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Text S1 - ODD Protocol of Agent-Based Model 

1. Overview 

1.1. Purpose 

Question: What is the purpose of the model? 

The coupled modeling provides a framework to simulate the impact of human decision on 

water resources management at the watershed scale. In this study, the ABM simulates the 

action of the agents (humans’ decision-making on the annual irrigation plan) to interact 

with River-Reservoir management model, RiverWare.   

1.2. Entities, State Variables, and Scales 

Questions: What kinds of entities are in the model? By what state variables, or attributes, 

are these entities characterized? What are the temporal and spatial resolutions and extents 

of the model?  

This model is composed of 16 irrigation districts (List of Agents) to investigate the 

humans’ decisions of the irrigation area over the river basin. The River-Reservoir 

management model, RiverWare, operates on a daily time step, for a period of 85 years 

(October 1, 1928, to September 30, 2013). The ABM operates on an annual time step to 

interact with the RiverWare.  

List of Agents 

Agent Name Sub-Group 
Initial Size 

(acre) 

JicarillaIrr Group1 (Upstream of Navajo Reservoir) 700 

NMPineRiverAreaIrr Group1 (Upstream of Navajo Reservoir) 1420 

TwinRocks Group2 (Animas River – Tributary of San Juan River) 251.3 

NMAnimasIrr Group2 (Animas River – Tributary of San Juan River) 9341.1 

FarmingtonGlade Group2 (Animas River – Tributary of San Juan River) 700 

EchoDitch Group2 (Animas River – Tributary of San Juan River) 1210 

FarmersMutual Group2 (Animas River – Tributary of San Juan River) 3050 

Ralston Group2 (Animas River – Tributary of San Juan River) 407.6 

ArchuletaDitch Group3 (Downstream of Navajo Reservoir) 40 

CitizenDitch Group3 (Downstream of Navajo Reservoir) 3940 

TurleyDitch Group3 (Downstream of Navajo Reservoir) 205 

Hammond Group3 (Downstream of Navajo Reservoir) 40 

FruitlandAndCambridge Group3 (Downstream of Navajo Reservoir) 540 

JewettValley Group3 (Downstream of Navajo Reservoir) 920 

Hogback Group3 (Downstream of Navajo Reservoir) 2140 

CudeiCanal Group3 (Downstream of Navajo Reservoir) 170 

Total Number of Agents in San Juan River Basin 16 

Total Irrigation Area (initial) in San Juan River Basin 25075 

The state variables in the model include six watershed system parameters that set a 

foundation for the risk perceived decision-making. The agents have their economic 

parameters which acts as external threshold during Cost-Loss model. Furthermore, 48 
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parameters represent the farmer’s beliefs regarding a process of Bayesian Inference (BI) 

mapping (List of Parameters).  

List of Parameters 

Parameter Note 
# of 

Parameters 

Upstream Precip. Threshold Apply to all agents: 16 agents in mm 1 

Animas River Precip. 

Threshold 
Apply to agents in group 2: 6 agents in mm 1 

Downstream Precip. 

Threshold 
Apply to agents in group 3: 8 agents in mm 1 

Navajo Reservoir Elevation Elevation in feet 1 

Frequency of flow violation 
Number of days which the flowrate is below 500 cfs 

at the outlet of San Juan River Basin 
1 

NIIP Diversion threshold One single parameter will be used for all agents. 1 

Cost/Loss Parameter (z) z =
𝐶𝑜𝑠𝑡 (𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛)

𝐿𝑜𝑠𝑠 (𝐿𝑜𝑠𝑠 𝑜𝑓 𝐸𝑎𝑟𝑛𝑖𝑛𝑔)
 16 

Irr. Area Increment Range from -5% ~ 5% 16 

Farmers’ Belief(λi)  

[0.5≤λ≤1] 

λ: Upstream Precip. -> Navajo Res. Elev. 16 

λ: Upstream Precip. -> Decision Irr. Area 2 

λ: Animas Precip. -> Decision Irr. Area 6 

λ: Downstream Precip. -> Decision Irr. Area 8 

λ: Flow Violation -> Decision Irr. Area 16 

λ: updating Farmer’s belief 16 

Total Number of Parameters  102 

 

