
1 

 

2nd revison of manuscript on “Mapping soil hydraulic properties using 
random forest based pedotransfer functions and geostatistics” 

 
Content of the document 

I. POINT BY POINT AUTHORS' RESPONSE TO THE REVIEWERS ................................................................ 1 

1. RESPONSE TO THE EDITOR .............................................................................................................. 1 

2. RESPONSE TO REFEREE #1 ............................................................................................................... 1 

II. LIST OF ALL RELEVANT CHANGES MADE IN THE MANUSCRIPT........................................................... 3 

III. MARKED-UP MANUSCRIPT VERSION .................................................................................................. 3 

 

 

 

I. POINT BY POINT AUTHORS' RESPONSE TO THE REVIEWERS 

1. RESPONSE TO THE EDITOR 

Dear Dr. Ehret, 

 

Thank you for the positive evaluation of our manuscript. Please find here our answers following the 
raised point with page and line numbering of the revised manuscript with track changes: 

 

Q1: I agree with the referee suggestion to both harmonize your objectives throughout the manuscript 
and make them more specific. Please revise your manuscript accordingly, which should not take much 
time. 

A1: We have harmonized the objectives in the abstract (P1 L14-16), introduction (P4 L5), 
results and discussion (P13 L1-3) and conclusions (P14, L29-30) according to the reviewer 
suggestion. 

 

We hope that the harmonization of the objectives has been addressed well with the modification. 

 

With regards, 

Authors 

 

2. RESPONSE TO REFEREE #1 

Dear Referee #1, 

Thank you for dedicating your time for the thorough review and constructive suggestions which helps 
us improving the quality of our manuscript. Below we would like to answer the question and 
recommendation following the comments. Page and line numbering refer to that of the revised 
manuscript with track changes. 
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General comments: 

Q1: The authors have thoroughly answered to all the comments I raised about the first version of the 
manuscript. In almost all cases, they have adopted the manuscript concerning my comments and 
questions. To my mind, they have substantially improved the quality of the manuscript. I recommend 
the work to be published in HESS after minor revision. 

A1: Thank you for helping us improving clarity and quality of our manuscript and the positive 
evaluation. 

 

Specific comment: 

Q2: My only comment relates to the formulation of the objectives. In my opinion, it is the most 
important sentence of the manuscript. I still recommend using the same formulation in the Abstract, 
the Introduction and the beginning of the Conclusion. 

In the Abstract it says: “Our aim was to analyse the performance and spatial distribution of soil 
hydraulic properties derived from (i) indirect (using PTFs) and (ii) direct (geostatistical) mapping 
methods”. Here the phrase “performance of soil hydraulic properties” is not clear. I guess that the 
performance of the methods to derive the soil hydraulic properties is meant, right?  

In the last paragraph of the Introduction it says: “Our aim was to analyse how different mapping 
methods could be applied to derive maps of soil hydraulic properties, such as water content at 
saturation (THS), field capacity (FC) and wilting point (WP) on the Balaton catchment area in Hungary”. 
Here “different mapping methods” is too vague for an objective formulation when the specific method 
are of central importance. 

Maybe you can find another more concise and unambiguous formulation of the objectives.  

A2: Thank you for keeping attention on it and suggesting solution. You are right, performance 
is related to the method, the text on the objectives has been modified accordingly: 

- Abstract P1 L14-16: sentence has been simplified and clarified, 

- Introduction P4 L5: sentence has been specified, 

- Results and discussion P13 L1-3: rephrased to increase clarity, 

- Conclusions P14 L29-30: cleared to increase readability. 

 

Further remark 

Q3: I further recommend clarifying the copyright of the provided soil hydraulic maps of the Balaton 
catchment and the pedotransfer functions. You can define how your data may be used by others. This 
might also help them to adequately acknowledge your work. I recommend assigning a creative 
commons licence and indicating it with the cc label. You can find all required information at 
https://creativecommons.org/. This is just a recommendation and no reviewer claim. 

A3: Thank you for the suggestion, we are checking how to apply 
https://creativecommons.org/ and how it is different compared to 
https://opendatacommons.org/licenses/odbl/. 

 

We hope that we could adequately harmonize the objectives. 

 

With regards, 

Authors 
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II. LIST OF ALL RELEVANT CHANGES MADE IN THE MANUSCRIPT 

Page and line numbering refer to that of the revised manuscript with track changes. 

 

The following changes have been made in the manuscript: 

- P1 L4: affiliation of András Makó has been corrected, 

- P1 L9: e-mail address of contact author has been changed, 

- P1 L14-16: sentence has been simplified and clarified, 

- P1 L16: “a study” was replaced with “the study”, 

- P4 L5: sentence has been specified, 

- P11 L32: unnecessary enter has been deleted, 

- P13 L1-3: rephrased to increase clarity, 

- P14 L29-30: cleared to increase readability, 

- P21 L34-P22 L1: unnecessary enters have been deleted, 

- Table 1: font size has been set, table has been formatted, 

- Table 2: font size has been set, 

- Table 7: font size has been set. 

 

III. MARKED-UP MANUSCRIPT VERSION 

Please find revised marked-up manuscript on the following pages. 
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Brigitta Szabó1,2, Gábor Szatmári1, Katalin Takács1, Annamária Laborczi1, András Makó1,2, Kálmán 

Rajkai1, László Pásztor1 5 
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Abstract. Spatial 3D information on soil hydraulic properties for areas larger than plot scale are usually derived using indirect 10 

methods such as pedotransfer functions (PTFs) due to the lack of measured information on them. PTFs describe the relationship 

between the desired soil hydraulic parameter and easily available soil properties based on a soil hydraulic reference dataset. 

Soil hydraulic properties of a catchment or region can be calculated by applying PTFs on available soil maps. Our aim was to 

analyse the performance of (i) indirect (using PTFs) and (ii) direct (geostatistical) mapping methods to derive 3D soil hydraulic 

properties and spatial distribution of soil hydraulic properties derived from (i) indirect (using PTFs) and (ii) direct 15 

(geostatistical) mapping methods. A The study was performed on the Balaton catchment area in Hungary, where density of 

measured soil hydraulic data fulfils the requirements of geostatistical methods. Maps of saturated water content (0 cm matric 

potential), field capacity (-330 cm matric potential) and wilting point (-15000 cm matric potential) for 0-30, 30-60 and 60-90 

cm soil depth were prepared. PTFs were derived using the random forest method on the whole Hungarian soil hydraulic dataset, 

which includes soil chemical, physical, taxonomical and hydraulic properties of some 12,000 samples complemented with 20 

information on topography, climate, parent material, vegetation and land use. As a direct, thus geostatistical method random 

forest combined with kriging (RFK) was applied to 359 soil profiles located in the Balaton catchment area. There were no 

significant differences between the direct and indirect methods in six out of nine maps having root mean squared error values 

between 0.052 and 0.074 cm3 cm-3, which is in accordance with the internationally accepted performance of hydraulic PTFs. 

The PTFs based mapping method performed significantly better than the RFK for the saturated water content at 30-60 and 60-25 

90 cm soil depth, in the case of wilting point the RFK outperformed the PTFs at 60-90 cm depth. Differences between the PTF 

based and RFK mapped values are less than 0.025 cm3 cm-3 for 65-86 % of the catchment. In RFK, uncertainty of input 

environmental covariate layers is less influential on the mapped values which is preferable. In the PTFs based method the 

uncertainty of mapping soil hydraulic properties is less computational intensive. Detailed comparisons of maps derived from 

the PTF based method and the RFK are presented in this paper. 30 
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1 Introduction 

Providing information on soil hydraulic properties is desired for many environmental modelling studies (Van Looy et al., 

2017). Most often, measured information on soil water retention or hydraulic conductivity is not available for environmental 

modelling either at regional or continental scale. Analyses on the prediction of soil hydraulic properties were started 

extensively in the 1980s (Ahuja et al., 1985; Pachepsky et al., 1982; Rawls and Brakensiek, 1982; Saxton et al., 1986; 5 

Vereecken et al., 1989) and are continuously updated to increase the performance of predictions (pedotransfer functions - 

PTFs) when newer statistical methods and/or new data become available. Latest works include among others McNeill et al. 

