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Abstract 9 

 Managing water resources in a complex adaptive natural-human system is a challenge due 10 

to the difficulty of modeling human behavior under uncertain risk perception. The interaction 11 

between human-engineered systems and natural processes needs to be modeled explicitly with an 12 

approach that can quantify the influence of incomplete/ambiguous information on decision-13 

making processes. In this study, we “two-way” coupled an agent-based model (ABM) with a river-14 

routing and reservoir management model (RiverWare) to address this challenge. The human 15 

decision-making processes is described in the ABM using Bayesian Inference (BI) mapping joined 16 

with a Cost-Loss (CL) model (BC-ABM). Incorporating BI mapping into an ABM allows an 17 

agent’s psychological thinking process to be specified by a cognitive map between decisions and 18 

relevant preceding factors that could affect decision-making. A risk perception parameter is used 19 

in the BI mapping to represent an agent’s belief on the preceding factors. Integration of the CL 20 

model addresses an agent’s behavior caused by changing socioeconomic conditions. We use the 21 

San Juan River Basin in New Mexico, USA to demonstrate the utility of this method. The 22 

calibrated BC-ABM-RiverWare model is shown to capture the dynamics of historical irrigated 23 

area and streamflow changes. The results suggest that the proposed BC-ABM framework provides 24 

an improved representation of human decision-making processes compared to conventional rule-25 

based ABMs that does not take risk perception into account. Future studies will focus on modifying 26 

the BI mapping to consider direct agents’ interactions, up-front cost of agent’s decision, and 27 

upscaling the watershed ABM to the regional scale.  28 
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1. Introduction  32 

Managing water resources for growing demands of energy and food while sustaining the 33 

environment is a grand challenge of our time, especially when we are dealing with a complex 34 

adaptive natural-human system that subject to various sources of uncertainty. Nowadays, almost 35 

every major basin in the world can be considered as a coupled natural-human system (CNHS) 36 

where heterogeneous human activities are affecting the natural hydrologic cycle and vice versa 37 

(Liu et al., 2007). The interaction between human activity and the natural environment needs to be 38 

explicitly addressed, and the uncertainty within this complex system characterized according to a 39 

formal approach if benefits toward improved water resource management (Brown et al., 2015) are 40 

to be realized. 41 

Recently, agent-based modeling (ABM) has become a commonly used tool in the scientific 42 

community to address CNHS issues. An ABM framework identifies individual actors as unique 43 

and autonomous “agents” that operate according to a distinct purpose. Agents follow certain 44 

behavioral rules and interact with each other in a shared environment. By explicitly representing 45 

the interaction between human agents (e.g., farmers) and the environment (e.g., a watershed) where 46 

they are located, ABM provides a natural “bottom-up” setting to study transdisciplinary issues in 47 

CNHS. Applying ABM approach in water resources management began a decade ago and became 48 

a popular topic in CNHS analyses (Berglund, 2015; Giuliani et al., 2015; Giuliani and Castelletti, 49 

2013; Hu et al., 2017; Khan et al., 2017; Mulligan et al., 2014; Schlüter et al., 2009; Yang et al., 50 

2009; Yang et al., 2012; Zechman, 2011).  51 

However, one major challenge of applying ABM approach to water management decisions 52 

is the difficulty of characterizing human decision-making processes and meet the real-world 53 

management intuition. The traditional approach through, for example, survey or interview with 54 
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local decision makers is extremely limited (e.g., Manson and Evans, 2007) in space and time. This 55 

study introduces the Theory of Planned Behavior (TPB), a well-known theory in psychology used 56 

to predict human behavioral intention and actual behavior (Ajzen, 1991), into ABM framework to 57 

quantify human decision-making processes. The TPB states that an individual’s beliefs and 58 

behaviors can be expressed in terms of a combination of attitude toward behavior, subjective norms, 59 

and perceived behavioral control. Attitude toward behavior and subjective norms specify an 60 

individual’s perceptions of performing a behavior affected by its internal thinking processes and 61 

social normative pressures, while perceived behavioral control describes the effects from external 62 

uncontrollable factors (e.g., socioeconomic conditions). If an individual has high belief about 63 

making a specific decision, then it has an increased confidence that s/he can perform the specific 64 

behavior successfully. On the other hand, the tendency of a person for making a specific decision 65 

increases/decreases if social normative pressures decrease/increase. 66 

Implementating the TPB into ABM requires that all the three components to be modeled 67 

explicitly. In this study, we adapt the Bayesian Inference (BI) mapping (Pope and Gimblett, 2015) 68 

and the Cost-Loss model (CL) (Thompson, 1952) for this task. The BI mapping (also called 69 

Bayesian networks, belief networks, Bayesian belief networks, causal probabilistic networks, or 70 

causal networks), built on the Bayesian probability theory and cognitive mapping, calculates the 71 

likelihood that a specific decision will be made (Sedki and de Beaufort, 2012 via Pope and 72 

Gimblett, 2015) while sequentially updating beliefs of specific preceding factors (model 73 

parameters) as new information is acquired (Dorazio and Johnson, 2003). By applying the BI 74 

mapping, an individual’s beliefs affected by its internal thinking processes and perceptions of 75 

social normative pressures can be described as a cognitive map between decisions and relevant 76 

preceding factors. Ng et al. (2011) developed an ABM using BI to model the farmer’s adaptation 77 
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of their expectations (or belief) and uncertianties of future crop yield, cost, and weather. Yet the 78 

preceding factors were assumed to be independent of each other, which is not always true 79 

especially if two preceding factors are spatially related (e.g., downstream reservoir elevation and 80 

upstream precipitation). More importantly, the internal thinking processes of all farmers were 81 

assumed to be the same (i.e., no spatial heterogeneity is modeled). As a result, a more realistic 82 

framewok of applying BI to ABM is still needed to improve representation of human decision-83 

making processes. 84 

While BI mapping specifies the human psychological decision-making process, CL model 85 

addresses the effect of external socioeconomic conditions on an individual’s decision-making (i.e., 86 

perceived behavioral control in the TPB). CL model is frequently used as a simple decision-making 87 

model in economic analysis to quantify human decision-making according to economic theory 88 

