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Abstract 

Reliable estimates of daily, monthly and seasonal soil moisture are useful in a variety of disciplines. 

The availability of continuous in situ soil moisture observations in southern Africa barely exists 

hence, process-based simulation model outputs are a valuable source of climate information, needed 20 

for guiding farming practises and policy interventions at various spatio-temporal scales. The aim of 

this study is to evaluate soil moisture outputs from simulation and satellite-based soil moisture 

products, and to compare modelled soil moisture across different landscapes. The simulation model 

consists of a global circulation model known as the conformal-cubic atmospheric model (CCAM), 

coupled with the CSIRO Atmosphere Biosphere Land Exchange model (CABLE). The satellite-based 25 

soil moisture data products include satellite observations from the European Space Agency (ESA) and 

satellite observation-based model estimates from the Global Land Evaporation Amsterdam Model 

(GLEAM). The evaluation is done for both the surface (0-10 cm) and root zone (10-100 cm) using in 

situ soil moisture measurements collected from two study sites. The results indicate that both the 

simulation and satellite data derived models produce outputs that are higher in magnitude range 30 

compared to in situ soil moisture observations at the two study sites, especially at the surface. The 

correlation coefficient ranges between 0.7 to 0.8 (at the root zone) and 0.7 to 0.9 (at the surface), 

suggesting that models mostly are in an acceptable phase agreement at the surface than at the root 

zone, this was further confirmed by the root mean squared error and the standard deviation values. 

The models mostly show a bias towards overestimation of the observed soil moisture both at the 35 

surface and root zone, with the CCAM-CABLE showing the least bias. An analysis evaluating phase 

agreement using the cross-wavelet analysis has shown that, despite the models’ outputs being in phase 

with the in situ observations, there are some time lags in some instances. An analysis of soil moisture 

mutual information (MI) between CCAM-CABLE and the GLEAM models has successfully revealed 
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that both the simulation and model estimates have a high MI at the root zone as opposed to the 40 

surface. The MI mostly ranges between 0.5 and 1.5 both at the surface and root zone. The MI is 

predominantly high for low lying areas relative to high lying areas. 

Keywords: atmospheric model, cross wavelet, flux tower, land surface model, soil moisture  

1 Introduction 

Accurate estimates
1
 of daily, monthly and seasonal soil moisture is important in a number of fields 45 

including agriculture (McNally et al., 2016), water resources planning (Decker, 2015), weather 

forecasting (van den Hurk et al., 2012) and the quantification of the impacts of extreme weather 

events such as droughts (Sheffield and Wood, 2008), heat waves (Fischer et al., 2007; Lorenz et al., 

2010) and floods (Brocca et al., 2011). Soil moisture has been identified as one of the 50 essential 

climate variables (ECVs) by the Global Climate Observing System (GCOS) and the European Space 50 

Agency climate change initiative (ESA-CCI) (McNally et al., 2016). Available soil moisture affects 

the fluxes of heat and water at the surface and directly impacts local and regional weather patterns 

(Dorigo et al., 2015; Raoult et al., 2018; Yuan and Quiring, 2017).  

Soil moisture is a key parameter to consider in the partitioning of precipitation and net radiation. The 

temporal and spatial variation in soil moisture is controlled by vegetation, topography, soil properties 55 

and climate variability (Xia et al., 2015). Root zone soil moisture plays a vital role in the transpiration 

process of evapotranspiration (ET) especially in arid and semi-arid regions, where most of the water 

loss is accounted for by transpiration during the dry period (Jovanovic et al., 2015; Palmer et al., 

2015). The dry period, which is constituted by months when the sites experience minimum rainfall, 

occurs during the austral winter season May to October. Regions where soil moisture strongly 60 

influences the atmosphere is at the transition between wet and dry climates. This is associated with the 

strong coupling between ET and soil moisture which is a characteristic of these regions (van den Hurk 

et al., 2012; Lorenz et al., 2010).  

The model evaluation in this study is achieved through a qualitative and quantitative comparison of 

modelled and in situ soil moisture products. Modelled and satellite data derived soil moisture fields 65 

are at different temporal and spatial resolutions while in site observations are mainly point-based 

(Fang et al., 2016). Despite the in situ data being limited in coverage, they are very useful for the 

calibration and validation of modelled and satellite-derived soil moisture estimates (Xia et al., 2015). 

Point-based in situ soil moisture data that are used as a reference in this study consist of surface and 

root zone measurements. The fact that the in situ data are point-based, poses significant challenges in 70 

the understanding of spatial patterns in soil moisture (Yuan and Quiring, 2017). Direct satellite 

observations, on the other hand, are presently only available for the surface. To obtain root zone 

estimates of soil moisture satellite-based surface soil moisture data are used in conjunction with 

ground-based observations and model estimates. The modelled soil moisture data are largely 

dependent on accurate surface forcing data (e.g. air temperature, precipitation and radiation) and the 75 

parameterisation of the land surface schemes (Xia et al., 2015). This is done in the framework of 

physically-based models whose accuracy may vary depending on the response of the models to the 

forcing data. 

                                                      
1
 Estimate here refers to both process-based model simulation and satellite-derived data products thereafter, the term 

simulation will be used for process-based model outputs while estimates will be reserved for satellite-derived data.   
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The study is inspired by the notion that an understanding of soil moisture characteristic patterns, for 

the study region can be reliably obtained by looking at independent datasets from simulation 80 

experiments, theoretical or analytical models and in situ observations. In Africa, the evaluations of the 

soil moisture data products, from these various estimation approaches, are sparse mainly due to the 

lack of publicly available in situ observations (Sinclair and Pegram, 2010). The lack of publicly 

available long term and complete in situ soil moisture measurements in most parts of the world leads 

to a reliance on global climate models (GCMs) to estimate the land surface states (Dirmeyer et al., 85 

2013). The data produced by land surface models, hydrological models and GCMs have been widely 

evaluated for many continents and regions (Albergel et al., 2012; An et al., 2016; Dorigo et al., 2015; 

McNally et al., 2016; Yuan and Quiring, 2017). The available studies include those conducted by 

McNally et al. (2016) and Dorigo et al. (2015) evaluating ESA-CCI satellite soil moisture products 

over East and West Africa respectively.  90 

The aims of this study are twofold. Firstly, it is to evaluate the ability of the process-based simulation 

and satellite-derived soil moisture products to capture the observed variability in soil moisture at 

specific flux tower locations. Secondly, to understand how the simulated results of soil moisture from 

a coupled land-atmosphere model simulated results of soil moisture compare against satellite-based 

estimates on broad landscape classes that belong to homogenous elevation and soil types. The 95 

evaluation is undertaken at two soil depths namely; surface (SSM, i.e., 0-10 cm) and root zone 

(RZSM, i.e. 10-100 cm), using long-term in situ measurements to determine if the respective soil 

moisture data products are representative of local conditions. This is done for two study sites whose 

data records are available on request from FLUXNET, namely the Skukuza and Malopeni flux tower 

sites located in the Kruger National Park in South Africa. The two study sites receive summer rainfall 100 

and the colder winter months overlap with the dry period. Of these two sites, only the Skukuza site 

forms part of the global flux data network (FLUXNET). Other international flux observation 

networks, such as the International Soil Moisture Network (ISMN) have no affiliated data sites in the 

study region.  