(2018); Román Dobarco et al. (2019); Zhang and Schaap (2017). 

 

Tree based machine learning algorithms have been found to be efficient tools in general for predicting purposes (Caruana et 10 

al., 2008; Caruana and Niculescu-Mizil, 2006; Olson et al., 2017), especially gradient tree boosting and random forest. These 

methods are used to derive ensembles of trees, providing predictions of several individual trees with built in randomization. 

Tree type algorithms provide mean values of groups that can be statistically differentiated, called terminal nodes (Breiman, 

2001). Due to this way of providing estimations, these methods do not derive any extraordinary values, therefore predictions 

will always be reasonable if training data is appropriately cleaned. For the same reason it decreases variability as well, extreme 15 

values are smoothed out (Hengl et al., 2018b). 

Ensemble predictions can be derived not only from a single method, which consist of several models through bagging or 

boosting of e.g. decision tree, or support vector machine, or neural network algorithms, but can consist of different models and 

is derived from the average of all. It has been shown that often but not always, the more models are combined for the prediction 

the more accurate the results are (Baker and Ellison, 2008; Cichota et al., 2013; Nussbaum et al., 2018; Wu et al., 2018). 20 

Although the significancy of improvement is often not tested. Hengl et al. (2017) also used merged ensemble predictions by 

calculating the weighted average of two machine learning algorithms to decrease influence of model overfitting. Although 

from the application point of view it is important to avoid increasing the complexity and size of the prediction model if there 

is no significant improvement in performance. Accuracy, interpretability and computation power required to use the prediction 

algorithm have to be optimized at the same time for allowing widespread use of derived models. 25 

Tree type ensemble algorithms were found to be successful in harmonizing different soil texture classification systems (Cisty 

et al., 2015), prediction of soil bulk density (Chen et al., 2018; Dharumarajan et al., 2017; Ramcharan et al., 2017; Sequeira et 

al., 2014; Souza et al., 2016), but have not been intensively applied yet to derive input parameters for hydrological modelling 

(Koestel and Jorda, 2014; Tóth et al., 2014). 

Hengl et al. (2018a) tested several machine learning algorithms (i.e. neural networks, random forest, gradient boosting, K-30 

nearest neighbourhood and cubist) to map potential natural vegetation. From those random forest performed the best. 

Nussbaum et al. (2018) analysed different methods to map several soil properties for three study sites in Switzerland. They 

also found that the random forest method performed the best when a single model was used. Adhikari et al. (2014) used the 
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cubist method combined with kriging for mapping soil organic carbon concentration and stock in Denmark and they found 

that cubist was appropriate for this purpose. The same was observed by Matos-Moreira et al. (2017), they used cubist for 

mapping the phosphorus concentration in north-western France. Behrens et al. (2018) compared a number of state of the art 

digital soil mapping methods including geostatistical techniques (i.e. ordinary kriging, regression kriging and geographically 

weighted regression), and machine learning algorithms (i.e. multivariate adaptive regression splines, radial basis function 5 

support vector machines, cubist, random forest and neural networks). They obtained the best results with cubist, random forest 

and bagged multivariate adaptive regression splines. Results of Rudiyanto et al. (2018) also showed that among several tested 

methods tree-based models performed the best. Hengl et al. (2018b) reviewed machine learning algorithms and geostatistical 

methods for soil mapping and found that the random forest method combined with the calculation of geographical proximity 

effects is a powerful method similarly to universal kriging. 10 

 

Soil hydraulic maps are mostly derived by two ways i) by applying pedotransfer functions (PTFs) on available soil and/or 

environmental maps, called an indirect mapping method, ii) with direct spatial inference of observation point data (Bouma, 

1989), which is considered to be a direct procedure. Point data can be measured or predicted by PTFs. Several studies analysed 

the efficiency of geostatistical methods to map water retention at specific matric potential (Farkas et al., 2008) and saturated 15 

hydraulic conductivity (Motaghian and Mohammadi, 2011; Xu et al., 2017). Ferrer Julià et al. (2004) mapped soil hydraulic 

conductivity for the Spanish area of the Iberian Peninsula at 1 km resolution with both methods (i) and (ii). They found that 

the map derived by kriging interpolation performed the best. Farkas et al. (2008) mapped water content at field capacity and 

wilting point with geostatsitical methods for an area of 1483 ha. They optimized sampling density needed to derive 10 m 

resolution soil hydraulic maps for their study site. 20 

In most cases there is no available point data for applying geostatistical methods, therefore in several studies soil hydraulic 

maps were generated with a PTF applied on easily available spatial soil data (Chaney et al., 2016; Dai et al., 2013; Marthews 

et al., 2014; Montzka et al., 2017; Tóth et al., 2017; Wu et al., 2018). 

Further to the spatial variability of soil hydraulic properties, information on the prediction uncertainty is important for 

modelling tasks. In this way extreme conditions might be better described. A possible calculation of this kind of uncertainty 25 

was provided by Montzka et al. (2017). They calculated sub-grid variability of the coupled Mualem-van Genuchten model 

parameters for a coarse 0.25° grid based on fitting water retention and hydraulic conductivity model for each grid cell of the 1 

km resolution SoilGrids. Román Dobarco et al. (2019) and McNeill et al. (2018) also provided information on the uncertainty 

of the prediction of soil hydraulic properties. Root mean squared error (RMSE) of published PTFs predicting soil water 

retention is usually between 0.02 and 0.07 cm3 cm-3 depending on the predicted soil hydraulic property and available input 30 

information, e.g. in Nguyen et al. (2017), Zhang and Schaap (2017) or Román Dobarco et al. (2019) to mention some of the 

latest results. When PTFs are used for mapping, the uncertainty of the input soil layers will further increase the uncertainty of 

the calculated soil hydraulic properties, e.g. in point based validation RMSE was 0.073 cm3 cm-3 for water content at field 

capacity mapped for China in Wu et al. (2018); Leenaars et al. (2018) found that mean RMSE for water content at saturation, 
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field capacity and wilting point together was 0.102 cm3 cm-3 for African soils; in EU-SoilHydroGrids (Tóth et al., 2017) RMSE 

was 0.095, 0.096, 0.084 cm3 cm-3 for water content at saturation, field capacity and wilting point respectively for European 

soils. 

 

Our aim was to analyse the performance of how two different mapping methods could be applied to in derivinge maps of3D 5 

soil hydraulic properties, such as water content at saturation (THS), field capacity (FC) and wilting point (WP) on the Balaton 

catchment area in Hungary. Soil hydraulic maps were derived by i) an indirect method: applying local hydraulic PTFs on the 

available soil and other environmental spatial information of the catchment and ii) geostatistical – direct – method using 

available soil profile data and environmental covariates of the catchment. Performance of derived soil hydraulic maps was 

compared to that of the 3D European soil hydraulic maps (EU-SoilHydroGrids v1.0) (Tóth et al., 2017). 10 

2 Materials and methods 

2.1 Study site 

We selected the catchment area of Lake Balaton (Fig. 1) to study mapping of soil hydraulic properties, because it is an 

important area in Hungary from the point of modelling hydrological, ecological, meteorological processes or planning land 

use and management. The size of the catchment is 5775 km2. The mean depth of the lake is 3.5 m therefore water quality and 15 

quantity of the lake is sensitive to environmental changes. It has a warm temperate climate with 9-12°C mean annual 

temperature and 560-770 mm mean annual precipitation, lower temperature and higher rainfall values tend to be towards the 

western and elevated areas. Elevation is between 100 and 500 m on the northern part and 100 and 300 m in other areas of the 

catchment. Main soil types are Luvisols (53%), Cambisols (18%), Gleysols (10%), Histosols (5%) further to those Stagnosols, 

Arenosols, Regosols, Leptosols and Chernozems also occur (IUSS Working Group WRB, 2014). 20 

 

For the catchment spatial information on soil type, clay, silt and sand content, organic matter content, calcium carbonate 

content and pH in water (pH) at 100 m resolution was provided by the DOSoReMI.hu (Digital, Optimized Soil Related Maps 

and Information; (Pásztor et al., 2018b)) framework (Table 1). As soil chemical properties – organic matter content, calcium 

carbonate content and pH – were only available for the 0-30 cm depth, those could only be considered for the topsoil 25 

predictions. Information on topography, meteorology, geology and vegetation listed in Table 1 was used as predictors and 

environmental covariates for the elaboration of PTFs and direct mapping accordingly. 

