart, we assume that hydraulic parameters Ks, α, and n are unknown, while the other 200 

parameters θr and θs are supposed to be deterministic. The vector of parameter and state can beis described 

as, 

 ,
T

k k ky m u                                   (11) 

 ,
T

k k ky m u                                   (10) 

where km mk is the parameter vector (i.e., Ks, α, and n), ku uk are state variables (i.e., pressure head and 205 

soil moisture) at time tk, the dimension of yk is Ny: Ny= Nm+2 Nd, where Nm indicates the amount of the 

parameters to be estimated; Nd are the number of nodes of the numerical model. The updated soil moisture 

ensemble can be converted to pressure head to drive the model. The observation vector can be defined as, 
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 ,j k k jk d d ε                                   (12) 

 , ,j k k j k d d ε                                   (11) 210 

where kd dk denotes the observation at time tk; jkε εj,k (j=1, 2, …, Ne) are independent Gaussian noises 

added to the observations; ,j kd dj,k is the observation vector for ensemble index j at time tk. Based on the 

differences of model forecast and observations, the state-parameter vector can be updated as: 

, , , ,( )a f f

j k j k k j k j k  y y K d Hy                           (13) 

, , , ,( )a f f

j k j k k j k j k  y y K d Hy                           (12) 215 

where ,

f

j ky ,

f

j ky  denotes the estimated or initially guessed values of parameter and state, while ,

a

j ky ,

a

j ky  

is the updated estimates; H is an observation operator, linking the relationship between the state-parameter 

vector and the observation vector. K represents the Kalman gain matrix, which can be calculated as, 

𝐊𝐾 = 𝐂𝑘
𝑓
𝐇𝑇[𝐇𝐂𝑘

𝑓
𝐇𝑇 + 𝐂𝐷𝐾]

−1                        (1413) 

where 
kDC

kDC  indicates the covariance matrix of observed data errors, while 
f

kC f

kC  is the error 220 

covariance matrix of forecast ensemble, given by 

 , ,

1

1

1

eN
T

f f f f f

k j k k j k k

jeN 

     
   

C y y y y                    (15) 

 , ,

1

1

1

eN
T

f f f f f

k j k k j k k

jeN 

     
   

C y y y y                    (14) 

where f

ky
f

ky  is the ensemble mean of 
f

ky f

ky . 

Compared to EnKF, IES gives a better estimate by taking all the available observation into 225 

consideration (van Leeuwen and Evensen, 1996), as presented in Fig. 1(b). Thus, it can keep the overall 

consistency of parameters and state variables over time effectively and has been increasingly used to solve 

the parameter estimation problem in hydrology (Crestani et al., 2013; Emerick and Reynolds, 2013). By 

calculating iteratively, the nonlinear relationship between observation and parameter is linearized and the 

information content of the observations can be fully utilized (Chen and Oliver, 2013). In this case, we 230 

K
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write the analyzed vector of model parameters 
r

jm
r

jm , as 

1 ( )r r r r r

j j j j

   m m K d Hm                           (16) 

1 ( )r r r r r

j j j j

   m m K d Hm                           (15) 

The notation is similar to the one presented for EnKF, where r is the iteration index; 
r

jm
r

jm  is the 

initially guessed or estimated parameters for realization j at iteration r; 
1r

j


m

1r

j


m is the updated estimates 235 

for realization j by conditioning on the observed information at iteration r. It should be noted that the 
r

jd

r

jd  and 
r

jHm r

jHm  denotes the total number of observationobservations and predicted data at iteration 

r, which is different from EnKF. The Kalman gain K is defined as, 

𝐊𝑟 = 𝐂𝒓
𝒇
𝐇𝑇[𝐇𝐂𝒓

𝒇
𝐇𝑇 + 𝐂𝐷 + diag(𝐇𝐂𝒓

𝒇
𝐇𝑇)]−1                   (1716) 

where 𝐂𝒓
𝒇
𝐇𝑇 is the cross-covariance matrix between the prior vector of model and the vector of predicted 240 

data at iteration r; 𝐇𝐂𝒓
𝒇
𝐇𝑇 is the auto-covariance matrix of predicted data at iteration r and DC DC  is 

the covariance matrix of observed data errors.  donates a dynamic stability multiplier, which is set as 

10 initially, and can be adjusted adaptively according to the data misfit at every iteration. diag (𝐇𝐂𝒓
𝒇
𝐇𝑇) 

is a diagonal matrix with the same diagonal elements as 𝐇𝐂𝒓
𝒇
𝐇𝑇. Mathematically, the dynamic stabilizer 

term facilitates the solution switching between the Gauss-Newton solution and the steepest-descent 245 

method, which is known as the Levenberg-Marquardt approach (Pujol, 2007).  

2.3.3 Quantitative index for data assimilation 

 To assess model parameter and state estimations, root mean square of estimated parameters (RMSEm) 

and soil moisture (RMSEobs), and the relative error index (RE) are computed as follows: 

2

1

1
( )

eN
E T

m j

je

RMSE m m
N 

                            (17) 250 

2

1

1
( )

obsN
e obs

obs n n

nobs

RMSE d d
N 

                           (18) 
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e

m

p

m

RMSE
RE

RMSE
                                 (19) 

 

where E

jm  represents the estimated parameter of realization j at the last simulation day (EnKF) or the 

last iteration (IES); Tm represents the true parameter listed in Table 1. e

nd  and obs

nd  indicate the 255 

predicted and measured soil moistures, respectively. Nobs is the amount of observations. e

mRMSE  and 

p

mRMSE  represent the RMSE of the estimated and prior parameters. RE varies from 0 to positive infinity. 