(Thompson, 1952). CL modeling has been widely used in estimating the economic value of 89 

weather forecasts (Keeney, 1982; Lee and Lee, 2007; Murphy, 1976; Murphy et al., 1985). Tena 90 

and Gómez (2008) and Matte et al. (2017) incorporated the Constant Absolute Risk Aversion 91 

theory in CL modeling to evaluate risk perception of decision makers since the original CL model 92 

assumes a risk-neutral decision maker. They used a parameter, Arrow-Pratt coefficient, to 93 

represent “risk-averse” and “risk-seeking” decision makers but did not specify how this parameter 94 

could be determined. They also did not clarify what will happen if different decision makers in the 95 

system have different perceptions of risk (again, no spatial heterogeneity).  96 

To address these research gaps aforementioned, we developed an ABM based on the BI 97 

mapping and the CL model as an implementaiton of the TPB (referred to the “BC-ABM” here 98 

after). The BC-ABM is “two-way” coupled with a river-routing and reservoir management model:  99 

RiverWare” (details in Section 2.1). Four objectives of this study are: 1) use the BC-ABM to 100 
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quantify human decision considering uncertain risk perception, 2) demonstrate the improvement 101 

of BC-ABM compare to conventional agent behavior rules, 3) use the coupled BC-ABM-102 

RiverWare to explicitly model the feedback loop between human and nature system and 4) test the 103 

BC-ABM-Riverware for different scenarios. The San Juan River Basin in New Mexico, USA is 104 

used as the demonstration basin for this effort. The calibrated BC-ABM-RiverWare model is used 105 

to evaluate the impacts of changing risk preception from all agents to the water management in 106 

this basin. In this study, multiple comparative experiments of conventional rule-based ABM (i.e., 107 

without using the BL and CL) are conducted to demonstrate the advantages of the proposed BC-108 

ABM framework in modeling human decision-making processes. We also evaluate the effect of 109 

changing external economic conditions on an agent’s decisions.  110 

2. Methodology 111 

2.1. Develop a “two-way” coupled ABM-RiverWare model 112 

River-routing and reservoir management modeling is designed to simulate the deliveries 113 

of water within a regulated river system (Johnson, 2014). Many river-reservoir management 114 

models have been developed to address different objectives within a geographic region such as 115 

MODSIM, RiverWare, CALSIM (Draper et al., 2004), IQQM (Hameed and O’Neill, 2005), and 116 

WEAP (Yates et al., 2005). These models use a “node-link” structure to represent the entire river 117 

network where “nodes” are important natural (sources, lakes, and confluences) or human (water 118 

infrastructures and water withdrawals) components and “links” represent river channel elements.  119 

RiverWare, developed in 1986 by the University of Colorado Boulder, is a model of water 120 

resource engineering system for operational scheduling and forecasting, planning, policy 121 

evaluation, and other operational analysis and decision processes (Zagona et al., 2001). It couples 122 
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watershed and reach models that describe the physical hydrologic processes with routing and 123 

reservoir management models that account for water use for water resources assessment. 124 

RiverWare has a graphic user interface and uses an object-oriented framework to define every 125 

node in the model as an “Object.” Each object is assigned a unique set of attributes. These attributes 126 

are captured as “Slots” in RiverWare. There are two basic types of slots: Time Series and Table 127 

Slots for each Object to store either time series or characteristic data.  Details of RiverWare 128 

structure and algorithm can be found at Zagona et al. (2001) and its website: 129 

http://www.riverware.org/. 130 

There is an emerging research topic in Earth system modeling (Di Baldassarre et al., 2015; 131 

Troy et al., 2015) and water resources system analysis (Denaro et al., 2017; Giuliani et al., 2016; 132 

Khan et al., 2017; Li et al., 2017; Mulligan et al., 2014) to coupled models together. Coupling an 133 

ABM with a process-based model has been done before but mostly focused on groundwater 134 

models such as Hu et al. (2017) and Mulligan et al. (2014). One of the few examples that involve 135 

coupling with a surface water model, Khan et al. (2017) developed a simple ABM that coupled 136 

with a physically-based hydrologic model, Soil and Water Assessment Tool. In this paper, we 137 

perform a two-way coupling (or sometimes called “tight” coupling) of models which means 138 

data/information will be transferred back and forth between the ABM and RiverWare, where 139 

selected Objects in RiverWare are defined as agents. To facilitate the two-way coupling, we utilize 140 

a convenient built-in tool within RiverWare: the data management interface (DMI) utility which 141 

allows automatic data imports and exports from/to any external data source (RiverWare Technical 142 

Documentation, 2017, see also Figure S1). 143 

 144 

http://www.riverware.org/
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2.2.Quantify planned behavior with BI mapping and CL model 145 

The ABM developed in this paper, as an implementation of the TPB, consists of two 146 

components: the Bayesian Inference (BI) mapping and the Cost-Loss (CL) modeling. This unique 147 

setting allows us to explicitly describe human decision-making processes and asscociated 148 

uncertainty casued by information ambiguity in water management decisions. We describe the 149 

details in this section.  150 

2.2.1. The Bayesian Inference (BI) Mapping 151 

In this study, the Bayesian Inference (BI) mapping is applied to specify a decision maker’s 152 

(or agent’s) internal thinking processes by building a cognitive map (also called a causal structure) 153 

between decisions (or taking a specific management behaviors) and relevant preceding factors that 154 

could affect decision-making (Dorazio and Johnson, 2003; Pope and Gimblett, 2015). In this 155 

setting, the goal of an agent is to develop a decision rule (or management strategy) that prescribes 156 

management behaviors for each time step that are optimal with respect to its objective function. 157 

The uncertainty associated with these management behaviors is specified by a “risk perception” 158 

parameter (Baggett et al., 2006; Pahl-Wostl et al., 2008) representing the extent to which decision-159 

makers explicitly consider limited knowledge or belief about (future) information in their decision-160 

making process (Müller et al., 2013; Groeneveld et al., 2017). This is the definition of Knightian 161 

uncertainty which comes from the economics literature where risk is immeasurable or the 162 

probabilities are not known (Knight, 1921).  163 

In the field of water resource management, a decision is often made based on whether the 164 

preceding factor is larger (or less) than a prescribed threshold (i.e., exceedance). A simple example 165 

is that a farmer’s belief of changing the irrigation area will be affected by the forecast of snowpack 166 

in the coming water year or water availability in an upstream reservoir at the beginning of the 167 
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growing season. The probability of a preceding factor 𝑓  (a random variable) exceeding its 168 

threshold given a specific management behavior (or making a decision) 𝜃 : 𝑃(𝑓|𝜃)  can be 169 

expressed using the conditional probability equation shown in Equation (1) 170 

 𝑃(𝑓|𝜃) =
𝑃(𝑓 ∩ 𝜃) 

