
1 

 

Evaluation of soil moisture from CCAM-CABLE simulation, 

satellite based models estimates and satellite observations:  

Skukuza and Malopeni flux towers region case study 

Floyd V. Khosa
1,2

, Mohau J. Mateyisi
1
, Martina R. van der Merwe

1
, Gregor T. Feig

1,3,4
,  

Francois A. Engelbrecht
5,6

, Michael J. Savage
2
 5 

Correspondence to: Floyd Khosa (vukosikhosa@yahoo.com)    

1 
CSIR, Natural Resources and the Environment – Global Change and Ecosystem dynamics, P.O. Box 

395, Pretoria 0001, South Africa 

2 
Agrometeorology Discipline, School of Agricultural, Earth and Environmental Sciences, University 

of KwaZulu-Natal, Pietermaritzburg, South Africa 10 

3 
Department of Geography, Geoinformatics and Meteorology, University of Pretoria, South Africa 

4
 South African Environmental Observation Network (SAEON), P.O. Box 2600, Pretoria 0001, South 

Africa  

5 
CSIR, Natural Resources and the Environment – Climate Studies, Modelling and Environmental 

Health, P.O. Box 395, Pretoria, 0001, South Africa 15 

6  
Global Change Institute (GCI), University of the Witwatersrand, Johannesburg, 2050, South Africa 

 

Abstract 

Reliable estimates of daily, monthly and seasonal soil moisture are useful in a variety of disciplines. 

However, the availability of continuous in situ soil moisture observations in southern Africa barely 20 

exists. Therefore, process based simulation model outputs are a valuable source of climate 

information, needed for guiding farming practises and policy interventions at various spatio-temporal 

scales. Despite their ability to yield historic and future projections of climatic conditions, simulation 

model outputs often reflect a degree of systematic uncertainty hence it is very important to evaluate 

their representativeness of spatial and temporal patterns against observations. To this effect, this study 25 

presents an evaluation of soil moisture outputs from a simulation and satellite data based soil moisture 

products. The simulation model consists of a global circulation model known as the conformal-cubic 

atmospheric model (CCAM), coupled to the CSIRO Atmosphere Biosphere Land Exchange model 

(CABLE). The satellite based soil moisture data products include satellite observations from the 

European Space Agency (ESA), and satellite observation based model estimates from the Global 30 

Land Evaporation Amsterdam model (GLEAM). The evaluation is done for both the surface (0-10 

cm) and root zone (10-100 cm) using in situ soil moisture measurements collected from two savanna 

sites, located in the Kruger National Park, South Africa. For the two chosen sites, with different soil 

types and vegetation cover, the evaluation considers soil moisture time series aggregated to a monthly 

time scale from all the data sources and a standardised soil moisture index (SSI). In order to reflect the 35 

inter-comparability of CCAM-CABLE simulation output and GLEAM model estimates, a qualitative 

analysis of phase agreement using wavelet analysis is presented. The onset and offset of the wet 

period, for the two specific sites, is calculated for each of the models and the soil moisture time series 
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mutual information (MI) between CCAM-CABLE and the GLEAM models is discussed. The results 

indicate that both the simulation and satellite observation based model outputs are generally consistent 40 

with the in situ soil moisture observations at the two study sites, especially at the surface. CCAM-

CABLE and GLEAM inter-comparison also shows that the models are generally in phase. However, 

there is a time lag of about 12 and 20 days on average, for the surface and root zone respectively. In 

general, the simulation compares well with the GLEAM model estimates across different landscapes, 

indicating that the key physical processes that drive soil moisture in CCAM-CABLE and GLEAM, at 45 

the surface and root zone, lead to an appreciable degree of MI. This is reinforced by a predominantly 

positive measure of MI between the respective two soil moisture outputs. 

Keywords: atmospheric model, cross wavelet, flux tower, land surface model, soil moisture  

1 Introduction 

Accurate estimates
1
 of daily, monthly and seasonal soil moisture are important in a number of fields 50 

including agriculture (McNally et al., 2016), water resources planning (Decker, 2015), weather 

forecasting (van den Hurk et al., 2012) and the quantification of the impacts of extreme weather 

events such as droughts (Sheffield and Wood, 2008), heat waves (Fischer et al., 2007; Lorenz et al., 

2010) and floods (Brocca et al., 2011). Soil moisture has been identified as one of the 50 essential 

climate variables (ECVs) by the Global Climate Observing System (GCOS) and the European Space 55 

Agency climate change initiative (ESA-CCI) (McNally et al., 2016). Available soil moisture  affects 

the fluxes of heat and water at the surface and directly impacts local and regional weather patterns 

(Dorigo et al., 2015; Raoult et al., 2018; Yuan and Quiring, 2017). It is a key parameter to consider in 

the partitioning of precipitation and net radiation. Precipitation is partitioned into evapotranspiration 

(ET), infiltration and runoff.  Latent and sensible heat fluxes are components of the net terrestrial 60 

radiation (Xia et al., 2015; Yuan and Quiring, 2017) at the surface. Root zone soil moisture plays a 

vital role in the transpiration process of evapotranspiration (ET) especially in arid and semi-arid 

regions, where most of the water loss is accounted for by transpiration during the dry period 

(Jovanovic et al., 2015; Palmer et al., 2015). The dry period in this study refers to months when the 

sites experiences minimum rainfall, which is during the austral winter period (May to October). The 65 

temporal and spatial variation in soil moisture is controlled by vegetation, topography, soil properties 

and climate variability (Xia et al., 2015).  Regions where soil moisture strongly influences the 

atmosphere are at the transition between wet and dry climates. This is associated with the strong 

coupling between ET and soil moisture which is a characteristic of these regions (van den Hurk et al., 

2012; Lorenz et al., 2010).  70 

In situ data that are used as a reference in this study consist of surface and root zone soil moisture 

observations. The in situ data are mostly point based, which poses significant challenges  in 

understanding the spatial patterns in soil moisture (Yuan and Quiring, 2017). Direct satellite 

observations, on the other hand, are presently only available for the surface. To obtain root zone 

estimates of soil moisture satellite based surface soil moisture data are used in conjunction with 75 

ground-based observations and model estimates. The modelled soil moisture data are largely 

dependent on accurate surface forcing data (e.g. air temperature, precipitation and radiation) and the 

parameterisation of the land surface schemes (Xia et al., 2015). This is done in the frame work of 

physically based models whose accuracy may vary depending on the response of the models to the 

forcing data. Due to lack of publicly available long term and complete in situ soil moisture 80 

                                                      
1 Estimate here refers to both process based model simulation and satellite derived data products thereafter, the term 

simulation will be used for process based model outputs while, estimates will be reserved for satellite derived data.  
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measurements in South Africa, and the world in general,  global climate models (GCMs) are relied on 

to estimate the land surface states (Dirmeyer et al., 2013). The data produced by land surface models, 

hydrological models and GCMs have been widely evaluated for many continents and regions 

(Albergel et al., 2012; An et al., 2016; Dorigo et al., 2015; McNally et al., 2016; Yuan and Quiring, 

2017). The evaluations of these soil moisture data products in Africa are sparse, mainly due to the 85 

lack of publicly available in situ observations (Sinclair and Pegram, 2010). The available studies 

include those conducted by McNally et al. (2016) and Dorigo et al. (2015a) evaluating ESA-CCI 

satellite soil moisture products over east and west Africa, respectively. This study is inspired by the 

notion that the knowledge about soil moisture characteristic patterns, for the study region, can reliably 

be obtained by making a connection between data from simulation experiments, theoretical or 90 

analytical models and in situ observations. Satellite and model based soil moisture products are 

capable of providing continuous observations at different temporal and spatial resolutions (Fang et al., 

2016). Despite the in situ data being limited in coverage, they are very useful for the calibration and 

validation of modelled and satellite derived soil moisture estimates (Xia et al., 2015).  