We investigate how the CCAM-CABLE process-based simulation, satellite-derived and GLEAM 105 

estimates compare with the in situ obervations. We look at the spatio-temporal variations in simulated 

soil moisture data from a coupled land-atmosphere model. The conformal cubic atmospheric model 

(CCAM) of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) coupled to 

the CSIRO Atmosphere Biosphere Land Exchange (CABLE) model, three versions of the European 

Space Agency (ESA) satellite observations (i.e., active, passive and combined), and estimates from 110 

three versions of the global land evaporation Amsterdam Model (GLEAM) are evaluated. The central 

idea is to understand how processed based and satellite-based models spatial patterns compare at a 

regional level, with a focus on grid points that belong to specific landscapes classes. This is done for 

landscapes where the availability of in situ observations over space and time presents a major 

challenge for climate model evaluation studies. We focus on the periodic patterns of soil moisture at a 115 

point. In particular, we investigate, both quantitatively and qualitatively, the agreement in phase and 

magnitude between the respective soil moisture data products with a view of establishing if they are 

representative of local conditions. 

An understanding of the extent to which the climate model simulations and GLEAM model estimates 

have similar patterns at a regional level within inter-annual time scales is achieved by looking at a 120 

measure of their mutual information (MI). Model correspondence in capturing dominating processes 

is investigated by looking at the modelled soil moisture signal mutual information (MI). This is done 

for different landscapes organised by dominating soil and vegetation types, as well as altitude ranges 

across the study region. The study seeks not only to uncover interesting patterns in the observed data, 
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for the study region but also to highlight the strengths as well as aspects of the climate model 125 

simulation and GLEAM estimates which may benefit from continuous testing and improvement. 

The ability of models to capture seasonal cycles of terrestrial processes such as soil moisture is one 

indication of how well the physical processes that underlie the variability of soil moisture over space 

and time are represented. A comparison of satellite-derived products with in situ observations may 

also yield useful insight into the strengths and weaknesses of various remote sensing techniques that 130 

are used. A climate models' ability to represent and capture the seasonality of a system under inter- 

and intra-annual climate variability could be considered more important than its agreement with 

observations in absolute values (Fang et al., 2016). The remainder of the study is structured as 

follows: Sect. 2 describes the datasets used, the study design and methods for analysing the datasets. 

Section 3 presents the results and the discussion, followed by the conclusions in Sect. 4. 135 

2 Materials, methods and data 

2.1 Study sites and in situ observations 

In situ soil moisture measurements from the Council for Scientific and Industrial Research (CSIR) 

operated network of eddy covariance flux towers, in the Lowveld region of the Mpumalanga 

(Skukuza) and Limpopo (Malopeni) provinces are used. Soil moisture is observed at several different 140 

locations in South Africa mainly for irrigation purposed but such data are not publicly available.  

2.1.1 Skukuza 

The Skukuza flux tower site is a long-term measurement site, located within the Kruger National Park 

conservation area in South Africa (25.0197° S, 31.4969° E; Fig. 1). The Skukuza flux tower has been 

operational from 2000 to present. The site falls within a semi-arid savanna biome at an altitude of 370 145 

m above sea level, with a mean rainfall of 547 mm year
-1

, and average annual minimum (during the 

dry season) and maximum (during the wet season) temperatures of 14.5 and 29.5˚C, respectively for 

the averaging period from 2001 to 2014. The vegetation is dominated by an overstory of Combretum 

apiculatum (Sond.), and Sclerocarya birrea (Hochst.) with a height of approximately 8-10 m, and a 

tree cover of approximately 30% (Archibald et al., 2009). The understory is a grass layer dominated 150 

by Panicum maximum (Jacq.), Digitaria eriantha (Steud.), Eragrostis rigidor (Pilg.) and 

Pogonarthria squarrosa (Roem. and Schult.). The soil has a yellowish sandy loam texture and is of 

the Clovelly form (Feig et al., 2008), and the dominant soil type for the 25 km resolution grid cell 

where the flux tower is located is silty loam. The Skukuza flux tower site is extensively described in 

previous studies including those by Archibald et al. (2009), Scholes et al. (2001) and Khosa et al. 155 

(2019). In situ soil moisture data are collected 90 m north of the tower, and the measurements are 

taken at two profiles which are 8 m apart. The sensors are located at four different depths for both 

profiles i.e., 5, 15, 30 and 40 cm (Pinheiro and Tucker, 2001). Time-domain reflectometry (TDR) 

probes (Campbell Scientific CS615L) are used to measure soil moisture at a 30-minute temporal 

resolution. These measurements were averaged to a daily time period (only done for days for which at 160 

least 80 % of the half-hourly measurements were available over a 24-hour period) in order to match 

the resolution of the other soil moisture products. For this study, the in situ data from the year 2001 to 

2014 are used. 

2.1.2 Malopeni 

The Malopeni flux tower is located 130 km North-west of the Skukuza flux tower (23.8325° S, 165 

31.2145° E; Fig. 1), at an elevation of 384 m above sea level. The tower has been collecting data since 
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2008 to present, however, data was not collected between January of 2010 and January of 2012 due to 

equipment failure. The site has a mean rainfall of 472 mm year
-1

, and annual average minimum and 

maximum air temperatures of 12.4 and 30.5˚C respectively, for the averaging period from 2008 to 

2014. The site is dominated by broadleaf Colophospermum mopane, which characterises a hot and dry 170 

savanna (Ramoelo et al., 2014), Combretum apiculatum and Acacia nigrescens are also abundant at 

the site. The grass layer is dominated by Schmidtia pappophoroides and Panicum maximum. The soil 

at the site is predominantly of the shallow sandy loam texture, and the dominant soil type for the 25 

km resolution grid cell where the flux tower is located is silty loam. The soil moisture probes are 

located at four different profiles and depths. The sensor types and depths positioning are the same for 175 

the Malopeni and Skukuza flux tower sites.  Soil moisture is collected at four different profiles (i.e., 

16 sensors at four depths per site) and averaged to represent surface and root zone soil moisture at the 

site, for Skukuza only sensors at two profiles are working (i.e., 8 sensors).  

 

Figure 1. Maps indicating South Africa, Kruger national park (KNP), flux tower sites (Skukuza and Malopeni) 180 
and the area considered for grid inter-comparison (red box).   

2.2 Datasets  

2.2.1 Soils texture data 

The “SoilGrids” dataset from the international soil reference information centre (ISRIC) was used in 

this study to map soil types. The data are available online (https://soilgrids.org), and is described in 185 

detail in the study by Hengl et al. (2017). The dataset has a spatial resolution of 250 m and is 

resampled to 25 km, firstly by resampling to 1 km and then to 25 km, using the nearest neighbour 

method to match the resolution of the soil moisture products. We acknowledge that resampling from 

fine to coarse resolution might introduce a bias towards certain soil types. However, the nearest 

https://soilgrids.org/
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neighbour method is suitable for resampling categorical data. Soils were classified into 12 dominant 190 

types ranging between sand and silty clay. The soil type data are available at various depths, here we 

only consider the data representing the surface (i.e., 0-5 cm).     