As RE approaches to 0, the analysis result is close to the truth, but a large value of RE (more than 1) 

indicates a bad parameter estimation. Compared with the RMSEm, this index can better present the 

improvement of parameter estimation during data assimilation. 260 

3. Numerical examples 

A series of synthetic numerical experiments are performed in this section. In Section 3.1, we give a 

general description of the numerical experiments. In order to gain a better understanding of the 

propagation of the UIC, all the hydraulic parameters (i.e., Ks, α and n) are assumed to be deterministic 

and the UIC is the only uncertainty source in Section 3.2. Finally, the numerical cases are designed to 265 

evaluate performances of data assimilation algorithms initialized bycombined with various initial 

conditionsinitialization methods in Section 3.3, in which the parameter uncertainty is taken into 

consideration in conjunction with UIC. 

3.1 General description of model inputs 

 As shown in Table 1, there are five common methods to perscribe initial conditions in variably 270 

saturated flow model based on the availablitity of information, including a uniform 50% relative 

saturation over the entire soil profile (hereafter abbreviated as IC-HfSatu) (Margulis et al., 2002), a linear 

interpolation between observations at the beginning of simulation (IC-ObsInt) and a steady-state soil 

moisture profile with a constant infiltration flux (IC-Flux). In this study, the flux is set as 1 mm/d. Besides, 

we also employ two warm-up methods, which give initial conditions by running the model prior to the 275 

beginning of simulation period with available meteorological data (as shown in Fig. 1). If the 
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meteorological data before the simulation period is available, it is used in the warm-up method to obtain 

the initial condition (IC-WUP); otherwise, we use the meteorological data at the simulation period (IC-

WUE) as a surrogate. Starting with guessed parameter and initial condition (i.e., we generate two 

ensembles with guessed means and variances, whereas the means may be biased from the true values), 280 

IC-WUP or IC-WUE first warms up the model with available meteorological data, and then uses the 

ensemble of soil moisture profiles (still uncertain due to the uncertainty of parameters prior to data 

assimilation, while the bias and uncertainty introduced by state at tpre are reduced) on the last warm-up 

day (or the beginning of the simulation time t0) as the initial condition of the formal simulation/data 

assimilation (see As shown in Table 1, four soilsFig. 1). The length of warm-up time twu is determined 285 

based on the conclusion in Section 3.2.2(a). 

Four typical types of soil (Sand, Loam, Silt and Clay loam) are chosen in this study to explore the 

impacts of soil hydraulic property on UIC. Table 2 lists the meanThe values of uncertain hydraulic 

parameters (i.e., Ks, α and n)are determined according to Carsel and Parrish (1988). 

To investigate Besides, the impacteffects of model settings on the temporal evolution of UIC, three 290 

different meteorological conditionscondition are employed.also considered: M-AC, M-SC and M-HC in 

Fig. 12 represent three sets of precipitation and potential evaporation data from three different regions 

(arid region, semi-arid region and humid region) in China. 

Unless otherwise specified, a uniform soil profile with the 50% relative saturation (a value of 0.254 

for Loam) is chosen as the initial condition (IC-HfSatu). The soil profile is set to be 300 -cm thick and is 295 

filled with Loam. The flow domain is discretized into 60 grids with a grid size of 5 cm. which has been 

proved to be sufficient for evaluating UIC in our study (results not shown). Besides, the total simulation 

time during the synthetic simulation is one year (365 days). In addition, the default value of the upper 

boundary condition is and bottom boundaries are set to be M-SC. and free drainage boundary, respectively. 

Other specifications and assumptions for our model simulation runs are given in Table 12. 300 

3.2 The temporal evolution of UIC 

3.2.1 Comparison of UIC quantification methods 

 A synthetic experiment is conducted to compare two methods (i.e., Spin-up method and Monte-Carlo 

method) in quantifying UIC. Using the spinSpin-up method, the first case runs a single simulation for 10 
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years by repeating the preceding meteorological condition starting with IC-HfSatu (Fig. 3(a)), and the 305 

percentage cutoff PC is calculated. In the second case, the Gaussian noise with a standard deviation of 3% 

(determined according to the observation error of soil moisture) is added to the IC-HfSatu to generate an 

ensemble with different initial soil moisture profiles. Then we run thedifferent model until the ensemble 

spread Sp is smallrealizations (Fig. 3(b)). Finally, the PC and Sp values of the two cases versus time are 

compared in Fig. 3(c). 310 

 As shown in Fig. 3(a), there is a visible difference between the monthly-averaged soil moistures at 

the beginning and the 12th months, while the difference is much smaller for θ at the 12th and 24th months, 

indicating the decay of UIC. Similarly, the soil moistures forfrom different realizations gradually get 

closer to each other, implying the decay of UIC over simulation time. As shown in Fig. 3(c), PC and Sp 

values gradually decrease with the simulation time, and their values are approximately the same after t>6 315 

months. The significant difference at the beginning (PC of 4.7% and Sp of 2.6%) is due to different initial 

soil moistures given by the Spin-up and Monte-Carlo methods. The result indicates that the widely-used 

Spin-up method and Monte-Carlo method are equivalent to one another in terms of quantifying UIC. We 

will use Monte-Carlo method for the rest of the study since it is consistent with the data assimilation 

approaches used in this study. 320 

 The determination of the threshold value when UIC is regarded to have negligible effecteffects on 

predictionmodeling has been discussed in previous studies (Ajami et al., 2014; Lim et al., 2012; Seck et 

al., 2014). In general, PC or Sp values of 1% (Yang et al., 1995), 0.1% (de Goncalves et al., 2006), or 

0.01 % (Henderson-Sellers et al., 1993) have been used as threshold for the model. In this study. As shown 

in Fig. 3(c), there is a significant diversity of the results between Spin-up and Monte-Carlo methods at 325 

index value of 1%, indicating that UIC still plays a significant role. In contrast, the requested twu is more 

than 15 months for a value of 0.1%. To balance the estimation accuracy and computational cost, we 

recommend a threshold of 0.5% for both Spin-up and Monte-Carlo methods, and the corresponding warm-

up time twu is 8 months, which is sufficiently long for UIC to diminish and the difference between PC and 

