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Abstract. Hydrological models can be used to assess the impact of hydrologic alteration on the river ecosystem. However, 

there are considerable limitations and uncertainties associated with the replication of the required, ecologically relevant 

hydrological indicators. Vogel and Sankarasubramanian's covariance approach to model parameterisation represents a shift 

away from the traditional calibration-validation goodness-of-fit paradigm. Using the covariance structures of the observed 

input and simulated output time-series, the region of parameter space which best captures (replicates) the characteristics of a 10 

hydrological indicator may be identified. Through a case study, a modified covariance approach is applied with a view to 

replicating a suite of seven ecologically relevant hydrological indicators. Model performance and consistency are assessed 

relative to four comparative studies. The ability of the approach to address the limitations associated with traditional 

calibration-validation is further considered. Benefits of the approach include an overall reduction in model uncertainty whilst 

also reducing overall time-demands. Difficulties in the replication of complex indicators, such as rate of change, are in line 15 

with prior work. Nonetheless, the study illustrates that consistency in the replication of hydrological indicators is achievable; 

additionally, the replication of magnitude indices is markedly improved upon. 

1 Introduction 

Water is the most essential natural resource (World Water Assessment Programme, 2009; Vörösmarty et al., 2010). The 

principle source of freshwater, rivers, lakes and groundwater hold only 0.7% of the water on the planet (Shiklomanov, 1993). 20 

Rivers support prosperity, health, and well-being through the provision of ecosystem services; examples include: water 

security, energy production, hydro-hazard regulation, and water purification (Gilvear et al., 2017). The river flow regime is 

considered the major determinant in the structuring and functioning of the riverine ecosystem and provision of these services 

(Poff et al., 1997). Despite this, relentless pressures from both societal water demand and climate change raise significant 

questions over the long-term sustainability of this resource (Gleick 1998, 2016; Klaar et al., 2014).  25 

The need to balance the conflicting demands of both human society and those of the ecosystem has led to recent environmental 

flows research. This is defined as: “…the quantity, timing, and quality of water flows required to sustain freshwater and 

estuarine ecosystems and the human livelihood and well-being that depend on…” (Brisbane Declaration, 2007). Richter et al. 

(1996) identified five facets of the flow regime required to support the riverine ecosystem: magnitude, frequency, duration, 
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timing and rate of change. To date, over 200 ecologically relevant hydrologic indices (HIs) have been proposed (Olden and 

Poff, 2003; Monk et al., 2006; Thompson et al., 2013). Determined from flow time-series, simulated via hydrological model, 

these HIs may be used to assess the impact of hydrological change on the river ecosystem in the future, for examples, see: 

Richter et al. (1996); Carlisle et al. (2010); Poff and Zimmerman (2010); Murphy et al. (2012); You et al. (2014); De Girolamo 

et al. (2017); Williams (2017). Example applications include understanding the effect of a changed climate, engineering 5 

intervention or in the establishment of environmental flow limits. 

A hydrological (rainfall-runoff) model is essentially a simplification of the hydrologic system: hydroclimatological variables, 

such as temperature and precipitation, are used to estimate river flow. The paramount aim of hydrological modelling is to 

determine a suitable model structure and corresponding parameter set that provides a realistic representation of the hydrological 

processes in the catchment of interest (Seibert, 2000; Beven, 2012a). Structural deficiencies, as opposed to inadequate 10 

calibration (Beven, 2010; Beven, 2012b), should be the principal cause for model rejection (Westerberg et al., 2011).  

Traditionally, hydrological models are parameterised following a calibration-validation approach based on Klemeš (1986) 

split-sample technique (Vogel and Sankarasubramanian, 2003); often with multiple calibration-validation trials. The 

calibration of the hydrological model focuses on the goodness-of-fit (GOF) between the observed and simulated flow time-

series for a defined objective function; the Nash Sutcliffe model efficiency criteria (NSE) is among the most widely used. The 15 

sensitive nature of these traditional measures of GOF (objective functions) has been addressed through the consideration of 

modified NSE criteria and multi-criteria calibration (for example Gupta et al. (1998); Seibert (2000); Efstratiadis and 

Koutsoyiannis (2010); Pushpalatha et al. (2012)). However, despite improvements, certain problems remain, including 

(Westerberg et al., 2011): (1) the potential for bias in the model parameterisation as a result of measurement error (due to poor 

accuracy and/or calibration) and uncertainty in the flow data (Pelletier, 1988; Montanari et al., 2013); (2) the arbitrary nature 20 

of the GOF behavioural thresholds; and (3) the problem of equifinality, where similar GOF may be achieved across multiple 

calibration trials, but with different parameters sets (Beven, 2006). 

The use of hydrological models to determine HIs implicitly premises that the underlying hydrological processes of the 

catchment are sufficiently captured. Where this premise proves false, it directly impacts accuracy in the HIs, leading to high 

levels of variability (Shrestha et al., 2014, 2016; Vis et al., 2015; Pool et al., 2017). For example, Shrestha et al. (2014) 25 

evaluated the ability of the VIC hydrologic model to replicate a number of HIs; HIs relating to annual and peak flows were 

simulated well whilst minimum flows and flow pulses were not. A focus on the characteristics of the flow regime, or 

hydrological signatures, has been shown to limit the influence of input uncertainties on the performance and consistency of 

hydrological models (Westerberg et al., 2011; Euser et al., 2013).  