The aims of this study are twofold. Firstly, it is to evaluate the ability of the model simulated and 95 

satellite derived soil moisture products to capture the observed variability in soil moisture at specific 

locations. The evaluation is undertaken at two soil depths namely; surface (SSM, i.e., 0-10 cm) and 

root zone (RZSM, i.e. 10-100 cm), using long term in situ measurements. The evaluation is limited to 

two study sites that are located in the Kruger National Park in South Africa. This is due to limited 

publicly available in situ measurements within the study area of north-eastern South Africa. For 100 

example, the global flux data network (FLUXNET) has only one a single data site listed in this region 

(which is the flux tower at Skukuza) and the International Soil Moisture Network (ISMN) with no 

data sites in the study region. Secondly, the goal is to inter-compare climate model simulated results 

of soil moisture against satellite-based estimates. This is done primarily at a regional level, where the 

absence of sufficient in situ observations over space and time presents a major challenge for climate 105 

model verification. In particular, we look at spatio-temporal variations in simulated soil moisture data 

from a coupled land-atmosphere model i.e., the conformal cubic atmospheric model (CCAM) of the 

Commonwealth Scientific and Industrial Research Organisation (CSIRO) coupled to the CSIRO 

Atmosphere Biosphere Land Exchange (CABLE) model against the three versions of the European 

Space Agency (ESA) satellite observations (i.e., active, passive and combined), and estimates from 110 

three versions of the global land evaporation Amsterdam model (GLEAM). The goal is to investigate 

how the process based CCAM-CABLE simulations, satellite derived soil moisture observations and 

GLEAM model estimates compare with the in situ observations, in capturing the seasonal cycles of 

soil moisture at a point. In addition, the extent to which the climate model simulations and GLEAM 

model estimates have MI  at the regional level within inter-annual time scales is investigated. In 115 

particular, the aim is to investigate phase agreement between the respective soil moisture data 

products and establish if they are representative of local conditions. The study seeks to uncover 

interesting patterns in the observed data, for the study region, and highlight the strengths as well as 

aspects of the climate model simulation and GLEAM model estimates which may benefit from 

continuous testing and improvement. 120 

Clearly the ability of models to capture seasonal cycles of terrestrial processes such as soil moisture is 

indicative of how well the physical processes that underlie the variability of soil moisture over space 

and time are represented. A comparison of satellite-derived products with in situ observations may 

also yield useful insight on the strengths and weaknesses of various remote sensing techniques that are 

used. A climate models’ ability to represent and capture the seasonality of a system under inter- and 125 

intra-annual climate variability could be considered more important than its agreement with 
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observations in absolute values (Fang et al., 2016). The remainder of study is structured as follows: 

Sect. 2 describes the datasets used, the study design and analysis of the datasets. Section 3 presents 

the results and the discussion, followed by the conclusions in Sect. 4.    

2 Materials and methods 130 

2.1 Study sites and in situ observations 

In situ soil moisture measurements from the Council for Scientific and Industrial Research (CSIR) 

operated network of eddy covariance flux towers, in the Lowveld region of the Mpumalanga 

(Skukuza) and Limpopo (Malopeni) provinces are used. A number of other soil moisture in situ 

measurements sites exist in the country, however, their data are not publicly available. 135 

2.1.1 Skukuza 

The Skukuza flux tower site is a long-term measurement site, located within the Kruger National Park 

conservation area in South Africa (25.0197° S, 31.4969° E; Fig. 1). The Skukuza flux tower has been 

operational from 2000 to present. The site falls within a semi-arid savanna biome at an altitude of 370 

m above sea level, with a mean rainfall of 547 mm year
-1

, and average annual minimum (during the 140 

dry season) and maximum (during the wet season) temperatures of 14.5 and 29.5˚C, respectively for 

the averaging period from 2001 to 2014. The vegetation is dominated by an overstory of Combretum 

apiculatum (Sond.), and Sclerocarya birrea (Hochst.) with a height of approximately 8-10 m, and a 

tree cover of approximately 30% (Archibald et al., 2009). The understory is a grass layer dominated 

by Panicum maximum (Jacq.), Digitaria eriantha (Steud.), Eragrostis rigidor (Pilg.) and 145 

Pogonarthria squarrosa (Roem. and Schult.). The soil is of the Clovelly form with a sandy loam 

texture (Feig et al., 2008), and the dominant soil type for the 25 km resolution grid cell where the flux 

tower is located is silty loam (Fig. 1). The Skukuza flux tower site is extensively described in previous 

studies including those by Archibald et al. (2009) and Scholes et al. (2001). In situ soil moisture data 

are collected 90 m north of the tower, and the measurements are taken at two profiles which are 8 m 150 

apart. The sensors are located at four different depths for both profiles i.e., 5, 15, 30 and 40 cm 

(Pinheiro and Tucker, 2001). Time domain reflectometry (TDR) probes (Campbell Scientific 

CS615L) are used to measure soil moisture at a 30-minute temporal resolution. These measurements 

were averaged to a daily time period (using an 80% data threshold) to match the resolution of the 

other soil moisture products. In this study the in situ data from the year 2001 to 2014 are used.  155 

2.1.2 Malopeni 

The Malopeni flux tower is located 130 km north west of the Skukuza flux tower (23.8325° S, 

31.2145° E; Fig. 1), at an elevation of 384 m above sea level. The tower has been collecting data since 

2008 to present, however data was not collected between January of 2010 and January of 2012 due to 

equipment failure. The site has a mean rainfall of 472 mm year
-1

, and annual average minimum and 160 

maximum air temperatures of 12.4 and 30.5˚C respectively, for the averaging period from 2008 to 

2014. The site is dominated by broad leaf Colophospermum mopane, which characterise a hot and dry 

savanna (Ramoelo et al., 2014), Combretum apiculatum and Acacia nigrescens are also abundant at 

the site. The grass layer is dominated by Schmidtia pappophoroides and Panicum maximum. The soil 

at the site is predominantly of the shallow sandy loam texture, and the dominant soil type for the 25 165 

km resolution grid cell where the flux tower is located is silty loam (Fig. 1). The soil moisture probes 

are located at four different profiles and depths. The sensor types and depths positioning are the same 

for the Malopeni and Skukuza flux tower sites.  Soil moisture is collected at four different profiles 
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(i.e., 16 sensors at four depths) and averaged to represent surface and root zone soil moisture at this 

site.  170 

 

Figure 1. Maps indicating (a) South Africa, Kruger national park (KNP), flux tower sites (Skukuza and 

Malopeni) and the area considered for grid inter-comparison (red box), (b) dominant soil types per grid cell, at a 

resolution of 25 km, (c) the altitude (Alt, m) at the study region and (d) regions selected by increasing altitude 

anti-clock wise (i.e., a-f) and hydrological zones.  175 

2.2 Satellite observations 

The European Space Agency climate change initiative (ESA-CCI) satellite-derived soil moisture 

datasets are used in this study (Liu et al., 2012; Yuan and Quiring, 2017). These global datasets are 

based on passive and active satellite microwave sensors, and provide surface soil moisture estimates 

at a resolution of ~25 km (i.e., 0.25˚) (Fang et al., 2016; Yuan and Quiring, 2017). The ESA-CCI 180 

merges soil moisture estimates from the active and passive satellite microwave sensors into one 

dataset (http://www.esa-soilmoisture-cci.org/), using the backward propagating cumulative 

distribution function method (Dorigo et al., 2015; Fang et al., 2016). A detailed description of the 

merged active and passive sensors and their individual functioning is provided by Fang et al., (2016), 

Dorigo et al., (2015) and Liu et al., (2012). The merging of active and passive sensors is based on 185 

their sensitivity to vegetation density, as the accuracy of these products varies as a function of 

vegetation cover (Liu et al., 2012). In this study, version 3.2 (v3.2) of the ESA-CCI soil moisture data 

is used. 

A number of studies evaluated these products at a regional and global scale using in situ data and 

concluded that passive sensors displayed improved performance over bare to sparsely vegetated 190 
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regions, whereas the active sensors perform better in moderately vegetated regions (Al-Yaari et al., 

2014; Dorigo et al., 2015; Liu et al., 2012; McNally et al., 2016). Over densely vegetated areas such 

as tropical forests, neither product produces reasonable estimates. The dense canopy hinders signals 

reflected from the soil surface (i.e. for passive sensors) or back scattering of active radiation before it 

reaches the soil surface for active sensors (Liu et al., 2012). The merged data product is used in this 195 

study as it has better data coverage compared to the individual products. Missing data in satellite 

products are not unusual since retrievals are normally at an interval of 2-3 days (Albergel et al., 2012). 

However, data from each of the different sensor types are also individually considered for the 

evaluation of long-term seasonal cycles. 

2.3 Models for simulating soil moisture 200 

2.3.1 CCAM-CABLE 

The variable-resolution atmospheric model CCAM developed by the CSIRO in Australia (McGregor, 

2005; McGregor and Dix, 2001, 2008) was used to dynamically downscale  ERA reanalysis data to 8 

km resolution over north-eastern South Africa for the period 1979-2014. The domain was centred 

over the Waterberg in South Africa and over a region of about 1500 x 1500 km
2
. Spectral nudging of 205 

the CCAM atmospheric simulations in the ERA reanalysis data took place through the application of a 

digital filter using a 600 km length scale. The filter was applied at six-hourly intervals and from 900 

hPa upwards. Similar downscalings of reanalysis data obtained over southern Africa using CCAM are 

described by Engelbrecht et al., (2011), Dedekind et al., (2016) and Horowitz et al., (2017). 