Sp to become smallis insignificant. 330 

3.2.2 The influencing factors on UIC 

 The Monte-Carlo method is used in this part to obtain the warm-up time twu and a number of scenarios 
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are constructed under a variety of conditions (different soils, different meteorological conditions, and soil 

profile lengths). First, the influence of soil texture and meteorological condition on twu are examined. Four 

different types of homogeneous soils (Sand, Loam, Silt and Clay loam listed in Table 2)1) and a 335 

heterogeneous soil with multiple layers (consists of Loam (0-75 cm), Clay loam (75-150 cm), Silt (150-

225 cm), and Sand (225-300 cm)) under three typical meteorological conditions (M-AC, M-SC and M-

HC) are employed in these scenarios, while the other model inputs use the default values (see Table 12). 

Besides, the influence of different soil profile lengths (1 m, 3 m, 5 m, 10 m, 15 m, and 20 m) on UIC is 

also investigated. 340 

a. The influences of soil texture and meteorological condition 

Fig. 4 plots twu with fourfive different soils under three typical meteorological conditions. The 

computational times vary greatly according to soil property. We find that twu of Sand are all less than one 

day, whereas twu of Loam are 412 days, 242 days, and 195 days respectively. In addition, the warm-up 

times of Silt and Clay loam with M-AC and M-SC exceed 10 years, while those with M-HC are 264 days 345 

and 253 days. The results imply that the warm-up time twu for the fine-textured soil is larger than that for 

coarse-textured soil. To further explore the reason behind, results of soil moisture profiles at the given 

days (e.g., days 1st and 30th) for four kinds of soils are manually inspected (results not shown).This may 

attribute to the diversity of the drainage property for different soils. For Sand, due to its fast drainage 

property, the soil moisture ensemble converges extremely quickly and most of the values at the profile 350 

are maintained as residual soil moisture. Thus, the UIC of sandSand disappears very fast. On the other 

handIn contrast, the soil moisture resultsstates for Silt and Clay loam show slow convergence. For Loam, 

the convergence speed is smallerchange more slowly than that of Sand but larger than that of Clay 

loam.Sand during the simulation. Therefore, faster drainage property leads to a smaller warm-up time. 

In addition, the meteorological condition has a strong impact on UIC and twu decreases with the 355 

increase of precipitation.. For example, with soil Loam, the order of twu is M-HC<M-SC<M-AC. 

RegardingFor Silt and Clay loam, twu of M-AC and M-SC decrease from more than 10 years to 264 days 

and 253 days with a humid climate M-HC, respectively. With intensive and excessive rainfall events, θ 

approaches to the saturated soil moisture, leading to a sudden drop of Sp. Thus, the meteorological 

condition, especially the precipitation, plays an important role in the propagation of UIC. Excessive and 360 
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intensive rainfall could greatly reduce the impact on simulation solely induced by UIC (i.e., no parameter 

uncertainty).Moreover, regarding the heterogeneous soil with multiple layers, the twu under the M-AC is 

larger than 10 years (similar to Silt and Clay loam), while that under M-SC or M-HC becomes much 

smaller (higher than that of Loam but they are of the same magnitude). Thus, it is conjectured that twu is 

determined by the fine soil texture in the layered profile under dry meteorological condition, but averaged 365 

soil hydraulic properties under wet meteorological condition. 

It should be noted that the twu is also relevant to the initial state of soil. Regarding the initial condition 

in an extremely dry state under the arid climate, the hydraulic conductivity is very small, and the initial 

spread extends for a long time. For instance, twu of sand increases from 1 day to 8 days when the ensemble 

mean value of initial soil moisture decreases from 0.2375 to 0.15 (results not shown). Yet, if a sufficiently 370 

large rain event takes place, the soil moisture increases and then converges to a similar state rapidly. 

b. The influence of soil profile length 

To investigate the effects of soil profile length on warm-up time, we investigate the twu values for 

simulations with various soil profile lengths. As presented in Fig. 5,(a), the twu for soil lengths of 1 m, 3 

m, 5 m, 10 m, 15 m and 20 m are 0.11 year, 0.57 year, 0.74 year, 1.57 years, 2.78 years and 4.3 years 375 

respectively, indicating that the warm-up time increases with increasing depth of soil column. Fig. This 

can be attributed to a larger portion of soil is not affected by boundary conditions and UIC decays more 

slowly.5(b) plots the twu value for each depth with the profile length of 20 m, showing that a longer warm-

up time is needed if the soil layer is deeper. Both subfigures imply that UIC decays more slowly if the 

effects of boundary condition become less important. We also examine the case for substituting free 380 

drainage boundary for a prescribed groundwater table. The results indicate that the twu is further shortened 

due to the restrictioninfluence of bottom saturation condition (not shown). 

In addition, twu in homogeneous loam reveals a power law relationship with the length of soil profile. 

According to the fitted curve in Fig. 5,(a), the warm-up time twu is more than seven years for a depth d of 

30 m (e.g., North China Plain, (Huo et al., 2014)) and 700 years for d=1000 m (e.g., Yucca Mountain Site, 385 

(Flint et al., 2001)) with loam soil. This result suggests that we should be very careful to deal with 

simulation with a long unsaturated profile, where the UIC can existlasts for an extremely long time and 

influence the simulation/data assimilation results. 
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3.3. Initialization of data assimilation 

Besides IC-HfSatu, two other common methods to prescribe initial conditions in variably saturated 390 

flow model based on the availability of information are also considered in this study, including a linear 

interpolation between observations (at depths of 10 cm, 80 cm, 150 cm, 220 cm and 290 cm) at the 

beginning of simulation (IC-ObsInt) and a steady-state soil moisture profile by warming up the model 

with a constant infiltration flux of 1 mm/d (IC-Flux). Moreover, we employ two warm-up methods, which 

give initial conditions by running the model prior to the beginning of simulation period with available 395 

meteorological data (as shown in Fig. 2). If the previous meteorological data before the simulation period 

is available, it is used in the warm-up method (IC-WUP); otherwise, we use the meteorological data at 

the experimental period as a surrogate (IC-WUE). The length of warm-up time for IC-Flux, IC-WUP and 

IC-WUE is equal to twu (242 days) based on the results in Section 3.2.2(a), so the warming-up period of 

WUP for these three methods is from day 124 to day 365. In addition, IC-HfSatu and IC-ObsInt are 400 

assumed to be deterministic without uncertainty, while for the IC-Flux, IC-WUP and IC-WUE, the 

uncertainty of states are introduced by warming up the model with uncertain parameters.  