2.2.2 Satellite observations 

The European Space Agency climate change initiative (ESA-CCI) satellite-derived soil moisture 

datasets are used in this study (Liu et al., 2012; Yuan and Quiring, 2017). These global datasets are 195 

based on passive and active satellite microwave sensors, and provide surface soil moisture estimates 

at a resolution of ~25 km (i.e., 0.25˚) (Fang et al., 2016; Yuan and Quiring, 2017). The ESA-CCI 

merges soil moisture estimates from the active and passive satellite microwave sensors into one 

dataset (http://www.esa-soilmoisture-cci.org/), using the backward propagating cumulative 

distribution function method (Dorigo et al., 2015; Fang et al., 2016). A detailed description of the 200 

merged active and passive sensors and their functioning is provided by Fang et al. (2016), Dorigo et 

al. (2015) and Liu et al. (2012). The merging of active and passive sensors is based on their sensitivity 

to vegetation density, as the accuracy of these products varies as a function of vegetation cover (Liu et 

al., 2012). In this study, version 3.2 (v3.2) of the ESA-CCI soil moisture data is used. The merged 

data product is used in this study as it has better data coverage compared to the individual products. 205 

Missing data in satellite products are not unusual since retrievals are normally at an interval of 2-3 

days (Albergel et al., 2012). However, data from each of the different sensor types are also considered 

for the evaluation of long-term seasonal cycles. 

2.3 Models for simulating soil moisture 

2.3.1 CCAM-CABLE 210 

The variable-resolution atmospheric model CCAM developed by the CSIRO in Australia (McGregor, 

2005; McGregor and Dix, 2001, 2008) was used to dynamically downscale ERA reanalysis data to 8 

km resolution over north-eastern South Africa (Fig. 1a) for the period 1979-2014. Similar 

downscaling of reanalysis data obtained over southern Africa using CCAM are described by 

Engelbrecht et al. (2011), Dedekind et al. (2016) and Horowitz et al. (2017). The ability of the CCAM 215 

model to realistically simulate present-day southern African climate has been extensively 

demonstrated (e.g. Engelbrecht et al., 2015, 2009, 2011; Malherbe et al., 2013; Winsemius et al., 

2014). The CABLE soil sub-model expresses soil as a heterogeneous system consisting of three 

constituent phases namely water, air and solid (Kowalczyk et al., 2006; Wang et al., 2011). Air and 

water compete for the same pore space, and the change in their volume fractions is due to drainage, 220 

precipitation, ET and snowmelt. In this model, there is no heat exchange between the moisture and the 

soil due to the vertical movement of water, as soil moisture is assumed to be at ground temperature. 

The soil is partitioned into six layers, with the layer thickness of 0.022 m, 0.058 m, 0.154 m, 1.085 m 

and 2.875 m from the top layer. Only the top layer contributes to evaporation while plant roots extract 

water from all layers depending on the soil water availability and the fraction of plant roots in each 225 

layer (Wang et al., 2011). Soil moisture is solved numerically using the Richard’s equation 

(Kowalczyk et al., 2006).     

2.3.2 GLEAM 

The Global Land Evaporation Amsterdam Model (GLEAM) version 3.1 is a set of algorithms used to 

estimate surface, root-zone soil moisture and terrestrial evaporation using satellite forcing data 230 

(Martens et al., 2017). The method is based on the use of the Priestley and Taylor (1972) evaporation 
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model, stress module, and the rainfall interception model (Miralles et al., 2011). Three data sets from 

the GLEAM namely v3a, v3b and v3c were used in this study. The data are freely available at 

www.gleam.eu. Version 3a is based on satellite observed soil moisture, snow water equivalent and 

vegetation optical depth, reanalysis radiation and air temperature, and a multi-source precipitation 235 

product. Versions 3b and 3c are satellite-based with common forcing data excluding soil moisture and 

vegetation optical depth, these are based on different passive and active microwave sensors, i.e., ESA 

CCI for v3b and Soil Moisture and Ocean Salinity (SMOS) for v3c (Martens et al., 2017). 

The different components of terrestrial processes (i.e., transpiration, open-water evaporation, bare soil 

evaporation, sublimation and water loss) are separately driven in GLEAM (Martens et al., 2017). 240 

Each grid cell in GLEAM contains fractions of four different land cover types namely: open water 

(e.g. dam, lake), short vegetation (i.e., grass), tall vegetation (i.e., trees) and bare soil. These fractions 

are based on the global vegetation continuous field product (MOD44B) except for the fraction of open 

water. The MOD44B product is based on the moderate resolution image spectroradiometer (MODIS) 

observations (Martens et al., 2017). Soil moisture is estimated separately for each of these fractions 245 

and then aggregated to the scale of the pixel based on the fractional cover of each land cover type. 

Root zone soil moisture is calculated using a multi-layered water balance equation which uses 

snowmelt and net precipitation as inputs, and drainage and evaporation as outputs (Miralles et al., 

2011). The depth of soil moisture is a function of land-cover type comprising one layer of bare soil (0-

10 cm), two layers for short vegetation (0-10, 10-100 cm) and three layers for tall vegetation (0-10, 250 

10-100, and 100-250 cm) (Martens et al., 2017). 

2.4 Analysis approach and data processing 

2.4.1 Statistical analysis 

The first part of the analysis focuses on evaluating the monthly time series data of soil moisture 

products at the site level using observations. At a monthly time scale, the soil moisture seasonal cycle 255 

is assumed to well developed. A data threshold of 80 %, i.e. daily values are available for at least 80% 

of the total number of days in a particular month, was used to average daily data to monthly. Months 

that did not meet the 80 % threshold were excluded from the analysis. Time series data for the 

evaluation sites, were extracted from the soil moisture products, using the flux tower's geographical 

coordinates. The satellite products present averaged soil moisture data per grid cell. A distance-260 

weighted average (DWA) technique was used to interpolate the CCAM-CABLE model simulations to 

estimate soil moisture values representative of observational sites. The DWA method proved to be 

more representative than the nearest neighbour (NN) method, as the DWA method interpolates to the 

exact location of the tower by considering simulated values at grid points surrounding the location.  

The soil moisture products were first converted to the percentage of volumetric soil moisture amounts 265 

for comparison purposes. As in Yuan and Quiring (2017), we assume that the soil moisture 

measurements at the 5 cm depth are representative of the depth range  0–10 cm. In situ data at depths 

15, 30 and 40 cm were combined using the depth weighted average method to represent the 10-100 

cm depth using Eq. (1):  

          (1) 270 

Where SM10-100 is the weighted soil moisture, n is the number of layers, LT is the layer thickness 

calculated as the difference between the soil depths, SD is the total soil depth of the soil profile and 
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SM (i) the daily in situ soil moisture values at the i
th
 layer. The depth weighted average method as 

presented in this study (Eq. 1) has been used in other studies such as that by Yuan and Quiring (2017). 

Similarly, the data at depths 2.2 and 5.8 cm, and 15.4 and 40.9 cm from CCAM-CABLE are averaged 275 

to represent 0-10 and 10-100 cm respectively using Eq. (1).  