CCAM was integrated coupled to the dynamic land-surface model CABLE (Kowalczyk et al., 2006a) 210 

in order to perform the simulations. The CCAM-CABLE model outputs were stored at six-hourly 

time-resolution with daily maxima of a number of variables also being stored. The radiative forcing of 

the simulations, including CO2 and ozone concentrations were obtained from the Coupled Model 

Inter-comparison Project Phase Five (CMIP5). The simulations were performed on the 

supercomputers of the Centre for High Performance Computing (CHPC) of the Meraka Institute of 215 

the CSIR in South Africa. The ability of the CCAM model to realistically simulate present-day 

southern African climate has been extensively demonstrated (e.g. Engelbrecht et al., 2015, 2011, 

2009; Malherbe et al., 2013; Winsemius et al., 2014).  

The CABLE soil submodel expresses soil as a heterogeneous system consisting of three constituent 

phases namely water, air and solid (Kowalczyk et al., 2006b; Wang et al., 2011). Air and water 220 

compete for the same pore space, and the change in their volume fractions is due to drainage, 

precipitation, ET and snow melt. In this model there is no heat exchange between the moisture and the 

soil due to the vertical movement of water, as soil moisture is assumed to be at ground temperature. 

The soil is partitioned into six layers, with the layer thickness of 0.022 m, 0.058 m, 0.154 m, 1.085 m 

and 2.875 m from the top layer. Only the top layer contributes to evaporation while plant roots extract 225 

water from all layers depending on the soil water availability and the fraction of plant roots in each 

layer (Wang et al., 2011). Soil moisture is solved numerically using the Richard’s equation 

(Kowalczyk et al., 2006b).     

2.3.2 GLEAM 

The Global Land Evaporation Amsterdam Model (GLEAM) version 3.1 is a set of algorithms used to 230 

estimate surface, root-zone soil moisture and terrestrial evaporation using satellite forcing data 

(Martens et al., 2017). The method is based on the use of the Priestley and Taylor (1972) evaporation 
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model, stress module, and the rainfall interception model (Miralles et al., 2011). Three data sets from 

the GLEAM namely v3a, v3b and v3c were used in this study. The data are freely available at 

www.gleam.eu. Version 3a is based on satellite observed soil moisture, snow water equivalent and 235 

vegetation optical depth, reanalysis radiation and air temperature, and a multi-source precipitation 

product. Versions 3b and 3c are satellite based with common forcing data excluding soil moisture and 

vegetation optical depth as these are based on different passive and active microwave sensors, i.e., 

ESA CCI for v3b and Soil Moisture and Ocean Salinity (SMOS) for v3c (Martens et al., 2017). 

The different components of terrestrial processes (i.e., transpiration, open-water evaporation, bare soil 240 

evaporation, sublimation and water loss) are separately driven in GLEAM (Martens et al., 2017). 

Each grid cell in GLEAM contains fractions of four different land cover types namely: open water 

(e.g. dam, lake), short vegetation (i.e., grass), tall vegetation (i.e., trees) and bare soil. These fractions 

are based on the global vegetation continuous field product (MOD44B) with the exception of the 

fraction of open water. The MOD44B product is based on the moderate resolution image 245 

spectroradiometer (MODIS) observations (Martens et al., 2017). Soil moisture is estimated separately 

for each of these fractions and then aggregated to the scale of the pixel based on the fractional cover 

of each land cover type. Root zone soil moisture is calculated using a multi-layered water balance 

equation which uses snow melt and net precipitation as inputs, and drainage and evaporation as 

outputs (Miralles et al., 2011). The depth of soil moisture is a function of land-cover type comprising 250 

one layer of bare soil (0-10 cm), two layers for short vegetation (0-10, 10-100 cm) and three layers for 

tall vegetation (0-10, 10-100, and 100-250 cm) (Martens et al., 2017). 

2.4 Analysis approach  

2.4.1 Statistical analysis 

The first part of the model evaluation focuses on evaluating the monthly time series data of soil 255 

moisture products at the site level. The monthly temporal scale is considered because, on very short 

time scales such as daily and hourly, local effects can lead to a pronounced noise in the observations. 

Such noise however is anticipated to be filtered through long term averaging. At a monthly time scale, 

the soil moisture seasonal cycle is well developed. The second part of the evaluation inter-compares 

model simulations and satellite estimates of soil moisture at a regional level. Time series data for the 260 

sites were extracted from the soil moisture products, using the flux tower’s geographical coordinates. 

The satellite products present averaged soil moisture data per grid cell. A distance-weighted average 

(DWA) technique was used to interpolate the CCAM-CABLE model simulations to estimate soil 

moisture values representative of observational sites. The DWA method proved to be more 

representative than the nearest neighbour (NN) method, as the DWA method interpolates to the exact 265 

location of the tower by considering simulated values at grid points surrounding the location. It is 

noteworthy, that a comparison between the in-situ observations and satellite products in this study 

places much emphasis on phase agreement (e.g. seasonal cycle), as opposed to that of magnitudes. For 

satellite observations, GLEAM model estimates are represented as spatial averages for each pixel, in 

which case an interpolation of such aerial averages to a point (i.e., site), do not add further 270 

information that correspond to the site.  It may be expected that data at the point and grid box scales 

should still comparatively present qualitative features that are characteristic of the climate system for 

the region, for example seasonal cycles.  

The soil moisture products were first converted to the percentage volumetric soil moisture amounts 

for comparison purposes. As in Yuan and Quiring (2017), we assume that the soil moisture 275 

measurements at the depth of 5 cm represent the 0–10 cm depth. In situ data at the depths of 15, 30 
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and 40 cm were combined using the depth weighted average method to represent the 10-100 cm depth 

using Eq. (1):  

    10 100

1

n

i

LT
SM SM i

SD




         (1) 

where 
10 100SM 

 is the weighted soil moisture, n  is the number of layers, LT  is the layer thickness 280 

calculated as the difference between the soil depths, SD  is the total soil depth of the soil profile and 

 SM i is the daily in situ soil moisture values at the i
th
 layer. The depth weighted average method as 

presented in this study (Eq. 1) has been used in other studies such as that by Yuan and Quiring (2017). 

Similarly, the data at depths 2.2 and 5.8 cm, and 15.4 and 40.9 cm from CCAM-CABLE are averaged 

to represent 0-10 and 10-100 cm respectively using Eq. (1). Daily data from all the soil moisture 285 

products are averaged to monthly where 80 % of the daily data is available. Months that do not meet 

the 80 % threshold are excluded from the analysis.  

Table 1. Overview of soil moisture datasets; satellite (grey) in percentage, modelled (blue), simulation (pink) 

and in situ observations (green) presented as a ratio (m
3 

m
-3

) of soil to moisture per unit area. 

Soil moisture 

product   

Spatial 

resolution (km)  

Spatial 

coverage 

Soil depth (cm) Period  

ESA-Combined 25  Global 0-10 1978-2015 

ESA-Active 25 Global 0-10 1991-2015 

ESA-Passive 25 Global 0-10 1978-2015 

CCAM-CABLE 8 Regional  2.2, 5.8, 15.4, 40.9,  

108. 5, 287.2 

(bedrock) 

2000-2014 

Skukuza Point data Point  5, 15, 30, 40 2000-2017 

Malopeni Point data Point  5, 15, 30, 40 2008-2017 

GLEAM v3a 25 Global 0-10, 10-100 1980-2016 

GLEAM v3b 25 Global 0-10, 10-100 2003-2015 

GLEAM v3c 25 Global 0-10, 10-100 2011-2015 

 290 

To evaluate how similar the soil moisture simulation and model estimates are to in situ measurements, 

we used the stream flow plots, and the coefficient of determination (
2R ), as defined in Koirala and 

Gentry (2012).  

The soil moisture products used in this study (Table. 1) are under the same latitude and longitude 

projection. All the soil moisture projections are at the same spatial resolution of 25 km, with the 295 

exception of the CCAM-CABLE model with a resolution of 8 km. The bilinear interpolation method 
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was used to resample the CCAM-CABLE simulations from 8 to 25 km to match the resolution of the 

other soil moisture products. 

The “SoilGrids” dataset from the international soil reference information centre (ISRIC) was used in 

this study, to map soil types (Fig. 1c). The data are available online (https://soilgrids.org), and is 300 

described in detail in the study by Hengl et al., (2017). This dataset has a spatial resolution of 250 m 

and was used in this study to partition the MI between simulated and modelled soil moisture 

according to soil type per grid box. Soil was classified into 12 dominant types ranging between sand 

and silty clay as described in Fig. 1d. The soil type data are available at seven depths (i.e., 0, 5, 15, 30, 

60, 100 and 200 cm), here we only consider the data representing the surface (i.e., 0-5 cm). The 250 m 305 

dataset was resampled to 25 km, firstly by resampling to 1 km and then to 25 km, using the nearest 

neighbour method to match the resolution of the soil moisture products. We acknowledge that 

resampling from fine to coarse resolution might introduce bias towards certain soil types. However, 

the nearest neighbour method is suitable for resampling categorical data.     