Thus, a total of3.3. Initialization of data assimilation 

In this sub-section, five initialization methods (IC-HfSatu, IC-ObsInt, IC-NetFlux, IC-WUP and IC-

WUE) are assessed to investigate the effect of initial conditionUIC on model state and parameter 405 

estimations within two data assimilation frameworks (EnKF and IES). The initial realizations of soil 

hydraulic parameters Ks, α and n for all data assimilation models as well as the warming-up models IC-

Flux, IC-WUP and IC-WUE are generated following logarithm normal distributions, with mean values 

of 4.7 md-1, 8.6 m-1 and 1.8, and variances (log-transformed) of 0.1, 0.3 and 0.006. The saturated soil 

moisture θs and residual soil moisture θr are assumed to be deterministic with the value of 0.43 and 0.078. 410 

Compared with the reference values (Ks, α and n for Loam are 0.2496 md-1, 3.6 m-1 and 1.56) listed in 

Table 21, the prior means of unknown parameters are biased. 

3.3.1 General description of the cases for various initialization methodsdata assimilation cases 

Several test cases are conducted to explore the effects of initialization on parameter estimation under 

various data assimilation frameworks. CasesCase 1 and 2 investigateinvestigates the effects of five 415 

initialization methods (Table 1) on individual parameter estimation with EnKF and IES, respectively. 
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Then, we increase the ensemble size of IC-HfSatu and IC-ObsInt to 500 (hereafter referred to as IC-

HfSatu-500 and IC-ObsInt-500) in Case 2 to demonstrate the impacts of ensemble size. Case 3 explores 

the effects of the uncertainty magnitude of the initial ensemble on the parameter estimations. A Gaussian 

noise with a standard deviation of 0.017 (counted from IC-WUP) is added to both IC-HfSatu-500 and IC-420 

ObsInt-500 (hereafter referred to as IC-HfSatu-500-Un and IC-ObsInt-500-Un). Furthermore, to find out 

the role of initial condition in multi-parameter inverse problems, Case 3 and Case 4 areis conducted to 

estimate Ks, α and n simultaneously. ToCase 5 is implemented with a simulation time of 60 days to explore 

the impactinfluence of assimilation time on multiple parameter estimation with IES, Case 5 is 

implemented with a simulation time of 60 days.. It should be noted that the warm-up methods (IC-WUP 425 

and IC-WUE) used in IES warmswarm up model before every iteration (as presented in Fig. 1(b)), since 

the initialization of IES by warming up the model for only the first iteration leads to poor assimilation 

results. 

The synthetic observations used for data assimilation are generated by running the model with “true” 

parameter (Loam) and “true” initial condition (produced by warming up model with a sufficient long twu 430 

=time of 10 years). The generated observations are perturbed by observation errors (a Gaussian noise with 

a standard deviation of 1%), which0.01. A total number of 37 observations are assumed to be Gaussian. 

In addition, the observation at 10 cm is assimilated into the model. The observation depth is at z = 10 cm 

and the observed soil moisture is assimilated every 10 days., starting from day 3. The details of the model 

inputs for Case 1 to Case 5 are listed in Table 3. 435 

3.3.2 Quantitative index 

 To quantify the quality of model parameter and state estimations, root mean square of estimated 

parameters (RMSEm) and soil moisture (RMSEobs) are computed as follows: 
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where 
E

jP  represents the parameter estimation of realization j on the last simulation day; 
TP  represents 
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the true parameter listed in Table 2. Ne is the total number of realizations. nx  and 
obs

nx  indicate the 

predicted and measured soil moistures, respectively. Nobs is the amount of observations. 

3.3.3 Result comparison 

 The results for parameter estimation (lnKs) using the two data assimilation frameworks and under the 445 

variouswith different initialization methods (Case 1) are compared in Fig. 6. In Fig. 6(a), the estimated 

lnKs values of EnKF are presented. In general, the lnKs estimations under different initial conditions all 

gradually approach the “true” values withover assimilation time, but the final assimilation results are 

different. For IC-HfSatu, because the initial profile is uniform and arbitrarily specified, the assimilation 

results are both affected by the parameter uncertainty and UIC simultaneously. Thus, the decreasing of 450 

RMSEm is the slowest and the final parameter estimation result is the worst. In contrast, the initial 

conditions generated by warm-up methods (IC-WUP and IC-WUE) can eliminate the UIC in advance, 

and thus data assimilation can handle parameter uncertainty more efficiently, leading to the best results 

among the five. The data assimilation results of IC-WUE are a little worse than those of IC-WUP owing 

to the diversity of meteorological condition. Since IC-ObsInt and IC-Flux are created by adding 455 

observation information or simple infiltration information, they perform better than that with IC-HfSatu 

but worse than warm-up methods. Similarly, the assimilation results for IES with IC-WUP and IC-WUE 

are also the best, while those with IC-HfSatu have the worst parameter estimation in the five initialization 

methods (Fig. 6(b)). Moreover, the parameter estimations with IC-WUP and IC-WUE require much fewer 

iteration steps (at about 7th iterations) than the other methods. In addition, by comparing Figs. 6(a) and 460 

6(b), the cases using IES shows superiorbetter results than those using EnKF, indicating a bettersuperior 

ability for IES to estimate individual parameter in variably saturated model. However, since IES estimates 

parameter iteratively, it has a much larger computational cost than EnKF when using warm-up methods. 