Topographical parameters were calculated with SAGA GIS tools (Conrad et al., 2015) based on the digital elevation model. 

For the mapping of soil hydraulic properties all covariates were harmonized, projected to the Hungarian Uniform National 

Projection system, rasterized if necessary and resampled to 100 m resolution. 30 
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2.2 Dataset to relate soil hydraulic properties and environmental information 

For the prediction of soil hydraulic properties based on soil and other environmental variables the Hungarian Detailed Soil 

Hydrophysical Database (Makó et al., 2010) was used, extended with topographical, meteorological, geological information 

and remotely sensed vegetation properties (Table 1), called MARTHA ver 3.0 (acronym of the Hungarian name of the dataset). 

MARTHA consists of 15142 soil horizons’ data belonging to 3970 soil profiles. The samples in it have measured information 5 

on basic soil properties – e.g. soil depth, organic matter content, clay, silt and sand content, calcium carbonate content, pH, 

etc. – and also on soil hydraulic properties such as soil water retention at different matric potential values. 

2.3 Mapped soil hydraulic properties 

We mapped soil water content at 0, -330 and -15,000 cm matric potential values, THS, FC and WP respectively, because these 

soil hydraulic properties are often required for various purposes. Definition of FC varies across different countries. In Hungary 10 

FC is determined at -330 cm matric potential, therefore water content at -100 or -200 cm was not analysed in the presented 

work. 

The information on soil properties were available for 0-30, 30-60 and 60-90 cm soil depths and this determined the vertical 

resolution of the soil hydraulic maps. As PTFs include depth as independent variable, they are applicable for any soil depth 

intervals. 15 

2.4 Methods for soil hydraulic properties mapping 

Soil hydraulic properties were mapped both with direct and indirect methods for the catchment of Lake Balaton. In direct 

mapping the target soil variable is directly interpolated over the domain of interest, whereas in indirect mapping not the target 

variable but its components, factors, and/or covariates are interpolated first and then these interpolated surfaces are used to 

compute and map the target variable. In the direct method we used the geostatistical approach to spatially inference measured 20 

soil hydraulic data collected in profiles of the catchment through modelling its relationship with environmental covariates. In 

indirect mapping PTFs were derived first to describe relationships between soil hydraulic properties and easily available soil 

and other environmental parameters. In this approach the full national MARTHA database provided soil reference data, and 

nationwide, spatially exhaustive environmental auxiliary information was used. The PTF predictions were then spatially 

implemented on the environmental covariates clipped for the catchment area of Lake Balaton (Fig. 2). 25 
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2.4.1 Pedotransfer function based indirect mapping (HUN-PTF) 

We derived PTFs for THS, FC and WP using soil depth, soil properties and other environmental covariates listed in Table 1 

as independent variables. Organic matter content, calcium carbonate content and pH could be considered only for the topsoil 

(0-30 cm) predictions, because those are not available for the subsoils on the Balaton catchment area. 

For the construction of PTFs those samples were selected from the MARTHA dataset which had measured values of soil 5 

horizons or layers considered as dependent and independent variables. We needed two kinds of predictions: (1) for topsoils 

where we could include Organic matter content, calcium carbonate content and pH among the predictors and (2) for subsoils 

without the above soil chemical parameters, because those are not available for the 30-60 and 60-90 cm soil depths on the 

Balaton catchment. First we randomly selected 67% of the samples from those which had data on the dependent and all the 

independent variables available on the catchment area to derive the PTFs. The remaining 33% was used to compare the 10 

performance of the PTFs, this we called TEST_CHEM set. In the second step we needed a training set (67% of data) and a test 

set (33% of data) also for subsoil prediction for which we did not have to apply the restriction on the soil chemical properties, 

therefore we could include more samples for the analysis. As a test set we used the samples of the TEST_CHEM set and further 

added cases to reach the 33% of the complete data appropriate for subsoil predictions. Again the remaining 67% was used for 

training. 15 

The number of samples used to train and test the PTFs was 8,157 and 12039 for THS, 8,051 and 11,931 for FC, 8,195 and 

12,036 for WP, with and without soil chemical properties respectively. 

 

We analysed prediction performance of the two widely used machine learning algorithms, random forest (RF) of R package 

‘ranger’ (Wright, Wager, & Probst, 2018) and generalized boosted regression model (GBM) of ‘gbm’ (Ridgeway, 2017) for 20 

the prediction of THS, FC and WP. The advantage of these two algorithms is that the prediction intervals of the dependent 

variable are computed as a function of the independent variables. 

Both algorithms build ensembles of models from regression trees. In regression trees data is recursively partitioned to increase 

homogeneity in the subsets, in this way residual sum of squares are minimized (Breiman et al., 1984). The difference between 

GBM and RF is the way the forest is built from the individual trees. RF relies on averaging the result of the trees in the 25 

ensemble. The trees are grown on ntree bootstrap samples of the training data independently from each other (Breiman, 2001), 

therefore it is a bagging type ensemble. At each split of the trees only a small set of predictors is selected randomly to analyse 

which variable at which split point is the best for the partition, i.e. minimize the sum of squares. In GBM the ensemble model 

is grown sequentially, at each iteration step the next model is built with respect to the error of the ensemble learnt so far 

(Friedman, 2001; Natekin and Knoll, 2013), which is characteristic for the boosting type ensemble, already included in its 30 

name (Dietterich, 2000). In each split all possible predictors are considered. 

Optimization of parameter set in RF and GBM model was performed with the train function of R package ‘caret’ (Kuhn et al., 

2018). Five times repeated five-fold cross-validation was used to evaluate performance of different parameter sets. For RF 
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number of input parameters selected randomly at each split – which is set under the ‘mtry’ argument – was tuned. In the case 

of GBM influence of interaction depth and shrinkage were analysed. In ranger RF default value is 500 for the number of trees, 

that was used for both RF and GBM. Also for minimum number of observations in the terminal nodes of the trees the default 

value of the algorithms was used. During the tuning of model parameters the importance of variables was calculated both for 

GBM and RF methods to eliminate the less relevant predictors (Gregorutti et al., 2017; Nussbaum et al., 2018). Variable 5 

importance is the measure of relevance of each predictor, it is calculated from the average sum of squared improvements at 

each split, where the predictor was selected to partition the data (Hastie et al., 2009). A value of 100 is assigned to the largest 

variable importance value and the others are scaled accordingly to provide relative measure. The most important 50-50 

predictors out of 173 for topsoils and 170 for subsoils have been selected from both GBM and RF models. After concatenating 

the 50-50 most important variables parameter tuning was performed again with the decreased number of predictors. We 10 

compared the accuracy of all models based on the cross-validation results and built the final prediction model (PTF) with the 

better performing and simpler algorithm on all training data with the optimized parameters. Performance of the PTFs was 

RMSE (Eq. 1) and coefficient of determination (R2) (Eq. 2). 