2.4.2 Cross-wavelet analysis 310 

The cross-wavelet method analyses the frequency structure of bivariate time series using the Morlet 

wavelet (Veleda et al., 2012). The wavelet method is suitable for analysing periodic phenomena of 

time series data, especially in situations where there is potential for frequency changes over time 

(Rosch and Schmidbauer, 2018; Torrence and Compo, 1998). This method has been used in other 

studies, such as that by Koirala and Gentry (2012), for investing the climate change impacts on 315 

hydrologic response. Cross-wavelet analysis provides suitable tools to compare the frequency 

components of two time series, thereby drawing conclusions about their synchronicity at a given 

period and time. A continuous wavelet leads to a wavelet transform of a time series which preserves 

information of both time and frequency resolution parameters. The transform can be partitioned into 

imaginary ( Im ) and real ( Re ) parts, which provide information on both the phase and amplitude 320 

over time. This is a prerequisite in the investigation of coherency between two time series (Rosch and 

Schmidbauer, 2018). The Morlet wavelet is given by: 

 
21/4 /2iwt tt e e            (4) 

where w is the angular frequency and t  is time. The Morlet wavelet transform of a time series tx  is 

then denoted by  325 

     *1
, t

t

t T
Wave T S x

SS


 
  

 
       (5) 

where T  is a time parameter, S  is the scaling parameter and *  represents the complex conjugate. 

The cross-wavelet transforms two time series 
tx  and 

ty  with respective wavelet transforms .Wave x  

and .Wave y , decomposes the Fourier co- and quadrature-spectra in the time frequency (or time-scale) 

domain. The cross-wavelet implemented is rectified according to Veleda et al. (2012):  330 

     
1

. , . , . * ,Wave xy T S Wave x T S Wave y T S
S

      (6) 

Its modulus can be interpreted as a cross-wavelet power which lends itself with certain limitations to 

an assessment of the similarity of the two series wavelet power in the time frequency domain: 

https://soilgrids.org/
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   . , . ,Power xy T S Wave xy T S      (7) 

In a geometric sense, the cross-wavelet transform is comparable with the covariance. Graphically the 335 

cross-wavelet spectrum provides the cone of influence and contour lines indicating significance of 

joint periodicity and for checks of consistency. Information on the synchronisation of two time series 

in terms of phase is also presented on the plot. Phase difference of the two time series at each time 

scale is given by: 

    , . ,Angle T S Arg Wave xy T S       (8) 340 

equivalent to the difference of individual phases, . .Phase x Phase y . When converted to an angle in 

the interval  ,  , this is indicated by arrows (see Fig. B1 in Appendix B) in the cross-wavelet 

power plot. The phase is computed using:  

    
  
  

1
Im ,

, tan
Re ,

Wave T S
Phase T S

Wave T S


 

  
 
 

     (9)  

The cross-wavelet analysis described is computed in R software using the “WaveletComp” package. 345 

Detailed information on the package can be found in Rosch and Schmidbauer (2018). The cross-

wavelet analysis only applies to complete datasets (i.e., without missing values). Since the in situ 

observations have missing data, the multiple imputations method is used to gap fill the missing parts 

of the in situ time series. The multiple imputations procedure is extensively discussed in studies by 

Rubin (1987) and Rubin (1996) and is implemented in this study using the “Amelia” package in R. 350 

The number of imputed datasets was set to five and combined using Rubin’s rules as outlined in 

Rubin (1996). Multiple imputations of the in situ observations are only applied to the Skukuza dataset 

for both the surface (Fig. C1.a) and rootzone (Fig. C1.b). This is because the Skukuza data has fewer 

gaps than Malopeni (Fig. A1.b). The imputed soil moisture observations are shown in Appendix C 

together with the statistics of the measures of the distribution for both the gap filled and non-gap filled 355 

datasets. The cross-wavelet analysis is applied to non-stationary data using the default method (i.e., 

white noise) with the simulations repeated ten times.  

2.4.3 Onset and offset of the wet period 

In addition to the analysis of phase agreement, we compare the simulation of the onset and offset of 

the wet periods, by the different soil moisture products and the imputed in situ observations. Instead 360 

of using precipitation as discussed in Shongwe et al. (2015) and Liebmann et al. (2007), to identify 

the onset and offset of the rainy season, we use soil moisture data. These are computed using a 

cumulative quantity over time as  

   
1

day

n

A day S n S


           (10) 

where  S n is the daily soil moisture and S denotes the annual daily average. As in Liebmann et al. 365 

(2007) we start the calculation on the climatologically driest month, i.e., 1 July (Shongwe et al., 

2009), and perform a cumulative sum over a period amounting to a year. The onset of the wet period 
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is defined as the date on which the cumulative sum reaches a minimum, and the offset, as the date on 

which the cumulative sum reaches the maximum (Shongwe et al., 2015).  

2.4.4 Standardised soil moisture index 370 

The standardised soil moisture index (SSI) as contributed in Xu et al. (2018) presents an opportunity 

to compare spatial and temporal variations in soil moisture. The index for given day of the year can be 

expressed as,  

i j i

i j

i

x
SSI






         (11) 

where ijx is soil moisture of the i
th
 day of j

th
 year, where 1:365 / 6i  and 2011: 2014j , i is 375 

the mean and i  standard deviation of the soil moisture taken on a set of data for the i
th
 day as 

constituted by all the considered years. The index shows how the soil moisture data from the different 

products deviate from the long term mean. In this case the index is computed for each grid cell for the 

study region (Fig. 1a). The index results are either positive (i.e. wetter than the long term average) or 

negative (i.e. drier than the long term average). The index is computed on data from 2011 to 2014 for 380 

all the soil moisture products (i.e. CCAM-CABLE and GLEAM). We therefore calculate the number 

of dry days for each model over the analysis period and link the patterns to topography and 

hydrological zones at different regions (Fig. 1d). The different regions of equal area are selected based 

on the homogeneity of the topography which happen to overlap with the hydrological zones 

(Department of Environmental Affairs, 2013). This is done in an attempt to link land surface 385 

processes to landscapes. 

2.4.5 Mutual information 

At the grid scale, we calculated the MI between CCAM-CABLE and GLEAM products computed on 

the residuals of the de-trended time series. This is done to uncover to what extent different models 

capture similar variations at grid scale. Therefore, the MI calculation will uncover regions where there 390 

is low inter-model prediction certainly and where there is high signal correlation between the CCAM-

CABLE simulations and GLEAM estimates. The MI is calculated on a de-trended and de-

seasonalised (or decomposed) soil moisture time series signal. The “stl” package in R is used to de-

trend the time series into its components (i.e. seasonal, trend and residual) as discussed in Cleveland 

et al. (1990). The MI between two variables X (i.e. CCAM-CABLE) and Y (i.e. GLEAM) is defined 395 

as  

   
 

   

,
, , log

x y

x y
MI X Y dxdy x y

x y




 
       (12) 

where    ,x x dy x y   and    ,y y dx x y    are marginal densities of X  and Y  

respectively (Kraskov et al., 2004). MI is estimated from the k-nearest neighbour statistics, in 

particular a simple Shannon entropy:  400 

     logH X dx x x         (13) 
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Furthermore, MI could also be obtained by estimating  H X ,  H Y and  ,H X Y separately and 

using Eq. 13. 

       , ,MI X Y H X H Y H X Y        (14) 

The MI as outlined by equations 12 to 14 is computed in this study using the “varrank” package in R. 405 

3 Results and discussion 

3.1 Evaluation of the satellite-estimated and model-simulated seasonal cycle 

soil moisture 

In this section we discuss how the respective outputs from CCAM-CABLE, ESA and GLEAM reflect 

the key features of soil moisture for the study sites. As highlighted in the introduction section, the 410 

variability of the simulation output, satellite derived data and satellite based model estimates are 

studied relative to the in situ measurements from the study sites. Much focus is placed on 

investigating how well the seasonality of the soil moisture is reflected by respective soil moisture data 

sets. This is because the ability of models to capture the seasonality of a system is more important 

than its agreement with observations in absolute values (Fang et al., 2016). It has also been mentioned 415 

in the introductory section that the in situ observations are taken from semi-arid savanna sites within 

the Kruger National Park. The patterns of soil moisture at these sites are mainly driven by rainfall 

which is generally higher during the summer season, and low in winter as shown in Fig. 2. The long 

term surface soil moisture for both of the sites follows a pattern comparable to that of rainfall as can 

be seen by comparing the soil moisture patterns presented in Fig. 2 (i.e. long term cycles) and the 420 

monthly rainfall accumulations (Fig. 2).  