1.3. Process overview and schedule 

Questions: Who (i.e., what entity) does what, and in what order? When are state variables 

updated? How is time modeled, as discrete steps or as a continuum over which both 

continuous processes and discrete events can occur? Except for very simple schedules, one 

should use pseudo-code to describe the schedule in every detail, so that the model can be 

re-implemented from this code. Ideally, the pseudo-code corresponds fully to the actual 

code used in the pro-gram implementing the ABM. 

The ABM is triggered at every end date of the water year, 24:00:00 September 30th by 

using Data Management Interface which is an in-programmed tool in the RiverWare. The 

state variables for the ABM are updated from the RiverWare when the ABM interacts with 

RiverWare annully (discrete steps). After the ABM computation, newly updated irrigation 

areas and corresponded water diversions are exported to the Riverware (Object/Slot). A 

pseudo codes are provided below to describe the detailed schedule. The pseudo-code is a 

simplified algorithm of actual ABM codes.  
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Pseudo Code: Risk Perception of ABM 

Group 1. Upstream of Navajo Reservoir 

For year = 1928 to 2013 (In the sample code only 20 years of study period was considered.) 

    For Agent = 1 to 16 

        # Bayesian Inference (BI): systematic network 

       BI_Prec_NElev (Upstream Precipitation|Navajo Elevation); 

       BI_FlowVio_inner (BI_Prec_NElev|Flow Violation); 

       BI_UpstreamPrecip (Upstream Precipitation|Irr Area); 

       BI_FlowVio (BI_FlowVio_inner|Irr Area); 

       # Bayesian Inference (BI) : BI mapping 

       Γ𝑝𝑟
𝑡 =

𝜆Γ𝑝𝑟
𝑡−1 

𝜆Γ𝑝𝑟
𝑡−1+(1−𝜆)(1−Γ𝑝𝑟

𝑡−1)
Γ𝑝𝑑

𝑡 +
(1−𝜆)Γ𝑝𝑟

𝑡−1

(1−𝜆)Γ𝑝𝑟
𝑡−1+𝜆(1−Γ𝑝𝑟

𝑡−1)
(1 − Γ𝑝𝑑

𝑡 ) 

        # Extremity analysis to build Cost/Loss structure 

         V = factors which are related to the decision-making process such as Upstream/Animas/Downstream  

Precipitation, NIIP diversion, and Flow Violation (Shortage Sharing is always located at the highest 

decision factor); 

        𝑉𝑖 = |
𝜃𝑖

𝜃𝑚𝑎𝑥
− 0.5 |  𝜖 [0,0.5]  

       # sort factors [‘flow violation’ and ‘upstream precipitation’] by extremity 

       BI_High = BI factor with higher extremity; 

       # Bayesian Inference: updating farmer’s belief 

       Γ𝑝𝑟
𝑡 =

𝜆Γ𝑝𝑟
𝑡−1 

𝜆Γ𝑝𝑟
𝑡−1+(1−𝜆)(1−Γ𝑝𝑟

𝑡−1)
Γ𝑝𝑑

𝑡 +
(1−𝜆)Γ𝑝𝑟

𝑡−1

(1−𝜆)Γ𝑝𝑟
𝑡−1+𝜆(1−Γ𝑝𝑟

𝑡−1)
(1 − Γ𝑝𝑑

𝑡 ) 

        # Cost/Loss analysis 

        If cost/loss ratio factor (z) is smaller than or equal to BI_High Then 

            Agent decreases irrigated area by a certain percentage; 

       Elseif 

            Agent increases irrigated area by a certain percentage; 

       Endif  

       Next Agent 

       Next Year 

Group 2-1. Animas River without Shortage Sharing 

For year = 1928 to 2013 

    For Agent = 1 to 16 

        # Bayesian Inference (BI) 

       BI_Prec_NElev (Upstream Precipitation|Navajo Elevation); 