Vogel and Sankarasubramanian’s, 2003, covariance approach to model parameterisation without calibration addresses many 30 

of these problems. The objective is to identify the region of parameter space which captures (replicates) the characteristics of 

a specified HI. This is achieved by focussing on the ability of the hydrological model to capture the observed covariance 

structure of the input and output time-series. Presently, the approach is limited by its focus on a single HI, preventing its use 

for the determination of a suite of ecologically relevant HIs. This paper builds on the covariance approach, adapting the 
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methodology to consider multiple ecologically relevant HIs. To determine the applicability of this modified covariance 

approach, the method is applied to a case study using the four-parameter hydrological model GR4J. The modelling objective 

is the replication of seven ecologically relevant HIs (as part of a larger work determining the impact of climate change on 

instream hydroecological response; Visser et al. (2018b)). The performance and consistency of the modified covariance 

approach is evaluated in terms of the replication ability of the hydrological model and with reference to prior studies with 5 

similar modelling objectives (Shrestha et al., 2014; Vis et al., 2015; Shrestha et al., 2016; Pool et al., 2017). 

Three specific research questions are answered in this paper:  

1) Is the modified covariance approach able to satisfactorily replicate a suite of hydrological indicators? (With regards 

to performance and consistency; definitions below.) 

2) How do the outcomes (replication of the ecologically relevant hydrological indicators) compare with those studies 10 

with similar modelling objectives? 

3) Does the covariance approach advance progress towards addressing the limitations inherent in traditional 

hydrological model calibration (as described above)? 

Through this paper we refer to model performance and consistency. After Euser et al. (2013), model performance is defined 

as the ability to mimic the behaviour of catchment hydrological processes; consistency represents the ability of the hydrological 15 

model to reproduce the suite of HIs (i.e. multiple hydrological signatures simultaneously using the same parameter set).  

2 Methods 

2.1 Study area 

The River Nar is a chalk stream located in Norfolk, south-east England. With two distinct river units, the River Nar has been 

designated a Site of Special Scientific Interest (SSSI); the upper Nar overlies a chalk scarp to Marham, whilst the lower alluvial 20 

reach forms a fen basin. Despite its high conversation value, the River Nar is subject to significant pressures, inhibiting the 

ecological potential of the river (NRT, 2012). The river has been subject to continuing research into its flow regime, and their 

governing factors (Garbe et al., 2016; Visser et al., 2017, 2018a).  

The focus of this paper is on the 153.3 km2 upper catchment (chalk reach) only. Flow is primarily sustained by springs at West 

Lexham and near Castle Acre (Fig. 1), and upstream of Lexham, through groundwater seepage and surface water runoff; these 25 

upstream reaches are considered particularly vulnerable to low-flows (Sear et al., 2005). With a highly seasonal flow regime, 

the hydrology of the River Nar is characteristic of pure chalk streams (Sear et al., 2005); aquifer recharge occurs in the autumn 

months, with a progressive rise in flow March/April. Flow is relatively low, over the available 1961-2015 record the median 

flow is 1.11 m3s-1, whilst Q10 and Q90 flows are 1.96 and 0.47 m3s-1. As of September 2017 (the most recent data currently 

available), the year 1991 saw the most extreme hydrological drought recorded at the Marham gauge (Garbe et al., 2016), with 30 

flow falling below Q95 values for 178 consecutive days.  
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Figure 1. River Nar case study catchment focussed on the chalk reach; the locations of the flow gauge and MIDAS climate stations 

are detailed. The three major springs sustaining flow in the reach are also indicated. 

2.2 Hydrological model 

The principle of parsimony, known as Occam’s razor, posits that a solution should be no more complex than necessary. In the 5 

context of hydrological modelling, model simplicity relative to performance is thus made key (Kokkonen and Jakeman, 2002; 

Perrin et al., 2003; Beven, 2012a). To this end, GR4J, a four-parameter model from the GR-J series of hydrological models 

was selected (Perrin et al., 2003). The GR-J series of models have been applied in a variety of hydrological contexts, examples 

include: Le Moine et al. (2008); Perrin et al. (2008); Coron et al. (2012); Smith et al. (2012); Coron et al. (2017). 

The model GR4J is a lumped model based on soil moisture accounting (Fig. 2). The model inputs, P, the catchment rainfall 10 

depth, and E, the average depth of (potential) evapotranspiration), fill the production store with a capacity of x1 mm. The 

routed depth of water, Pr, is determined by the rate of percolation, F(S, x1), as well as water in excess of the storage capacity. 

To simulate the time difference between rainfall event and flow peak, Pr is divided into two flow components and routed 

through unit hydrographs, time base F(x4) days. Finally, the groundwater exchange term gw, F(x2), acts on the routed, Qr, 

and direct flow, Qd, components; a positive value indicates inflow from groundwater whilst a negative represents water export. 15 

The total flow, Q, is determined by summing the routed and direct flows. The model is applied using the R package airGR 

(Coron et al., 2017; Coron et al., 2018). Parameter limits are summarised in Table 1.  