Table 1. Overview of soil moisture datasets; satellite (grey) in percentage, modelled (blue), simulation (pink) 

and in situ observations (green) presented as a ratio (m
3 

m
-3

) of soil to moisture per unit area. 

Soil moisture 

product   

Spatial 

resolution (km)  

Spatial 

coverage 

Soil depth (cm) Period  

ESA-Combined 25  Global 0-10 1978-2015 

ESA-Active 25 Global 0-10 1991-2015 

ESA-Passive 25 Global 0-10 1978-2015 

CCAM-CABLE 8 Regional  2.2, 5.8, 15.4, 40.9,  

108. 5, 287.2 

(bedrock) 

2000-2014 

Skukuza Point data Point  5, 15, 30, 40 2000-2017 

Malopeni Point data Point  5, 15, 30, 40 2008-2017 

GLEAM v3a 25 Global 0-10, 10-100 1980-2016 

GLEAM v3b 25 Global 0-10, 10-100 2003-2015 

GLEAM v3c 25 Global 0-10, 10-100 2011-2015 

 

The soil moisture products used in this study (Table. 1) are under the same latitude and longitude 280 

projection. All the soil moisture projections are at the same spatial resolution of 25 km, except for the 

CCAM-CABLE model with a resolution of 8 km. The bilinear interpolation method was used to 

resample the CCAM-CABLE simulations from 8 to 25 km to match the resolution of the other soil 

moisture products. To evaluate how close the modelled soil moisture estimates are to in situ 

measurements we use the Taylor plots (Taylor, 2001) as well as the cross-wavelet analysis.  285 

2.4.2 Cross-wavelet analysis 

The cross-wavelet method analyse the frequency structure of a bivariate time series using the Morlet 

wavelet (Veleda et al., 2012). The wavelet method is suitable for analysing periodic phenomena of 

time series data, especially in situations where there is potential for frequency changes over time 

(Rosch and Schmidbauer, 2018; Torrence and Compo, 1998). The cross-wavelet analysis provides 290 

suitable tools to compare the frequency components of two time-series, thereby concluding their 

synchronicity at a given period and time. In this study, the cross-wavelet analysis is used to 

qualitatively compare the cyclic patters of the observations and the models' estimates. In particular, it 

is used to assess if there exist phase differences between dominating periodic features of the in situ 

observations and the models' estimates. The cross-wavelet analysis algorithm used is described in 295 



9 

 

Rosch and Schmidbauer (2018) and is implemented within the “WaveletComp” package in the R 

software. This method has been used in other studies, such as that by Koirala and Gentry (2012), for 

investigating the climate change impacts on hydrologic response. 

The cross-wavelet analysis only applies to complete datasets (i.e., without missing values). Since the 

in situ observations have missing data, the multiple imputations method as discussed in studies by 300 

Rubin (1987) and Rubin (1996) has been used to gap-fill the in situ time series. The multiple 

imputation procedure is implemented in the "Amelia" package also available in the standard 

repository for R packages. The number of imputed datasets was set to five and combined using 

Rubin's rules (Rubin, 1996). The multiple imputations method is only applied to the Skukuza dataset 

both the surface (Fig. C1.a) and root zone (Fig. C1.b). This is because the Skukuza data has fewer 305 

gaps compared to Malopeni (Fig. A1.b). The imputed soil moisture observations are shown in 

Appendix C together with the statistics of the measures of the distribution for both the gap filled and 

non-gap filled datasets. The cross-wavelet analysis is applied to non-stationary data using the default 

method (i.e., white noise) with the simulations repeated ten times.  

2.4.3 Seasonal soil moisture pattern  310 

Six sub-regions, denoted a-f, are selected according to a homogeneity assumption on altitude, climatic 

regions and soil types. The sub-regions are selected to demonstrate how the models represent the 

patterns of daily soil moisture distribution at a regional scale. For each model and sub-region, 

seasonal distribution of modelled daily soil moisture values spanning the austral summer (December-

February), winter (June-August), autumn (March-May) and spring (September-November) for the 315 

period 2011-2014 are summarised through a Box-and-whisker plot. In summary each sub-region data 

distribution consists of 16 grid-points with each grid points having daily soil moisture values for each 

month of the respective seasons. Topographic features of the landscapes (i.e., slopes) of different 

aspect: north (N), east (E), south (S) and west (W) are also used to filter the respective seasonal 

distributions thus revealing the soil moisture distributions’ variation with thermal exposure or slope 320 

direction. The second part of the analysis inter-compares model simulations and satellite estimates of 

soil moisture at a regional scale. The MI is calculated between the residuals of the de-trended and de-

seasonalised time series at a regional scale between the CCAM-CABLE simulations and GLEAM 

estimates. The data are first de-trended and de-seasonalised before the MI is calculated to ensure that 

the computed MI is not attributed to the similarities in the trend and cyclic components of the signal. 325 

The trend and cyclic components could be correlated and it is necessary to ensure that the MI is based 

on the residual components which are the uncorrelated features of the soil moisture signal. In this 

way, the MI calculation presents a comparison matrix for inter-model soil moisture spatial pattern 

comparison. In particular, the MI gives a sense of similarity between the models indicating the level 

of coincidence or overlap in the distribution of the residuals between a pair of CCAM-CABLE 330 

simulations and each of the GLEAM model estimates per grid point. In the case that MI values 

between models are low, the inter-model reflects uncertainty in how the models capture the modelled 

processes. 

The de-trending and de-seasonalising of the time series removes the systematic components of the 

signal including bias. This is achieved through an approach reported in a study by Cleveland et al. 335 

(1990) where the "stl" package, available in the standard package repository in R, is used to de-trend 

the time series into its components. The MI calculation is described in Kraskov et al. (2004) and is 

applied in this study using the "varrank" package which is also available in the R CRAN repository. 

The MI measure calculated from the residual components of the respective soil moisture signals 

presents a robust way of assessing if the respective models have a correspondence in spatial patterns 340 
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of soil moisture across landscapes. In this paper, the MI is used as an index for classification of the 

models according to the coincidence in the distribution of residuals at the regional level. The MI is 

calculated for the daily time series ranging between 2011 and 2014.  

3 Results and discussion 

3.1 Evaluation of the satellite- and model-simulated seasonal cycle soil moisture 345 

In this section, we discuss how the respective outputs reflect the key features of the observed soil 

moisture. As highlighted in the introduction, the variability of the simulation output, satellite-derived 

data and satellite-based model estimates are studied relative to the observations. Much focus is placed 

on investigating how well the periodic features of the soil moisture are reflected by the respective soil 

moisture datasets. The patterns of soil moisture at the study sites are mainly driven by rainfall, which 350 

is predominantly higher during the summer season, and low in winter as shown in Fig. 2. The long 

term surface soil moisture for both the sites follows a pattern comparable to that of rainfall as can be 

seen in Fig. 2. 