𝑹𝑴𝑺𝑬 = √
𝟏

𝑵
∑ (𝒚𝒊 − 𝒚̂𝒊)

𝟐𝑵
𝒊=𝟏 = √𝑴𝑺𝑬     (1) 

𝑹𝟐 = 𝟏 −
∑ (𝒚𝒊−𝒚̂𝒊)

𝟐𝑵
𝒊=𝟏

∑ (𝒚𝒊−𝒚̅)
𝟐𝑵

𝒊=𝟏
      (2) 15 

Performance of PTFs on the training dataset was based on the results of a five-fold cross-validation, and out-of-bag samples – 

not included in the bootstrap sample used to build the tree – for GBM and RF respectively. In RF accuracy on out-of-bag 

samples was analysed. Uncertainty of the predictions was characterized with the 5 and 95% quantiles of the predicted values, 

calculated within the ‘ranger’ and ‘gbm’ packages during the derivation of the prediction algorithms. 

 20 

HUN-PTFs derived on the MARTHA dataset were used to calculate the soil hydraulic properties (THS, FC, WP) based on the 

available soil and environmental covariates available for the catchment (Table 1, section 2.1) as predictors, hence those were 

mapped indirectly. Soil information is currently available for the 0-30, 30-60 and 60-90 cm. The input information depth was 

set to 15, 45 and 75 cm for the first, second and third layer respectively during the calculation of soil hydraulic property maps. 

 25 

We provided information on the uncertainty of the predictions by pixels. Further to the median and the 5 and 95% quantiles of 

the predicted values were also mapped for each soil hydraulic property. The prediction intervals were calculated by the PTFs.  
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2.4.2 Direct mapping with geostatistical method (RFK) 

We applied random forest combined with kriging (RFK), which can be considered as a new ‘workhorse’ of digital soil mapping 

(Keskin and Grunwald, 2018). In the case of RFK, the deterministic component of spatial soil variation is modelled by the RF 

introduced above, whereas the stochastic part of variation is modelled by kriging using the derived residuals. 

For the geostatistical analysis those samples of the MARTHA database were selected which fall within the catchment plus a 5 5 

km buffer zone area. The buffer zone was used to increase the accuracy of geostatistical calculations also at the border of the 

catchment. On the study site data of 359 soil profiles are available from the MARTHA (Fig. 3). Table 2 summarizes the 

measured soil chemical, physical, hydraulic data of the soil profiles’ horizons. 

 

First of all, we harmonized the soil hydraulic dataset for the required soil depths (i.e. 0-30, 30-60, 60-90 cm) by using equal-10 

area splines (Malone et al., 2009), then we used RFK for predicting each soil hydraulic property for each soil depth, 

respectively. For RF we also optimized the parameter set by the ‘train’ function of R package ‘caret’ using five times repeated 

five-fold cross-validation. The most important 50 covariates – out of 173 for topsoils and 170 for subsoils, listed in Table 1 – 

have been selected and the final RF model was optimized with those predictors. We used the final RF model for predicting the 

deterministic component. We computed the residuals and then we estimated their variogram by Matheron’s (1963) method-15 

of-moments estimator. An isotropic variogram model was fitted to the estimated variogram by the ‘fit.variogram’ function of 

R package ‘gstat’ (Gräler et al., 2016; Pebesma, 2004). We kriged the residuals and then we added them to the deterministic 

component predicted by RF. The above described modelling procedure was applied for each soil hydraulic property and for 

each soil depth. Performance of RF was described with RMSE (Eq. 1) and R2 (Eq. 2). 

2.4.3 Evaluating the performance of soil hydraulic maps 20 

Performance of soil hydraulic maps was evaluated based on observed soil hydraulic properties harmonized for 0-30, 30-60 and 

60-90 cm depth with the method described in 2.4.2 section. RMSE and mean square error skill score (SSmse) (Nussbaum et al., 

2018) Eq. (1-3) were calculated for each map. 

𝑺𝑺𝒎𝒔𝒆 = 𝟏 −
∑ (𝒚𝒊−𝒚̂𝒊)

𝟐𝑵
𝒊=𝟏

∑ (𝒚𝒊−
𝟏

𝑵
∑ 𝒚𝒊
𝑵
𝒊=𝟏 )

𝟐
𝑵
𝒊=𝟏

      (3) 

Performance of soil hydraulic maps derived with HUN-PTFs and RFK was compared to the 3D European soil hydraulic maps 25 

(EU-SoilHydroGrids v1.0) (Tóth et al., 2017). In EU-SoilHydroGrids input information for mapping was SoilGrids 250 m 

(Hengl et al., 2017) on which EU-PTFs (Tóth et al., 2015) were applied, hence its resolution is 250 m. We converted the 

information of EU-SoilHydroGrids to 0-30, 30-60 and 60-90 cm to be able to compare its performance to the 100 m resolution 

new soil hydraulic maps derived by HUN-PTFs and RFK. 

 30 
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The Kruskal Wallis test implemented in the R package ‘agricolae’ (De Mendiburu, 2017) was applied at 5% significance level 

on the mean squared error values for the comparison of the PTFs with different input variables and also the soil hydraulic maps 

derived using different methods. 

 

All statistical analyses were performed in R (R Core Team, 2017). 5 

3 Results and discussion 

3.1 Pedotransfer functions 

During the parameter tuning of RF and GBM we found that decreasing number of input variables – from 173 to 69-76 and 

from 170 to 65-77 in case of topsoil and subsoil predictions respectively – significantly improved prediction of top- and subsoil 

FC and subsoil WP. Although differences between RMSE values were less than 0.0001 cm3 cm-3, these are negligible from a 10 

practical point of view. In Nussbaum et al. (2018) the number of input parameters were decreased from 300-500 environmental 

covariates to the 10, 20, 30, 40, 50 most important ones. No changes in performance were found during validation. We can 

assume that performance of predictions will neither increase nor decrease if more important independent variables are used 

exclusively for the predictions. Although the selection of the most important independent variables can reduce (i) unnecessarily 

large size of the model which can speed up mapping of soil hydraulic properties for larger areas at fine resolution and (ii) 15 

multicollinearity between predictor variables. Dorman et al. (2013) extensively studied the problem of collinearity to test its 

impact on predictions of ecological parameters. They analysed multiple regression and machine-learning methods and found 

that prediction performance of random forest did not get worse due to high collinearity in the training dataset even when 

structure of collinearity was different in training and validation data. Influence of multicollinearity on the prediction 

performance is partly reduced due to the random selection features of RF but could be further elaborated in the presented 20 

methods, however this was beyond the scope of the presented work. 

In the case of RF optimal number of input parameters randomly selected at each split was between 10 and 20, depending on 

soil hydraulic parameter. In GBM optimal interaction depth varied between 20 and 40. Iteration converged during the 

prediction of lower 5% and upper 95% quantiles, but did not for 50%, which is the most probable predicted value. Therefore, 

the influence of shrinkage and increasing the number of trees to 1,000 was also analysed but only in the prediction of FC 25 

because training with low shrinkage values is very time consuming. We tuned shrinkage 0.1 and 0.01 with both 500 and 1,000 

trees, setting interaction depth to 4, 6 and 10. Shrinkage with 0.1 value was more accurate than 0.01 independently from the 

number of trees and increasing number of trees did not significantly improve the prediction, therefore shrinkage was set to 0.1 

and the default 500 number of trees were used in the algorithm. 

 30 
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Performance of PTFs derived by RF and GBM on training and test sets is included in Table 3. In the case of all soil hydraulic 

properties RF performed significantly better than GBM based on MSE on TEST and TEST_CHEM sets both for topsoil and 

subsoil predictions, except for WP topsoil predictions, where there was no significant difference between the methods. In this 

way PTFs derived with RF method were selected for mapping soil hydraulic properties. RMSE values calculated on the test 

sets for RF were between 0.042 and 0.045 cm3 cm-3 for THS, 0.039 and 0.042 cm3 cm-3 for FC, 0.035 and 0.038 cm3 cm-3 for 5 

WP, which is close to the performance of other internationally accepted PTFs (e.g. Botula et al. (2013), Román Dobarco et al. 