𝑃(𝜃)
 (1) 

The probability of 𝜃 being made when the preceding factor exceeds the given threshold:  𝑃(𝜃|𝑓) 171 

can be derived using Equation (1) and the equations of marginal probability (see Supplement 172 

Materials Text S1 for the derivation details). 173 

𝑃(𝜃|𝑓) =
𝑃(𝑓|𝜃) × 𝑃(𝜃)

𝑃(𝑓|𝜃)𝑃(𝜃) + 𝑃(𝑓|𝜃𝑐)𝑃(𝜃𝑐)
 (2) 

 where 𝑃(𝜃𝑐) = 1 − 𝑃(𝜃) is the probability of not taking the management behavior 𝜃. In our case, 174 

the information of 𝑓 is coming from RiverWare to ABM and 𝜃 is the result the ABM sends back 175 

to RiverWare. Similarily, 𝜃 being made when the preceding factor does not exceed the threshold 176 

(𝑓𝑐) may be expressed as 177 

𝑃(𝜃|𝑓𝑐) =
𝑃(𝑓𝑐|𝜃) × 𝑃(𝜃)

𝑃( 𝑓𝑐|𝜃)𝑃(𝜃) + 𝑃(𝑓𝑐 |𝜃𝑐)𝑃(𝜃𝑐)
 (3) 

The overall probability of taking a management behavior 𝑃(𝜃) relying on the preceding factor 𝑓, 178 

can be expressed by the law of total probability 179 

𝑃(𝜃) = 𝑃(𝜃|𝑓) × 𝑃(𝑓) + 𝑃(𝜃|𝑓𝑐) × 𝑃(𝑓𝑐) (4) 

A solution of 𝑃(𝜃) can be obtained by substituting Equations (2) and (3) into (4)  180 

𝑃(𝜃) =
𝑃(𝑓|𝜃) × 𝑃(𝜃)

𝑃(𝑓|𝜃)𝑃(𝜃) + 𝑃(𝑓|𝜃𝑐)𝑃(𝜃𝑐)
× 𝑃(𝑓) +

𝑃(𝑓𝑐|𝜃) × 𝑃(𝜃)

𝑃(𝑓𝑐|𝜃)𝑃(𝜃) + 𝑃(𝑓𝑐|𝜃𝑐)𝑃(𝜃𝑐)
× 𝑃(𝑓𝑐) (5) 

In this study, we re-name the variables in Equation (5) as follows 181 
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{

Γ𝑝𝑟 = 𝑃(𝜃)

Γ𝑝𝑑 = 𝑃(𝑓)

𝜆 = 𝑃(𝑓|𝜃)

 (6) 

where Γ𝑝𝑟 represents the decision maker or agent’s prior belief of 𝜃, Γ𝑝𝑑 the probabilistic forecast 182 

of preceding factor 𝑓, 𝜆 the rate of acceptance of new information which represents a decision 183 

maker’s belief about the received information from 𝑓 (belief of the forecast/measurement accuracy 184 

representing the degree of ambiguity of 𝑓). By applying the BI theory to Equation (5) with the 185 

expressions in Equation (6), the agent’s prior belief of 𝜃, Γ𝑝𝑟
𝑡  at time 𝑡 can be expressed as  186 

Γ𝑝𝑟
𝑡 =

𝜆Γ𝑝𝑟
𝑡−1 

𝜆Γ𝑝𝑟
𝑡−1 + (1 − 𝜆)(1 − Γ𝑝𝑟

𝑡−1)
Γ𝑝𝑑

𝑡 +
(1 − 𝜆)Γ𝑝𝑟

𝑡−1

(1 − 𝜆)Γ𝑝𝑟
𝑡−1 + 𝜆(1 − Γ𝑝𝑟

𝑡−1)
(1 − Γ𝑝𝑑

𝑡 ) (7) 

In Equation (7), the agent’s prior belief of 𝜃 at timestep 𝑡, Γ𝑝𝑟
𝑡 , is updated based on the prior belief 187 

at previous timestep 𝑡 − 1, Γ𝑝𝑟
𝑡−1, and new incoming information or forecast at time 𝑡, Γ𝑝𝑑

𝑡 .  Γ𝑝𝑟
𝑡  lies 188 

in between Γ𝑝𝑟
𝑡−1  and Γ𝑝𝑑 . Two extreme cases are described here. When 𝜆 = 1 , Equation (7) 189 

reduces to Γ𝑝𝑟
𝑡 = Γ𝑝𝑑

𝑡 , which indicates that the agent’s belief of taking management behavior is 190 

purely based on the new incoming information, which corresponds to a risk-seeking decision 191 

maker. In contrast, when 𝜆 = 0.5, Equation (7) becomes  Γ𝑝𝑟
𝑡 = Γ𝑝𝑟

𝑡−1 suggesting that a decision is 192 

made based on an agent’s previous experiences alone (i.e., the decision maker’s most recent 193 

experience). This means that we have a risk-averse decision maker who do not trust the new 194 

incoming information because it could be uncertain and rather to stick with her/his own experience. 195 

In other words, these agents are not taking any risk by changing their behavior. In this study, the 196 

Γ𝑝𝑟
𝑡  in Equation (7) at each time step is updated by applying the Bayesian probability theory to Γ𝑝𝑟 197 

between two consecutive time steps to take the temporal causality between the two decisions into 198 

account.  199 
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In most water resources management cases, multiple preceding factors affect the 200 

probability of a single management decision. In this paper, we assume that agents will make a 201 

decision based on the most “highly recognized” preceding factor following the suggestion from 202 

Sharma et al. (2013). The fundamental assumption is that a decision-maker will pay the closest 203 

attention to the most abnormal of any preceding factors, such as the severity of droughts or floods, 204 

historic low or high water levels of an upstream reservoir or an extreme upstream water diversion. 205 

The way we represent this tendency is by calculating the “extremity” factors (𝑉) of preceding 206 

factors 207 

𝑉𝑖 = |
𝑓𝑖

𝑓𝑚𝑎𝑥
− 0.5| (8) 

where 𝑓𝑖 is the ith preceding factor and 𝑓𝑚𝑎𝑥 is the maximal value of 𝑓𝑖. After the extremities of all 208 

preceding factors have been calculated, agent will select the preceding factor with the highest 𝑉𝑖 209 

to update the prior belief of management actions based on Equations (7). In this study, the 210 

extremity of each preceding factor is examined independently assuming each preceding factor is 211 

independent to each other (consider one not joint probability of multiple factors in the BI mapping). 212 