       BI_FlowVio_inner (BI_Prec_NElev|Flow Violation); 

       BI_AnimasPrecip (Animas Precipitation|Irr Area); 
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       BI_FlowVio (BI_FlowVio_inner|Irr Area); 

       # Bayesian Inference (BI) : BI mapping 

       Γ𝑝𝑟
𝑡 =

𝜆Γ𝑝𝑟
𝑡−1 

𝜆Γ𝑝𝑟
𝑡−1+(1−𝜆)(1−Γ𝑝𝑟

𝑡−1)
Γ𝑝𝑑

𝑡 +
(1−𝜆)Γ𝑝𝑟

𝑡−1

(1−𝜆)Γ𝑝𝑟
𝑡−1+𝜆(1−Γ𝑝𝑟

𝑡−1)
(1 − Γ𝑝𝑑

𝑡 ) 

      # Extremity analysis to build Cost/Loss structure 

         V = factors which are related to the decision-making process such as Upstream/Animas/Downstream 

Precipitation, NIIP diversion, and Flow Violation (Shortage Sharing is always located at the highest 

decision factor); 

       𝑉𝑖 = |
𝜃𝑖

𝜃𝑚𝑎𝑥
− 0.5 |  𝜖 [0,0.5] 

       # sort factors [‘flow violation’ and ‘Animas River precipitation’] by extremity 

       BI_High = BI factor with higher extremity; 

       # Bayesian Inference: updating farmer’s belief 

       Γ𝑝𝑟
𝑡 =

𝜆Γ𝑝𝑟
𝑡−1 

𝜆Γ𝑝𝑟
𝑡−1+(1−𝜆)(1−Γ𝑝𝑟

𝑡−1)
Γ𝑝𝑑

𝑡 +
(1−𝜆)Γ𝑝𝑟

𝑡−1

(1−𝜆)Γ𝑝𝑟
𝑡−1+𝜆(1−Γ𝑝𝑟

𝑡−1)
(1 − Γ𝑝𝑑

𝑡 ) 

      # Cost/Loss analysis 

       If cost/loss ratio factor (z) is smaller than or equal to BI_High Then 

            Agent decreases irrigated area by a certain percentage; 

       Elseif 

            Agent increases irrigated area by a certain percentage; 

       Endif  

       Next Agent 

       Next Year 

 

Group 2-2. Animas River with Shortage Sharing 

For year = 1928 to 2013 

    For Agent = 1 to 16 

        # Bayesian Inference (BI) 

       BI_Prec_NElev (Upstream Precipitation|Navajo Elevation); 

       BI_SS_inner (BI_Prec_NElev|Shortage Sharing); 

       BI_FlowVio_inner (BI_Prec_NElev|Flow Violation); 

       BI_AnimasPrecip (Animas Precipitation|Irr Area); 

       BI_FlowVio (BI_FlowVio_inner|Irr Area); 

       BI_ShortageSharing (BI_SS_inner|Irr Area); 

       # Bayesian Inference (BI) : BI mapping 

       Γ𝑝𝑟
𝑡 =

𝜆Γ𝑝𝑟
𝑡−1 

𝜆Γ𝑝𝑟
𝑡−1+(1−𝜆)(1−Γ𝑝𝑟

𝑡−1)
Γ𝑝𝑑

𝑡 +
(1−𝜆)Γ𝑝𝑟

𝑡−1

(1−𝜆)Γ𝑝𝑟
𝑡−1+𝜆(1−Γ𝑝𝑟

𝑡−1)
(1 − Γ𝑝𝑑

𝑡 ) 

        # Extremity analysis to build Cost/Loss structure 
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         V = variables which are related to the decision-making process such as 

Upstream/Animas/Downstream Precipitation, NIIP diversion, and Flow Violation (Shortage Sharing is 

always located at the highest decision factor); 

       𝑉𝑖 = |
𝜃𝑖

𝜃𝑚𝑎𝑥
− 0.5 |  𝜖 [0,0.5] 

       # sort factors [‘flow violation’ and ‘Animas River precipitation’] by extremity 

       BI_High = BI factor with higher extremity; 