2.3 Modelling application 

2.3.1 Data 

Continuous (daily) time-series of mean flow, precipitation and potential evapotranspiration for the period 1961-2015 serve as 20 

model input. Flow data from the Marham gauge (Fig. 1) was provided by the National River Flow Archive (CEH (2018)). The 

required climate data was computed from daily average rainfall and hourly temperature recordings at 5 MIDAS stations (Fig. 

1; Met Office (2016)); potential evapotranspiration was estimated using a temperature-based PE model (Oudin et al., 2005). 
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Figure 2. Structure of the GR4J hydrological model; based on Perrin et al. (2003). 

 

Table 1. Parameter limits specified for the hydrological model GR4J. 5 

 Description Limits 

x1 Capacity of production store (mm) (100,1200} 

x2 Groundwater transfer (mm/day; positive indicates flow from aquifer) (-5,25} 

x3 Capacity of routing store (mm) (20,1000} 

x4 Time lag between rainfall event and flow (days) (0.5,30} 

 

The ecologically relevant HIs were determined in Visser et al. (2018b) as part of the development of a hydroecological model 

following an Information Theory (IT) approach (Visser et al., 2018a). The selected HIs are summarised in Table 2 along with 

their relative importance (according to IT). These seven were selected from a set of 63 ecologically relevant HIs, based on 

Olden and Poff (2003), Monk et al. (2006) and Thompson et al. (2013). To reflect seasonality in the flow regime, the indices 10 

are differentiated by season (Table 2): winter (October-March) and summer (April-September).  
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2.3.2 Covariance approach 

The covariance approach was first developed by Vogel and Sankarasubramanian (2003), where the aim was to replicate a HI 

rather than the flow time-series. Here, modification of the covariance approach allows for the consideration of a suite of 

ecologically relevant HIs. The modified covariance approach is implemented over three stages (Fig. 3). 

Table 2. Overview of the seven ecologically relevant HIs considered in the application of the case study river catchment. Seasons are 5 
denoted as W (winter) and summer (S); the facets of the flow regime are denoted as M (magnitude) and R (rate of change). 

No. Season Facet Index Streamflow characteristic Unit Importance 

1 W M 10R90Log Log ratio 10th/90th percentile flows. - 0.86 

2 W R riseMn Mean rise rate in flow. m3s-1 0.07 

3 S M Q80Q50 Q80 flows relative to median. - 0.51 

4 S M logQVar Variance in log flows. m3s-1 0.37 

5 S M Q90Q50 Q90 flows relative to median. - 0.19 

6 S M Q70Q50 Q70 flows relative to median. - 0.09 

7 S R RevPos No. days when flow increases (positive reversals). days 0.8 

 

 

Figure 3. Overview of the three stages of the modified covariance approach to model parameterisation. 

Stage 1: The complete parameter space of the hydrological model was sampled; the number of parameter sets considered is 10 

dependent upon the number of free parameters in the hydrological model and the accepted level of uncertainty. To address the 

issue of parameter sensitivity (Tong and Graziani, 2008; Wu et al., 2017), the parameter space was sampled uniformly based 

on Sobol quasi-random sequences (a Quasi-Monte Carlo method). Here, 100,000 independent parameter sets were selected.  

Stage 2: For each parameter set, flow time-series were simulated based on the observed climate data. For each of these flow 

time-series, a corresponding set of covariances (between observed climate and simulated flow) and HIs was computed. The 15 

observed covariance and HIs are also determined.  

Stage 3: Before a parameter set was selected and evaluated, it was necessary to determine if the observed moments lie within 

the of the simulated moments (sampled parameter space). This was facilitated through plots (Fig. A2) of the observed and 

Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-536
Manuscript under review for journal Hydrol. Earth Syst. Sci.
Discussion started: 19 November 2018
c© Author(s) 2018. CC BY 4.0 License.



7 

simulated relationship between the (a) covariance between precipitation and flow, 𝜌(𝑃, 𝑄), and HIs; and (b) covariance 

between potential evapotranspiration and flow, 𝜌(𝑃𝐸, 𝑄), and HIs. If the moments do not agree, the model is invalidated.  

Selection of a model parameter set was based on a specified limit of acceptability, i.e. the ability to replicate or minimise the 

error, between the observed and simulated covariance structures and HIs. In Vogel and Sankarasubramanian (2003) the focus 

was on the replication of a single index. Here, the objective was the replication of multiple indices; to account for this, a limit 5 

of acceptability was specified per index, with the indices assigned maximum error thresholds based on their relative importance 

(Fig. 4). The index importance (Table 2) was normalised (rescaled to a range from zero to one) allowing the covariances to be 

assigned a relative importance of one (equal to the most important index). The limits of acceptability were determined through 

the linear relationship between the relative importance and a user-specified allowable error range (minimum and maximum; 

see Fig. 4). Parameter sets which fall below this limit of acceptability were rejected. Here, the minimum and maximum error 10 

were specified as 17.5% and 35% (2 ∙ 𝑒𝑟𝑟𝑜𝑟𝑚𝑖𝑛) respectively; see also Table A1 in the appendix. 