Taking winter precipitation, a common preceding factor used by farmers as well as in this study to 213 

determine the irrigated water demand for the coming year, as an example, 𝑓𝑖 represents the winter 214 

precipitation of year 𝑖, while 𝑓𝑚𝑎𝑥 is the maximum historical winter precipitation until the current 215 

year in Equation (8). 216 

2.2.2. The Cost-Loss (CL) Model 217 

The BI mapping method described in Section 2.2.1 characterizes an agent’s behavioral 218 

intentions related to its internal (psychological) decision-making processes. According to the TPB, 219 

a real-world management decision or action also depends on external uncontrollable factors such 220 
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as socioeconomic conditions. The CL model is applied in this study to address this concern. The 221 

CL model measures the tendency of an adverse event affecting the decision of whether to take 222 

costly precautionary action to protect oneself against losses from that event.  Based on the theory 223 

of Cost-Benefit Analysis, the probability of taking an action 𝑝 is related to the expected cost of 224 

taking action 𝐶 and opportunity lost of not taking the action 𝐿: 225 

𝑝 ≥
𝐶

𝐿
= 𝑧 (9) 

where 𝑧 is defined as the Cost-Loss (CL) ratio and only when this value is less the probability of 226 

the event occurring, the precautionary action will be taken.  227 

To fit the CL model into the proposed ABM framework, we modify the above CL model 228 

following the concept of Tena and Gómez (2008) and Matte et al. (2017) which added the 229 

perception of risk into the decision-making process. We define “𝐶” as the expected cost of taking 230 

management action that will potentially increase the gross economic profit and “𝐿” as the expected 231 

opportunity loss of not taking such management action. The CL ratio (𝑧), as a measure of tendency, 232 

can be compared with the prior belief of an agent’s for taking a management decision (Γ𝑝𝑟
𝑡  in 233 

Equation 7). When Γ𝑝𝑟
𝑡  is greater than 𝑧, this decision will become real world management action 234 

since it makes economic senses.    235 

Γ𝑝𝑟
𝑡 ≥ 𝑧 =

𝐶

𝐿
=

𝑡ℎ𝑒 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 𝑡𝑎𝑘𝑖𝑛𝑔 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 

𝑜𝑝𝑝𝑜𝑟𝑡𝑢𝑛𝑖𝑡𝑦 𝑙𝑜𝑠𝑠 𝑜𝑓 𝑛𝑜𝑡 𝑡𝑎𝑘𝑖𝑛𝑔 𝑚𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑎𝑐𝑡𝑖𝑜𝑛
  (10) 

When 𝑧 increases, it means the cost of taking management action goes up or the opportunity loss 236 

of not taking management action goes down. In either case, agents are less likely to take action 237 

due to reduced profits. When 𝑧 decreases, following the same logic, agents are more likely to take 238 

action. 239 
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Figure 1 summarizes the methodology in Section 2.2 applied to this study. Agent’s 240 

decision-making and action process will start when receiving information (Γ𝑝𝑑
𝑡 ) from RiverWare 241 

and the conditional probability of its decision Γ𝑝𝑟
𝑡  will be computed after the most “highly 242 

recognized” preceding factor is decided by the 𝑉𝑖 values. This probability of an agent’s decision 243 

will be compared with the CL ratio (𝑧) to account for the external economic conditions where the 244 

agent is located. The final management action from the agent will depend on whether the 245 

probability of making a decision for an agent’s is greater (take the action) or smaller (do not take 246 

the action) than the CL ratio. This process is repeated annually throughout the entire simulation 247 

period. We will use the case study to demonstrate the capability of this proposed method and 248 

diagnose the model with the historical data.  249 

3. Case Study  250 

3.1. Background of the Study Area 251 

The San Juan River Basin (Figure 2) is the largest tributary of the Colorado River Basin 252 

with a drainage area of 64,570 km2. Originating as snowmelt in the San Juan Mountains (part of 253 

the Rocky Mountains) of Colorado, the San Juan River flows 616 km through the deserts of 254 

northern New Mexico and southeastern Utah to join the Colorado River at Glen Canyon. Most 255 

water use activities are located in the upper part of the San Juan River Basin inside the States of 256 

New Mexico and Colorado. There are sixteen major irrigation ditches, four cities and two power 257 

plants (Figure 2) located in this basin and the water for which the San Juan River is the primary 258 

source. Major crops grown in the basin include hay, corn, and vegetables and the main planting 259 

season runs from May to October (Census of Agriculture – San Juan County, New Mexico, 2012). 260 

Navajo Reservoir, located 70 km upstream of the City of Farmington, NM is the main water 261 
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infrastructure in the basin (Figure 2) which is used for flood control, irrigation, domestic/industrial 262 

water supply and environmental flows. The reservoir is designed and operated by the U.S. Bureau 263 

of Reclamation (USBR) following the rules in Colorado River Storage Project (Annual Operating 264 

Plan for Colorado River Reservoirs, 2017). The active storage of the reservoir is 1.3 million acre-265 

ft (1.6 billion m3). The maximum release rate is limited to 5000 cubic feet per second (cfs) or 266 

141.58 cubic meter per second (cms).  267 

The Navajo Indian Irrigation Project (NIIP) is another major water consumption within the 268 

basin beside the 16 major irrigation ditches. The NIIP supplies water to Native American tribes in 269 

the region. San Juan-Chama Project manages transbasin water transfers into the Rio Grande Basin 270 

augmenting supply for Albuquerque, NM, irrigation and instream flow needs.  Finally, the San 271 

Juan River Basin Recovery Implementation Program (SJRIP) implemented by the Fish and 272 

Wildlife Service, manages environmental flows within the basin, dictating timing and magnitude 273 

of releases from Navajo Reservoir and maintainance of a daily 500 cfs (14.15 cms) minimum 274 

streamflow requirement (Behery, 2017).  275 

To improve water planning and management in the Basin, several state and federal 276 

agencies established a steering committee with the main responsibility of overseeing the 277 

institutional complexity for the water plans operated under the 1922 Colorado River Compact and 278 