       # Bayesian Inference: updating farmer’s belief 

       Γ𝑝𝑟
𝑡 =

𝜆Γ𝑝𝑟
𝑡−1 

𝜆Γ𝑝𝑟
𝑡−1+(1−𝜆)(1−Γ𝑝𝑟

𝑡−1)
Γ𝑝𝑑

𝑡 +
(1−𝜆)Γ𝑝𝑟

𝑡−1

(1−𝜆)Γ𝑝𝑟
𝑡−1+𝜆(1−Γ𝑝𝑟

𝑡−1)
(1 − Γ𝑝𝑑

𝑡 ) 

      # Cost/Loss analysis 

        If cost/loss ratio factor (z) is smaller than or equal to BI value of ‘shortage sharing’ Then 

            Agent decreases irrigated area by a certain percentage; 

        Elseif    

            If cost/loss ratio factor (z) is smaller than or equal to BI_High Then 

                Agent decreases irrigated area by a certain percentage; 

           Elseif 

                Agent increases irrigated area by a certain percentage; 

           Endif  

       Endif  

       Next Agent 

       Next Year 

Group 3-1. Downstream of Navajo Reservoir (San Juan River) without shortage sharing 

For year = 1928 to 2013 

    For Agent = 1 to 16 

        # Bayesian Inference (BI) 

       BI_Prec_NElev (Upstream Precipitation|Navajo Elevation); 

       BI_NIIPdiv_inner (BI_Prec_NElev|NIIP Diversion); 

       BI_FlowVio_inner (BI_Prec_NElev|Flow Violation); 

       BI_DownstreamPrecip (Downstream Precipitation|Irr Area); 

       BI_FlowVio (BI_FlowVio_inner|Irr Area); 

       BI_NIIPdiv (BI_NIIPdiv_inner|Irr Area); 

       # Bayesian Inference (BI) : BI mapping 

       Γ𝑝𝑟
𝑡 =

𝜆Γ𝑝𝑟
𝑡−1 

𝜆Γ𝑝𝑟
𝑡−1+(1−𝜆)(1−Γ𝑝𝑟

𝑡−1)
Γ𝑝𝑑

𝑡 +
(1−𝜆)Γ𝑝𝑟

𝑡−1

(1−𝜆)Γ𝑝𝑟
𝑡−1+𝜆(1−Γ𝑝𝑟

𝑡−1)
(1 − Γ𝑝𝑑

𝑡 ) 

       # Extremity analysis to build Cost/Loss structure 

         V = variables which are related to the decision-making process such as 

Upstream/Animas/Downstream Precipitation, NIIP diversion, and Flow Violation (Shortage Sharing is 

always located at the highest decision factor); 
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       𝑉𝑖 = |
𝜃𝑖

𝜃𝑚𝑎𝑥
− 0.5 |  𝜖 [0,0.5] 

      # sort factors [‘flow violation’ and ‘Animas River precipitation’] by extremity 

      BI_High = BI factor with the highest extremity; 

       # Bayesian Inference: updating farmer’s belief 

       Γ𝑝𝑟
𝑡 =

𝜆Γ𝑝𝑟
𝑡−1 

𝜆Γ𝑝𝑟
𝑡−1+(1−𝜆)(1−Γ𝑝𝑟

𝑡−1)
Γ𝑝𝑑

𝑡 +
(1−𝜆)Γ𝑝𝑟

𝑡−1

(1−𝜆)Γ𝑝𝑟
𝑡−1+𝜆(1−Γ𝑝𝑟

𝑡−1)
(1 − Γ𝑝𝑑

𝑡 ) 

      # Cost/Loss analysis 

      If cost/loss ratio factor (z) is smaller than or equal to BI_High Then 

            Agent decreases irrigated area by a certain percentage; 

       Elseif 

            Agent increases irrigated area by a certain percentage; 