 An important issue inFor data assimilation based on Monte-Carlo method problem, the ensemble 

variance is increasingly underestimated over time/iteration, which may cause the filter inbreeding 465 

problem (Hendricks Franssen and Kinzelbach, 2008), which underestimates the ensemble variance over 

time/iteration, which can lead to poor performance of parameter updating.). To determine if our data 

assimilation runs  are affected by filter inbreeding, the temporal change of the standard deviation of 
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estimated lnKs are plotted in Figs. 6(c) and 6(d). In general, the standard deviation of estimated lnKs 

decline gradually with assimilation steps (EnKF) or iteration steps (ES), which agree well with the 470 

differences between the estimates and the true values (Figs. 6(a) and 6(b)). Thus, filter inbreeding problem 

is not significant here, and the data assimilation results are reliable.IES). As given in Figs. 6(a) and 6(c), 

the filter inbreeding might take place after 280th days for EnKF, since the standard deviation of ensemble 

all approach to 0.1 and the estimated parameters stay constant over time. However, with the help of a 

damping parameter, the filter inbreeding problem for IES could be reduced significantly. This partly 475 

explains the inferior result of EnKF compared to IES.  

 Increasing the ensemble size and model uncertainty is an efficient approach to reduce the filter 

inbreeding (Hendricks Franssen and Kinzelbach, 2008). To demonstrate the impacts of ensemble size and 

initial uncertainty on data assimilation results, the results of lnKs estimations utilizing the initial condition 

IC-HfSatu and IC-ObsInt with the ensemble size of 500 (Case 2) and a Gaussian noise (Case 3) are plotted 480 

in the Fig. 7. 

The results of IC-HfSatu-500 and IC-ObsInt-500 with the ensemble size of 500 in Fig. 7 are similar 

with those of IC-HfSatu and IC-ObsInt (Fig. 6), indicating that the improvement of the parameter 

estimation result is slight when the ensemble size increases from 300 to 500. Hence, the ensemble size of 

300 is sufficient for data assimilation problem in this study. In contrast, the influences of adding the 485 

uncertainty to the initial state on parameter estimation are totally different for EnKF and IES. Compared 

with the results of IC-ObsInt-500 and IC-HfSatu-500, the results of lnKs estimation with IC-ObsInt-500-

Un and IC-HfSatu-500-Un improve for EnKF (Fig. 7(a)), but deteriorate for IES (Fig. 7(b)). This may 

attribute to the diversity between two algorithms. EnKF is a sequential algorithm, so the state uncertainty 

introduced by UIC could decrease over assimilation steps. A larger ensemble state variance implemented 490 

at the beginning leads to a larger trust on data and thus a quicker update of parameter to truth, and can 

prevent EnKF from inbreeding, leading to a better result than that with initial condition of small variance. 

On the contrary, IES is a batch optimization method. The uncertainty of initial state exists at each iteration 

and has a negative effect on the model calibration during the whole simulation, worsening the parameter 

estimation results. 495 

Moreover, the parameter estimation results of IC-WUP are still superior to those of IC-HfSatu-500-
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Un and IC-ObsInt-500-Un even they all have a similar computational cost, showing the promising 

performance of warm-up methods. The results are reasonable since all ensemble Kalman filter methods 

are affected by the quality of the auto-covariance matrix and the mean value of predicted state ensemble 

(Eqs. (12) and (13) for EnKF; Eqs. (15) and (16) for IES). For WUP method, the initial condition is 500 

constructed by warming up the model with the prior parameter, thus IC-WUP contains useful information 

of prior parameter, even it is biased. Besides, the state covariance matrix is implicitly inflated due to the 

introduction of uncertain prior parameter ensemble during warming up. These two aspects ensure the 

robust performance of warm-up methods. However, the initial state ensembles of IC-HfSatu-500-Un and 

IC-ObsInt-500-Un are independent from the prior parameter, which introduces additional uncertainties, 505 

making the data assimilation results worse. Therefore, even using a larger ensemble size and enlarging 

the state uncertainty (covariance inflation), warm-up methods are still the optimal choice for both EnKF 

and IES algorithms. We also construct another case with a larger parameter uncertainty to alleviate filter 

inbreeding problem and the data assimilation for all cases are improved (not shown). The results also 

agree with our conclusion that WUP performs the best among the five initialization methods. 510 

 To evaluate the effects of UIC in multi-parameter inverse problem, the RMSEmRE results of Ks, α, 

and n estimates of Case 3 and Case 4 are presented in Fig. 78. In general, the RMSEmRE results of n and 

Ks are the smallestsmall no matter using EnKF or IES, while the RMSEmRE of α is the largest. A cross-

correlation analysis indicates that soil moisture observations are very insensitive to parameter α with a 

free drainage boundary condition, which agrees with the results of Hu et al., (2017). In Fig. 78(a), similar 515 

to the conclusion of one-parameter inverse problem, the parameter estimation results of Ks and α with IC-

HfSatu and IC-ObsInt are worse than those of IC-WUP and IC-WUE. There is not much difference 

between the n estimates under various initial conditions, implying that n is less affected by UIC when 

estimating Ks, α and n simultaneously. Compared with EnKF, IES shows a smaller RMSEmRE (Fig. 78(b)) 

of below 5 for all parameters, indicating IES can also perform better in multi-parameter inverse problem. 520 

However, the assimilation results with various initialization methods do not show much difference, 

implying that the final RMSEmRE values are not significantly affected by UIC, possibly due to abundant 

observations available over one year. HoweverNevertheless, long-term observation data may not be 

available in many cases.  