 

 

Figure 4. Boundaries of the limit of acceptability (shaded) for the case study selected parameter set. The lines indicate the relationship 

between the allowable error thresholds and relative importance.  15 

2.4 Model evaluation 

The ability of the performance and consistency of the modified covariance approach was made with reference to the seven HIs 

(Table 2). The seven HIs were calculated annually for both the observed and simulated flow datasets over the 54-year period. 

The model was evaluated with reference to prior studies with similar modelling objectives (the replication of ecologically 

relevant HIs): Shrestha et al. (2014); Vis et al. (2015); Shrestha et al. (2016); Pool et al. (2017). To permit such comparison, 20 

this study applied the same (non-parametric) evaluation metrics (Table 3). Two additional measures, Cramér-von Mises and 

the mean arctangent absolute percentage error (MAAPE), were considered to address limitations associated with certain 

metrics; see Table 3 for discussion. The modified covariance approach is considered relative to the above-mentioned studies; 

an overview of these works is provided in Tables B1 and B2.  
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Table 3. Evaluation metrics. Unless indicated otherwise, measures are based upon Shrestha et al. (2014), 2016; Vis et al. (2015); Pool 

et al. (2017). In the definition of the indices, I is the index value and n the number of observations. 

 Metric Description 
Definition  

(or R-function) 

Optimal 

value 

S
ta

ti
st

ic
a

l 
te

st
, 

co
rr

el
a

ti
o

n
 

Spearman correlation (rs) 

A correlation coefficient. The strength of the 

linear relationship between two variables. Non-

parametric, applicable when data is not normally 

distributed. 

stats::cor(…, method = 

“spearman”) 
1; -1 

Welch’s t-test 

Variation on correlation where the two samples 

have unequal variances. Hypothesis is that two 

populations have equal means. 

stats::t.test(…) p > 0.05 

S
ta

ti
st

ic
a

l 
te

st
, 

 
d

is
tr

ib
u

ti
o

n
 Kolmogorov-Smirnov test 

(KS) 

Tests whether samples come from the same 

population, i.e. follow the same distribution. 

Non-parametric, applicable when data is not 

normally distributed. 

stats::ks.test(…) p > 0.05 

Cramér-von Mises (CvM) 

(Cramér, 1928; Anderson, 

1962) 

Addresses limitations of KS test: (1) less 

focused on the central distribution; (2) more 

equal weighting on the tails of the distribution. 

cramer::cramer(…) 

(Franz, 2014) 
p > 0.05 

E
rr

o
r 

Model efficiency (NSE) 
Nash Sutcliffe efficiency. A measure of the 

goodness of fit of the HI to the 1:1 line.  
1 −

∑(𝐼𝑜𝑏𝑠 − 𝐼𝑠𝑖𝑚)
2

∑(𝐼𝑜𝑏𝑠 − 𝐼𝑜𝑏𝑠̅̅ ̅̅ ̅)2
 1 

Mean absolute relative error 

(MARE) 
Mean absolute error relative to index measured. 1 −

1

𝑛
∑

|𝐼𝑜𝑏𝑠 − 𝐼𝑠𝑖𝑚|

𝐼𝑜𝑏𝑠
 1 

Mean arctangent absolute 

percentage error  (MAAPE)  

(Kim and Kim, 2016) 

A modification of MARE. Considers the relative 

error as an angle rather than a slope, reducing 

the bias of large errors. 

1

𝑛
∑arctan(

𝐼𝑜𝑏𝑠 − 𝐼𝑠𝑖𝑚
𝐼𝑜𝑏𝑠

) 0 

A
d

d
it

io
n

a
l 

d
es

cr
ip

ti
ve

 s
ta

ts
 Normalised error (NSFC in 

Pool et al. (2017)) 

Index error relative to the range of values the 

index can take. 

𝐼𝑜𝑏𝑠 − 𝐼𝑠𝑖𝑚
∆𝐼𝑜𝑏𝑠

 0 

Hydrologic alteration factor 

(HAF) 

A factor developed as part of the Indicators of 

Hydrologic Alteration (Mathews and Richter, 

2007). Tests the replicability of sections of the 

probability distribution (lower-tail, IQR and 

upper-tail) for a given index. 

𝐹𝑠𝑖𝑚 − 𝐹𝑜𝑏𝑠
𝐹𝑜𝑏𝑠

 

Where F is frequency, no. 

values lying within the 

probability distribution. 

0 

3 Results 

3.1 Model parameters 

The relationship between the covariance of the input and output time-series and each HI, for all 100,000 simulations, are 5 

summarised in Fig. A2. The observed moments can be seen to lie within the simulated moments, validating the use of the 

GR4J hydrological model. The parameters of the production (x1) and routing (x3) store capacities were estimated as 511 and 

311 mm respectively; time elapsed for the routing of the flow is 1.17 days (x2). A positive groundwater exchange coefficient 

(x4) of 2.84 mm per day represents the inflow from the chalk aquifer. The percentage error for the covariances and HIs are 
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depicted in Fig. 4 previously. A covariance error range of -10-20% indicates a possible underestimation in the simulation of 

the observed flow. Error in the HIs is below ±10% in all instances, with the exception of the least important index, riseMn, 

where the error is equal to the upper threshold of +35%.  