       Endif  

       Next Agent 

       Next Year 

Group 3-2. Downstream of Navajo Reservoir (San Juan River) with shortage sharing 

For year = 1928 to 2013 

    For Agent = 1 to 16 

        # Bayesian Inference (BI) 

       BI_Prec_NElev (Upstream Precipitation|Navajo Elevation); 

       BI_NIIPdiv_inner (BI_Prec_NElev|NIIP Diversion); 

       BI_FlowVio_inner (BI_Prec_NElev|Flow Violation); 

       BI_SS_inner (BI_Prec_NElev|Shortage Sharing); 

       BI_DownstreamPrecip (Downstream Precipitation|Irr Area); 

       BI_FlowVio (BI_FlowVio_inner|Irr Area); 

       BI_NIIPdiv (BI_NIIPdiv_inner|Irr Area); 

       BI_ShortageSharing (BI_SS_inner|Irr Area); 

       # Bayesian Inference (BI) : BI mapping 

       Γ𝑝𝑟
𝑡 =

𝜆Γ𝑝𝑟
𝑡−1 

𝜆Γ𝑝𝑟
𝑡−1+(1−𝜆)(1−Γ𝑝𝑟

𝑡−1)
Γ𝑝𝑑

𝑡 +
(1−𝜆)Γ𝑝𝑟

𝑡−1

(1−𝜆)Γ𝑝𝑟
𝑡−1+𝜆(1−Γ𝑝𝑟

𝑡−1)
(1 − Γ𝑝𝑑

𝑡 ) 

        # Extremity analysis to build Cost/Loss structure 

         V = variables which are related to the decision-making process such as 

Upstream/Animas/Downstream Precipitation, NIIP diversion, and Flow Violation (Shortage Sharing is 

always located at the highest decision factor); 

       𝑉𝑖 = |
𝜃𝑖

𝜃𝑚𝑎𝑥
− 0.5 |  𝜖 [0,0.5] 

       # sort factors [‘flow violation’, ‘NIIP diversion’ and ‘downstream precipitation’] by extremity 

       BI_High = BI factor with the highest extremity; 

       # Bayesian Inference: updating farmer’s belief 
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       Γ𝑝𝑟
𝑡 =

𝜆Γ𝑝𝑟
𝑡−1 

𝜆Γ𝑝𝑟
𝑡−1+(1−𝜆)(1−Γ𝑝𝑟

𝑡−1)
Γ𝑝𝑑

𝑡 +
(1−𝜆)Γ𝑝𝑟

𝑡−1

(1−𝜆)Γ𝑝𝑟
𝑡−1+𝜆(1−Γ𝑝𝑟

𝑡−1)
(1 − Γ𝑝𝑑

𝑡 ) 

      # cost/loss analysis: Bayesian Inference (BI) 

        If cost/loss ratio factor (z) is smaller than or equal to BI value of ‘shortage sharing’ Then 

            Agent decreases irrigated area by a certain percentage; 

        Elseif    

            If cost/loss ratio factor (z) is smaller than or equal to BI_High Then 

                Agent decreases irrigated area by a certain percentage; 

           Elseif 

                Agent increases irrigated area by a certain percentage; 

           Endif  

       Endif  

       Next Agent 

       Next Year 

 

2. Design concepts 

Questions: There are eleven design concepts. Most of these were discussed extensively by 

Railsback (2001) and Grimm and Railsback (2005; Chapter. 5), and are summarized here 

via the following questions:   

2. 1. Basic Principles  

Question: Basic principles. Which general concepts, theories, hypotheses, or modeling 

approaches are underlying the model’s design? Explain the relationship between these 

basic principles, the complexity expanded in this model, and the purpose of the study. How 

were they taken into account? Are they used at the level of submodels (e.g., decisions on 

land use, or foraging theory), or is their scope the system level (e.g., intermediate 

disturbance hypotheses)? Will the model provide insights about the basic principles 

themselves, i.e., their scope, their usefulness in real-world scenarios, validation, or 

modification (Grimm, 1999)? Does the model use new, or previously developed, theory 

for agent traits from which system dynamics emerge (e.g., ‘individual-based theory’ as 

described by Grimm and Railsback (2005) as well as Grimm et al. (2005))? 