3.1.1 Long term seasonal cycles 

The soil moisture patterns presented in Fig. 2 show that the study sites mainly contain higher soil 355 

moisture at the surface than at the root zone, this is shown by both the modelled soil moisture and the 

observation. This is indicative that, water at these study sites is lost mostly through runoff and ET, 

and only a small fraction infiltrates the soil and is stored at the root zone. There is an acceptable 

similarity the pattern of the seasonal cycle of soil moisture (Fig. 2) between the various product 

outputs and the observations in terms of phase, especially at the surface. Notably, the observed soil 360 

moisture seasonal cycle at the surface at both Skukuza and Malopeni surface displays a local 

maximum in April and shows an increase from September to January. The cyclic qualitative features 

of the observed signal are captured by all the models. The soil moisture amplitudes are less 

pronounced in the root zone, but with November and October maxima at Skukuza and Malopeni 

respectively. In some instances, there is a lag such as the one presented by GLEAM v3c (i.e., maxima 365 

in October instead of November) at the surface, both at Skukuza and Malopeni. The soil moisture 

patterns are consistent with the observed rainfall cycle which undergoes an onset in October and a 

cessation in April. The root-level soil-moisture pattern displays a signature of soil moisture retention, 

which relates to the persistence of dry and wet periods at various soil depths (Seneviratne et al., 

2006). In light of this, it would be interesting to see how both the CCAM-CABLE simulation and the 370 

GLEAM soil moisture products depict the onset and cessation of the wet season, this will be discussed 

in Section 3.2. The CCAM-CABLE model outputs reflect that soil-moisture reaches its highest values 

in March rather than April for Skukuza at the surface. The output does not reproduce the recorded 

elevated soil moisture for Malopeni in April at the surface. This is probably since the CABLE soil-

moisture scheme does not take into account soil resistance (Whitley et al., 2016). Despite this, the 375 

long term CCAM-CABLE monthly means of soil moisture are relatively comparable to the 

observation even in terms of magnitude (Fig. 2).  

GLEAM v3c, agrees with in situ measurements on the existence of an April soil moisture maximum, 

but it reflects the observed soil moisture increase, in November, a month earlier (i.e., in October). The 

satellite observations and GLEAM models (Fig. 2) display the same soil moisture signal as observed 380 

at the respective sites, indicating that the April maximum, in particular, is not an artefact of the point 

observations. We can safely deduce that the bias in GLEAM v3c is not induced by satellite-based 

forcing data, however, this calls for further investigations on the sensitivity of the model to its driving 
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data at a high resolution. We anticipate that at high temporal resolution there is a strong variability in 

the in situ soil moisture signal which may not entirely be captured by both CCAM-CABLE and 385 

GLEAM, possibly due to their relatively low spatial resolution. The relatively low resolution (8 km in 

the horizontal) in the case of CCAM-CABLE, in particular, potentially has strong implications on 

how representative the effective drivers of soil moisture such as soil texture and vegetation covers are 

in terms of observations at specific sites. 

 390 

Figure 2. Seasonal variation in the long term mean monthly rainfall (mm), surface (i.e., 0-10 cm) and root zone 

(i.e., 10-100 cm) soil moisture, based on in situ observations and a variety of soil moisture products. The in situ 

data is collected from two sites, namely Skukuza (2001-2014) and Malopeni (2008-2013). 

The GLEAM models (Fig. 2) are generally consistent with in situ measurements in estimating soil 

moisture both in terms of phase, both at the surface and root zone. The magnitude of GLEAM v3a 395 

root zone estimates is lower than those of the other GLEAM models at the Skukuza site. This can be 

attributed to the unique multi-source weighted ensemble precipitation (MSWEP) data used to force 

GLEAM v3a (Martens et al., 2017), which is different to the precipitation forcing data used in 

GLEAM v3b and v3c. We further observe that the GLEAM models, ESA and in situ observations 
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have the same length of the dry period (i.e., about 4 months), except for the ESA-Active observation 400 

which has a shorter dry period (i.e., about 3 months). 

The ESA-Active satellite product is known to work best for moderate to densely vegetated areas as 

opposed to savanna sites such as Skukuza and Malopeni where tree cover is sparse (Dorigo et al., 

2015). There is a minimal difference between the ESA-Passive and ESA-Combined satellite products 

both in terms of phase and magnitude. Generally, the ESA-Combined and ESA-Passive datasets have 405 

the least difference during the dry period for all sites. A number of studies evaluated the ESA 

products at a regional and global scale using in situ data and concluded that passive sensors displayed 

improved performance over bare to sparsely vegetated regions, whereas the active sensors perform 

better in moderately vegetated regions (Al-Yaari et al., 2014; Dorigo et al., 2015; Liu et al., 2012; 

McNally et al., 2016).  410 

Using long term monthly averages, both the CCAM-CABLE and GLEAM models can capture the 

intrinsic seasonality of the soil moisture signal for the sites as reflected by both the in situ and satellite 

observations. This is despite their being different both in the forcing data and model structure. Studies 

by Wang and Franz (2017) and Seneviratne et al. (2010) suggest that local factors (e.g., vegetation, 

soil and topography) mostly control soil moisture variability at spatial scales less than 20 km, rather 415 

than meteorological forcing. For a fourteen-year averaging period, undoubtedly the monthly means 

are sensitive to anomalously high precipitation, and hence soil moisture in some months. It is 

therefore instructive to investigate how well the simulated and estimated patterns of soil moisture 

compare with the in situ data monthly for the respective years.  

3.1.2 Intra- and inter-annual variability in soil moisture 420 

This section presents a quantitative evaluation of the soil moisture time-series from the soil moisture 

products at a monthly time-resolution. The level of agreement of the short term seasonal cycles 

between the various outputs and observations is quantified in Fig. 3 using the Taylor plot. The Taylor 

plot present three evaluation metrics namely; 1) the standard evaluation, which evaluates the 

amplitudes of the modelled soil moisture relative to the observations, 2) the centred root mean 425 

squared error (RMSE) measuring the distance in magnitude between the various products and the 

observations, and 3) the correlation coefficient measuring the agreement in phase.  

Based on the correlation coefficient in Fig. 3a, we learn that there is an acceptable correlation between 

the observed and modelled soil moisture products at the surface ranging between 0.7 and 0.9. At the 

root zone, the correlation coefficients for the site range between 0.6 and 0.8. This indicates that there 430 

is more agreement in the soil moisture patterns at the surface than at the root zone. The disparity in 

the amplitude of variation at Skukuza and Malopeni, as reflected by the standard deviation and the 

normalised bias in Fig. 3a and Fig. 3b respectively, shows that it remains difficult for the models to 

predict the magnitude of in-situ soil moisture and its evolution over time, by all models especially for 

the root-zone where all the models bear very little coherence with observations. The coefficient of 435 

determination (Fig. A1 in the appendix) also shows that the models are able to explain at least 50 % of 

the observed soil moisture variability at the root zone and the surface for both sites. At the root zone, 

the models can only explain between 38 and 53 % of the variability in the observed soil moisture at 

Skukuza and Malopeni respectively. On account of missing values, the R
2
 values presented in Fig. A1 

are based on different sample sizes. Therefore, their interpretation is made with this issue in mind. In 440 

particular, it is inconclusive whether the simulations and estimates are more comparable at Malopeni 

relative to Skukuza. 
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For the Skukuza site, we learn in Fig. 3a that the standard deviation for the surface and root zone soil 

moisture observation is around  4.5 and 4.7 % respectively. The standard deviation values for the 

surface and root-zonetime series, for the various modelled soil moisture products, are mostly within  445 

the ranges 4 – 5 % and 2.7- 5 % at the respective depths. In general, the standard deviation for 

modelled data is not at the perfect overlap with that from observation. The GLEAM products mainly 

present relatively closer standard deviations with the observations, while the CCAM-CABLE and 

ESA-Combined products show standard deviation values slightly lower than that of the observations 

indicating a slight underestimation by these products. At the root zone the soil moisture standard 450 

deviation is relatively lower (i.e., about 1.5 %) for the observations while all other soil moisture 

projects reflect much higher standard deviation indicating an overestimation of the root zones soil 

moisture by these products. At Malopeni, we learn that the standard deviation for observed soil 

moisture values is about 4.7 % at the surface and 3.2 % at the root zone. In both cases the models 

present a standard deviation with a range closer to that of the observed root zone values. For this 455 

particular site, the agreement between the various products and the observations is more pronounced 

at the root zone (RMSE ranges between 1.8 and 2.3 %) than at the surface (RMSE ranges between 2.1 

and 3.5 %).  