1948 Upper Colorado River Basin Compact. Although a regional water plan report (RWP) was 279 

updated in 2016 (State of New Mexico Interstate Stream Commission, 2016) by interested 280 

stakeholders, issues still exist under the terms of 1948 Upper Colorado River Basin Compact. For 281 

example, New Mexico’s entitled 642,380 acre-ft (0.793 billion m3). consumptive use is 282 

substantially greater than the corresponding consumptive use.  283 
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The RWP summarizes the related information of water planning such as water rights, future 284 

water supply and demand projections, and newly available data. For example, ten of the largest 285 

water users have cooperated to develop a shortage sharing agreement to keep Navajo Reservoir 286 

from drawing down the reservoir pool elevation below 5990 ft (2041 m), which is the elevation 287 

required for NIIP diversion. The agreement stipulates that all parties share equally in shortages 288 

caused by drought (2013-2016 shortage agreement is available at: https://www.fws.gov/-289 

southwest/sjrip/DR_SS03.cfm). The RWP also projected that the total water demand in the Basin 290 

is expected to increase due to the authorized expansion of NIIP irrigation area, while a reduction 291 

of future water supply is possible due to climate change by the U.S. Global Change Research 292 

Program. Since irrigation activities are the most consumptive components of water demand among 293 

others, (74.8% of total water demand, State of New Mexico Interstate Stream Commission, 2016), 294 

collective adaptive actions of farmers will significantly affect the water planning and management 295 

in the San Juan Basin and become a suitable testbed for our methodology.  296 

3.2. The BC-ABM-RiverWare Model Setup 297 

USBR developed a RiverWare model for the San Juan River Basin to support water 298 

management and resource planning efforts. RiverWare includes 19 irrigation ditches objects, 21 299 

domestic and industrial use objects, two power plant objects and three reservoir objects. Input data 300 

for the RiverWare model include historical tributary inflows, evapotranspiration rates for each 301 

irrigation ditches limited by the crop water requirement, historic water diversion for NIIP and the 302 

San Juan-Chama Project, and reservoir operations rules. Ungaged local inflows were determined 303 

by the simple closure of the local water budget. The model operates on a daily time step from 304 

10/01/1928 to 09/30/2013 (85 years) with four “cycles” of simulation. Each cycle is a complete 305 

model run for the entire modeling period to fulfill part of the necessary information (e.g., some 306 

https://www.fws.gov/-southwest/sjrip/DR_SS03.cfm
https://www.fws.gov/-southwest/sjrip/DR_SS03.cfm
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downstream water requirements need to be pre-calculated for Navajo Reservoir to set up the 307 

release pattern). In this study, farmers that can make management decisions are quantified as 16 308 

major irrigation ditch objects in RiverWare. They are defined as agents in the study and will 309 

decided whether to expand or reduce their irrigated area (e.g. management behavior, 𝜃 in Section 310 

2) for the coming year at the end of every water year. We categorized the 16 agents into three 311 

groups based on their location (colored in Figure 2). Agents in Group 1 (light blue) were located 312 

upstream of the Navajo Reservoir; Group 2 (light green) were located on the Animas River (a 313 

major tributary of the San Juan River), and Group 3 (orange) were located downstream of the 314 

Navajo Reservoir. 315 

The BI mapping was applied to each group with different causal structures. The climatic 316 

preceding factors considered in this study include the mainstem (Navajo) upstream winter 317 

precipitation, the tributary (Animas River) winter precipitation, the mainstem downstream winter 318 

precipitation, the water level in Navajo Reservoir and the flow violations at the basin outlet (days 319 

below 500 cfs or 14.15 cms in a water year). The social preceding factors considered in this study 320 

include the cost-loss ratio, the NIIP diversions and the shortage sharing. Table 1 summarizes the 321 

number of agents in each group and the proceeding factors they are considering. Given that agents 322 

located at different places, the preceding factors that affect agents’ decisions will also be different. 323 

This is an advantage of using ABM to incorporate spatial heterogeneity in the model. 324 

In this study, the information of winter precipitation was not taken from RiverWare; rather, 325 

was gathered from NOAA ground-based rainfall monitoring gauges where we used the coming 326 

year’s winter precipitation as a proxy for the snowpack forecast in the causal structure. Winter 327 

precipitation has a positive effect on snowpack but there is an uncertainty about how much snow 328 

will be accumulated. Therefore, when agent expect more winter perception, if they believe it will 329 
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lead to a lot more snowpack, they will become more aggressive in the irrigated area expansion. 330 

Flow violation at the basin outlet and water level of Navajo Reservoir are two system-wide 331 

proceeding factors that considered by all the three groups. When flow violation is too frequent or 332 

water level is too low, agents tend to be more conservative in the irrigated area expansion. If a 333 

shortage were declared, the RiverWare model would reduce the targeted streamflow at the basin 334 

outlet to 250 cfs (7.08 cms) and the participating six agents will adjust their water diversion to 335 

achieve this newly targeted streamflow. Under the current model setting, agents follow the 336 

“backward-looking, forward-acting” mode, which means that agents make decisions based on their 337 

own past/current experiences (water level in Navajo Reservoir, stream flow violations at the basin 338 

outlet, NIIP water diversion, and the previous decision on the irrigated area) and their belief of the 339 

winter precipitation forecast in the coming year. The detailed causal structure of BI mapping for 340 

each type of agent are given in the Supplement Materials where a standard “Overview, Design 341 

concepts, and Details + Decision” (ODD+D) protocol for ABM development is followed (Grimm 342 

et al., 2010).  343 

To sumarize, the data transfer from RiverWare to ABM at the end of a water year included 344 

1) irrigation areas for the 16 irrigation agents, 2) the basin outflow, 3) water level in the Navajo 345 

Reservoir and 4) the NIIP water diversion. After the completion of ABM simultaion, data transfer 346 

from ABM to RiverWare included 1) updated irrigated areas and 2) the corresponding water 347 

diversion of each agent. The next section will demonstrate the capability of the proposed model to 348 

recreate historical pattern in the San Juan Basin. 349 

3.3. The BC-ABM-RiverWare Model Diagnostics  350 

One of the major criticisms of ABM development is that ABM results are difficult to verify 351 

or validate (Parker et al., 2003; An et al., 2005, 2014; National Research Council, 2014). In this 352 
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study, we address this concern by calibrating the coupled BC-ABM-RiverWare model to recreate 353 

the historical trend of 1) individual agent’s irrigated area and 2) San Juan River discharge. USBR 354 

provides the observed irrigated acreage for all 16 ditches and the flow measurements at two 355 

different locations along the San Juan River (at the outlet of the San Juan River Basin and directly 356 

downstream of the Navajo Reservoir) for the calibration purpose. The calibrated parameters are 357 

the risk perception parameters (𝜆) and CL ratio (𝑧) of each individual agent. Each agent has four 358 