The ABM accepts a theory of the Risk Perception by using Bayesian Inference (BI) 

mapping to evaluate the uncertainty of the humans’ psychological decision-making 

process. The basic assumption in building the BI network is that decision-makers (farmers) 

are active parties in the local weather forecast. The decision makers always perceive the 

locally varied precipitation, reservoir water level, upstream diversion, as well as 

downstream flow requirements. The agents were clustered into the three groups (Group1: 

Upstream of Navajo Reservoir, Group2: Animas River, Group3: Downstream Navajo 

Reservoir) due to the geographic locations and the spatially varied the winter precipitation 
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(snowpack). In particular, the six agents (one in Group2 and five in Group3) are under a 

shortage-sharing rule in the Riverware rule-based simulation. Furthermore, the ‘individual-

based ABM model’ is embodied through applying ‘farmers’ belief’ on new information 

derived from the basin toward the decision makers to update their belief their belief of the 

causal relationship in the BI mapping. The pictorial BI mappings which based on the 

clustering are provided below.  

Bayesian Mapping 
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2.2. Emergence 

Question: What key results or outputs of the model are modeled as emerging from the 

adaptive traits, or behaviors, of individuals? In other words, what model results are 

expected to vary in complex and perhaps unpredictable ways when particular 

characteristics of individuals or their environment change? Are there other results that are 

more tightly imposed by model rules and hence less dependent on what individuals do, and 

hence ‘built in’ rather than emergent results? 

The most remarkable result in the risk-perceived ABM is an evaluation of the humans’ 

psychological decision-making process at the agent level by putting the concept of the 

farmer’s belief (λ) in the BI mapping. An individual belief (λ) differentiated credibility of 

the causal mapping of the decision-making process.   

2.3. Adaptation 

Question: What adaptive traits do the individuals have? What rules do they have for 

making decisions or changing behavior in response to changes in themselves or their 
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environment? Do these traits explicitly seek to increase some measure of individual success 

regarding its objectives (e.g., “move to the cell providing fastest growth rate,” where 

growth is assumed to be an indicator of success; see the next concept)? Or do they instead 

simply cause individuals to reproduce observed behaviors (e.g., “go uphill 70% of the 

time”) that are implicitly assumed to convey success or fitness indirectly? 

The agents in the same group share the same system parameters in the BI mapping. 

However, the trait of an agent’s belief (λ) is unique to adjust the causal probability at the 

agent level. The BI mapping contains multiple decision-making processes to finalize the 

following year’s irrigation plan. In the real world, the factors in the decision-making 

process are not considered parallel but rather hierarchal due to extremities of the factors. 

An important input to the ABM is identification of variation of precipitation due to the 

geographic heterogeneity across the river basin.   

2.4. Objectives 

Question: If adaptive traits explicitly act to increase some measure of the individual's 

success at meeting some objective, what exactly is that objective and how is it measured? 

When individuals make decisions by ranking alternatives, what criteria do they use? Some 

synonyms for ‘objectives’ are ‘fitness’ for organisms assumed to have adaptive traits 

evolved to provide reproductive success, ‘utility’ for economic reward in social models or 

simply ‘success criteria.’ (Note that the objective of such agents as members of a team, 

social insects, organs—e.g., leaves—of an organism, or cells in a tissue, may not refer to 

themselves but to the team, colony or organism of which they are a part.) 

The irrigation agents make the decisions to expand or shrink their cropland on an annual 

time step, and these decisions derived from the causal probabilities (BI mapping) and 

following economic decision model, Cost-Loss (CL) model. In a coupled model, 

Riverware (watershed)-ABM (a human as a user), the two models exchange the 

information to maximize the human agricultural benefit within the river-managing criteria. 

This coupled model proposes the smart way to use the water resources in the era of the 

water scarcity.   

2.5. Learning 

Question: Many individuals or agents (but also organizations and institutions) change their 

adaptive traits over time as a consequence of their experience? If so, how? 