(2019), Zhang and Schaap (2017)). R2 was 0.408-0.487, 0.746-0.766 and 0.737-0.762 for THS, FC and WP respectively on 

test sets in the case of RF. Figure 4. shows the scatterplots of measured versus predicted values with the 90% prediction 

interval. At the lower end of the soil hydraulic property distribution, real values were closer to the lower 5% quantile 

predictions, at the higher end of its distribution the real values are closer to the upper 95% quantile predictions. When we 10 

compared performance of RF derived for topsoils – which includes organic matter content, pH and calcium carbonate content 

as well among the input parameters - and subsoils there was no significant difference based on the results in the TEST_CHEM 

set. This is due to their correlation with other environmental predictors considered in the PTFs such as soil texture, depth, 

longitude, elevation, slope angle, multi-resolution valley bottom flatness, horizontal distance to existing water bodies, 

roughness, temperature, precipitation, solar radiance, spectral reflectance in red and near infrared and normalized difference 15 

vegetation index (Adhikari et al., 2014; Hengl et al., 2017; Nussbaum et al., 2018). When other environmental covariates than 

soil related variables are not included among input parameters chemical properties significantly improve prediction (Hodnett 

and Tomasella, 2002; Khodaverdiloo et al., 2011; Tóth et al., 2015). In the case of THS range, the predicted values using 

chemical parameters as well were closer to the range of measured values, therefore we also considered soil chemical properties 

for the topsoil predictions. For FC and WP range of values predicted with PTF not including chemical variables were closer 20 

to that of measured values, hence information on organic matter content, pH and calcium carbonate content – even though it 

is available – was not considered during the estimation of topsoil hydraulic properties. 

 

The presented PTFs were derived on the full MARTHA dataset, therefore those are applicable to predict the THS, FC and WP 

of soils in the whole Pannonian region. 25 

3.1.1 Importance of independent variables 

For THS organic matter content, silt, sand content, pH, clay, calcium carbonate content are the most important variables with 

relative importance of over 20% based on final RF model. Further to those properties, soil depth, mean annual precipitation, 

mean monthly maximum, minimum and mean temperature of some months, mean monthly radiation, longitude, horizontal 

and vertical distance to existing water bodies, multi-resolution valley bottom flatness and ridge top flatness, water vapour 30 

pressure in August, spectral reflectance in near infrared are among the most important 30 variables having 10-15 % relative 

importance. For FC and WP clay, silt and sand content and organic matter content are the most important variables, having 
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relative importance around and over 20 %. Soil type, mean monthly precipitation in July, vertical distance to existing water 

bodies and longitude have relative importance around 5-14 % in case of FC. All the other environmental covariates have 

relative importance of less than 5%. For WP longitude, mean monthly precipitation of November and July, elevation, vertical 

and horizontal distance to existing water bodies, calcium carbonate content, mean monthly radiation, pH, depth, mean monthly 

water vapour pressure, multi-resolution ridge top flatness and spectral reflectance in near infrared have relative importance of 5 

between 5-16 %. Information on topography was found important for the prediction of soil hydraulic properties by Obi et al. 

(2014), Rawls and Pachepsky (2002), Romano and Chirico (2004), Zhao et al. (2016) as well. Information on land cover was 

not retained after selecting the most important variables. 

When soil chemical properties (organic matter content, calcium carbonate content, pH) are not included among input 

parameters, sand, silt, clay content are far the most important three independent variables (39-100 %). In the case of THS also 10 

depth has higher relative importance (52 %). For the prediction of FC importance of soil type increases to 18 %. In WP 

prediction there is no notable change in variable importance when chemical properties are not included in the RF. 

Summary of the variable importance analysis showed that soil properties are far the most important input parameters for the 

prediction of soil hydraulic properties (Fig. 5). In this way resolution of soil maps determined the resolution of the derived soil 

hydraulic maps, which was 100 m. 15 

3.2 Random forest combined with kriging (RFK) 

During the RF parameter tuning we also found that decreasing the number of environmental covariates – from 173 to 50 and 

from 170 to 50 in the case of topsoil and subsoil respectively – significantly improved the prediction accuracy for each soil 

hydraulic property. For the final RF models the optimal number of randomly selected predictors at each split varied between 

5 and 40 depending on the given soil hydraulic property. The performance of the final RF models are summarized in Table 4. 20 

R2 varies between 0.189-0.403, 0.478-0.562 and 0.463-474 for THS, FC and WP, respectively. RMSE was 0.055-0.060, 0.053-

0.063 and 0.051-0.056 for THS, FC and WP, respectively. For describing spatial variation of the soil hydraulic properties the 

most important environmental covariates were the soil type, organic matter content (for topsoil), clay, silt and sand content 

and the pH (for topsoil). The final RF models were used for estimating the deterministic component for each soil hydraulic 

property. 25 

The parameters of the fitted variogram models are summarized in Table 4. In the case of exploratory variography most of the 

experimental variograms did not show spatial structure and the applied variogram fitting algorithm was not able to find a 

satisfactory variogram model in case of six out of nine under 200 iterations. Hence, a nugget model was fitted to those 

variograms (Table 4), which is not rare in digital soil mapping (Hengl et al., 2015; Szatmári and Pásztor, 2018; Vaysse and 

Lagacherie, 2017). In Table 4 we have observed that the lower the R2 value was, the higher the range parameter became. The 30 

fitted variogram models were used for kriging of the RF residuals for each soil hydraulic property. We summed the RF 

predictions and the kriged residuals to get the RFK maps for each of the target hydraulic properties. 
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3.3 Performance of soil hydraulic maps 

New 100 m resolution soil hydraulic maps significantly outperformed the EU-SoilHydroGrids (Table 5), which was expected 

because (i) reference soil data originate from the mapped area, (ii) also spatially denser and (iii) locally trained models are 

used. In addition, several environmental covariates were considered for the predictions and relationship between easily 5 

available soil properties and soil hydraulic parameters were derived from local data. 

In the case of mapping six out of nine soil hydraulic maps there was no significant difference between maps derived by RFK 

and HUN-PTFs. In the case of THS HUN-PTF performed significantly better for mapping the 30-60 and 60-90 cm. For 

calculating WP at 60-90 cm soil depth RFK was significantly better than HUN-PTF method. 

The range of predicted values is smaller in the case of HUN-PTF method than in RFK, which is due to the “averaging approach” 10 

of the algorithm which in the case of RFK is spatially corrected allowing a wider range in the predicted values (Fig. 6, 7, 8, 9). 

Density plot of predicted values are smoother in the case of RFK than in HUN-PTF and EU-SoilHydroGrids maps (Fig. 6). 