3.2 Model evaluation 

The model is evaluated with reference to the distribution of each HI as well as the evaluation metrics used in Shrestha et al., 5 

2014, 2016; Vis et al., 2015 and Pool et al., 2017 (Table 3). The ability of the model to replicate the seven HI is considered in 

terms of performance and consistency. 

The distribution of the HIs is presented in Fig. 5. In the case of the empirical cumulative distribution functions (ECDF; top 

row), the level of agreement between the observed and simulated HIs is indicative of good overall performance. However, the 

probability density functions (PDF; bottom row) indicate a lack of consistency across the indicator RevPos, and the low flow 10 

indicators (Q70Q50, Q80Q50 and Q90Q50). With the tails being well replicated, issues lie principally within the central 

distribution. For RevPos this is confirmed by a lack of correlation (Spearman; Table A2) and the statistical tests, where the 

null hypothesis was not rejected (observed-simulated HI do not agree in terms of mean and distribution).  

A summary of the NSE values and measures of error is provided in Fig. 6, optimal values are indicated by the dashed line; for 

the numerical values see Table A2. With a maximum of 0.54, the NSE values are suggestive of relatively poor model 15 

performance; again, highlighting difficulties in replicating the index RevPos. The metrics MARE and MAAPE suggest a more 

positive outcome, however consistency across the HIs is lacking. In contrast to the prior results, MARE indicates that the index 

RevPos is well replicated, with riseMn exhibiting the poorest performance. Conversely, MAAPE, which is intended to reduce 

the bias of large error values (see Table 3), identifies riseMn as the best performing index, whilst 10R90Log is deemed worst. 

The normalised error associated with each HI, a measure of the difference between observed-simulated values relative to the 20 

observed range, is précised in Fig. 7. The range of values that the indices 10R90Log and RevPos can take are low (±0.25 and 

±0.5 respectively), consequently, no inference can be made. In contrast to the ECDFs and PDFs, a high level of consistency is 

observed for the index logQVar and low flow indicators (across mean, range, distribution and bias of the normalised error). A 

strong negative bias, that was not clear in the Fig. 5distributions, is in evidence for the least important index (Table 2), riseMn. 

The hydrologic alteration factor (HAF) is adapted from the IHA approach (Table 3). It is a measure of the simulated and 25 

observed frequencies of values within three target percentile ranges: 0-25th, 25-75th, and 75-100th. As a measure of distribution, 

HAF is essentially a simplification of the distribution functions in Fig. 5. The acceptable range of HAF values is defined as 

±0.33 (Mathews and Richter, 2007). HAF values for each HI are presented in Fig. 8. 

The central distribution (25-75th percentiles) of all HIs lie within this acceptable range, indicating good performance and 

consistency. Performance across the tails of the distributions is generally good (lying within or on the bounds of the acceptable 30 

range), though there is a lack of consistency in the direction of bias. With a HAF value of 1.82 (not pictured to preserve figure 

resolution), the positive bias in the index RevPos exhibits the largest such deviation. With bias at both tails, inconsistencies in 

the replication of the index riseMn are again highlighted. 
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Figure 5. Empirical cumulative distribution functions (top) and probability density functions (bottom) for observed-simulated HIs.  

 

Figure 6. Evaluation metric summary by HI; optimal values are indicated by the dashed line.  

 5 

 

Figure 7. Normalised error (percentage) for each HI. A value of zero represents the optimum (no error; dashed line).  
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Figure 8.  Hydrologic alteration factor (HAF) values for the three percentile ranges for each HI. The acceptable range of HAF values 

is defined as ±0.33; HAF > 0 represents an increas in frequenecy relative to the observed whilst HAF < 0 represents a decrease. 5 

4 Discussion 

4.1 Modified covariance approach 

There is a clear need to understand the impact of hydrologic change on the river ecosystem. To assess this, hydrological models 

are used to simulate flow time-series from which HI of ecological relevance are derived. In this study, a modification of Vogel 

and Sankarasubramanian’s (2003) covariance approach was considered, with a focus on the replication of a suite of seven 10 

ecologically relevant HIs.  

The first aim of this study was to determine whether this modified covariance approach is able to satisfactorily replicate the 

suite of HIs. The hydrological model was successfully parameterised with observed moments lying within the bounds of the 

simulated moments for all HIs. Overall, replication of the HIs was good. Indices related to magnitude where best replicated, 

whilst difficulties were observed in replicating rate of change and integer indices.  15 

In terms of distribution (Fig. 5) and evaluation metrics (Table 3), the best performing and most consistent HIs are the measures 

of magnitude: logQVar, Q80Q50 and Q90Q50. This is a clear indication that the model can successfully replicate the variation 

in flow and quantiles (specifically low-flows, Q80 and Q90). Measures of model performance associated with the remaining 

four indices present a conflicting picture, leading to a lack of clarity as to the full capacities of the hydrological model and 

relative success of the covariance approach. The two most important indices, 10R90Log and RevPos, are among the less well-20 

replicated; however, this may be due to their sheer inherent complexity (discussed further below). 
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4.2 Comparison 

A number of studies have investigated the ability of hydrological models to replicate ecologically relevant HI. Subjecting the 

outcomes to a comparison is the second objective of this study. The comparative studies, Shrestha et al., 2014, 2016, Vis et 

al., 2015 and Pool et al., 2017, follow a traditional calibration-validation approach, considering an array of objective functions 

and performance metrics (Table 3); see Appendix B for details. Comparison is made with reference to the facets of the flow 5 

regime, specifically magnitude and rate of change (Table 2). 