3.1.1 Long term seasonal cycles 

In general the pattern of the long-term average for soil moisture (Fig. 2) from the CCAM-CABLE 

simulations, ESA satellite observations and GLEAM model estimates are qualitatively comparable to 

that of in situ observations. Notably, the observed soil moisture seasonal cycle at the surface at both 425 

Skukuza and Malopeni surface displays a local maximum in April and shows and increases from 

September to December and January. Soil moisture amplitudes are less pronounced in the root zone, 

but with November and October maxima at Skukuza and Malopeni, respectively. These patterns are 

consistent with the observed rainfall cycle of cessation of the rainy season in April and with onset in 

October. The root-level soil-moisture pattern displays the signatures of soil moisture retention, which 430 

relates to the persistence of dry and wet periods at various soil depths (Seneviratne et al., 2006). In 

light of this, it is also interesting to see how both the CCAM-CABLE simulation and the GLEAM 

products depict the onset and cessation of the rainy season, an aspect to be discussed further in 

Section 3.2.  The CCAM-CABLE model simulates soil-moisture to peak in March rather than April 

for Skukuza at 0-10 cm,   and it also does not simulate the maximum recorded soil moisture for 435 

Malopeni in April at the surface. This is probably due to the fact that the CABLE soil-moisture 

scheme does not take into account soil resistance (Whitley et al., 2016). Despite this, the long term 

CCAM-CABLE monthly means of soil moisture are relatively comparable to in situ observation even 

in terms of magnitude (Fig. 2). GLEAM v3c, on the other hand, agrees with in situ measurements on 

the existence of an April soil moisture maximum, but it reflects the point-observed November 440 

increase in soil moisture a month earlier (i.e., in October). The satellite products (i.e., the active, 

passive and combined ESA products) and GLEAM models (Fig. 2) display the same signal as that of 
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the observed soil moisture, indicating that the April maximum in particular is not an artefact of the 

point observations. We can safely deduct that the bias in GLEAM v3c is not induced by satellite-

based forcing data. However, this calls for further investigations on the sensitivity of the model to its 445 

driving data at a high resolution. We anticipate that at high temporal resolution there is a strong 

variability in the in situ soil moisture signal which may not entirely be captured, by both CCAM-

CABLE and GLEAM, possibly due to their relatively low spatial resolution. The relatively low 

resolution (8 km in the horizontal) in the case of CCAM-CABLE, in particular, potentially has strong 

implications for how representative the effective drivers of soil moisture such as soil texture and 450 

vegetation covers are in terms of observations at specific sites.  

 

Figure 2.  Seasonal variation in the long term mean monthly rainfall (mm), surface (i.e., 0-10 cm) and root 

zone (i.e., 10-100 cm) soil moisture, based on in situ observations and a variety of soil moisture products. The in 

situ data is collected from two sites, namely Skukuza (2001-2014) and Malopeni (2008-2013). 455 

 Soil moisture is at its lowest during the dry periods (i.e., May to September) and highest during the 

wet periods (i.e., November to April). The GLEAM models (Fig. 2) are generally consistent with in 

situ measurements in estimating soil moisture both in terms of magnitude and phase, both at the 

surface and root zone. The magnitude of GLEAM v3a root zone estimates is lower than those of the 

other GLEAM models at the Skukuza site. This can be attributed to the unique multi-source weighted 460 

ensemble precipitation (MSWEP) data used to force GLEAM v3a (Martens et al., 2017), which is 

different to the precipitation forcing data used in GLEAM v3b and GLEAM v3c. We further observe 

that the GLEAM models, satellite and in situ observations have the same length of the dry period, 

with the exception of the ESA-Active observation which has a shorter dry period. The ESA-Active 
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satellite product is known to work best for moderate to densely vegetated areas as opposed to savanna 465 

sites such as Skukuza and Malopeni where tree cover is sparse (Dorigo et al., 2015) and the vegetation 

cover changes dynamically due to a combination of factors, for example fires and rainfall.  There is 

less difference between the ESA-Passive and ESA-Combined satellite products. Generally, the ESA-

Combined and ESA-Passive datasets have the least difference during the dry period for all sites. The 

ESA-Combined product shows a strong increase in soil moisture in July which is not observed in the 470 

other soil moisture products. This increase in the ESA-Combined product may be due to irrigation 

detected by satellites which is not accounted for by the models (Al-Yaari et al., 2019). Using long 

term averages, both the CCAM-CABLE and GLEAM models are able to capture the intrinsic 

seasonality of the soil moisture signal for the sites as reflected by both in situ and satellite 

observations. This is despite their being different both in the forcing data and model structure. Studies 475 

by Wang and Franz, (2017) and Seneviratne et al., (2010) suggest that local factors (e.g., vegetation, 

soil and topography) mostly control soil moisture variability at spatial scales less than 20 km, rather 

than meteorological forcing. For a fourteen-year averaging period, undoubtedly the monthly means 

are sensitive to anomalously high precipitation, and hence soil moisture, in some months. It is 

therefore instructive to investigate how well the simulated and estimated patterns of soil moisture 480 

compare with the in situ data on a monthly basis for the respective years. 

3.1.2 Inter-annual variability in the seasonal cycle 

This section presents quantitative evaluation of the soil moisture time-series from the CCAM-CABLE 

simulations and GLEAM estimates at a monthly time-resolution for the 2001-2014 period. To 

circumvent possible bias due to missing values, monthly averages are presented only for months 485 

where there are observations above the imposed 80% data availability threshold. This implies that the 

number of data points (i.e., sample size), are not equal for all products. The different model, satellite 

and point data sets are also not available for equal time periods. For example, GLEAM v3c has the 

shortest data set spanning between 2011 and 2014, as opposed to the point observations that range 

between 2001 and 2014 for Skukuza, and 2008 and 2013 for Malopeni. The monthly time series data 490 

as well as data availability for the different soil moisture products are presented, and qualitatively 

compared with in situ observations in Fig. 3 in Appendix A for both the Skukuza and Malopeni sites. 

Generally, we observe in Fig. 3 agreement in the simulation of short term seasonal cycles as 

compared to in situ observations especially at the surface. This is reflected for most of the years, and 

indicates that the observed seasonal cycle is present in the simulated and satellite estimated soil-495 

moisture time-series. At the root zone, we observe a decrease in the similarities of the cycles between 

the simulation, satellite-estimates and in situ observations. Clearly this requires further investigation 

into water drainage and soil moisture memory which is outside the scope of the discussion in this 

study. We further observe that for these cycles the soil moisture products compare best to in situ data, 

than they do to the CCAM-CABLE simulations as shown in Fig. A1. 500 

The similarities between these short term seasonal cycles are quantified in Fig. 3 using R
2
 values. On 

account of missing values, the R
2
 values presented in Fig. 3 are based on different sample sizes, 

therefore, their interpretation is made with this issue in mind. The R
2
 values are generally higher at 

Malopeni compared to Skukuza, indicating that the few months where there are observations, there is 

also a high comparability of the signal. It is however, inconclusive whether the simulations and 505 

estimates are more comparable at Malopeni relative to the case in Skukuza. In general, based on Fig. 

3 all the soil moisture products are able to capture the variability in the observed soil moisture, mainly 

exceeding the R
2
 value of 0.5 (i.e. 50%) both at the surface and root zone. The CCAM-CABLE model 

mainly presents the least, but reasonable R
2
 value, both at the surface and root zone. This is a further 
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reflection that the simulated soil moisture cycle is stronger in amplitude compared to in situ 510 

observations. Overall, the relatively large R
2
 values displayed in Fig. 2 stem from the model and 

satellite products ability to realistically represent the seasonal cycle in soil-moisture.  
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Figure 3. a) Quantitative comparison between soil moisture products and observations at Skukuza (red bars) and 515 
Malopeni (green bars), at the surface (0-10 cm) and root zone (10-100 cm), using the b) coefficient of 

determination (R
2
),  

a) 

b) 
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The ESA-combined satellite product is expected to present the best agreement with observations, 

since it is actual observed data from the sites. This expectation is realised with R
2
 values greater than 

0.65. Furthermore, the ESA data has been shown to generally capture soil moisture in different 520 

regions and climate zones of the world (Loew et al., 2013; McNally et al., 2016; Wang et al., 2016; 

Zeng et al., 2015). Our study confirmed (Fig. 3) that the ESA combined product captures local 

conditions within reason/acceptable amount of certainty. A study conducted by Yuan and Quiring 

(2017), assessing the performance of CMIP5 models, both at the surface and root zone, concluded that 

the models performed better at the root zone, compared to the surface. This is contrary to our findings 525 

in this study, where we generally observe improved agreement between soil moisture products and in 

situ measurements at the surface than at the root zone. Based on the extent to which GLEAM products 

proved to be representative of the qualitative features of the soil moisture signal for different months 

and seasons, as driven by precipitation at the site, it is compelling to further resolve qualitatively how 

the simulated output compare with each other for most of the time periods. To this effect, we next 530 

present the results from a cross-wavelet analysis of CCAM-CABLE simulation output and GLEAM 

estimates for the two study sites. 