An agent’s adaptive traits changes over the time. The fundamental decision-making 

process is based on the timely developing BI probabilities (30 years of window) in the BI 

mapping. Moreover, the annual extremity has been reset the structural pathway of the Risk-

Perceived decisions.  
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2.6. Prediction 

Question: Prediction is fundamental to successful decision-making; if an agent’s adaptive 

traits or learning procedures are based on estimating future consequences of decisions, how 

do agents predict the future conditions (either environmental or internal) they will 

experience? If appropriate, what internal models are agents assumed to use to estimate 

future conditions or consequences of their decisions? What tacit or hidden predictions are 

implied in these internal model assumptions? 

The historical winter precipitation data from November to February in each year are used 

as a substitute for the snowpack forecast in the ABM model. This historical data assumed 

to be used as a perfect prediction of the snowpack. Except for this point, the previous data 

are used in the ABM decision-making process. Grafting with the future climate model is 

suggested on this part.      

2.7. Sensing 

Question: What internal and environmental state variables are individuals assumed to sense 

and consider in their decisions? What state variables of which other individuals and entities 

can an individual perceive; for example, signals that another individual may intentionally 

or unintentionally send? Sensing is often assumed to be local, but can happen through 

networks or can even be assumed to be global (e.g., a forager on one site sensing the 

resource levels of all other sites it could move to). If agents sense each other through social 

networks, is the structure of the network imposed or emergent? Are the mechanisms by 

which agents obtain information modeled explicitly, or are individuals simply assumed to 

know these variables? 

The actual decision made via the cost/loss problem and the cost/loss ratio (z) is a 

considerable state variable (threshold) that senses the decision. It merely represents the 

external (economic) factor in the decision-making process.   

2.8. Interaction 

Question: What kinds of interactions among agents are assumed? Are there direct 

interactions in which individuals encounter and affect others, or are interactions indirect, 

e.g., via competition for a mediating resource? If the interactions involve communication, 

how are such communications represented? 

Agents interact both directly and indirectly. Agent interact directly through their decision 

on the water usage by changing their cropland. The agents’ decisions change the managing 

plan in the RiverWare due to the dynamic change of the agricultural water usages.  
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2.9. Stochasticity 

Question: What processes are modeled by assuming they are random or partly random? Is 

stochasticity used, for example, to reproduce variability in processes for which it is 

unimportant to model the actual causes of the variability? Is it used to cause model events 

or behaviors to occur with a specified frequency? 

Stochasticity is included in the agent-based model regarding the increasing or decreasing 

rate of the irrigation area. The percentile change with the 2% of maximum limitation is 

applied after the binary decision (0: decreasing and 1: increasing).  

2.10. Collectives 

Question: Do the individuals form or belong to aggregations that affect, and are affected 

by, the individuals? Such collectives can be an important intermediate level of organization 

in an ABM; examples include social groups, fish schools and bird flocks, and human 

networks and organizations. How are collectives represented? Is a particular collective an 

emergent property of the individuals, such as a flock of birds that assembles as a result of 

individual behaviors, or is the collective simply a definition by the modeler, such as the set 

of individuals with certain properties, defined as a separate kind of entity with its own state 

variables and traits? 

In the watershed used as case studies for this modeling framework, the agents are grouped 

into three different regions. The spatial variation of the precipitation (snowpack) is critical 

in this region due to the orographic effect. Thus, the irrigation agents are aggregated into 

the geo-precipitation group. Within a group, the agents share the same systematic 

parameters and BI structure. Collectives in the model represented the different 

dependencies of the agent’s decision by a primary reservoir’s (Navajo Reservoir) 

operation. For instance, the agents in the Group 3: Downstream Navajo Reservoir, are 

sensitively react with the upstream reservoir release schedule. Meanwhile, the agents in the 

Group 1: Upstream Navajo Reservoir, have little reference to the reservoir operation.      

2.11. Observation 

Question: What data are collected from the ABM for testing, understanding, and analyzing 

it, and how and when are they collected? Are all output data freely used, or are only certain 

data sampled and used, to imitate what can be observed in an empirical study (“Virtual 

Ecologist” approach; Zurell et al., 2010)? 