𝜆s characterized by the relative geographical location with considered preceding factors. Unique 359 

values of 𝜆 are assigned to each preceding factor for each agent (through calibration) as different 360 

agents should have different levels of risk tolerance for different preceding factor. Different values 361 

of 𝑧 are assigned to each agent representing the spatial heterogeneity of socioeconomic conditions. 362 

𝑧 is assumed to be constant for each agent throughout the model period as relative up-front cost 363 

information is unavailable. We also calibrate the irrigated areal increment of each agent to quantify 364 

the capability of different farmers for expanding or reducing their farmland. The actual irrigation 365 

area change at each year for each farmer is specified by the calibrated irrigated areal increment 366 

with an added uncertainty of 30% representing the execution uncertainty of farmers. The 367 

thresholds of each preceding factor are also calibrated for calculating the extremities. A total of 368 

102 parameters are manual calibrated (“trial-and-error”) with details explained in the Supplement 369 

Materials (Text S2). In general, we calibrated the parameters sequentially from upstream and 370 

tributary agents (i.e. Groups 1 and 2) to downstream (i.e. Group 3). Within a group, we calibrated 371 

agents with larger irrigated area first to capture a better system-wide result.  372 

The calibration results of irrigated areas are given in Figure 3 and arranged by group 373 

(region). The blue curves are the historical irrigated area. The red curves are the best-fit result 374 

among multiple (30) modeling runs (shown by the gray curves, which represents the stochasticity) 375 
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of each agent. In general, BC-ABM captures the pattern and trend of irrigated area for all agents, 376 

and we particularly focus on agents with the largest irrigated areas since their decision can 377 

dominate the basin. A figure showing the time variations of extremity values for each group of 378 

agents is given in the Supplement Materials (see Figure S2) to illustrate the preceding factors 379 

adopted by different groups of agents for making decision at each time step. 380 

The overall (area) weighted Nash-Sutcliffe Efficiency (NSE, Nash and Sutcliffe, 1970) of 381 

the best-fit result is 0.55 which represents a reasonable calibration result. There are a few cases 382 

where structural changes occurred with some of the ditches that the model does not capture. 383 

Specifically, construction of Navajo Reservoir in the 1960 inundated the New Mexico Pine River 384 

Ditch, while construction of the dam made it possible to expand the Hammond Irrigation Ditch 385 

(located directly downstream of Navajo Reservoir). Similar structural changes are evident with the 386 

Echo, New Mexico Animas and Fruitland-Cambridge Ditches. The model limitation associated 387 

with the use of BI mapping in ABM is discussed in the Discussion Section. 388 

To demonstrate the enhanced performance of the proposed BC-ABM framework in 389 

representing human decision-making processes, we conducted comparative experiments with 390 

conventional rule-based, deterministic ABMs (such as our previous work in Khan et al. 2017), 391 

referred to as the Non-BC-ABMs. In the Non-BC-ABMs, agents make decision based on either 392 

past experience (e.g., flow violation or NIIP diversion) or future forecast (winter precipitation) 393 

alone implying that agents have a perfect foresight in received information. Using precipitation as 394 

an example, an agent will expand irrigation area if the precipitation forecast is greater than the 395 

given threshold, and vice versa. Excluding BI mapping implies that the agents make decision 396 

purely based on the forecast or new incoming information and fully ignore the information from 397 

past experience, while excluding CL model means that the agents do not take socioeconomic 398 
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factors into account when making decisions. Two Non-BC-ABMs were tested and results are also 399 

shown in Figure 3. The black solid curve represents the Non-BC-ABM simulation still utilizing 400 

extremity for selecting the reference preceding factor, while the black dashed curve is the Non-401 

BC-ABM using only the precipitation in the decision-making processes. The better performance 402 

of the proposed BC-ABM framework, compared to the Non-BC-ABMs, is evidenced by the closer 403 

agreements between the simulated and historical patterns of irrigated area from BC-ABM as well 404 

as weighted NSE (0.55 for BC-ABM vs. -1.25 for the Non-BC-ABM with extremity and -1.39 for 405 

the Non-BC-ABM with precipitation alone). Different Non-BC-ABM simulations are also 406 

compared with the BC-ABM simulations as shown in Figure S3.  407 

The time variations of Γ𝑝𝑟
𝑡  and calibrated 𝑧 for each agent are shown in Figure 4 to illustrate 408 

the characteristics of different agents, in terms of risk perception. The results show that the agents 409 

in Group 1 and 2 have a consistently lower willingness to adjust irrigation area (Γ𝑝𝑟 shown in red) 410 

compared to the corresponding CL ratio (𝑧 shown in black). In contrast, Group 3 agents adjust 411 

irrigation area more often as evidenced by the frequent crossover between red and black curves, 412 

which suggest that agents in Group 3 are relatively risk-neutral compared to those in Group 1 and 413 

2. The calibration results of basin outflow and Navajo Reservoir inflow are given in Figure 5. The 414 

results show that the simulated values agree closely with the historical observations evidenced by 415 

the NSEs of 0.60 and 0.54, respectively. We do notice that our coupled BC-ABM-RiverWare 416 

misses peaks of streamflow possibly due to the lower input streamflow data of RiverWare. 417 

However, since our focus is the water-scarce situation in this case study, this underestimation does 418 

not significantly affect our following analysis. 419 
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4. Scenario Results 420 

The calibration results in Section 3.3 demonstrate the creditability of the coupled BC-421 

ABM-RiverWare model in representing human psychological, uncertain decision-making process. 422 

The encouraging results suggest that we can apply the proposed BC-ABM framework to test some 423 

“extreme conditions” to perform different scenario analyses. Two scenarios are tested in this 424 

section: the effect of changing agents’ risk perception and the effect of changing socioeconomic 425 

condition. 426 

4.1. The effect of changing agents’ risk perception 427 

Different risk perception scenarios are tested by making stepwise change of all agents’  𝜆 428 

values from “0.5” (risk-averse) to “1” (risk-seeking). The basin-wide results are summarized in 429 