3.1.3 Cross-wavelet analysis 

The cross-wavelet power spectrum (Fig. 4) reveals that, generally the soil moisture time series of 

CCAM-CABLE simulations and GLEAM v3a are in phase with the in situ observations time series at 535 

the Skukuza site at the soil depths investigated. This is indicated by the arrows generally pointing to 

the right, as demonstrated in Fig. B1 in appendix B. The arrows are plotted between the white contour 

lines indicating areas of significance, and joint periodicity at 10 % (i.e., 90 % confidence level). The 

cross-wavelet power spectrum (Fig. 4) shows the strength of the variation between the two signals as 

function of frequency. The red colours indicate weak variation (i.e., strong signal or agreement), while 540 

the blue colour indicate strong variation synonymous to random noise. This area of significance is 

generally between the periods of 8 and 15 months (y-axis). Although the time series are in phase most 

of the time, in some instances there is a lag. This is identified by the direction of the arrows, in which 

case the arrows are inclined upwards or downwards at different margins. For example, there is a lag of 

two days on average between CCAM-CABLE simulations and in situ observations at the period of 545 

about 12 months, and a lag of about six days on average between GLEAM v3a and in situ 

observations at the surface at Skukuza. At the root zone we observe a wider lag between observations 

and the soil moisture products, there is a lag of 14 and 24 between the soil moisture products (i.e. 

CCAM-CABLE and GLEAM-v3a) and in situ observations respectively. This implies that there is 

better agreement between the soil moisture products and in situ observation at the surface than at the 550 

root zone. A plot demonstrating the phase differences, between in situ observations (red) and CCAM-

CABLE (blue) extracted in Fig. 6a, for the years 2001 to 2014 associated with soil moisture patterns 

with a characteristic period of 12 months, is illustrated in Fig. B2 in appendix B. Fig. B2 show that 

there is an exchange of leading and lagging of the two time series. For example, the in situ 

observations lead CCAM-CABLE at the beginning of the two time series, the two time series are in 555 

perfect phase in the middle and the towards the end CCAM-CABLE leads and the in situ observations 

lag. When there is no lag between the two series, particularly for the annual cycles it indicates the 

repeating features of the respective signals which repeat between 11 and 13 months for the surface. 
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Figure 4. Cross wavelet power spectrum of surface (SSM, 0-10 cm) and root zone (RZSM, 10-100 cm) soil 560 
moisture between in situ observations, CCAM-CABLE (a, b) and GLEAM v3a (c, d) at Skukuza respectively. 

The white contour lines indicate periods of significance at 10 %. The arrows pointing to the right indicates that 

the models are in phase, anti-phase point left, in situ observations leading either CCAM-CABLE or GLEAM 

v3a is indicated by arrows pointing straight down. The dome shape (shaded areas) represents the cone of 

influence between 2001 and 2014. The red colour indicates weak variation while blue indicates strong variation. 565 

Furthermore, we employ the cross wavelet between CCAM-CABLE and GLEAM-v3a at the two 

study sites in Fig. B2, in Appendix B., The results shows that between the year 2002 and 2005 at 

periods of about 12 months, we observe that GLEAM v3a lead and CCAM-CABLE lags by 6 days on 

average at the surface at Skukuza (Fig. B2.a), and by 10 days at Malopeni (Fig. B2.c). The cross 

correlation also shows that, there are other cyclical responses of the soil moisture signal with a 570 

periodicity of approximately two years. This becomes apparent for some years when the CCAM-

CABLE and GLEAM v3a signal have statistically significant periodic features which repeat after 28 

months. In this case CCAM-CABLE leads GLEAM v3a by 5 days on average. At the root zone we 

see a similar pattern as that of the surface soil moisture. The most statistically significant shared 

periodic features between in situ observations, CCAM-CABLE and GLEAM v3a have periods mainly 575 

between 10 and 16 months. This is true for the entire time series (i.e., 2001-2014). The cross-wavelet 

analysis in this case picks the characteristic annual pattern of soil moisture which is effectively 

repeated for different years. The time series are in phase for the whole analysis period generally 

without any lag between 2007 and 2012 for periods ranging between 9 and 15 months. For the feature 

of the signal with a 12 month period, there is on average a time lag of 10 and 19 days at Skukuza (Fig. 580 

B2.b) and Malopeni (B2.d) respectively. We further note that the significant periodic features of the 

signal generally increase from the surface to root zone. This is potentially associated with differences 

in the drivers of soil moisture between the respective layers. Root zone soil moisture for instance, is 
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likely to respond to plants driven moisture demands in a slightly different manner in comparison to 

the surface layer. An accurate attribution of soil moisture patterns per layer to the respective drivers, 585 

in this context, is a rather complex problem and demands a separate investigation.  

The simulation and the models estimates show coherency in capturing periodic patterns, at least those 

that are recurrent on an annual time scale.  The cross-wavelet analysis successfully reveal that there is 

a similarity in the patterns of surface and root zone soil moisture over time at both sites albeit 

negligible differences across-sites for events that are recurrent on periods below or exceeding 12 590 

months. The existence of a time lag or differences in phase in the soil moisture signal between the 

simulation and GLEAM model outputs, is likely a result of the non-deterministic nature of 

thunderstorm formation in the CCAM-CABLE simulations, despite these runs being nudged within 

ERA reanalysis data (see Section 3.1.2). The simulations are nevertheless expected to capture most of 

the characteristic features of the climatic system such as seasonality. Its output may not match satellite 595 

derived observations on certain aspects including day-to-day variability. Some correspondence is 

expected between the CCAM-CABLE simulations and the GLEAM outputs in terms of inter-annual 

variability (Dedekind et al., 2016).  

Next, we explore how these differences reflect on the onset and offset of the wet period calculated 

from the in situ observations, CCAM-CABLE simulation and GLEAM estimates. The results in Fig. 2 600 

indicate that the modelled and satellite derived soil moisture products generally capture the length of 

both the dry and the wet period. However, Fig. 4 shows that there is a lag between the time series of 

in situ observations, CCAM-CABLE and GLEAM estimates which indicate uncertainty in phase 

agreement. We generally observe in Fig. 5 that there is agreement in the estimation of the onset and 

cessation of the wet period amongst the different soil moisture products. The onset (Fig. 5, triangles) 605 

of the wet period is generally between September and December, as shown by the different soil 

moisture products at the two sites. Cessation (Fig. 5, circles) is generally between January and May of 

the next year following the onset. We observe agreement in the occurrence of the onset and cessation 

of the wet period in the in situ observations, CCAM-CABLE simulations and GLEAM estimates in 

some years. Figure 5 show that the GLEAM models have a relatively low uncertainly for the onset 610 

and cessation of the wet period. This is expected as these models use similar forcing data. For 

example, GLEAM v3a and v3b agrees on the onset of the wet period during the following years; 

2001, 2007, 2008, 2009 and 2013 at Skukuza. Furthermore, GLEAM v3a and v3b agrees on the offset 

of the wet period during 2007, 2008 and 2011. The CCAM-CABLE and GLEAM products 

predominantly differ by a factor not exceeding 30 days on the timing of the onset of the wet period. 615 

There is a very noticeable uncertainty in the timing of the cessation of the wet period among all 

approaches. These analysis yield results that are consistent with those observed in Fig. 4. The study 

sites mainly experience summer rainfall, commonly occurring between November and April. The 

CCAM-CABLE model generally shows a consistent length of the wet period at both study sites for 

most of the years. The GLEAM models generally present an early onset in October and offset in May. 620 

This result is consistent with the difference in phase between CCAM-CABLE and GLEAM observed 

in Fig. 4.  
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Figure 5. Onsets (triangles) and offsets (circles) of the wet period at Skukuza of in situ observations (2001-

2014, red) and simulated by; CCAM-CABLE (2001-2014, blue), GLEAM-v3a (2001-2014, green), GLEAM-625 
v3b (2003-2014, purple) and GLEAM-v3c (2011-2014, orange). The Malopeni plot does not show in situ 

observations as imputation of the data is not possible due to large gaps. 