On the basis of a comparisons of standard deviations, we can conclude that the pattern variations for 

different soil moisture products are not of the right amplitude at both the surface and root zone for the 460 

two respective sites. The amplitude of the pattern of variation among most of the models at the root 

zone, particularly at Skukuza, is relatively incoherent with that of the observations. At root zone, this 

is consistent with that of the models at Malopeni but not Skukuza. We learn from Fig. 3b that the 

models are mostly biased towards an overestimation (i.e., values above the horizontal line) of the 

observed soil moisture. The overestimation is more pronounced at the root zone relative to the 465 

surface. This is mostly true both at Skukuza and Malopeni. We also learn that the models mainly 

present pronounced overestimation bias at Malopeni compared to Skukuza. The GLEAM and ESA-

Combined products predominantly show higher bias towards overestimation compared to the CCAM-

CABLE model. The CCAM-CABLE model shows the least bias relative to the other soil moisture 

products both at the surface and the root zone. At the Skukuza site, the CCAM-CABLE and ESA-470 

Combined products show and underestimation of the observe soil moisture at the surface.  

The ESA-combined satellite product presents a similar performance with the GLEAM products at 

both Skukuza and Malopeni. The ESA data has been shown to generally capture soil moisture in 

different regions and climatic zones of the world (Loew et al., 2013; McNally et al., 2016; Wang et 

al., 2016; Zeng et al., 2015). Our study confirmed (Fig. 3) that the ESA-combined product captures 475 

local (i.e., South African semi-arid) conditions within an acceptable amount of certainty. A study 

conducted by Yuan and Quiring (2017) assessing the performance of CMIP5 models both at the 

surface and root zone, concluded that the models performed better at the root zone relative to the 

surface. These results contradict the findings of this study, where we generally observe better 

agreement between soil moisture products and in situ measurements at the surface than at the root 480 

zone. Based on the general picture of the extent to which the soil moisture products proved to be 

representative of the quantitative features of the soil moisture signal, as driven by precipitation at the 

site, it is compelling to further resolve qualitatively, for each periodic soil moisture feature, how the 

various outputs compare with the in situ observations. To this effect, the next section will present the 

results from a cross-wavelet analysis of the soil moisture output and the in situ observation.485 
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Figure 3. a) Taylor plots quantitatively comparing monthly modelled soil moisture to observations at Skukuza 

(2001–2014) and Malopeni (2008–2013), both at the surface (0-10 cm) and root zone (10-100 cm). The vertical 

solid grey lines represent the correlation coefficient. The broken black line facing the clock-wise direction 490 

represents the standard deviation of the in situ observation. While, the semi-circle broken lines represent the 

centred root mean squared error, b)  Normalised mean bias (NMB) of surface (0-10 cm) and root zone (10-100 

cm) soil moisture, computed between the various soil moisture products and the in situ observations at Skukuza 

and Malopeni. 

3.1.3 Cross-wavelet analysis 495 

 In this section, a cross-wavelet transform (CWT) constructed from two continuous wavelet 

transforms (CWT) applied to the modelled and observed time series respectively is studied. The CWT 

is instrumental in depicting the relationship in time and frequency space between two time-series. 

This is achieved by analysing localised intermittent oscillations in the respective time series. By 

looking at the regions in time and frequency space with relatively large common power (represented 500 

by red colours; Fig. 4) and a consistent phase relationship (depicted by arrows), we gain a sense of 

whether there is a physical relationship between the observed and modelled soil moisture fields. 

Looking at Fig. 4 we learn that the soil moisture signals components with a common power are 

immediately identifiable and are portrayed as having periods (y-axis values) that lie between 8 and 15 

months. This is depicted by strong red colour regions bound by white lines, which marks the region 505 

with 10 % significance level (i.e., 90 % confidence level). On comparing the surface and root zone 

cross-wavelets, we can conclude that the statistically significance cyclic components with the 

dominating common power are generally between the periods of 8 and 15 months. This can be 

associated with seasonal soil moisture variation as driven by meteorological drivers, most of which 

have a return period of about a year.   510 

From Fig. 4a we can see based on the alignment of the arrow (Fig. B1) that the most common high 

power signals between modelled and observed data are in phase, in some instances with a time lag. 

This is identified by the direction of the arrows which are inclined either upwards or downwards, See 

Fig. B1 in Appendix B for an interpretation of the direction of the arrows. From the graph of the phase 

difference, we can see that there is an interchange of years in which the modelled field are leading or 515 

lagging in phase however, the phase difference is mostly very small. There is a time lag of two days 

on average between CCAM-CABLE simulations and in situ observations at the period of about 12 

months, and a lag of about six days on average between GLEAM v3a and the in situ observations at 

the surface. At the root zone, we observe a wider lag of between 14 and 24 days between the soil 

moisture products (i.e. CCAM-CABLE and GLEAM-v3a) and the observations. This further confirms 520 

that there is a better agreement between the soil moisture products and the observation at the surface 

than at the root zone. 

In all models, precipitation is a source of soil moisture at the surface while heat and wind are sinks of 

moisture from the surface. As mentioned earlier the models introduce different assumptions about 

dominating drivers of root zone soil moisture for instance, which may potentially explain the 525 

existence of broader time lags at the root zone. We further observe, in Fig. 4, that there is an 

agreement between the models and observations on the seasonal and intra-annual signal of soil 

moisture at Skukuza, this is shown by orange depicted regions on the cross-wavelet graphs. These are 

the signal components mainly ranging between the periods of two to six months. This could be 

associated with anomalous years where the transition periods between the austral winter and summer 530 

may have months with below (dry) or above (wet) normal soil moisture conditions. Despite these 

periods having a relatively high common power, they are not demarcated as statistically significant.  
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Figure 4. Cross wavelet power spectrum of surface (SSM, 0-10 cm) and root zone (RZSM, 10-100 cm) soil 

moisture between in situ observations, CCAM-CABLE (a, b) and GLEAM v3a (c, d) at Skukuza respectively. 535 
The white contour lines indicate periods of significance at 10 %. The arrows pointing to the right indicates that 

the models and in situ observation are in phase while arrows point left reflecting that the models are anti-phase. 