 

22 

 

 

 To examine the impact of assimilation time on parameter estimation with IES, a caseCase 5 with 525 

shorter assimilation period (60 days) and a fewer number of observations (i.e., 6) is conducted. Fig. 89 

shows the RMSEmRE results and it is inferior to thanthose in  Case 4, where the simulation time is one 

year (Fig. 8(b)). Nevertheless, the effects of assimilation time on parameter estimation are different for 

different parameters. For instance, parameter n can still be estimated quite well in this case.the most of 

the situations. In addition, though the assimilation results of Ks degraded with a 60-daysday simulation, 530 

the variation of Ks estimation values among different initialization methods is small. The number of 

observation can greatly affect the estimation of parameter α, since RMSEmRE of α in Case 5 (25.64, 35.06, 

3.5, 4.8.52, 5.76, 1.17, 0.79, and 5.760.23) is much larger than those in Case 4 (1.19, 2.12, 4.19, 2.810.16, 

0.29, 0.68, 0.24, and 2.39).0.31). Furthermore, the warm-up methods show the best data assimilation 

results among the five when the observations are insufficient. 535 

4. FiledField validation 

In order to examine the applicability of the conclusions drawn from synthetic case, aSynthetic 

observation in previous section is generated by running the model with exactly known uncertainty sources. 

By conducting synthetic experiments, we can thoroughly analyze the impact of UIC during data 

assimilation, with scenarios having different numbers of observations/unknown parameters, and more 540 

decisive conclusions can be drawn. In contrast, the field observations contain additional uncertainties 

which are largely unknown (e.g., the calculated evapotranspiration is inaccurate for real-world case). In 

order to examine the real-world applicability of the conclusions drawn from synthetic case, Field data are 

necessary to validate our results. A field experiment is conducted in the irrigation-drainage experimental 

site of Wuhan University (Li et al., 2018) (Fig. 910(a)). Meteorological data, including air temperature, 545 

relative humidity, atmospheric pressure, incident solar radiation, and precipitation, is continuously 

monitored by an automatic weather station (LoggerNet 4.0), which can be used as upper boundary 

condition after the calculation of the potential evaporation (Penman-Monteith’s equation) on the bare soil 

(see Fig. 1011(a)). A vertically-inserted frequency domain reflectometry (FDR) tube was used to monitor 

soil moisture (Fig. 910(b)). The in-situ soil moisture observation was measured every 3 days. The tube 550 

gave soil moisture measurements at the depths of 10, 20 and 30 cm. During 18th April 2017 to 30th May 

2017, the measurements were repeated 14 times and 42 soil moisture data were collected (see Fig. 
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1011(b)). Besides, the soil moisture at the depth of 10 cm, 20 cm, 30 cm, 40 cm, 60 cm and 80 cm at the 

beginning of the simulation time is also available to construct an initial profile via interpolation with IC-

ObsInt. 555 

4.1 General description of the experimental case 

 To analyze the experimental data, the 1-D numerical domain is set as 2 m and discretized in 50 grids. 

The top 40 grids have a size of 2.5 cm and the rest has a size of 10 cm. The upper boundary is set as an 

atmospheric boundary using the data shown in Fig 1011(a) and the bottom boundary is set to be free 

drainage since the groundwater table is much deeper than the bottom of the domain. 560 

The prior parameter distributions follows the study of Li et al. (2018). The saturated soil moisture 

s θs and residual soil moisture r θr are given as 0.43 and 0.078, while the other hydraulic parameters 

are to be estimated. The initial means of Ks, α and n are set as 1 md-1, 5 m-1 and 2, and the initial natural 

logarithmic variances of the natural logarithm of them are set as 0.22, 0.16 and 0.003. The data from 18th 

April through 27th April are used for calibration, while the remaining data are reserved for validation. 565 

 In addition, according to our prior knowledge, the meteorology The climate of Wuhan is semi-

arid conditions and the soil of experimental site is sandy loam. We use a warm-up time of 242 days based 

on our investigation in Section 3.2.2.  

4.2 Results 

 The assimilation results with four different initialization results (IC-HfSatu, IC-ObsInt, IC-Flux and 570 

IC-WUP) are presented in this part. Since the true hydraulic parameters at the experimental site are 

unknown, we assess the estimation by comparing the predicted (using estimated parameters) and observed 

soil moistures during the validation period. The RMSEobs for soil moisture predictions under different 

assimilation scenarios are listed in Table 4. Generally speaking, RMSEobs with IC-WUP are again the 

smallest, while IC-HfSatu has the largest RMSEobs values. 575 

In order to evaluate the overall performances of the four initialization methods, the soil moisture 

observations and predictions at all depths are plotted in Fig. 1112. The coefficients of determination under 

the four scenarios are 0.033, 0.599, 0.083 and 0.553, and the RMSEobs are 0.045, 0.037, 0.036, and 0.028 

respectively. As shown in Fig. 1112(a) and Fig. 1112(c), IC-HfSatu and IC-Flux show very large 
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scattering, indicating a bad prediction performance. A significant improvement is found in IC-WUP with 580 

a large R2 and the smallest RMSEobs value, as shown in Fig. 1112(d). Surprisingly, IC-ObsInt has the 

largest R2 among the four in this casemethods, though its RMSEobs value is bigger than that of IC-WUP. 

The simulation of real-world problems may have uncertainties that are not considered in data assimilation. 