Looking at the agreement between in situ observations, CCAM-CABLE simulation output and the 

GLEAM model estimates, when it comes to the main periodicity of the soil moisture signal portrayed 

in Fig. 4 as well as the results of the onset and cessation of the wet period Fig. 5, we find that the two 630 

modelling approaches are representative of the key features of the soil moisture signal. It is also 

interesting to note that the level of uncertainty between the two modelling approaches, as reflected by 

the onset of the wet period in Fig. 5, is within an acceptable level i.e., it predominantly lies within 

days not exceeding a month. The uncertainty is more pronounced when it comes to the cessation of 

the wet period. This is indicative of differences in inter-annual variation of the soil moisture signal 635 

which is expected, to a certain extent, due to the different input data used and the mathematical 

structure of the models. Clearly there is need for an understanding of how the noted uncertainty could 

be attributed to various factors from forcing data or soil moisture drivers. It would be very important 

to understand, in particular, how much uncertainty is inherent in the individual coupled model key 

components. An in-depth investigation of various sources of model uncertainty is indeed a topical 640 

issue (Fang et al., 2016) which deserves more attention, but such a discussion will not be dealt with in 

this study. It is interesting to establish whether the insight gained in understanding the level of inter-

comparability of the soil moisture signal, at the two respective sites, will hold at the regional level, 

i.e., we want to know if the mutual agreement between simulation and model estimates persists for the 
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study region indicated in Fig. 1b. A natural starting point is to look at the MI between the simulated 645 

and estimated soil moisture signal for the region. 

3.2 Regional inter-comparison  

In the absence of dense in situ soil moisture data providing spatial coverage over the study region, for 

the neighbourhood of the study sites, it will only suffice to reflect the extent to which two independent 

approaches for computing soil moisture have shared information. In particular, we want to uncover 650 

how the shared information varies spatially across different landscapes such as topography (i.e. 

elevation), soil and vegetation types. The standardised soil moisture index (SSI) is used to uncover 

such patterns, and it is computed on a daily time scale annually for each soil moisture product (i.e. 

CCAM-CABLE and GLEAM) for the period 2011 to 2014. The index presents positive and negative 

values, indicating that the index is either above or below the historic soil moisture mean for the grid 655 

cells. The index values indicate whether each pixel has above (i.e. wetter) or below (i.e. drier) soil 

moisture as compared to the long term mean respectively for the analysis period. The SSI as presented 

spatially in Fig. 6 shows the inter-annual variability of the frequency of dry days per grid cell for the 

study region across the models. The frequency of dry days was computed on each grid cell based on 

the number of days when the SSI values were negative per year. Generally we observe in Fig. 6 660 

consistent patterns amongst the models spatially.  

The SSI permits quantification of soil moisture anomalies at various time frames and can be analysed 

to unearth soil moisture pattern including extremes. In this section we present the frequency count of 

negative anomalies of soil moisture over an annual time frame. The results indicate a pronounced 

variability of soil moisture across the years. In particular, majority of grid cells had below 150 dry 665 

days during the year 2011 while for the year 2012 most grid cells are reflected as having a relatively 

elevated count of drier days ranging between 150 and 200 days. The pronounced count of drier days 

persists for the years 2013 and 2014 over the Central, South-Eastern and North-Eastern parts of the 

study region. In general the count of negative SSI portrays the existence of spatially connected 

regions of a similar annual pattern. It is therefore a natural question to ask whether majority of grid 670 

cells belonging to a uniform elevation range could have a distinct annual SSI pattern thus reflecting a 

possibility of an existence of a set of common drivers of soil moisture for neighbouring grid cells at a 

common elevation. 
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Figure 6. Spatial distribution of the number of dry day per year computed on the number of the negative values 675 
of standardised soil moisture index for each grid cell and model.  

Next we investigate how the SSI values vary across the topographical gradient, by looking at six sub-

regions (Fig. 1d) of equal size (i.e., same number of grid cells) for the years 2011 to 2014. The grid 

cells for the selected sub-regions belong to homogenous altitude. The sub-regions are named in the 

order of increasing elevation from (a)-(f).  The results for this analysis are summarised through violin 680 

plots in Fig. 7. As previously mentioned, a negative SSI anomaly value indicates a dry day, while a 

positive anomaly value reflects a wet day, relative to the normal soil moisture value for the day. The 

distribution of the SSI values per selected sub-region is portrayed with a violin plot. The thicker 

region of each violin plot reflects the SSI value around which majority of grid cells are centred, while 

the height indicates the spatial spread of the SSI values. It is evident that the year 2011 had 685 

predominantly high soil moisture across most of the sub-regions albeit some low laying sub-regions 

(a) and (b) which had a bi-modal SSI distribution showing a predominance of SSI values lying on the 

wet and dry extremes. This is consistent amongst all the models. The SSI values during the year 2012 

and 2014 are predominantly negative indicating a tendency toward drying relative to the long-term 

mean. The pattern is comparably captured by all models. During the dry years, the median of the 690 

distribution of SSI values for each of the sub-regions across the elevation gradient vary from year to 

year. This potentially suggests that soil moisture’s key drivers towards dryness alternate over time. In 

particular, the temporal variability of the index may reflect that soil moisture responds differently 

across the elevation gradient, to the inter-annual variability in the factors influencing the climatic 

system.  695 
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Figure 7. Violin plots showing the distribution of the standardised soil moisture index (SSI) values per year at 

different sub-regions. The regions are arranged based on increasing altitude (i.e. a-f). 

Whereas the Fig. 6 and Fig. 7 indicate that that the soil moisture spatial patterns are qualitatively 700 

similar across temporal and spatial scales, the extent to which corresponding grid cells across models 

compare can best be quantified by a calculation of MI between the respective models. The 

quantification of MI is displayed in Fig. 8.   

In Fig. 8, a plot of MI between soil moisture from CCAM-CABLE simulations outputs and GLEAM 

model estimates is portrayed. The MI is computed from the residuals of the de-trended series of both 705 

CCAM-CABLE and GLEAM models. For this analysis, only data from 2011 to 2014 were used, as it 

is the common period between all the soil moisture products. We generally observe (in Fig. 8) that at 

the surface (SMsurf, 0-10 cm), the MI between the soil moisture simulated by CCAM-CABLE and 

GLEAM is higher, compared to at the root zone (RZSM, 10-100 cm), implying that shared 

information between GLEAM and CCAM-CABLE is predominantly more pronounced at the surface 710 
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compared to the root zone. In particular, we observe in Fig. 8 that there is high MI between CCAM-

CABLE and GLEAM-v3a at the surface compared to the rest of the GLEAM products for all the grid 

cells. This signals differences in the representation of soil moisture drainage at the root zone between 

the simulation and satellite data based model estimates. In order to see if there are any major 

differences in the simulation and GLEAM models estimates that can be associated with differences in 715 

soil types. We further partition the MI between the models at various soil types (Fig. 1b) of the grid. 

The results are presented in Fig. 9.

 

Figure 8. Mutual information (MI) computed on the residuals of monthly time series (2011-2014) of surface 

(SMsurf, 0-10 cm) and root zone (RZSM, 10-100 cm) soil moisture, between CCAM-CABLE simulations and 720 
GLEAM models estimates. 

The dominant soil types in the region include loam, silt and clay (Fig. 1b). The dominant soil types 5 

(loam) and 6 (silt loam); and soil types 8 (silty clay loam) and 9 (clay) as presented in Fig. 1b are 

associated with the grassland and savanna biomes respectively. A study by Stevens et al. (2015), the 

grassland and savanna biomes are dominant in this study area. 725 
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 Figure 9. Boxplots showing the spread of the mutual information (MI) per model and soil type, the horizontal 

lines in the box plots represent the median. The MI of soil moisture, per soil type computed between the 

residuals of CCAM-CABLE and the GLEAM-v3a (red), GLEAM-v3b (green) and GLEAM-v3c (blue) soil 

moisture products,  730 

The spread of the MI, as grouped by soil types, is presented in Fig. 9. Generally, we observe that 

GLEAM-v3a has the highest MI with the CCAM-CABLE simulations at the surface across soil types 

followed by GLEAM-v3b and v3c respectively, this pattern is also observed in Fig. 8. The differences 

in the MI across the GLEAM models are attributed to the forcing data of the individual versions. The 

performance of GLEAM v3b and 3c is similar as they are forced with similar data, as opposed to 735 

forcing data used in GLEAM v3a (Martens et al., 2017; Miralles et al., 2011). The MI between the 

residuals of CCAM-CABLE and GLEAM models is positive. In particular, the spread of the soil 

moisture MI generally ranges between 0 and 2.5. This is indicative that there exists joint variation 

even on time scales shorter than a season between the respective signals. Based on the inter-quartile 

range (i.e., height of the bars of the boxplots), we observe that there is a pronounced variability in soil 740 

moisture MI between CCAM-CABLE and all the GLEAM products across different grid cells. 

However, across the soil types the spread is mostly comparable between GLEAM-v3b and v3c. The 

comparability is in the sense that all box-and-whisker plots have appreciable overlaps within the inter-

quartile range especially between GLEAM-v3b and v3c. This indicates comparable spatial uncertainty 

on the MI among soil types and models. Clearly, the resampling of the soils data done for the soil 745 

classes introduces a certain level of uncertainty. It is therefore instructive to look at the patterns 

central tendency as reflected by the median of the MI. The median values of the MI is a preferable 

measure as it is less sensitive to outliers (i.e., values beyond the whiskers ends), compared to the mean 

per soil category.   