The simulated irrigation areas are validated by the historically observations of the irrigation 

area from the Bureau of Reclamation. The output data from the ABM decisions, the areal 

increments and the actual water diversions, are freely used for updating the corresponding 

Object/Slow values in the RiverWare.  
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3. Details 

3.1. Initialization 

Questions: What is the initial state of the model world, i.e., at time t = 0 of a simulation 

run? In detail, how many entities of what type are there initially, and what are the exact 

values of their state variables (or how were they set stochastically)? Is initialization always 

the same, or is it allowed to vary among simulations? Are the initial values chosen 

arbitrarily or based on data? References to those data should be provided. 

The RiverWare, simulates the river-basin operation rules from October 1, 1928, to 

September 30, 2013 (water-year cycle). Before the rule-based simulation in the RiverWare, 

the model initialized all input flows (derived from hydrologic models – VIC and StateMob) 

and constant parameters (given by the river basin regulations and the reservoir operation) 

for internal calculations. The initialization is always the same during the simulation 

because the initialization performed once before the beginning of the RiverWare 

simulation. The ABM begins to interact with RiverWare at the end of water year 

(September 30th, 1929). The initial sizes of the irrigation areas are taken from the historical 

observations from the Bureau of Reclamation.   

3.2. Input Data 

Question: Does the model use input from external sources such as data files or other models 

to represent processes that change over time? 

Most of the input data-including data regarding the flow at the outlet of the basin, the 

Navajo Reservoir elevation, the irrigation areas and the water diversion for Indian 

Reservation district (NIIP) for the ABM-are retrieved from Riverware. On the other hand, 

the precipitation data are taken from external sources: ground-based rainfall observatories 

(rain-gauges) operated by National Oceanic Atmospheric Administration (NOAA).  

3.3. Sub-models 

Questions: What, in detail, are the sub-models that represent the processes listed in 

‘Process overview and scheduling’? What are the model parameters, their dimensions, and 

reference values? How were sub-models designed or chosen, and how were they 

parameterized and then tested? 

The details of the ABM sub-models are presented completely in the ODD supplement. The 

model parameters which includes definitions and units is presented in the table. We expect 

ODD descriptions to include appropriate levels of explanation and justification for the 

ABM decisions, but the complete description of sub-models is likely to be provided in the 

relevant references.  
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Figure S1. An illustration of the two-way coupling process between an agent-based model 

(ABM) and a RiverWare using a built-in function of RiverWare: the data management 

interface (DMI). The figure uses a Water Use Object in RiverWare as an example. The 

DMI retrieves data from targeted Slots (e.g., irrigation area and water demand in 

CitizanDitch irrigation area) in RiverWare and exports the data (text files) to the ABM 

with the path assigned by the “output.ctl” control file. By using exported data and other 

inputs, the ABM makes the necessary calculations for simulating the human decision-

making process (determine the new irrigation are and water demand for the coming year). 

The updated irrigation area and water demand are then input back to the same RiverWare 

Slots designated in the “input.ctl” control file. This process is repeated at the end of each 

water year throughout the model period.   
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Figure S2. Extremities of preceding factor considered by (a) Upstream San Juan River, (b) 

Animas River, and (c) Downstream San Juan agents. 
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Figure S3. The simulated irrigation area changes during 1928 to 2013 from BC-ABM (solid 

red), Non-BC-ABM with extremity (dashed black), and Non-BC-ABM based on single 

preceding factor such as precipitation (solid black), flow violation (solid cyan), and NIIP 

diversion (solid magenta) versus historical irrigation areas (solid blue). 

 

  



 

 

18 

 

 

Figure S4. (a) Monthly view of days of flow violation with the case of the “Risk Averse”; 

(b) Monthly view of days of flow violation with the case of the “Risk Seeking”; (c) Monthly 

view of Navajo Reservoir Release with the case the “Risk Averse”; (d) Monthly view of 

Navajo Reservoir Release with the case of the “Risk Seeking” 
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