For instance, the meteorological data prior to the simulation for warming up may not be accurate.is not 

precise from the weather-station instrument error and calculation of evapotranspiration, which has a 585 

detrimental effect on IC-WUP. IC-ObsInt, on the other hand, consistently utilizetakes the advantage that 

it utilizes the soil moisture observations for both initialization and predictions. It should be noted that 

However, IC-ObsInt may not be applicable in the case when soil moisture observations at t=0 are not 

available or the soil moisture profile has large variation, e.g.,is discontinuous soil moisture in layered 

soils., leading to a large interpolation error. In summary, as also demonstrated in the numerical case studies 590 

(Section 3.3), the model with initial conditionfor both the synthetic and field cases, models initialized 

using the warm-up method resultsresult in low uncertainty and superior soil moisture predictions even if 

the calibration data are insufficient. 

5. Discussion and Conclusions 

The study investigates the effects of UIC on variably saturated flow simulations subject to different 595 

soil hydraulic parameters, meteorological conditions and soil profile lengths. Two common approaches 

(Spin-up and Monte-Carlo methods) are applied to explore the required warm-up time twu and temporal 

behavior of UIC. In addition, the data assimilation performances with five common initialization 

approaches are compared using synthetic experiments and a field soil moisture dataset. 

 Under atmospheric boundary condition, the soil moisture value near the upper boundary could 600 

approach its upper and lower bounds (saturated water content and residual water content) due to rainfall 

and evaporation. This will significantly reducereduces the UIC of soil moisture profile near the soil 

surface. Moreover, the wetter (drier) soil drains more (less) water and evaporates more (less) water, 

making UIC of soil moisture dissipates rapidly. Our investigation of the influence of soil texture and 

boundary condition on UIC shows, as expected, that the coarse-textured soil results in faster reduction of 605 

soil moisture UIC because of fast redistribution of water in sandy soil. Regarding the influence of 

boundary conditions, we foundfind that heavy rainfall and long-term evaporation can reduce UIC 
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significantly, while an initial condition in a drier status leads to a growth of twu, since a drier soil drains 

and evaporates less water, making UIC of soil moisture dissipates slowly. The conclusion agrees with the 

conclusions reported by Castillo et al., (2003) and Seck et al., (2014). Although twu for sandy soil is very 610 

small, theyit could be very large for other soils (less than one day versus more than 10 years in Fig. 4). 

The length of soil profile plays an important role in UIC since UIC decays from the boundaries. As a 

result, the UIC could exist persistently in a very thick vadose zone. Our findings imply that UIC 

dissipation depends nonlinearly on soil type, meteorological condition, and soil profile lengths—care, 

and special attention should be taken when handling UIC inpaid to during vadose zone modeling. 615 

 Ideally, the initial ensemble should represent the error statistics of the initial guess for the model state 

during data assimilation (Evensen, 2003). Thus, effort should be invested to reduce the impact of UIC on 

data assimilation. Methods which do not consider the UIC (i.e., assuming an initial ensemble arbitrarily 

without uncertainty, which was used in some studies, e.g., Shi et al., 2015) can induce significant bias 

according to our data assimilation results. By constructing initial condition using the information of 620 

observations or boundary condition (averaged flux), the data assimilation results can be improved. 

However, these two initialization methods are also suboptimal, due to simplification ofthe 

oversimplification to the complex initial condition. By warming up model with available meteorological 

data, the initialization methods can improve data assimilation results. Moreover, EnKF is more sensitive 

to filter inbreeding problem than IES. The initial condition with a larger state uncertainty gains better 625 

performance than that without covariance inflation for EnKF. While for IES, this inflated uncertainty 

cannot decrease over iterations, making the results inferior. 

 In this study, we only use the soil moisture observations rather than pressure head to construct the 

initial profile. For homogeneous soil column, there is a one-to-one relationship between the spread of soil 

moisture and pressure head (i.e., UIC in terms of pressure head can be converted from that of soil 630 

moisture). The situation will be much more complex if the soil is heterogeneous, since a large number of 

unknown hydraulic parameters may introduce significant nonlinearity during the transformation between 

head and soil moisture. For instance, the soil moisture profile is discontinuous in layered soils. The use 

of pressure head instead of soil moisture as initial condition for heterogeneous soils deserves investigation 

in our future work. 635 
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 Our work leads to the following major conclusions: 

 1. Spin-up method and Monte-Carlo method can both quantify UIC and they agree well with each 

other after a sufficiently long simulation. A threshold of 0.5% for percentage cutoff PC or ensemble spread 

Sp is recommended to determine the warm-up time. 

2. Warm-up time varies nonlinearly with soil textures, meteorological conditions, and soil profile 640 

length. Under most situations (e.g., Loam with the soil profile length less than 5 m under non-arid climate), 

one-year warm-up time is sufficient for soil water movement modeling, but an extremely long time 

(exceeds 10 year) is needed to warm up the model for a long, fine-textured soil profile under an arid 

meteorological condition. 

3. IES shows better performance than EnKF in the strongly non-linearnonlinear problem and is 645 

affected less by the UIC if warm-up method is implemented atwith a long-period of observations. In 

addition, covariance inflation of initial condition could improve the beginning of the simulationdata 

assimilation results for every iteration. For both algorithms, the estimation of α is the most difficult while 

the parameter n can be estimated more easily in the multi-parameter inverse problem.EnKF, but 

deteriorate them for IES.  650 

4. The following procedure is recommended to initialize soil water model if meteorological data are 

availablemodeling: 1) Evaluate the approximate warm-up time based on the model settings; 2) Initialize 

the model using the method of WUP (if meteorological data are available) and make sure the warming up 

time is larger than the required twu; 3) Run the simulation with the initial condition obtained in step 2. 

IfWUE is an alternative to WUP if the preceding meteorological data are not available, WUE is an 655 

alternative to obtain initial condition. ObsInt is also a practical choice if dense soil moisture observations 

at the beginning of simulation are available.  

Further research may examine the performance of these initialization methods in two- or three-

dimensional variably saturated flow conditions and for large-scale problems.. Our approach can also be 

appliedextended to models with multipleother modeling and data assimilation problems in other 660 

disciplines (e.g., groundwater flow and solute transport modeling, and soil layers for the parameter 

estimation and to identify the warm-up time.-water-crop modeling). 
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Table 1. Soil hydraulic parameters used in simulation. 