Both Shrestha et al. (2014) and Vis et al. (2015) observed poor model performance in the replication of low flow HIs. 

Consistent with the literature (Westerberg et al., 2011; Pushpalatha et al., 2012), Shrestha et al. (2014) attribute this to the use 

of objective functions tuned to high-flow periods (i.e. NSE and volume error; Table B1). As shown in this study and Pool et 

al., 2017, this is largely redressed through explicit consideration of low-flow HIs in parameterisation of the hydrological model. 10 

Mean flows are similarly accounted for in Pool et al., 2017. Performance and consistency in the replication of high flow 

indicators was consistent across all studies, with the exception of Shrestha et al., 2016, where summer (June-September) high 

flows exhibit a distinct negative bias. No studies, this work inclusive, observed difficulties in replicating indicators related to 

flow variability directly. 

Whilst inconsistency in the replication of the rate of change indicator RevPos is clear, a lack of agreement in the evaluation 15 

metrics leads to difficulties in assessing the performance of riseMn. Such observations are found consistently across three out 

of the four studies: Shrestha et al., 2016 excluded frequency and rate of change indicators due to large negative bias observed 

in Shrestha et al., 2014, whereas Vis et al., 2015 saw inconsistencies across the calibration-validation and performance metrics 

(NSE and Spearman). Performance improvements were, however, seen in Pool et al., 2017 when the HI is considered as the 

objective function. 20 

Of the studies considered, only Vis et al., 2015 and Pool et al., 2017 are directly linked to the outcomes of hydroecological 

modelling, replicating a suite of ecologically relevant HIs. In Vis et al. (2015) performance was inconsistent, varying 

considerably across HIs and objective function; model evaluation was limited due to the focus on model efficiency (NSE) as 

an evaluation metric. Pool et al. (2017) concluded that the choice of objective function strongly influenced the accuracy in 

replication, with the best results achieved when the models were calibrated on the HI of interest.  25 

It is clear that no approach has been able to achieve adequate performance and consistency in the replication of more complex 

HIs, specifically those related to rate of change. Whilst Pool et al., 2017 saw improvements, the need to calibrate the model to 

each HI in question would strongly call into question the reliability of the hydrological model (due to the inability of the 

hydrological model to simulate catchment hydrological processes simultaneously). The consistency with which (the majority 

of the) HIs are replicated here illustrates that this is not a necessary limitation of hydrological models.  30 
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4.3 Evaluation metrics 

This work, and the comparative studies, highlight a number of shortcomings in the evaluation metrics used in the evaluation 

of hydrological models. One consequence being difficulty in evaluating the most important indices. Considerable conflicts 

have arisen between and across the measures; the following problems are highlighted: (1) the statistical tests of agreement 

(Table 3) are generally limited to the mean or central distribution; (2) the error measures NSE and MARE exhibit known bias 5 

(Table 3; Vis et al. (2015); Kim and Kim (2016)); (3) the HAF index is not well-suited for the evaluation of HIs which are 

integer counts or dimensionless. Number 3 is best illustrated through consideration of the index RevPos, an integer count of 

the number of positive reversals in the summer season. When assessing RevPos based on percentile ranges (as per HAF), 

integers equal to the percentile boundary are not considered (see Fig. A1). This suggests that HAF may not be applicable for 

those indices which take integer values (i.e. counts, days or Julian day time of year). Indeed, the difficulties observed here and 10 

in the comparative studies suggest that certain HIs, such as rate of change indicators like RevPos, may simply not be practically 

replicable by a hydrological model. Given redundancy in many HIs, it may be possible to identify another more suitable index 

capable of providing the same information. Such efforts would not arbitrarily improve the replication of the HIs, but rather, 

confidence in the performance of the outputs. 

4.4 Addressing the limitations of traditional hydrological model calibration 15 

As discussed at the outset of this paper, a number of limitations of a traditional approach to hydrological model calibration 

have been identified. These include: (1) bias and uncertainty as a result of measurement error, i.e. disinformative data; (2) the 

arbitrary nature of GOF behaviour thresholds; and (3) equifinality. Determining whether the modified covariance approach 

serves to address any of these limitations represents the final aim of this study.  

4.4.1 Disinformative data 20 

Models calibrated following a traditional approach are particularly sensitive to measurement error (Westerberg et al., 2011). 