This is due to adding residuals of kriging which modifies the values derived by random forest. In EU-SoilHydroGrids soil 

hydraulic values were calculated with linear regression based on soil properties available from SoilGrids, where mapping was 

performed with RF without kriging. In this way possible soil input combinations are limited in the European maps. In SoilGrids 15 

algorithms are derived from a global dataset (Hengl et al., 2017), which has sparser measured data than the Hungarian soil 

profile database used to map soil properties (Laborczi et al., 2018; Szatmári and Pásztor, 2018). In addition, RF is based on an 

averaging algorithm, which limits the ability to describe local extreme values. These result in smaller range and variability of 

calculated soil hydraulic properties on EU- SoilHydroGrids maps than on RFK or HUN-PTF ones (Fig. 6) The basic Hungarian 

soil maps were derived with regression kriging methods, thus providing smoother soil input data for the calculations. As an 20 

example of how differences in the range of predicted soil hydraulic properties can be visualized, the maps of THS, FC, WP 

are shown on Fig. 7-9 (a), (b), (c) for a selected area of the catchment. Differences between the new and already available 

maps also comes occur due to the differences in resolution, which is 100 m for RFK and HUN-PTF and 250 m for EU- 

SoilHydroGrids. Even though the influence of topographical information was less than that of soil properties when PTFs were 

derived, the pattern of topography is visible on the maps derived by RFK and HUN-PTFs. This is due to the soil layers used 25 

as inputs for calculating the soil hydraulic properties, because topographical information was important among the covariates 

when the maps on them were derived (Szatmári et al., 2013). In RFK influence of the topography is less visible, it could be 

smoothed by adding kriged residuals. A map of possible lower 5 % and upper 95 % values based on the HUN-PTF method 

are also shown in Fig. 7-9 (d), (e). The range between the lower and upper possible values (Fig. 10) are usually higher for 

Histosols, Gleysols and Luvisols under forest land use, because these kind of soils are underrepresented in the MARTHA 30 

database. 
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In this study our aim was to analyse performance of the PTF approach and machine learning algorithm combined with 

geostatistics to derive soil hydraulic mapsAlthough we and compared their accuracyperformance of the new soil hydraulic 

maps to that of EU-SoilHydroGrids, . Therefore we have not differentiatedit was out of our aims to differentiate the uncertainty 

of the maps originating from the soil input layers – i.e. DOSoReMI.hu and SoilGrids. 

 5 

Average difference between the RFK and HUN-PTFs maps is between 0.003 and 0.012 cm3 cm-3 for THS, 0.011 and 0.015 

cm3 cm-3 for FC, 0.015 and 0.018 cm3 cm-3 for WP, depending on soil depth. Absolute difference between the maps derived 

with HUN-PTFs and RFK is less than 0.025 cm3 cm-3 for at least 65 % of the mapped area and was always smaller than 0.100 

cm3 cm-3 (Table 6). On those areas where difference between RFK and HUN-PTF was higher than 0.025 cm3 cm-3, HUN-PTF 

predicted lower water retention at all matric potential values for Histosols and Luvisols under forest land use type. WP values 10 

predicted with HUN-PTFs were higher than that of RFK for Luvisols with sandy texture and under forest land use type. 

 

Based on SSmse values in the case of seven out of nine soil hydraulic maps RFK mapping method was more accurate than 

HUN-PTF, although only calculation of WP in 60-90 cm depth was significantly better. For THS HUN-PTFs performed 

significantly better at 30-60 and 60-90 cm soil depth. 15 

In this study priority was put on the usability and transferability of the results into practical applications. The purpose of the 

presented research was to derive as accurate maps as possible. Thus ability for full comparability of the methods did not 

determine design of methodology and statistical analysis. Therefore, in the RFK analysis all measured data were used for the 

mapping. For the PTF approach predictions were tested on randomly selected 33% samples of the whole MARTHA database 

without distinguishing samples located on the catchment, as it is usually done in deriving PTFs. This provides broader 20 

information and possibility for a wider application of PTFs. The presented HUN-PTF mapping method can be applied in any 

catchments of Hungary. 

3.4 Practical use of the analysis 

RF performed significantly better than GBM in 7 cases out of 8 on test sets. RF was found to be a suitable method to provide 

information on the prediction uncertainty, any desired quantiles of the predicted value can be calculated. This enables it to 25 

include extreme soil hydraulic parameters for hydrological simulations. Its further advantage is that it can handle several 

independent variables, performance of prediction is not influenced by multicollinearity between independent variables and 

inclusion of unimportant input parameter. Calculation on multiple cores is implemented in the random forest algorithm in 

‘ranger’ R package, which can significantly decrease computation time. 

Easily available soil properties such as sand, silt and clay content, organic matter content and depth were the most important 30 

input variables for the calculation of THS, FC and WP among the analysed 173 soil and environmental covariates. For THS 

calcium carbonate content and pH were also among independent variables with higher importance. Geographical coordinates, 
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information on topography, climate and vegetation had smaller relative importance. Covariates on land use and parent material 

were not among the 50 most important variables. Therefore, resolution of available soil maps determined the resolution of new 

soil hydraulic maps, which is 100 m. 

The number of input variables can be decreased based on variable importance, which can significantly decrease computation 

time and information not relevant for the prediction can be discarded. For practical application it is desirable to decrease the 5 

size of the prediction models when PTFs are applied for soil hydraulic mapping at country scale at finer resolution. 

If data on topography, climate and vegetation are also considered for the prediction missing information on chemical properties, 

such as organic matter content, pH, calcium carbonate content can be covered by the environmental covariates without 

significant loss of performance. 

 10 

HUN-PTFs performed significantly better for the prediction of THS at 30-60 and 60-90 cm depth, although the absolute 

difference between the RFK and HUN-PTFs maps is less than 0.025 cm3 cm-3 for at least 75 % of the area. Spatial patterns of 

topography are less dominant on the soil hydraulic maps prepared by the RFK method due to kriging the residuals, which is 

an advantage. Maps prepared by the HUN-PTFs cannot decrease the influence of topography included in the input layers 

therefore even if topographical parameters are not important for the prediction of soil hydraulic properties that are visible on 15 

the soil hydraulic maps. Considering all these results we suggest using the soil hydraulic maps prepared by the RFK only if 

the most probable soil hydraulic value is needed for the Balaton catchment area. Information on the uncertainty of the predicted 

values can be derived with geostatistical methods as well, e.g. Szatmári and Pásztor (2018), Rudiyanto et al. (2016), Viscarra 

Rossel et al. (2015) presented possible methods. According to Szatmári and Pásztor (2018), quantile regression forest 

(Meinshausen, 2006) based uncertainty quantification outperforms most of the prediction techniques used in digital soil 20 

mapping. Furthermore, they have pointed out that bootstrapping based uncertainty quantification for RFK is quite time 

consuming, as well as requiring massive storage and computing capacity. The ranger package - with which we derived the 

HUN-PTFs - includes implementation of quantile regression forest (Meinshausen, 2006) for the calculations of the prediction 

intervals. If information on uncertainty is needed as well maps derived by the HUN-PTFs are recommended to use. In Table 7 

we highlighted the most important differences between pedotransfer function (HUN-PTF) and geostatistical (RFK) based soil 25 

hydraulic mapping based on the Balaton catchment. Most of the findings are in line with Hengl et al. (2018b), Tranter et al. 

(2009), Vaysse and Lagacherie (2017), Webster and Oliver (2007). 

4 Conclusions 

Based on results of six out of nine soil hydraulic maps there is no significant difference in performance between values derived 

using pedotransfer function (indirect) and geostatistical (direct) method on the Balaton catchment area. The benefit of maps 30 

computed with random forest and kriging is that locally extreme values can be characterized better. In the case of pedotransfer 

function based mapping it is advantageous that calculation of uncertainty is much less computation intensive than it is with 
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geostatistical methods, although it would be interesting in the future to analyse the difference between uncertainty maps 

calculated with the different methods specifically for soil hydraulic properties. 

Data availability. The 3D soil hydraulic maps of the Balaton catchment – in GeoTIFF format – and the hydraulic pedotransfer 
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Table 1. Available environmental covariates. 