Soil θs θr Ks/md-1 α/m-1 n 

Sand 0.43 0.045 7.128 14.5 2.68 

Loam 0.43 0.078 0.2496 3.6 1.56 

Silt 0.46 0.034 0.06 1.6 1.37 

Clay loam 0.41 0.095 0.062 1.9 1.31 

  855 
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Table 2. The candidates of initialization scheme and default model settings used in the simulations. 

Parameter definition Value or type 

Initial condition a uniform 50% relative saturation over the soil profile (IC-HfSatu) 

Number of soil layers 1 

Thickness of soil zone 3 m 

Soil hydraulic properties Loam 

Upper boundary M-SC 

Bottom boundary Free drainage 

Number of grids 60 (with the size of 5 cm) 

Simulation time 365 days 
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Soil hydraulic parameters used in simulation. 860 

Soil θs θr Ks/md-1 α/m-1 n 

Sand 0.43 0.045 7.128 14.5 2.68 

Loam 0.43 0.078 0.2496 3.6 1.56 

Silt 0.46 0.034 0.06 1.6 1.37 

Clay loam 0.41 0.095 0.062 1.9 1.31 
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Table 3. Case summary for parameter estimation within EnKF and IES. 

Case Description Ensemble 

Size 

Initial Uncertainty Simulation Time Framework 

Case 1 Individual 

parameter 

estimation 

- - - EnKF/IES 

Case 2 500 - - EnKF/IES 

Case 3 500 0.017 - EnKF/IES 

Case 4 Multiple 

parameter 

estimation 

- - - EnKF/IES 

Case 5  - - 60 IES 

Note: Ungiven values use the default values. The default value of initial uncertainty for IC-ObsInt and IC-HfSatu 

is 0. 
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Table 4. RMSEobs results for the soil moisture predictions at observation points with different initial conditions in 

the experimental case. 

Initial condition 10cm 20cm 30cm 

IC-HfSatu 0.0232 0.0271 0.0280 

IC-ObsInt 0.0286 0.0187 0.0134 

IC-Flux 0.0198 0.0222 0.0206 

IC-WUP 0.0180 0.0153 0.0155 
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 870 

Fig. 1. Flowcharts of simulation period (or data assimilation period with (a) ensemble Kalman filter (EnKF) and 

(b) iterative ensemble smoother (IES)) and warming up period. t0 is the initial time and tend is the end time of 

simulation time. mk and uk are the vectors of model parameters (e.g., hydraulic conductivity) and state variables 

(e.g., soil moisture), respectively, at time tk, while 
r

m mr and 
r

u ur are the vectors at iteration r; the superscripts 

a and f refer to model analysis and forecast (or initial guess). Besides, the period between tpre and t0 donates the 875 

process of warming up, and twu is the required warm-up time. 
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E 

Fig. 2. Synthetic rainfall (blue bars) and potential evaporation (red bars) of three typical climates: (a) synthetic 880 

rainfall of arid climate, (b) synthetic potential evaporation of arid climate, (c) synthetic rainfall of semi-arid climate, 

(d) synthetic potential evaporation of semi-arid climate, (e) synthetic rainfall of and (c) humid climate, (f) synthetic 

potential evaporation of humid climate. It should be noted that the meteorological data of simulation period is from 

day 366 to day 730. 
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Fig. 3. Comparison of Spin-up and Monte-Carlo methods in determining warm-up time. (a) Spin-up method with 

monthly-averaged soil moisture versus time by running a simulation recursively for several10 years, (b) Monte-

Carlo method with monthly-averaged soil moisture of different realizations versus time based on various initial 890 

conditions, and (c) Comparison of PC and Sp versus time. For the purpose of demonstration, the parameter 

uncertainty is not considered and we only show the results of the first two years in the figure. 
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 895 

Fig. 4. The length of warm-up time twu with various soils and meteorological conditions. Note that some of the twu 

of Silt values are larger than 10 years and are not able to be obtained due to the 10-year simulation time. The 

heterogeneous soil profile consists of Loam (0-75 cm), Clay loam with M-AC(75-150 cm), Silt (150-225 cm), and 

M-SC exceed 10 years, and they are trimmed for visualization purpose.Sand (225-300 cm). 
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Fig. 5. The relationship between value of the length of soil profile and warm-up time twu. (a) The overall profile twu 

values versus different soil profile lengths and (b) twu value as a function of depth z with a 20-m soil profile. 
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Fig. 6. The results of lnKs estimations (first row) and their associated standard deviations (second row) within two 

data assimilation frameworks (left: EnKF; right: IES) under five initialization methods. (Case 1). 
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Fig. 7. The RMSEm

 

Fig. 7. The impacts of increased ensemble size (Case 2) and uncertainty of initial state (Case 3) on the results of 

lnKs estimations within EnKF and IES. 915 
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Fig. 8. The RE results of parameter estimations (α, n and Ks) under five initialization methods with (a) EnKF and 

(b) IES. (Case 4). 
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Fig. 89. The RMSEmRE results of parameter estimations under five initialization methods with IES when the 

simulation time is 60 days. (Case 5). 
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Fig. 910. The experimental site: (a) plan view, and (b) the cross-sectional view of the FDR sensor.  
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 930 

 

Fig. 1011. The meteorological information and observed soil moistures over the experimental time. (a) Observed 

rainfall and calculated potential evaporation. (b) Temporal change of soil moisture data at three different observed 

depths (10 cm, 20 cm and 30 cm). 
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Fig. 1112. The comparisons between soil moisture observations and predictions at all depths (with fourestimated 

parameters from IES combined with different initial conditionsinitialization methods) at all observation depths. 
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