The case where in situ observations are leading either CCAM-CABLE or GLEAM v3a is indicated by arrows 

pointing straight down. The dome shape (shaded areas) represents the cone of influence between 2001 and 2014. 

The red colour indicates weak variation while blue indicates the strong variation between the respective time 540 
series. 

It would be interesting to establish how the qualitative insight gained in understanding the models' 

ability to capture the observed soil moisture signal at the two respective sites will translate to a 

regional level. An upscaling of the evaluation done at a point is not possible in the absence of site 

observation at a regional level. The rest of the discussion in this paper is dedicated to an inter-545 

comparison of process-based model outputs and satellite-derived model outputs. The idea is to discuss 

the model outputs in connection with the broader landscapes classes within the region. 

3.2 Linking soil moisture patterns to landscapes  

 So far we have investigated the capabilities of the models in capturing the temporal features of soil 

moisture at the flux tower sites. An interesting question to address is, to what extent do the respective 550 

models compare in capturing soil moisture organisation across different landscapes as characterised 

by altitude range, climatic zone, dominant soil, biome types and slope aspect within the considered 

25km resolution. In the case where there are no in situ soil moisture fields, we may not reliably tell 

which product is the most representative of the soil moisture organisation, however, we can classify 

the models on the basis of their shared patterns at the selected landscapes. We consider six sub-555 

regions which are numbered (a) to (f), whose characteristics soil, vegetation and climate features are 
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described in Table 2. The vegetation types for the study area used here are presented in a study by 

Khosa et al. (2019) 

Table 2. A detailed description of the selected sub-regions indicating elevation 

(https://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html), climate (http://koeppen-geiger.vu-560 
wien.ac.at/present.htm) and vegetation and soil types (https://soilgrids.org).  

Zone  Elevation 

range (m)  

Climate type  Dominant vegetation 

type(s) 

Dominant soil types 

a 57-1127 Oceanic  Savanna  Clay  

b 386-846 Humid  Savanna Clay 

c 845-1298 Hot semi-arid Savanna Clay 

d 1116-1327 Hot semi-arid Grassland  Silt-loam 

e 1189-1317 Cold semi-arid Grassland Silt-loam 

f 1459-1658 Cold semi-arid Grassland Silt-loam 

 

Fig. 5 summarised the pattern of daily moisture distribution for the chosen six sub-regions for the 

austral summer (DJF), winter (JJA), autumn (MAM) and spring (SON) for the year 2011 to 2014. 

Each sub-region is represented by sixteen gridpoints with each grid point having daily soil moisture 565 

values that span the respective season for the years 2011-2014. By looking at the interquartile ranges 

of the box-and-whiskers plot we can see that the characteristic seasonal feature of soil moisture signal 

is reflected by all models at all landscapes. In particular, all models are consistent in reflect soil 

moisture distribution interquartile ranges, and hence the median, as highest in DJF and lowest in JJA.  

By comparing the spread and the median of soil moisture distribution across models, we can conclude 570 

that for the region (a), which is characterised by predominance of clay soil and relatively low 

elevation range, there is no clear variation of soil moisture spread that could be associated with 

models or the respective south- and east-facing slopesOn the humid (b) and hot semi-arid (c, d) 

regions, the soil moisture spread is comparable between CCAM-CABLE and ESA but relatively 

lower to that of the GLEAM models. It is worth reiterating at this point that GLEAM models also 575 

show higher soil moisture values relative to the in situ observations at the Malopeni and Skukuza flux 

tower sites, which share the same elevation range and climate type as region (b). For the three 

landscapes, there is no clear pattern which distinguishes the organization of soil moisture according to 

slope direction. In the case  regions (a,c,d,e) highly overlapping distributions indicate that soil type, 

topographic or thermal exposure indices used could not be instantly associated with dominant or 580 

identifiable soil moisture patterns among the respective models. For the cold and high lying semi-arid 

region, (e) and (f), CCAM-CABLE shows a noticeable variation in soil moisture with slope aspect, in 

which case north-facing slopes turns out to have lower soil moisture than south- and west-facing ones. 

For the north-facing slopes of the two regions, the relatively lower soil moisture values for CCAM-

CABLE are corroborated by that of the ESA-combined model, which generally portray comparatively 585 

low soil moisture values for the two high-lying cold semi-arid regions. It is a well-known fact that 

along the Drakensberg range, which is close the regions (e) and (f), north- and east-facing slopes have 

more sunshine exposure than the south- and west-facing slopes (Bristow, n.d.). Notably, the CCAM-

CABLE, ESA-Combined and GLEAM models reflect contrasting patterns with slope-aspect for the 

high-lying areas. Whereas all models, produce overlapping soil moisture distribution or relatively flat 590 

terrains (a) – (d) with consistant seasonal variations, we note that the soil moisture distribution reflect 

a delineation with slope direction on high lying areas. This points to a possibility of existence of 

dominant drivers such as thermal exposure. This calls for model evaluation against observations in 

these regions and driver specific sensitivity tests. Such an evaluation can potentially yield valuable 

https://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html
http://koeppen-geiger.vu-wien.ac.at/present.htm
http://koeppen-geiger.vu-wien.ac.at/present.htm


4 

 

information on which model assumptions or schemes can benefit from further refinements, taking into 595 

account dominant  drivers and slope dependent soil moisture processes for the landscape. 

 

Figure 5. Comparison of modelled soil moisture patterns across sub-regions (a-f) of increasing altitude, slopes 

of different aspect i.e., north (N), east (E), south (S) and west (W). The violin plots show the distribution shape 

of the soil moisture values per model within the respective regions. 600 

For the selected landscapes, we have learn that the three GLEAM models mostly reflect a spread of 

soil moisture values which is largely overlapping, while CCAM-CABLE shows the existence of 

distinct moisture distributions that can be associated with slope aspect especially on high lying 

regions. A clear continuous picture of how CCAM-CABLE compare with GLEAM models across the 

entire study domain can be obtained by investigating how different joint distributions of a pair of 605 

CCAM-CABLE and GLEAM residuals per grid point compare to a product of their marginal 

distributions. This is best quantified by the MI, which is an information theory function that can be 

used as a measure of similarity between a pair of time series of residuals. The compared time series 

are computed on a common grid point for the respective models. The MI is equal to zero when the 

joint distribution of the pair coincides with the product of the marginal for the respective models. This 610 
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suggests that the respective models are portraying independent signals. For the studied datasets we expect 

that the MI values should be greater or equal to 2 in the extreme case when the two pairs are identical. 

Figure 6 depicts the MI which is calculated from a pair of de-trended and de-seasonalised time series 

of monthly averaged soil moisture for CCAM-CABLE and each of the three versions of GLEAM. 

The de-trending and de-seasonalising of each pair also lead to the removal of systematic biases. The 615 

obtained MI values are mostly equal to or greater than 0.5. This is true for both the surface and root 

zone. It is desirable to have the MI for all satellite data derived products, however, the ESA products 

did not have enough spatial data points to yield a fair comparison.  