Figure 6 which shows the key measure quantities including cumulative probability distribution of 430 

annual total irrigated area, Navajo Reservoir water level in December, annual total downstream 431 

flow violation frequency and volume. The simulations under extreme risk-averse (𝜆 = 0.5) and 432 

risk-seeking (𝜆 = 1) scenarios are shown in blue and green, while those with calibrated historical 433 

risk perceptions for each agent are shown in red, referred to as the baseline. The gray curves lying 434 

between blue and green are the results corresponding to different 𝜆 values. The total irrigation area 435 

generally increases with an increasing 𝜆, indicating that the agents become more risk-seeking if 436 

they are more confident about new incoming information.  437 

There are two interesting observations. First, it is clear that when all agents become risk-438 

seeking, their emerging actions will result in larger irrigated area in the basin (Figure 6a). Since 439 

all agents want to expand their irrigated area, Navajo Reservoir will reserve more water at the end 440 

of each year resulting in slightly higher water levels (Figure 6b). Streamflow violations show a 441 
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somewhat counterintuitive result. The volume of violation under risk-seeking scenario increases 442 

as expected (green curve shifts to right in Figure 6d) but the frequency of violation decreases 443 

(green curve shifts to left in Figure 6c). This is due to that Navajo Reservoir holds more water for 444 

irrigation season to satisfy downstream increasing water demand which will result in much fewer 445 

streamflow violation days during the irrigation season. Although this operation slightly increases 446 

streamflow violation days in the following season, the total violation days still decrease (Figure 447 

S4 in the Supplement Materials). Second, the baseline results (red curves) are closer to the “all 448 

agents risk-averse” scenario results (blue curves). This is consistent with the findings from 449 

previous studies (e.g., Tena and Gómez, 2008), which suggest that farmers are commonly risk-450 

averse when the stakes are high (Matte et al., 2017).  451 

We also look at the time variations of individual irrigated area changes for characterizing 452 

risk perceptions of different agents. Figure 7 shows the simulated irrigation area changes for four 453 

selected large irrigation ditched since they are the major “players” in the basin. The results clearly 454 

show that Jicarilla (Group 1) and NMAnimas (Group 2) are historically risk-averse agents (red 455 

curves overlap with blue curves). In contrast, Hammond and Hogback (Group 3) are relatively 456 

risk- neutral, compared to agents in Group 1 and 2, as the red curves lie in between green and blue 457 

curves. Group 3 agents are located downstream of the Navajo Reservoir and most of them consider 458 

Navajo Reservoir as a steady water source so they can have relatively more aggressive attitudes 459 

toward risk compared to their upstream counterparts. Also, note that Jicarilla, Hammond, and 460 

Hogback under the risk-seeking scenario eventually reach their maximum available irrigated area. 461 

Therefore, their irrigated area flattens out at the end of the simulation. The gray curves in Figure 462 

7 represent the simulated irrigation area changes for agents corresponding to different agents’ risk 463 
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perceptions. It shows that the irrigation area generally increases with an increasing 𝜆 for all the 464 

four agents.  465 

4.2. The effect of changing socioeconomic condition  466 

The proposed BC-ABM framework allows us to quantify the influences of external 467 

socioeconomic factors on human decision-making processes by adjusting the CL ratio. In this 468 

study, we conducted a sensitivity analysis on the cost-loss ratio to test “what if economic conditions 469 

change and it becomes more expensive or cheaper to expand the irrigated area” by systematically 470 

increasing (+10% and +20%) or decreasing (-10% and -20%) z values for all agents. When the z 471 

value goes up, it means that the cost of increasing irrigated area goes up, or the opportunity loss 472 

of not increasing irrigated area goes down. In either case, the situation should become harder for 473 

agents to expand their irrigated area. When the z value goes down, following the same logic, the 474 

economic conditions become easier for agents to expand their irrigated area. The modeling results 475 

shown in Figure 8 fit with this intuition quite well. All blue and cyan curves (increasing z values) 476 

are located below, and purple and magenta curves (decreasing z values) are located above red 477 

curves (baseline). Modeling results also show that in the basin, Groups 1 and 2 are less sensitive 478 

to the changes in economic conditions but agents in Group 3 are more sensitive to the economic 479 

conditions. Of course, individual differences exist inside each group. 480 

According to the San Juan River Basin regional water plan, several strategies and 481 

constructions such as on-farm and canal improvements and municipal and irrigation pipeline from 482 

Navajo Reservoir, will be authorized for meeting the future water demand (State of New Mexico 483 

Interstate Stream Commission, 2016). These strategies and constructions could lead to a change 484 

of future socioeconomic conditions, in terms of the cost of water usage and changing irrigated area 485 

(e.g., up-front cost) for stakeholders. In this study, we quantify the effects of up-front cost on the 486 
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changes of irrigation area (i.e., irrigation water demand) using the proposed BC-ABM framework. 487 

We can look at the influence of up-front cost on human decision-making processes from two 488 

perspectives. First, it directly changes the socioeconomic condition of an agent (change of CL 489 

ratio). Second, it influences an agent’s decision-making processes by introducing more 490 

information (change of causal network in BI mapping). As a result, the proposed BC-ABM 491 

framework can take up-front costs into account without theoretical and technical difficulties if 492 

related information is available. Two scenarios assuming a general increasing and decreasing up-493 

front cost for agents over time, are tested in the study, respectively. For each agent, a time varied 494 

𝑧 is generated by adding a positive/negative trend with a small random fluctuation to the calibrated 495 

𝑧 to mimic the spatial and temporal heterogeneity of up-front costs. Note that we did not include 496 

up-front costs into the current BI mapping as real world stockholders’ inputs are needed to re-497 

calibrate all the model parameters. 498 

The time variation of irrigated area for all 16 agents under different up-front cost trends are 499 

shown in Figure 9. The cyan and green curves are the irrigated area change under an increasing 500 

and decreasing z, respectively, while red curves are the baseline which use calibrated z values. The 501 

results show that the influence of changing z on Group 3 agents is relatively significant compare 502 

to Group 1 and Group 2. A consistently higher (lower) green (cyan) curve as compared to the 503 

baseline is observed. These preliminary results are expected as they fit the economic intuition. In 504 

this specific case, farmers tend to expand their irrigation area earlier (by comparing cyan and red 505 

curves) if they expect a corresponding increased cost in the future. In contrast, if the cost of 506 

expanding irrigation area in the future is expected to go down, farmers will defer the actions to 507 

pursue a lower cost.  508 
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5. Discussion 509 

5.1 Generalized the modeling framework and policy implementation for other basins  510 

The proposed BC-ABM framework in this paper is intended to be a generalizable approach 511 

in water resources management and other fields that need to quantify human decisions. This 512 

framework directly addresses the four challenges summarized by Scalco et al. (2018) about how 513 

to apply the TPB in an agent-based setting. The model diagnose process and using the historical 514 

irrigated area answer the first challenge: “Data and Preliminary Model Assessment.” Applying the 515 