It is worth noting that the median MI between CCAM-CABLE and all the GLEAM models is higher 750 

at the dominant soil types (i.e. 4-sandy clay; 5-loam; 6-silt loam and 7-silt). This is indicative that 

there is a fair amount of data points that lie further apart from their associated grid cell mean. This 

could mean that the respective distributions, for a specific grid cell whose MI is calculated, have 

comparable synchronous points that lie apart from the mean or one of the soil type distributions is 

having such outlying points. The latter is likely to be predominant in the case where there are some 755 

time lags as demonstrated in Fig. 4. This alludes to differences in the representation of inter-annual 
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variation by the simulation and GLEAM model estimates as highlighted in section 3.1. This indicates 

that despite the fact that there is joint variation between the simulation and GLEAM models, there 

exists non-negligible variability within these respective soils types which can potentially be 

uncovered by studying responses to various soil moisture drivers as modelled through the respective 760 

approaches. As mentioned earlier, these dominant soil types are generally important for agricultural 

purposes which make it very relevant for further investigations. The least pronounced soil class MI 

mean between the simulation and GLEAM models occurs in soil type 12 (silty clay). This is one of 

the least dominant types. In this case there are very few grid-points for a meaningful comparison 

against other categories. In summary, from the regional MI calculation we observe that there exists a 765 

joint variation at short time scales between the simulation and GLEAM estimates. Apart from this, 

there is a fairly modest level of model uncertainty between CCAM-CABLE and GLEAM products, 

which is comparably reflected across all soil types. Attribution of its inherent sources merits further 

investigation.     

4 Conclusions 770 

In this study, the ability of a process based simulation model (CCAM-CABLE), satellite data driven 

model estimates (GLEAM) and satellite observations (ESA-Active, -Passive and -Combined) are 

evaluated against site specific in situ observations from two flux tower sites namely, Skukuza and 

Malopeni. The sites are situated within the Kruger National Park in South Africa. The evaluation is 

done for two soil depths namely the surface ( i.e., 0-10 cm) and root zone soil moisture (i.e. 10-100 775 

cm) with the objective of understanding how the respective data products capture characteristic 

patterns of soil moisture within a 25 km x 25 km grid boxes that enclose each of the study sites. The 

evaluation includes an assessment of qualitative features of long term (i.e. multi-year), and short term 

(i.e., monthly) averages of the soil moisture signal relative to in situ measurements from each of the 

two flux tower sites. We learn that generally all the soil moisture products at all depths present higher 780 

magnitudes of soil moisture compared to observations, except for the CCAM-CABLE simulation 

output at the Malopeni flux site, which is closer to observations in magnitude. The difference in 

magnitude may be attributed to difference in spatial scale between in situ measurements and the rest 

of the products. The study therefore placed much focus on features of the soil moisture signal which 

may be attributed to as responses to the influence of the weather systems or climate variability of the 785 

region. The coefficient of determination (R
2
), however reveals that most of the soil moisture products 

for the sites have an appreciable level of similarity (mostly R
2 

> 0.5) at all depths. A qualitative 

analysis of the time averaged soil moisture signal, for all the products indicates that satellite 

observation, and satellite based model estimates capture most of the inter-annual structure of the soil 

moisture signal. We also learn from this study that all GLEAM models compare well with the in situ 790 

observations in reflecting the seasonality of soil moisture. It is therefore recommended that satellite 

derived model estimates can be used as surrogate observations for verifying the simulations of 

process-based models such as the CCAM-CABLE model. In particular, this can be done for instances 

where inter-annual variability as well as seasonal patterns of the soil moisture are of particular 

interest.   795 

The CCAM-CABLE model simulation realistically represents the seasonality of the soil moisture 

cycle for the sites. However, the model fails to reflect some details such as the local soil-moisture 

maximum that occur in April at Malopeni. The simulation’s strength in reflecting the changes in soil 

moisture across seasons demonstrates that it could be used to test the implications of long-term land 

cover changes or climate change on soil moisture patterns.   800 
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The study also investigated the level of uncertainty between GLEAM models and the CCAM-CABLE 

simulation. In particular a wavelet analysis was used to reveal, at a qualitative level, how periodic 

features of the soil moisture signal compare between the CCAM-CABLE simulation and the estimates 

produced by GLEAM models. In this case, the emphasis is on evaluating the extent to which both 

approaches have a joint variation or shared MI. The analysis has successfully revealed that both the 805 

simulation and model estimates equally reflect the periodic seasonal pattern of soil moisture, however 

there is a predominant time lag between GLEAM products and CCAM-CABLE. The time lag is of a 

time scale not exceeding a month at all soil depths (i.e., it lies between 5 and 20 days) during the 

studied years (2001-2014). We conclude that the major difference in the long and short term feature of 

the soil moisture signal, between CCAM-CABLE and GLEAM models estimates can be attributed to 810 

among other factors, their difference in capturing intra-annual patterns of the soil moisture signal. 

This is also supported by the existence of a non-negligible level of uncertainty on the onset and offset 

of the wet period which is calculated for the CCAM-CABLE and all GLEAM models outputs.  

Despite the existence of uncertainly, we affirm that there is appreciable consistent information on the 

soil moisture signal from the simulation and GLEAM models. This is also reflected by the regional 815 

patterns of the SSI computed for each soil moisture product, and the MI between the CCAM-CABLE 

and GLEAM-v3c signal. The SSI values also reflect that soil moisture vary spatially from year to 

year. We demonstrated through the count of dry days that the index can be used to quantify soil 

moisture patterns at both short and long time scales across different landscapes. Future studies will 

explore patterns of the index on climate time scales. The spatio-temporal variability in the SSI can 820 

potentially be explained by climate systems that drive changes in soil moisture at different landscapes. 

Looking at the spread of the MI values within the study region, as well as their associated median 

values as grouped by soil types, it becomes evident that the extent of the shared features is not limited 

to the seasonal time frame.  

The difference in the soil moisture signal structure at inter-annual time scales between the simulation 825 

and GLEAM models, opens-up an interesting question relating to the extent to which the influence of 

different drivers of soil moisture is represented by the simulation and estimation approaches. To 

understand this, future research will benefit from investigating the influence of changes in soil 

moisture drivers, particularly change in vegetation cover and soil type, on soil moisture memory. It 

will also be interesting to unearth the effects of extreme weather and climate change induced patterns 830 

on the long-term soil moisture pattern persistence. In this regard, it would be interesting to uncover 

the tipping or breaking points of trends in soil moisture. To this effect, we find the CCAM-CABLE 

and GLEAM representations of  soil moisture patterns worthy of further investigation using various 

statistical approaches, including machine and deep learning algorithms, to gain a deeper 

understanding of soil moisture response to climatic and land management related effects.    835 
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 Appendix  

5.1 Appendix A – Short term monthly inter compariason 

 

Figure A1. Comparison of monthly modelled and satellite products (red dots) with CCAM-CABLE (blue dots) 1060 

surface (0-10 cm), and root zone (10-100 cm) soil moisture at the a) Skukuza (2001–2014) and Malopeni 

(2008–2013) sites respectively. 



34 

 

5.2 Appendix B – Cross wavelet analysis 

 

Figure B1. Phase interpretation between two time series x  and y . When series x  leads, y  lags and vice 1065 

versa. This figure is inspired by a study by (Rosch and Schmidbauer, 2018).    

 

Figure B2. Phase difference between surface soil moisture simulated using CCAM-CABLE, and GLEAM v3a 

at Skukuza between 2001, and 2014 at period 12 at the surface. 

 1070 



35 

 

 

Figure B3. Cross wavelet power spectrum of surface (SSM, 0-10 cm) and root zone (RZSM, 10-100 cm) soil 

moisture between CCAM-CABLE, and GLEAM v3a at Skukuza (a, b) and Malopeni (c, d) respectively. The 

white contour lines indicate periods of significance at 10 %. The arrows pointing to the right indicates that the 

models are in phase, anti-phase point left, CCAM-CABLE leading GLEAM v3a is indicated by arrows pointing 1075 
straight down. The dome shape (shaded areas) represents the cone of influence between 2001 and 2014. 

 

5.3  Appendix C – Multiple imputation  
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 1080 

Figure C1.  Daily a) surface and b) root zone soil moisture time series at Skukuza showing the imputed parts 

(blue) of the time series and the observed parts (red). 

 

Table C1. Statistics of the distribution of the imputed and observed time series of surface and rootzone soil 

moisture at the Skukuza site. 1085 

Surface soil moisture Original data Imputed data 

Mean 15.59 15.76 

Median  13.33 13.83 

Standard deviation  6.21 6.10 

Variance  38.68 37.22 

Root zone soil moisture    

Mean 7.45 7.55 

Median  6.49 6.69 

Standard deviation  2.18 2.17 

Variance  4.76 4.74 
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