Lack of agreement in the observed-simulated time-series, even for a single event, may bias the objective function, leading to 

rejection of an otherwise well-performing parameter set (Beven, 2010; Westerberg et al., 2011).  Methods which do not focus 

on the replication of time-series, such as the modified covariance approach, limit the influence of input uncertainty (Westerberg 

et al., 2011; Euser et al., 2013). Additionally, length of the time-series is a significant factor, with shorter time-series featuring 25 

greater bias (Westerberg et al., 2011); depending on the area of application, long-term climate variability (e.g. El Niño/La 

Niña) may exacerbate this. It is worth noting that, amongst the comparative studies, none feature data in excess of 29 years; it 

is possible that, an alternative approach to parameterisation that does not focus on the time-series, such as the covariance 

approach, may reduce input uncertainty, leading to improvements in the replication of indicators.  
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4.4.2 Behaviour thresholds 

The observed and simulated moments (Fig. A2) clearly illustrate whether a given hydrological model structure is able to 

capture the hydrological processes in the catchment. In this way, the modified covariance approach is not dependent on an 

arbitrary behavioural threshold to validate the use of the hydrological model. However, in the absence of a numerical measure 

of the relative importance of each HI, an element of subjectivity is necessarily introduced into the parameterisation of the 5 

model. An approach such as the Generalised Likelihood Uncertainty Evaluation (GLUE) framework (Beven and Binley, 2014) 

may represent a viable alternative where HI importance is unspecified or irrelevant.  

4.4.3 Equifinality and parameter space 

Equifinality, reaching the same outcome by different means, is a major challenge of hydrological modelling. In the modified 

covariance approach the entire parameter space is considered. The range of possible solutions, i.e. parameter sets, is reduced 10 

by focussing on the region which is best able to replicate the characteristics of the HIs, thereby reducing the uncertainty 

associated with equifinality (Wu et al., 2017). Additionally, the approach ensures the selection of the global optimum. 

In hydrological uncertainty analyses, the size of the parameter space is highly variable; for example, Wilby (2005) considered 

10,000 simulations, whilst Ballio and Guadagnini (2004) looked at 200,000. Here, a total of 100,000 simulations were 

considered in order to verify the method of investigation; upscaling this for the 16 parameter HBV model in Vis et al., 2015 15 

and Pool et al. would necessitate 400,000 simulations. Whilst the large number of simulations may seem prohibitive, this 

demand may be offset. Unlike the calibration-validation paradigm, where selection algorithms may introduce issues of speed 

and accuracy (Seibert, 2000), finite time is needed to apply the covariance approach. All simulations of the hydrological model 

are performed at the outset; once the full suite of parameter sets have been simulated the hydrological model need not be run 

again. In traditional calibration-validation, where the HI serves as the objective function (e.g. Pool et al., 2017), the HIs must 20 

be specified at the outset. This is not the case in the modified covariance approach; the n Monte Carlo simulations can be 

performed in advance of HI selection. Further, multiple sets of HIs may be considered at a time (e.g. all rate of change or 

magnitude indicators), or at a later date, with limited additional time outlay. 

4.4.4 Additional limitations 

The outcomes of this, and comparative studies, highlight the present inability of hydrological to simulate a wide range of HIs 25 

concurrently (e.g. rate of change plus other facets of the flow regime). Any attempted improvements may, f come at the cost 

of parsimony and equifinality. Additionally, as a simplification of the hydrologic system, it is impossible, by definition, for a 

hydrological model to accurately replicate all aspects of the flow regime simultaneously (Beven, 2012b). For this reason, it 

may be that a focus on the replication of HIs, leads to a poor representation of the flow hydrograph (Seibert, 2000), limiting 

the use of such models to the initial modelling objective (replication of HIs).  30 
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4.5 Wider applicability and further work 

The applicability of the modified covariance approach is not limited to hydroecological studies and the simulation of 

ecologically relevant HI, being suited to the simulation of any HIs or hydrological signatures. Indeed, a focus on hydrological 

signatures may serve to improve the simulation of underlying hydrological processes (Seibert, 2000; Euser et al., 2013). In 

this context, example applications include the replication of water resource management indicators (monthly, seasonal and 5 

annual flows). Additionally, the clarity with which model structures are accepted or rejected makes the approach ideally suited 

for use in combination with model selection frameworks such as the Framework for Assessing the Realism of Model Structures 

(FARM; Euser et al. (2013)). 

There remains a need to explore the capability of the modified covariance approach in replicating a wide range of HIs, 

specifically the indicators of hydrologic alteration (IHA). Given the inherent limitations on the number of indices which may 10 

be considered at a given time, this may be explored through application to a database of catchments of different flow regimes 

and/or hydrological models. 

5 Concluding remarks 

The performance and consistency of a modified covariance approach, relative to traditional calibration-validation, was 

explored. The focus of the study was the replication of ecologically relevant HIs. Compared to similar studies, the modified 15 

covariance approach shows an ability to maintain both consistency and performance when replicating hydrological indicators. 

A major advantage of the approach lies in the identification of the region of parameter space which best captures (replicates) 

the characteristics of the HIs, thereby providing a greater understanding of the suitability, limitations and uncertainties of the 

hydrological model. In order to understand the range of HIs which may be considered at a given time, further work across a 

database of catchments and the range of IHAs remains necessary.  20 
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Appendix A – Supplementary data and results 

Table A1. Linearly determined limits of acceptability for each HI and covariance; see also Fig. 4. 