BI mapping provides a stochastic representation of the decision-making process which eliminates 516 

the concern of “Working with a Static Model.” Combing with the CL model, we can 517 

mathematically calculate “When Does Intention Become Behavior.” Finally, coupling the ABM 518 

with the RiverWare is our solution to address the “Feedback Mechanisms” challenge in a CNHS. 519 

The method can be applied to other basins given that the required input data for BI mapping are 520 

publically available such as the precipitation from NOAA and the streamflow from USGS and risk 521 

perception (𝜆) and CL ratio (z) are calibrated parameters. However, the data required for the model 522 

diagnose such as long-term historical irrigated area time series might not be available in every 523 

basin. In this situation, if one intends to duplicate the proposed method in other basins, some 524 

alternative data source, such as land use and land cover changes data from USGS can be used as a 525 

proxy of calibration targets.  526 

The modeling results can be used to inform water management policy. For example, the 527 

sensitivity analysis (see Figure 8) suggests that the collective action of farmers has potential to 528 

influence the irrigation of 4.5×104 to 6.1×104 acres (182.1 to 246.9 km2) of cropland with 9000 to 529 

12000 ac-ft (11.1 to 14.8 million m3) of water demand, which is about 30 to 39% of average annual 530 
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water usage under changing economic conditions (i.e., 20% increase or decrease of up-front cost). 531 

A potential increase/decrease of future irrigation cost could also influence farmers’ decisions. 532 

Understanding such behavior is also critical to future water resource planning and management in 533 

the San Juan as (1) threat of climate change will lead to shift in timing of flows associated with a 534 

mean decrease in future water supply resulting from an anticipated reduced precipitation and/or 535 

increased evaporation, and (2) there are several settlement agreements with the tribal communities 536 

along the San Juan where their committed allotment of water has yet to be put to full use (e.g., 537 

Navajo Gallup Pipeline and Navajo Indian Irrigation Project that both require construction and/or 538 

expansion of existing water delivery infrastructure to make full use of water rights). 539 

5.2 Model limitations  540 

Here we discuss two aspects of limitation of current study: data availability and model 541 

structure. The lack of historical data to serve as the calibration target is mentioned in the above 542 

section already. Another data limitation is for CL ratio calculation and the up-front cost. Currently, 543 

CL ratio is treated as a calibrated parameter in BC-ABM framework. The value of CL ratio can be 544 

estimated directly by acquiring relevant data, if available. For example, the farm production 545 

expense data provided by U.S. Department of Agriculture could be used as an approximation of 546 

the expected cost of changing irrigation area (𝐶 in Equation 10), while the farm income and wealth 547 

statistics estimated from crop production may be considered as a major part of opportunity loss (𝐿 548 

in Equation 10). The third data limitation is the necessary data to create the precise causal structure 549 

of BI mapping (Cheng et al., 2002; Premchaiswadi et al., 2010). In general, an accurate causal 550 

structure of BI mapping can be obtained by a detailed interview with decision makers (O'Keeffe 551 

et al., 2016) or learned from a dataset (Sutheebanjard and Premchaiswadi, 2010). 552 
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Regarding the model structure limitation, the farmer’s belief is currently calculated using 553 

one single preceding factor in the cognitive map that has the most extremity. The use of extremity 554 

from single preceding factor in the decision-making processes assumes that the joint probability 555 

of decision-making from multiple preceding factors are not taken into account (the agent may not 556 

respond to the cumulative effects of environmental conditions). Finally, the current method does 557 

not explicitly consider direct interaction among agents in the BI mapping. We do model agents as 558 

interacting indirectly through irrigated water withdrawal (i.e., upstream agents’ water uses will 559 

affect downstream agents’ water availability). However, effects like “peer-pressure,” “word-of-560 

mouth” and potential water markets are not currently considered in the model. 561 

6. Conclusion 562 

Making water resources management decision in a complex adaptive natural-human 563 

system subject to uncertain information is a challenging issue. The interaction between human and 564 

natural systems needs to be modeled explicitly with associated uncertainties quantified and 565 

managed in a formal manner. This study applies a “two-way” coupled agent-based model (ABM) 566 

with a River-Reservoir management model (RiverWare) to address the interaction between human 567 

and natural systems. The proposed ABM framework characterize human decision-making 568 

processes by adopting a perspective of the Theory of Planned Behavior implemented using 569 

Bayesian Inference (BI) mapping joined with Cost-Loss (CL). The advantage of ABM is that by 570 

defining different agents, various human activities can be represented explicitly while the coupled 571 

water system provides a solid basis to simulate the feedback between the environment and agents.  572 

Combining BI mapping and CL model allows us to 1) explicitly describe human decision-573 

making processes, 2) quantify the associated decision uncertainty caused by 574 
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incomplete/ambiguous information, and 3) examine the adaptive water management in response 575 

to changing natural environment as well as socioeconomic conditions. Calibration results for this 576 

coupled BC-ABM-RiverWare model, as demonstrated in the San Juan River Basin, show that this 577 

methodology can capture the historical pattern of both human activities (irrigated area changes) 578 

and natural dynamics (streamflow changes) while quantifying the risk perception of each agent via 579 

risk perception parameters (𝜆). The scenario results also show that the majority of agents in the 580 

basin are risk-averse which confirm the conclusion of Tena and Gómez (2008). The improved 581 

representation of the proposed BC-ABM is evidenced by the closer agreement of BC-ABM 582 

simulations against observations, compared to those from an ABM without using BI mapping and 583 

CL ratio. Changing economic conditions also yield intuitive agent behavior, that is, when crop 584 

area expansion is more expensive/cheaper, fewer/more agents will do it. 585 

Future work can target further methodology development to include direct agent interaction 586 

into the BI mapping. For example, agents’ decisions can be affected by observing its neighbor’s 587 

actions, and this information will always be treated with 𝜆 = 1. This means agents will always 588 

believe their own observations (i.e. “to see is to believe”). In addition, we only defined groups of 589 

farmers as agents in this study. Future work can seek to add power plant, city/municipality, and 590 

reservoir as different type of agents. The direct and indirect interaction among these different types 591 

of agent (such as farmers and power plants might or might not have to compete with water from 592 

the reservoir) will provide a more comprehensive picture in the entire food-energy-water-593 

environment nexus.  594 
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