Name Resolution Description 

Soil   

soil type 100 m according to Hungarian classification system (Pásztor et al., 2018a) 

clay, silt, sand content 100 m 0-30, 30-60, 60-90 cm (Laborczi et al., 2018) 

organic matter content 100 m 0-30 cm (Szatmári and Pásztor, 2018) 

calcium carbonate content 100 m 0-30 cm (Pásztor et al., 2018b) 

pH in water 100 m 0-30 cm (Pásztor et al., 2017) 

Parent material 1:100000 (Gyalog and Síkhegyi, 2005), map was converted to raster layer 

Topography   

digital elevation model 25 m (Bashfield and Keim, 2011) 

elevation, slope angle, aspect, northing and easting aspects, planar 

curvatures, profile curvatures, combined curvatures, topographic position 

indices, topographic position indices, terrain ruggedness indices, 

roughness, dissection, surface to area ratio, multi-resolution valley bottom 

flatness, multi-resolution ridge top flatness, negative openness, positive 

openness, convergence indices, LS factor, vector ruggedness measure, 

surface convexity, flow accumulation area, flow length, topographic 

wetness indices by single and multi-flow algorithms, vertical distance to 

existing water bodies, vertical distance to existing water bodies, horizontal 

distance to existing water bodies, smoothed version of elevation, smoothed 

version of profile curvature, smoothed version of slope, smoothed version 

of total curvature, standard deviations of elevation, standard deviations of 

profile curvature, standard deviations of slope, standard deviations of total 

curvature 

Climate   

WorldClim 30” 

 

(Fick and Hijmans, 2017) 

mean monthly temperature, precipitation, solar radiation, water vapour 

pressure, mean monthly minimum and maximum temperature 

Hungarian data 100 m (Szentimrey and Bihari, 2007) 

The spatial layers were compiled using the MISH method elaborated for the 

spatial interpolation of surface meteorological elements based on a 30 year 

observation by the Hungarian Meteorological Service with 0.5’ resolution. 

mean annual precipitation and temperature 

State of vegetation   

MODIS 250 m (Vermote, 2015) normalized difference vegetation index, near infrared, red 

Land cover   

Copernicus Pan-European 

High Resolution Layers 

20 m (CEC EEA, 2012) 

tree cover density, forest type, impermeable cover of soil, wetland, 

grassland 

CORINE Land Cover 25 ha (CEC EEA, 2012) 

natural grassland, land principally occupied by agriculture 
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Table 2. Description statistics of measured soil properties of the Balaton catchment 

Soil propety N Minimum Maximum Mean SD Median 

Clay content (100 g g−1) 1453 0.00 79.43 21.27 9.38 20.29 

Silt content (100 g g−1) 1349 0.36 73.99 38.48 16.11 40.92 

Sand content (100 g g−1) 1349 2.85 95.94 40.37 21.48 35.09 

Organic matter content (100 g g−1) 1269 0.00 28.93 1.18 1.57 0.73 

Calcium carbonate content (100 g g−1) 925 0.00 72.00 9.75 11.97 4.50 

pH in water (-) 1445 3.61 9.38 7.14 0.98 7.29 

Saturated water content (cm3 cm-3) 1299 0.324 0.883 0.469 0.066 0.461 

Water content at field capacity (cm3 cm-3) 1294 0.032 0.640 0.314 0.083 0.320 

Water content at wilting point (cm3 cm-3) 1284 0.006 0.462 0.167 0.075 0.160 
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Table 3. Performance of hydraulic PTFs on training and test datasets. THS: saturated water content, FC: field capacity, WP: wilting point, RF: 

random forest method, GBM: generalized boosted regression method, TEST_CHEM set: test dataset in which chemical soil properties are available 

for the predictions, TEST set: test dataset, in which chemical soil properties are not necessarily available for the predictions, RMSE: root mean 

square error, R2: determination coefficient. 

Predicted soil 

hydraulic 

property 

Selected 

method* 

 Train set**  TEST set  TEST_CHEM set 

 
R2 

RMSE 

(cm3 cm-3) 
N 

 
R2 

RMSE 

(cm3 cm-3) 
N 

 
R2 

RMSE 

(cm3 cm-3) 
N 

THS 
topsoil 

GBM  0.453 0.052 5709  - - -  0.484 0.042 2448 

 RF  0.488 0.041 5709  - - -  0.487 0.042 2448 

 subsoil 
GBM  0.429 0.045 8428  0.418 0.045 3611  0.400 0.046 2448 

RF  0.480 0.043 8428  0.429 0.045 3611  0.408 0.045 2448 

FC 
topsoil 

GBM  0.714 0.043 5635  - - -  0.770 0.039 2416 

 RF  0.736 0.041 5635  - - -  0.766 0.039 2416 

 subsoil 
GBM  0.738 0.044 8352  0.739 0.042 3579  0.751 0.040 2416 

RF  0.756 0.042 8352  0.746 0.042 3579  0.759 0.040 2416 

WP 
topsoil 

GBM  0.722 0.038 5736  - - -  0.739 0.037 2459 

 RF  0.736 0.037 5736  - - -  0.762 0.035 2459 

 subsoil 
GBM  0.717 0.041 8425  0.716 0.039 3611  0.711 0.038 2459 

RF  0.747 0.039 8425  0.737 0.038 3611  0.744 0.036 2459  

* Input parameters included in all analysis for topsoils: soil type according to Hungarian classification system, sand (50–2000 μm), silt (2–50 μm) 5 

and clay content (<2 μm) (100 g g−1), mean depth (cm) and information on topography, vegetation, meteorology and parent material listed in Table 

1. For subsoils organic matter content (100 g g−1); pH in water and calcium carbonate content (100 g g−1) were included as well. 

** Prediction error calculated on training is based on out of bag error in case of RF and 5-fold cross-validation in case of GBM method. 
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Table 4. Performance of random forest method and parameters of the fitted variogram models during the geostatistical mapping 

approach. 

Predicted soil 

hydraulic 

properties 

Depth 

(cm) 

 Random forest  Variogram 

 
R2 

RMSE 

(cm3 cm-3) 
N 

 
Partial sill Type Range Nugget 

THS 0-30  0.403 0.055 324  0 „Nug” - 32.552 

30-60  0.251 0.055 321  11.037 „Exp” 1531 18.357 

60-90  0.189 0.060 315  14.150 „Exp” 8211 27.067 

FC 0-30  0.562 0.053 324  0 „Nug” - 29.895 

30-60  0.532 0.056 321  0 „Nug” - 26.539 

60-90  0.478 0.063 315  0 „Nug” - 32.356 

WP 0-30  0.463 0.052 324  0 „Nug” - 23.689 

30-60  0.474 0.051 321  0 „Nug” - 22.655 

60-90  0.466 0.056 315  32.718 „Sph” 2149 0 
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Table 5. Performance of soil hydraulic maps derived by random forest and kriging method (RFK), Hungarian pedotransfer 

functions (HUN-PTF) and from EU-SoilHydroGrids 250m dataset (EU-SHG) on the Balaton catchment. RMSE: root mean 

square error, SSmse: mean square error skill score. 

Predicted soil hydraulic 

property 
Depth Method N 

RMSE 

(cm3 cm-3) 
SSmse Sign. difference* 

THS 0-30 cm RFK 324 0.056 0.382 b 

  HUN-PTF 350 0.067 0.118 b 

  EU-SHG 348 0.070 0.041 a 

 30-60 cm RFK 321 0.060 0.119 a 

  HUN-PTF 345 0.058 0.150 b 

  EU-SHG 343 0.063 -0.004 a 

 60-90 cm RFK 315 0.063 0.112 b 

  HUN-PTF 337 0.060 0.171 c 

  EU-SHG 335 0.071 -0.149 a 

FC 0-30 cm RFK 324 0.053 0.547 b 

  HUN-PTF 350 0.067 0.265 b 

  EU-SHG 348 0.076 0.070 a 

 30-60 cm RFK 321 0.057 0.515 b 

  HUN-PTF 345 0.069 0.278 b 

  EU-SHG 343 0.084 -0.069 a 

 60-90 cm RFK 315 0.062 0.485 b 

  HUN-PTF 337 0.074 0.232 b 

  EU-SHG 335 0.095 -0.243 a 

WP 0-30 cm RFK 324 0.052 0.453 b 

  HUN-PTF 349 0.062 0.244 ab 

  EU-SHG 347 0.071 -0.038 a 

 30-60 cm RFK 321 0.052 0.467 b 

  HUN-PTF 344 0.065 0.152 b 

  EU-SHG 342 0.074 -0.112 a 

 60-90 cm RFK 315 0.057 0.443 c 

  HUN-PTF 335 0.067 0.208 b 

  EU-SHG 333 0.076 -0.026 a 

*Different letters indicate significant differences at 0.05 level between the accuracy of the methods based on squared error, 

e.g. performance indicated with letter c is significantly better than the one noted with letter b and a. 5 

 

  



28 

 

Table 6. Proportion of mapped area having smaller than 0.025, 0.025-0.050, 0.05-0.100 and bigger than 0.10 cm3 cm-3 absolute 

difference between predicted soil hydraulic values derived by geostatistical method (RFK) and applying pedotransfer functions 

on local soil and environmental covariates (HUN-PTF). 