Variable type Variable Importance 
Relative 

importance 

Limit of 

acceptability – 

absolute error 

(%) 

Error (%) 

Covariance P - 1.00 17.50 -13.54 

Covariance PE - 1.00 17.50 -17.48 

HI 10R90Log 0.86 1.00 17.50 7.16 

HI RevPos 0.80 0.92 18.83 8.45 

HI Q80Q50 0.51 0.56 25.25 0.80 

HI logQVar 0.37 0.38 28.35 -4.36 

HI Q90Q50 0.19 0.15 32.34 10.69 

HI Q70Q50 0.09 0.03 34.56 -0.74 

HI riseMn 0.07 0.00 35.00 34.36 

 

Table A2. Model evaluation summary by HI; see also Fig. 6. NA denotes where an approach is not applicable for a given measure. Optimal values 

are indicated in Table 3. 5 

Index Importance 
Spearman 

corr. 
NSE MARE MAAPE 

10R90Log 0.86 NA 0.11 0.90 0.45 

RevPos 0.8 -0.31 -2.10 0.72 0.26 

Q80Q50 0.51 0.73 0.43 0.92 0.08 

logQVar 0.37 0.62 0.18 0.66 0.31 

Q90Q50 0.19 0.76 0.44 0.91 0.09 

Q70Q50 0.09 NA 0.20 0.92 0.08 

riseMn 0.07 0.81 0.54 0.54 0.35 
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Figure A1. Histogram of the observed (green) and simulated (purple) values for the index RevPos. The dashed lines indicate the 

lower and upper boundaries for the HAF. 
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Figure A2. Relationships between (a) the covariance between precipitation and flow, 𝝆(𝑷,𝑸), and each HI; and (b) the covariance between potential 

evapotranspiration and flow, 𝝆(𝑷𝑬,𝑸), and each HI. The shaded points depict the moments of the observed data and selected parameter sets; the hollow 

points depict the 100,000 Monte Carlo simulations. Grey boxes depict the boundaries of the limits of acceptability for each index as defined in Fig. 4. 
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Appendix B – Comparative studies 

The first two studies, Shrestha et al. (2014) and 2016, are focussed on the replication of the full suite of IHA’s rather than case 

study specific ecologically relevant HIs. Informed by the findings in the first study, Shrestha et al. (2016) excluded rate of 

change and frequency indicators. The studies conducted by the second research group in Table B1 explicitly focus on 5 

replication of ecologically HIs with selection informed by previous hydroecological studies. Uncertainty is reduced through 

the consideration of longer time-series and multiple (calibration) iterations. A total of four HIs can be considered as analogous 

with four considered here: RA7, E85, MH10 and MA41; summarised in Table B2. Unfortunately, direct comparison with Pool 

et al. (2017) in terms of HAF was restricted due to the focus on the central distribution. 

 10 

Table B1. Overview of the studies considered in section Error! Reference source not found. Comparison. 
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Shrestha, Peters, 

and Schnorbus 

(2014) 

Fraser catchment, 

Canada; 2 of 66 

sub-catchments 
VIC; semi-

distributed 
5 

14 5 

(1) Nash Sutcliffe 

Efficiency (NSE; also 

known as model 

efficiency, see Table 3); 

(2) NSElog, (Pushpalatha 

et al., 2012); (3) Volume 

error. 

No 38 

Shrestha, 

Schnorbus and 

Peters (2016) 

Fraser catchment, 

Canada; 1 of 4 

sub-catchments 

23 1 No 24 

2 

Vis, Knight, Pool, 

Wolfe and Seibert 

(2015) 

Tennessee-

Cumberland 

River catchment, 

USA; 27 sub-

catchments HBV; semi-

distributed 
16 29 100 

(1) NSE; (2) NSElog; (3) 

Lindstrom, a combination 

of NSE and volume error; 

(4) MARE (Table 3); (5) 

Spearman rank 

correlation; (6) Volume 

error; (7) three objective 

functions combining the 

above statistical criteria. 

Yes 12 

Pool, Vis, Knight 

and Seibert 

(2017) 

Tennessee River 

catchment, USA; 

25 sub-

catchments 

Five functions based on 

combinations of NSE and 

error; single and multiple 

indices. 

Yes 16 
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Table B2. Hydrological indicators considered in Vis et al. (2015) and Pool et al. (2017). The relative comparability with indices in 

this study are indicated. 

Index Facet Streamflow characteristic Comparability Analogous indices 

RA7 Rate of change 
Rate of runoff recession, i.e. 

log-measure of fall rate. 

Direct riseMn (rise rate) 

Indirect 

Replication of log indices 

generally: 10R90Log and 

logQVar 

E85 Magnitude 
The lowest 15% of daily flow, 

i.e. Q85. 
Direct 

Low-flow indices: Q70Q50, 

Q80Q50 and Q90Q50 

MH10 Magnitude Maximum October flow. Indirect 
Magnitude facet. 

MA41 Magnitude Mean annual flow. Indirect 
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