We can also see in Fig. 6 that the MI at the root zone is higher than at the surface, this could be 

suggestive that, the sensitivity of soil moisture to the driving processes is comparable between both 620 

GLEAM and CCAM-CABLE models at the root zone. The MI pattern for both the surface and root 

zone complement the box-and-whisker plot, indicating that the coincidence in the soil moisture values 

is highest in the proximity of the lowest-lying oceanic savanna region (a) which is dominated by the 

clay soil. For this region, the MI values mainly range between 1 and 2. CCAM-CABLE has been 

depicted as having low soil moisture values relative to all versions of GLEAM, on part of the humid 625 

savanna region (b) for the surface. We can also see that, on the humid savanna which includes region 

(b), that the models predominantly have low MI values ranging between 0 and 1 at the surface. The 

lowest MI values at the surface are also noticeable on the cold semi-arid high-lying grasslands in the 

neighbourhood of regions (e) and (f). From Fig. 6, we can conclude that the study region is dominated 

by grid points with relatively high MI values that fall within the range [0.5 - 2). Lower MI values for 630 

the high-lying regions are indicative that, there is a pronounced model uncertainty when it comes to 

the models' response to processes that drive soil moisture for the region. While higher MI values, as 

seen on the rest of the regions, gives an indication that the respective models comparably responds to 

the dominating processes that drive soil moisture variation. This is the case at least qualitatively. 

 635 
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Extract from Fig. 1b-d 

Figure 6. Mutual information (MI) computed on the residuals of monthly time series (2011-2014) of surface 

(SMsurf, 0-10 cm) and root zone (RZSM, 10-100 cm) soil moisture, between CCAM-CABLE simulations and 

GLEAM models estimates. An extract from Fig. 1b-d is shown at the right-hand side of the figure to aid with 

the interpretation of the MI, (b) dominant soil types (https://soilgrids.org) per grid cell, at a resolution of 25 km, 640 
(c) the altitude (Alt, m) at the study region at a 25 km resolution, with the selected grid points clusters ( i.e., a-f) 

demarcating landscape classes that belong to specific elevation categories labelled in the order of the increasing 

altitude, the elevation dataset is obtained from the national centres for environmental information 

(https://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html) (d) Kӧeppen-Geiger climate types (CT) across the study 

region at a 50 km resolution (http://koeppen-geiger.vu-wien.ac.at/present.htm). 645 

4 Conclusions 

In this study, the ability of a process-based simulation model (CCAM-CABLE), satellite data-driven 

model estimates (GLEAM) and satellite observations (ESA-Active, -Passive and -Combined) are 

evaluated against site-specific in situ observations from two flux tower sites namely, Skukuza and 

Malopeni. The evaluation was done for two soil depths namely the surface (i.e., 0-10 cm) and root 650 

zone soil moisture (i.e. 10-100 cm), to understand how the respective data products capture the 

characteristic patterns of soil moisture. The evaluation included an assessment of qualitative features 

of long term (i.e. multi-year), and short term (i.e., monthly) averages of the soil moisture signal 

relative to the in situ measurements. All the models have a correlation that is greater than 0.6 at all 

soil depth and sites, however, all models are not able to capture the soil moisture magnitudes and their 655 

associated change over time specifically at the root zone where the there is a pronounced incoherence 

as reflected by the bias score. All GLEAM soil moisture products, presented higher soil moisture 

magnitude range compared to observations while CCAM-CABLE and ESA-combined outputs turn 

out to be relatively closer in magnitude to the observation at all depths both at Malopeni and Skukuza. 

The systematic difference in magnitude between the model output and observation may emanate from 660 

the difference in spatial scale between in situ measurements and the rest of the products. We also 

learn from this study that all GLEAM models compare well with the in situ observations in reflecting 

the seasonality of soil moisture. This is despite the noted systematic bias of the soil moisture 

magnitudes in the GLEAM products. The models mostly show a bias towards overestimation of the 

observed soil moisture both at the surface and root zone, with the CCAM-CABLE showing the least 665 

bias.  

A wavelet analysis was used to reveal, at a qualitative level, how periodic features, compare between 

the CCAM-CABLE, GLEAM models and in situ observations. We learned that at the surface, high 

power common features of the surface soil moisture signal are in phase with observations and come at 

a periodicity of about 12 months. We also learned that high power common soil moisture signals at 670 

the root zone have a relatively pronounced time lag. The time lag is of a time scale not exceeding a 

month at all soil depths (i.e., it lies between 5 and 20 days) for the periods ranging between 2001 and 

2014) between CCAM-CABLE and GLEAM v3a.  

The study also investigated through the use of mutual information (MI), how different joint 

distributions of pairs of grid points, among CCAM-CABLE and the respective GLEAM models 675 

compare, with a product of their marginal distributions. This gave a basis for classifying the models 

according to their similarity or dependence in capturing soil moisture responses to the underlying 

drivers. In this case, the emphasis is on evaluating the extent to which both approaches have a joint 

variation or shared MI. The analysis has successfully revealed that both the simulation and model 

estimates have a high similarity at the root zone as opposed to the surface for all GLEAM model 680 

outputs. The difference in the surface soil moisture between the CCAM-CABLE simulation and 

GLEAM models outputs at high lying areas, opens-up interesting questions relating to the extent to 

which the influence of different drivers of soil moisture is represented by the two approaches. To 

https://www.ngdc.noaa.gov/mgg/fliers/06mgg01.html
http://koeppen-geiger.vu-wien.ac.at/present.htm
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understand this, future research will benefit from investigating the sensitivity of the models to changes 

in soil moisture drivers, particularly change in vegetation cover and soil type on soil moisture 685 

memory. It would also be interesting to unearth the soil moisture organisation for the respective 

models, at much higher spatial resolution where processes that drive soil moisture may reliably be 

attributed to the patterns on the soil moisture signal. Despite CCAM-CABLE and GLEAM having 

relatively high MI for the majority of landscapes, application of these model outputs should take into 

account that systematic biases do exist, and that there is a high model uncertainty particularly at high 690 

lying areas. 
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 Appendix  

Appendix A – Comparison of modelled and in situ soil moisture 895 

 

Figure A1. Quantitative monthly comparison between soil moisture products and observations at Skukuza 

(blue; 2001–2014) and Malopeni (red; 2008–2013), at the surface (0-10 cm) and root zone (10-100 cm), using 

the coefficient of determination (R
2
 ). 
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Appendix B – Cross wavelet analysis 900 

 

Figure B1. Phase interpretation between two time series  and . When series  leads,  lags and vice 

versa. This figure is inspired by a study by (Rosch and Schmidbauer, 2018).    

 

Figure B2. Phase difference between surface soil moisture simulated using CCAM-CABLE, and GLEAM v3a 905 
at Skukuza between 2001, and 2014 at period 12 at the surface. 
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5.1 Appendix C – Multiple imputation  

 

Figure C1.  Daily a) surface and b) root zone soil moisture time series at Skukuza showing the imputed parts 

(blue) of the time series and the observed parts (red). 910 

Table C1. Statistics of the distribution of the imputed and observed time series of surface and rootzone soil 

moisture at the Skukuza site. 

Surface soil moisture Original data Imputed data 

Mean 15.59 15.76 

Median  13.33 13.83 

Standard deviation  6.21 6.10 

Variance  38.68 37.22 

Root zone soil moisture    

Mean 7.45 7.55 

Median  6.49 6.69 

Standard deviation  2.18 2.17 

Variance  4.76 4.74 
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