Absolute difference between 

RFK and HUN-PTF (cm3 cm-3) 
Depth (cm) 

% of mapped area 

THS FC WP 

0-0.025 0-30 76 80 71 

 30-60 86 77 65 

 60-90 75 72 71 

0.025-0.050 0-30 21 17 25 

 30-60 10 21 26 

 60-90 21 22 24 

0.050-0.100 0-30 3 3 4 

 30-60 4 2 9 

 60-90 4 6 5 

0.100 < 0-30 0 0 0 

 30-60 0 0 0 

 60-90 0 0 0 

 

  5 
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Table 7. Differences between pedotransfer function based (PTF) and geostatistical (RFK) mapping methods based on 

calculating saturated water content, field capacity and wilting point for the Balaton catchment. 

Aspects of mapping Differences between the soil hydraulic mapping methods 

PTF – indirect method RFK – direct method 

Main steps of 

mapping 

1. derive PTFs on available soil hydraulic dataset 

or use an appropriate PTF available from the 

literature, 2. apply PTFs on available 

environmental covariates 

1. harmonize soil profile dataset available for 

the mapping based on required soil depth, 2. 

predict deterministic component, 3. calculate 

the residuals, estimate their variograms, krige 

them, 4. add kriged residuals to the 

deterministic component 

Dataset used to 

describe relationship 

between soil 

hydraulic data and 

covariates 

- any soil hydraulic dataset which is 

hydropedologically similar to the area for which 

soil hydraulic maps are required 

- advantages: mapping can be applied even if no 

soil hydraulic data is available for the study area; 

available PTF can also be used 

- disadvantages: a soil hydraulic dataset is needed 

which has to be similar to data of the study site 

from soil hydropedological point of view; or if 

PTF is already available the soil hydrological 

dataset used to train the PTF has to be similar to 

the study site 

- soil hydraulic data available for the catchment 

- advantages: soil hydraulic data is 

characteristic for the study site, locally extreme 

values can be better characterized 

- disadvantages: density of measured soil 

hydraulic properties available for the study site 

might not satisfy the needs for mapping; further 

to the soil property, which is mapped, measured 

data of soil properties used in the prediction of 

the deterministic component (e.g. particle size 

distribution,  organic matter content) is required 

as well 

Inclusion of soil 

depth 

- can be included as independent variable 

- advantages: measured soil hydraulic properties 

are related to measured soil properties; soil 

hydraulic properties at any depth can be 

calculated 

- disadvantages: certain depths can be 

underrepresented in the training dataset which 

might increase prediction uncertainty 

- in 2D kriging soil data (chemical, physical, 

hydraulic) is first harmonized in training 

dataset by splining to derive data for fix depth 

- disadvantages: measured soil properties are 

splined therefore calculated soil hydraulic 

properties are related to calculated soil 

properties, thus map relationship between them 

is derived from interpolated (namely splined) 

values 

Spatial inference - this method relies on the interpolation included 

in the input layers used for the mapping, thus the 

mapping is indirect 

- advantage: no further geostatistical analysis is 

needed to provide 3D information 

- disadvantage: uncertainty of input layers 

increase uncertainty of predicted soil hydraulic 

properties 

- directly the soil hydraulic properties are 

interpolated 

- advantage: uncertainty of input layers is 

decreased due to adding the kriged residuals to 

the predicted values 

Information on 

uncertainty 

- interpreted as the uncertainty of the PTFs 

- advantage: can be easily computed for PTFs 

- can be derived with e.g. bootstrapping 

- advantages: location specific; the uncertainty 

accounts for both the unexplained stochastic 
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- disadvantages: not location specific, but 

depends on the input parameter combination, 

uncertainty of input layers has to be added to the 

uncertainty of PTFs to provide information on the 

uncertainty of soil hydraulic maps, uncertainty of 

input environmental covariates is hardly 

definable if e.g. 60-70 of them are used for the 

mapping 

variation and the uncertainty in estimating the 

deterministic model 

- disadvantages: computationally demanding; 

require massive storage capacity; uncertainty 

of input layers has to be added to the 

uncertainty of RFK 
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Figure 1. Location of study site Balaton catchment. 
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Figure 2. Flowchart about the main steps of direct and indirect soil hydraulic mapping methods. 
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Figure 3. Location of soil profile used for the geostatistical soil hydraulic mapping on the Balaton catchment study area. 

Solid line indicates border of the catchment, dashed line shows area with the 5 km buffer zone. 
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Figure 4. The scatter plot of the measured versus predicted water retention values with 90% prediction interval on test 

data sets based on random forest method. THS: saturated water content, FC: water content at field capacity, WP: 

water content at wilting point, TEST_CHEM set: test dataset in which chemical soil properties are available for the 

predictions, TEST set: test dataset, in which chemical soil properties are not necessarily available for the predictions.  5 
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Figure 5. Mean relative importance of covariates used to predict soil hydraulic properties based on random forest 

analysis on the training set of MARTHA database. THS: saturated water content, FC: water content at field capacity, 

WP: water content at wilting point. 

 5 
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Figure 6. Density plots of mapped soil hydraulic values by mapping methods and depth. THS: saturated water content, 

FC: water content at field capacity, WP: water content at wilting point, RFK: derived by random forest with kriging, 

HUN-PTF: calculated with Hungarian pedotransfer functions, EU-SHG: values from EU-SoilHydroGrids 250m  

dataset. 5 
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Figure 7. Map of water content at saturation in 0-30 cm soil depth derived by random forest and kriging mapping approach (RFK) (a), 

Hungarian pedotransfer functions (HUN-PTF) (b) and cut from the EU-SoilHydroGrids 250m  dataset (EU-SHG) (c), possible lower 5 % 

(d) and upper 95 % (e) based on HUN-PTF for a section of the Balaton catchment. 

  5 
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Figure 8. Map of water content at field capacity in 0-30 cm soil depth derived by random forest and kriging mapping approach (RFK) (a), 

Hungarian pedotransfer functions (HUN-PTF) (b) and cut from the EU-SoilHydroGrids 250m  dataset (EU-SHG) (c), possible lower 5 % 

(d) and upper 95 % (e) based on HUN-PTF for a section of the Balaton catchment. 

  5 
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Figure 9. Map of water content at wilting point in 0-30 cm soil depth derived by random forest and kriging mapping approach (RFK) (a), 

Hungarian pedotransfer functions (HUN-PTF) (b) and cut from the EU-SoilHydroGrids 250m  dataset (EU-SHG) (c), possible lower 5 % 

(d) and upper 95 % (e) based on HUN-PTF for a section of the Balaton catchment. 

 5 
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Figure 10. Differences between possible lower 5 % and upper 95 % water content at saturation (a), field capacity (b) 

and wilting point (c) in 0-30 cm soil depth for a section of the Balaton catchment. 


	Authors_response_part1_rev2
	Authors_response_part2_rev2

